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Abstract
Digital ledger technologies supporting smart contracts usu-

ally does not ensure any privacy for user transactions or state.
Most solutions to this problem either use private network se-
tups, centralized parties, hardware enclaves, or cryptographic
primitives, which are novel, complex, and computationally
expensive. This paper looks into an alternative way of imple-
menting smart contracts. Our construction of a protocol for
smart contracts employs an overlay protocol design pattern
for decentralized applications, which separates transaction
ordering from transaction validation. This enables consen-
sus on application state while revealing only encrypted ver-
sions of transactions to public consensus protocol network.
UTXO-based smart contract model allows partitioning state of
distributed ledger in a way that participants would need to de-
crypt and reach consensus only on those transactions, which
are relevant to them. We present security analysis, which
shows that, assuming presence of a secure consensus pro-
tocol, our construction achieves consensus on UTXO-based
transactions, while hiding most of transaction details from
all protocol parties, except a limited subset of parties, which
need particular transactions for construction of their state.

1 Introduction

Distributed ledger technologies (DLTs) enable parties to reach
consensus on some state without depending on central author-
ity for validation and ordering of events. This enables appli-
cations, in which only a minimal amount of trust is needed
between parties of a system. This is especially desirable fea-
ture for governance and financial systems. Naturally, there has
been a proliferation of these kinds of systems being created
using distributed ledger technologies as a foundation [21].

The main feature of DLTs (ensuring that all parties of the
protocol have the same view of the ledger) is also its one
of the main weakness. The ledger and all the transactions
on it are typically visible to every participant in the network
[8]. This means a lack of privacy. Alternative to DLTs are

of course more traditional centralized systems. They offer
much better privacy guarantees, simply because all the data is
managed by one entity and while that implies that user data
is available to that entity, the data is at least not available to
every other user. This kind of privacy is a standard for most
financial applications in today’s world. Financial applications
also happen to be one the main areas of use for DLTs. So, it is
no wonder, that lack of privacy is often named as the biggest
challenge for the adoption of these technologies [16].

Thus, privacy in DLT-based applications is an active area
of interest and there are already projects which focus on it
in various ways. Projects like Monero [3] and ZCash [20]
achieve privacy of user account balances and transfers but
are limited in their solution to the use case of cryptocurrency.
With the popularity of smart contract platforms like Ethereum
and DeFi (decentralized finance) projects on them, it becomes
clear that general programability (i.e. smart contracts) is a
very desirable feature of DLT networks. Naturally, privacy is
a desirable feature of smart contracts as well.

If we look for privacy solutions on smart contract plat-
forms we can find various projects and techniques which
allow hiding part of the information in transactions and con-
tract state from the public eye [6, 24, 33]. We can also find
projects, which sacrifice decentralized, permissionless na-
ture of typical smart contract platforms to achieve better pri-
vacy [6, 10, 22, 26] or projects which use hardware enclaves
in order to allow validating transactions without seeing their
full decrypted contents [2, 14, 23]. As will be explained later
(section 1.1), while all of these approaches represent valuable
advances in terms of privacy, they all introduce their own
limitations and costs. What is still desirable is a decentral-
ized permissionless smart contract platform, which would by
default ensure privacy of transactions and the whole state of
every smart contract, without depending on any specialised
hardware. The purpose of this paper is to introduce a crypto-
graphic construction that would move us closer towards the
aformentioned goal.
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1.1 Related work

A large portion of work on privacy in DLT space focuses on
specific use cases, the most common of them being payments.
Monero [3] is a blockchain based decentralized cryptorcur-
rency, which hides origin, destination and amount of currency
in transactions using ring signatures [29]. Zerocash [32] is
another blockchain based alternative with similar guarantees
achieved using zero-knowledge Succinct Non-interactive AR-
guments of Knowledge (zk-SNARKs). A modified version of
Zerocash protocol is now deployded as ZCash [20].

A number of projects focus on improving privacy of exist-
ing smart contract platforms. Zether [11] implements confi-
dential payments as a smart contract on Ethereum [36], using
zero-knowledge proofs. It is interoperable with other smart
contracts on Ethereum, which allows it to improve privacy
of a number of other decentralized applications, but its pri-
vacy guarantees are limited to payments. zkay [33] is a smart
contract programming language with special private types,
allowing it to define owners of certain values. It generates
Solidity smart contracts for Ethereum which implement the
specified logic and privacy guarantees. It uses proofs gen-
erated using Zokrates [15] - a frameowork which compiles
Ethereum smart contracts into zero-knowledge circuits. All of
these projects on Ethereum use zero-knowledge proofs, and
introduce additional cost for transactions in terms of resources
needed to generate proofs and to verify them on-chain. Fur-
thermore, they do not hide the smart contracts that tranactions
interact with. For example, a token implemented using Zether
would hide the details of payments which use this token, but
would not hide which transactions use this token [8].

Kachina [24] proposes a model and a method for devel-
oping privacy-preserving smart contracts. Similarly to zkay,
this model allows specifying which data should be private
and which can be leaked. It further provides proof guaran-
teeing that all smart contracts satisfying the requirements of
the model will not leak anything else besides the data spec-
ified to be leaked explicitly. Kachina solution is also based
on zero-knowledge proofs, meaning all smart contracts based
on it will have to use zero-knowledge proofs. In Kachina as
well as in zkay, the privacy guarantees depend on the actual
smart contract and how it is implemented. Meaning privacy
guarantees are different for different smart contracts.

Some projects depend on centralized parties to ensure pri-
vacy. Hawk [26] uses MPC (multi party computation) to
perform decentralized, private and fair computation but its
privacy guarantees depend on a centralized manager being
honest and not revealing private data. Arbitrum [22] describes
how to implement off-chain execution of smart contracts, by
a committe of managers. In the optimistic case an agreement
of all members of committe on the output of the computa-
tion is enough. In case of a dispute an on-chain protocol is
run to resolve the dispute and penalize dishonest parties. The
drawback is that all the members of the committe have to be

honest in order to ensure privacy.
Enigma [2], Ekiden [14] and Kaptchuk et all [23], pro-

pose using hardware enclaves (such as Intel Software Guard
extensions) in order to ensure privacy. While this approach
offers good performance [24], the dependence on specialised
hardware means that security depends on this hardware not
having any security flaws, and a number of them have already
been found over the years [34, 35].

Smart contract platforms like Quorum [6] and Corda [10]
focus on privacy as well, but, unlike the rest of projects men-
tioned here, they are aimed at permssioned networks. Privacy
in Corda depends on trade-off relating to security [25]. We
cover this issue in section 2.4.

1.1.1 UTXO-based smart contracts

Corda uses an UTXO (unspent transaction output) model
for smart contracts, which we use as a basis for the protocol
presented here. This model is an alternative to an account-
based model that Ethereum uses [12]. In the account-based
model application data of every smart contract is stored in
the same global ledger state, shared by every node in the
network, whereas in UTXO-based model the state can be
partitioned, which enables a lot more flexibility in terms of
privacy. This model is described in detail in section 2. UTXO-
based model does not fascilitate expressiviness as easily as the
account-based model, which is why Ethereum and many other
smart contract platforms choose the account-based model [12].
However, as existing work shows, UTXO-based smart con-
tracts are possible and offer privacy benefits [17], as well as
better security against programming errors, which are very
easy to make in the account-based model because of the mu-
table, shared state [12].

Zexe [8] proposes a decentralized private computation plat-
form. It uses UTXO-based model for smart contracts as well
but unlike Corda it is not aimed solely for permissioned set-
ting. It also differs from most of the projects mentioned earlier
in that it hides smart contracts associated with each transac-
tion as well as the data in it. In fact, transactions in Zexe
only leak an upper bound on the number of consumed inputs
and created outputs. It achieves this, by having all transac-
tions carry zkSNARK proof with them to prove their validity,
without leaking much else. These proofs are then verified by
consensus protocol. Usage of zkSNARKs of course, has a
cost. It was measured to take around 52 seconds to create an
average transaction in Zexe and around 46ms to verify it [8].

1.1.2 Overlay protocols

Most privacy solutions and most DLT platforms in general
use consensus protocol for ordering as well as validation of
transactions, so that a sequence of only valid transactions is
produced. However, there are some projects which separate
transaction ordering from validation and use consensus proto-
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col only for transaction ordering. Hyperledger Fabric [5] and
Corda [17] are examples of decentralized application plat-
forms which take this modular approach. To understand why
this separation is possible, consider a set of deterministic state
machines. If all of them are given the same sequence of inputs
they will innevitably produce the same outputs. It follows that
in order for the nodes of decentralized application to reach
consensus on the whole state of an application, it is enough
for them to have consensus on the sequence of inputs, which
can be determined by a separate process. More formally, it
has been shown that consensus and atomic broadcasts are
reducible to each other [13]. Atomic broadcast or total order
broadcast is a broadcast where all correct processes receive
the same set of messages in the same order [13] and the fact
that consensus and atomic broadcast problems are reducible
to each other means that a solution to one problem yields a
solution to the other. So if we have atomic broadcast protocol,
we can derive a solution to achieve consensus as well.

Another set examples of decentralized applications which
leverage atomic broadcast - consensus equivalence come in a
form of overlay protocols. They use blockchains as an atomic
broadcast protocol and execute all the application logic off-
chain [37]. Blockchains often allow additional metadata to be
submitted with transactions. This data can be totally arbitrary,
as blockchain nodes ignore it while validating transactions.
Overlay protocol transactions are embedded into blockchain
transactions by using this metadata field. Overlay application
nodes can use it to build their application state. Of course,
they need to apply additional rules to filter only valid overlay
protocol transactions.

One of the first examples of overlay protocols came in the
form of colored coins [31]. They use Bitcoin blockchain in
order to implement "coins" representing real world assets. Vir-
tualchains [28] and Counterparty [1] generalizes this idea by
allowing one to implement any kind of smart contract this way.
Virtualchains has been used to create a global naming and stor-
age system [4], while Counterparty implements a platform
for Ethereum smart contracts by using Bitcoin blockchain
for ordering transactions and Ethereum virtual machine for
executing smart contracts. However, none of these overlay
protocols offer any privacy.

Dialektos, which is presented in this paper, can be con-
structed as an overlay protocol for some blockchain (or
other kind of consensus protocol), extending it with privacy-
preserving smart contracts.

1.2 Contributions

This paper proposes Dialektos - a privacy-preserving dis-
tributed ledger protocol for UTXO-based smart contracts.
More concretely, we make the following contributions:

• UTXO-based smart contract model - we formalize the
notion of UTXO-based smart contracts, which is inspired

by smart contract platforms like Corda, and which we
will use in later parts of the work.

• UPC scheme - we introduce the notion of UTXO-based
private computation (UPC) scheme, which captures func-
tionality and security guarantees of a protocol for execu-
tion of UTXO-based smart contracts. Realizations of this
scheme can execute any smart contract, which satisfies
the UTXO-based smart contract model, while hiding all
information relating to any transaction from the public,
except the public keys of the parties interacting, size of
a transaction and references to spent states (outputs of
previous transactions), that are intelligible only to par-
ties which have access to full transactions that created
these states. For any transaction t, only parties, which
are participants of t (parties to whom t is relevant) or
some other transaction, which uses t as a dependency,
gain access to t. These guarantees will be explained in
more depth in section 3.

• Dialektos - we provide a construction of a UPC scheme,
called Dialektos and provide proofs that this construction
satisfies the security definition of a UPC scheme.

Additionally, the Dialektos protocol exhibits the following
features, which distinguish it from related work:

Overlay protocol. As was already briefly mentioned in the
previous section, Dialektos protocol can be viewed as
an overlay protocol over consensus protocol (blockchain
or other kind of DLT network). It separates transaction
ordering which is done by the consensus protocol from
transaction validation which is done by Dialektos. This
separation is partly what enables privacy features of
Dialektos, as the fact that public and permissionless con-
sensus protocol is only used for ordering of transactions
means, that it can do so without having plaintext access
to transactions. Also, the fact that consensus protocol is
not responsible for transaction validation, minimizes the
amount of processing that consensus protocol has to do,
which has positive implications for scalability.

No dependence on complex cryptographic primitives. A
lot of privacy solutions, mentioned earlier, use some
kind of zero knowledge proofs (like zkSNARKs). These
novel cryptographic schemes have performance cost,
especially when it comes to proof generation, and are
often based on hardness assumptions, which are still
considered to be strong [30]. The protocol proposed
here only uses encryption, hash functions and digital
signature schemes.

No dependence on specialised hardware. As was men-
tioned earlier, some of the privacy solutions for DLT net-
works use hardware enclaves like Intel SGX, to achieve
their privacy guarantees. Dialektos does not depend on
any specialised hardware for security.
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No dependence on a centralized party / parties.
Dialektos does not depend on any centralized
party.

Programming language agnostic. A protocol realizing a
construction presented here could be used for smart con-
tracts implemented in any programming language, as
long as it produces deterministic code to run when vali-
dating transactions.

Permissionless. Dialektos can be fully public and permision-
less, but there is also nothing preventing it from being
permissioned.

Smart contract interoperability. In Dialektos the same
transaction can interact with multiple smart contracts
and these smart contracts can take into account the in-
puts given to other smart contracts, besides itself.

Same privacy guarantees for all smart contracts.
Dialektos is a general purpose protocol for smart
contracts. All smart contracts executing on it inherit the
same privacy and consensus guarantees.

Solution for security privacy trade-off of Corda. UTXO-
model used by Dialektos is almost the same as the
one used by Corda. Indeed, Dialektos could be seen
as a modification of Corda, which replaces notaries
(special parties in Corda, which have a responsibility of
preventing double spends) with some protocol which
produces a total order of transactions. The important
effect of this is that resulting protocol does not require
security-privacy trade-off that exists in Corda [25].
Section 2.4 explains the problem presented by this
trade-off.

2 UTXO-based smart contract model

Dialektos is a protocol for UTXO-based smart contracts. Con-
cepts of UTXO smart contract model are deeply built into the
rules of Dialektos protocol, therefore it is necessary to un-
derstand how this smart contract model works first. Corda is
one of the smart contract platforms, which use UTXO-based
model [17]. The model presented in this section is inspired by
it. First we will present a short overview of how UTXO-based
smart contracts work, then a more formalized data model will
be presented, which will be used later when defining Dialek-
tos protocol. Finally, some concepts relating to the data model
will be defined.

2.1 Overview
The concept of a UTXO (unspent transaction output) transac-
tion model was first introduced by Bitcoin [17]. In this kind
of model each transaction creates a set of outputs that future
transactions spend. In Bitcoin, outputs are amounts of Bitcoin

cryptocurrency (or coins). So every transaction spends a set
of coins (inputs) and creates a new set of coins (outputs). Of
course, the protocol has a built-in rule that the total amount
of cryptocurrency created is not more than the amount of
cryptocurrency spent and each output can only be spent once.
Additionally, each output in bitcoin can be associated with
a script that defines rules when this particular output can be
spent. This scripting language however is very limited.

Some ledger platforms extend this concept of UTXO in
order to enable general purpose smart contracts [12, 17]. Be-
sides providing a more powerful programming language to
determine when outputs can be spent, they allow defining ar-
bitrary types for outputs. This means that these outputs can be
used to represent arbitrary assets or other parts of application
state and not just amounts of some cryptocurrency.

In Corda, and in the model we use here, transaction out-
puts are called states. Smart contract developers can define
arbitrary types to use as states. For example, a state type rep-
resenting an ownership in some piece of digital art could be
created, where this type would consists of at least three fields:
an owner, a hash of a file of an art piece, and a link to this file.
In order to transform a state (e.g.: to transfer ownership of an
asset), a transaction would be created which has old state as
input and has a new state, with modified fields, as output. Be-
sides defining state types, smart contracts also define a verify
function. This function is called when verifying a transaction
that spends or creates states of the type defined by this smart
contract. It determines if a transaction is valid according to
smart contract. Continuing with our example, a verify func-
tion for a smart contract of digital art piece would check if
an output state (representing a new ownership) would have
the same values for hash and link fields as the input state had
(owner field could be different), and that transaction is signed
by the public key specified as the owner in the input state
(old owner of an art piece). This is how verify function would
work in case of a transaction which intends to transfer owner-
ship of an art piece. Smart contract might also want to allow
other types of functionality, like destroying the digital asset.
For this purpose, smart contracts also define command types.
Each transaction which spends states of this smart contract
also defines a list of commands, which specify an intention of
this transaction. The verify function of a smart contract will
usually apply different rules for transactions with different
commands.

2.2 Data model
We define UTXO-based smart contract to be a tuple:

Contract = (stateTypes,cmdTypes,verify)

Where stateTypes is a collection defining data types for states,
cmdTypes - a collection defining data types for commands
and verify is a function for verifying transactions, which has
input or output states of types defined in stateTypes. It takes
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a transaction and returns an output specifying whether trans-
action represents a valid state transition, according to this
contract:

verify(tx)→⊤/⊥
The argument tx here is of type T x, which is a tuple:

T x = (inputRe f s,out puts,cmds)

The inputRe f s field specifies a set of inputs that transaction
spends. More specifically it is a collection of state references
to the output states created by previous transactions. The cmds
field specifies commands - values of type Command (defined
below), which represent intent of a transaction. Output states
(out puts) are of type State, defined below. This is where the
actual application specific data resides.

Each element in inputRe f s field of T x is of StateRe f type,
which is a pair:

StateRe f = (stxId, index)

Here stxId is a hash of some signed transaction and index
is an index refering to a specific state in the out puts collection
of the signed transaction that stxId refers to.

Each element of out puts collection in a T x is a State, which
is a tuple:

State = (partPKeys,contractRe f ,stateData)

Here stateData is application specific data. Smart con-
tracts define the type for this field in the stateTypes field of
Contract. Next, contractRe f is a reference to a smart contract
(type Contract above) which defines valid state transitions
for this type of state. The partPKeys contains a collection of
public keys identifying parties for whom this state is relevant.
In the UTXO model states often belong to a single party (in
which case he is the sole owner of a state) or a limited set
of parties. All other parties, typically do not need access to
the particular state. The participant field is meant to make
determining who should gain access to the state easier.

T x also contains cmds field which is a collection of
Commands:

Command = (cmdData,signers)

The cmdData field specifies what state transition is in-
tended. Possible values are determined by smart contracts
in their cmdTypes field. Additionally, each Command con-
tains signers field, which specifies public keys authorizing
this transaction.

When transactions are signed they are stored in SignedT x
tuple:

SignedT x = (tx,sigs,salt)

The tx field is the actual transaction (T x) defined above,
sigs contains the mapping between the public keys and their
signatures on tx. The salt field is for making the hashed value
of signed transaction unpredictable even when knowing trans-
action and its signatures.

2.3 Model concepts
Here we define some concepts, which will be used later.

Input and output states. Transactions contain references to
states created by previous transactions. This paper will
sometimes refer to these states as input states of a trans-
action. Accordingly, the states in out puts field of a trans-
action can be called outputs of a transaction.

Spent state. A state which is an input state to some valid
transaction (more on transaction validity later in this
section), is termed consumed or spent.

Participants of a transaction. As was already mentioned,
partPKeys field of State contain public keys of parties
to whom the particular state is relevant (who should gain
access to the state). We call these public keys participant
public keys of state s and we call parties to whom these
public keys belong - participants of state s. We also,
introduce related concepts - participant public keys of
transaction and participants of transaction. The former
refers to the set of public keys which are participant
public keys of any of the states in transaction (either
input states or output states) and the latter refers to the
set of owners of these public keys. More formally, for
any transaction t, with input states i0, ..., in and output
states o0, ...,om, participant public keys of t are given by
function txPart:

txPart(i,o) =
n⋃

k=0

stPart(ik) ∪
m⋃

k=0

stPart(ok)

Where, stPart(s) returns partPKeys field of state s.

Transaction dependencies. For any transaction t, other
transactions which are referenced in inputRe f s field
of t (meaning that t spends outputs created by those
transactions) are called direct dependencies of t. Direct
dependencies of t have their own direct dependencies
and so on, producing a tree of dependencies of t. All
transactions in that tree are called dependencies of t.
All dependencies of t which are not among its direct
dependencies are called indirect dependencies of t.

Conflicting transactions. Two transactions t1, t2 are said to
be conflicting if their input state references overlap. In
other words, transactions are conflicting if they try to
spend the same state.

Target smart contracts. As should be clear from the pre-
vious section, each input or output state of transaction
is associated with some stateType of some Contract.
This means that each transaction is associated with a set
of smart contracts. This set of smart contracts is called
target smart contracts of transaction.
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Transaction validity rules. For a signed transaction t, in a
UTXO-based smart contract model to be valid, this min-
imum set of rules has to be satisfied:

1. For every target smart contract (∗,∗,verify′)
of transaction t, verify′ function must pass:
verify′(t) =⊤.

2. sigs field of t contains a signature for all public
keys declared as signers of any of commands in
the cmds field, and all of these signatures have to
be valid.

3. All of dependencies of t are also valid.

A protocol that implements this smart contract model can
extend this set of validity rules. One of the reasons to do
so is to determine consensus on conflicting transactions.
Any sensible protocol that implements this model would
need to prevent double spends, which would happen if
multiple conflicting transactions would be allowed to be
valid. Therefore, some additional rules would normally
be needed that select one transaction out of multiple
conflicting. In Corda this takes the form of checking
if transaction has a signature of a notary. Notaries are
special nodes in Corda, which have responsibility to
record every state that has been spent and only sign on
transactions which spend states which have not been
spent yet.

2.4 Privacy and security in Corda
Corda is a smart contract platform, which implements UTXO-
based smart contracts, which match the model just presented
(maybe not exactly, but well enough for our purposes). Di-
alektos, which will be presented in the following sections can
be seen as a modification of Corda, which solves security
and privacy trade-off [25] present in Corda. Therefore, we
introduce this and related problems here, for completeness.
This section is not essential for understanding the rest of the
paper, but might help because Corda is a simpler version of a
protocol for UTXO-based smart contracts.

One consequence of UTXO model is that the state of the
whole application can be partitioned. For example, if we take
cryptocurrency as an application, then its whole state can be
defined as a table containing balances of each account. In
Corda, however, the way tokens are implemented, there is
no such table stored anywhere, there are only states defining
token amounts and who they belong to. It is responsibility
of an owner himself to track all of the token states he owns.
This means, that transactions do not need to be broadcasted
to every node in the network. State has a participants field
to help with that. It defines all the parties for whom this state
is relevant. Normally, every transaction in Corda is sent to
the set of parties specified by the union of all participants
of input and output states (typically transaction creators to

distribute transactions to participants). This way transaction
is recorded only by participants of transaction instead of the
whole network, which preserves the privacy of transaction.

However, this mechanism does not provide any guarantees
about transaction (and all of the states and identities recorded
in it) staying private in the future. More specifically, future
transactions which spend the states created by the previous
transaction has to reveal previous transaction and the whole
chain that lead to it, in order to prove their validity. Corda of-
fers a technique for helping with this issue, called confidential
identities [17]. The idea is to generate a new key pair for every
new transaction (or just the ones for which confidentiality is
important) a node signs. It can prove that this new key pair
belongs to him, by using a simple interactive protocol. So if
Alice wants to send tokens to Bob, but Bob does not want
for future validators of this transaction to see that the tokens
went to him, he asks Alice to send tokens to a key pair which
is freshly generated by him. Alice runs interactive protocol to
verify that Bob owns these keys and then does as Bob asked.
Alice knows tokens went to Bob, but for any other party which
gets this transaction, the receiver of tokens will not be known.
This way at least the anonimity of the transaction is preserved
when it used as a dependency.

Notaries have important implications for transaction pri-
vacy. Corda network can be configured to have validating or
non-validating notaries. Validating notary validates all the
transactions before signing them (in addition to checking
if it does not try to spend states which are already spent),
while non-validating notary sees only input state references,
time window and notary identity parts of transactions. Non-
validating notaries are possible because it is enough to see
state references in order to prevent double-spends. Non-
validating notaries are obviously better in terms of privacy,
because most of the transaction data is not revealed to them.
However this comes at a cost of susceptibility to denial-of-
state (DoSt) attacks [25]. They work by an attacker sending
to the notary an invalid transaction which claims to consume
some state. Since notary is non-validating, he will sign it.
When a genuine owner of the state tries to create a valid
transaction, which spends the state, the notary will reject it,
because in his eyes it is already consumed. Besides the fact
that this attack prevents a valid state spend, it is also invisible
to honest nodes, until they attempt to spend the state.

To the best of authors knowledge, there is currently no sat-
isfiable solution to DoSt attack, when using non-validating no-
taries. So it remains a trade-off between security of validating
notaries and privacy of non-validating notaries [25]. Although,
it has to be noted, that permissioned nature of Corda networks
make it somewhat less likely, because attackers identity will
be seen once attack is discovered. Then network operators
can manually fix the ledger and take steps against the attacker.

In the sections that follow, we provide a security definition
of a protocol for UTXO-based smart contracts, which does
not have this security-privacy trade-off and later provide a
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construction for such algorithm.

3 UTXO private computation scheme

This section defines UTXO-based private computation (UPC)
schemes. The purpose of these schemes is to execute trans-
actions for UTXO-based smart contracts that were defined
in the previous section, while preserving privacy and other
security guarantees. First, an overview of data structures will
be presented, interface (algorithms) for these schemes will be
defined, then informal definition of security properties will
be provided and finally, a formal security definition will be
introduced.

3.1 Data structures

UPC schemes use the structures from the UTXO-based smart
contract model defined in section 2. Additionally, it introduces
the concept of a ledger. A ledger in UPC is represented by
StxMap type, which is a table, mapping signed transaction
identifiers (their hashes) to their signed transactions:

StxMap = Map[StxId,SignedT x]

Informally, the ledger should hold all signed transactions,
which are recorded by the party as having been executed
by the network. Since UPC is privacy-preserving, ledgers of
different parties will usually differ: each party is only aware
of transactions that he is a participant of.

3.2 Algorithms

A UPC scheme is a tuple of algorithms:

UPC =(NewKeyPair,UploadContract,GetStxs,SubmitTx)

Here are the interfaces of the algorithms and their intent
described informally. We assume security argument to be an
implicit for all the algorithms.

Key generation. NewKeyPair()→ pk. Each user who uses
the protocol will have an associated set of keypairs gen-
erated by some public key encryption scheme. Public
keys will be used for identifying transactions, which are
relevant to the user. This algorithm generates a keypair
and returns its public key.

Uploading contract. UploadContract(c)→ ⊤/⊥. This al-
gorithm is used for registering smart contracts, which
transactions can interact with (as will be seen in secu-
rity definition section, transactions referencing contracts
which were not registered are invalid). It takes a value
of Contract type as argument and returns whether the
registering of smart contract was successful.

Submitting a transaction. SubmitTx(stx)→⊤/⊥. This al-
gorithm takes a signed transaction (type SignedT x) as
input, verifies it against the current state of the ledger
and if it is valid, stores it as another valid transaction in
the ledger of the party that submitted it. Returns ⊤ if it
was successful and stx was stored in the ledger.

Returning recorded transactions. GetStxs()→ stxs. User
may invoke GetStxs to retrieve the current state of his
ledger. This algorithm takes no arguments and returns
StxMap value. When GetStxs is invoked through party
p, then the value returned is said to be a ledger of p.

3.3 Security definition
For a cryptographic scheme to be considered a secure UPC
scheme, it has to satisfy certain security requirements. Infor-
mally, these are the properties we seek:

• Consensus - for every transaction stx, all honest par-
ticipants of stx reach consensus regarding whether to
include it in the ledger or not (they all include stx in
their ledger or they none of them do). In other words, if
GetStxs returns stx as part of a ledger for some honest
party, then all participants of stx, get stx in their ledger
as well (when they invoke GetStxs they get stx in the
value returned).

• Integrity - for any transaction stx and any party p if
SubmitT x(stx) returns ⊤ (as opposed to ⊥), then any
subsequent call to GetStxs by party p returns stx.

• Correctness - for every honest party p and for every
transaction stx in its ledger, the following must hold:

– For every target smart contract (∗,∗,verify′)
of transaction stx, verify′ function must pass:
verify′(stx) =⊤.

– sigs field of stx contains a signature for all public
keys declared as signers of any of commands in
the cmds field

– stx spends every state at most once

– All the dependencies of stx must also be in the
ledger of p

• Uniqueness - for every honest party p and for every
transaction stx in its ledger, there exists no other trans-
action in the ledger of p, which spends any of the same
states.

• Privacy - for every transaction stx, that is successfuly
submitted by some honest party, only the following in-
formation is revealed and only to the specified parties:

– Participants of stx gain access to stx.
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– Participants of stx gain access to every dependency
of stx.

– Participant public keys of stx are revealed publicly.

– For any direct dependency stx0 of stx, participants
of stx0 are revealed the output states of stx0 that
stx spends.

– Size of stx is revealed publicly.

A formal security definition for UPC consists of two parts:

• A game-based definition for consensus, which models
dynamic adversarial setting where adversary can get
access to any of the protocol machines and send any
(potentially dishonest) messages through them.

• A simulation-based definition in a standalone model with
static, passive-but-curious adversaries.

The game-based definition provides stronger guarantees,
but only for consensus. The rest of the informal properties
defined above are proven in a weaker standalone model for
now.

3.3.1 Consensus

We define consensus property that a secure UPC construction
has to satisfy, as a game Gc between adversary A and a chal-
lenger C . A challenger in this game interacts with a set of
parties P running some protocol π. The challenger provides
the following interface for the adversary:

• C .GetPartyState(p)→{0,1}∗ - challenger returns the
whole state of party p ∈ P .

• C .NewKeyPair(p) → PKey - challengers sends
NewKeyPair() to p ∈ P and forwards the returned
public key to A .

• C .UploadContract(p,c) → ⊤/⊥ - challenger sends
UploadContract(c) to p ∈ P and forwards the response
to A

• C .SubmitTx(p,stx) → ⊤/⊥ - challenger sends
SubmitTx(stx) to p ∈ P and forwards the response to
A .

• C .GetStxs(p)→ StxMap - challenger sends GetStxs()
to p ∈ P and forwards returned value to A .

• C .SendMsg(p,r,m) - challengers sends m to party r,
through party p ∈ P

The last function supplied by the interface of the challenger
allows A to send any message to any party in a way that
it would seem to the recipient that message came from a
protocol party p. Note that recipient could be anyone, not just
the party of protocol π.

Adversary can call any of the functions challenger provides.
He wins consensus game if there exists a transaction s and
two parties p1, p2, which would be participants of s, but s
would be accepted by one party and not accepted by the other.
More formally:

Definition 1 (Adversary winning conditions for consensus).
Adversary wins Gc defined above if, there exists two parties
p1, p2 with corresponding public keys pk1, pk2, a transaction
s∈ SignedT x, a sequence S of n other transactions {s0, ...,sn}
and a sequence K of State values {t0, ..., tn}, such that the
following four statements would hold:

1. ∀i < n : si.tx.out puts[s.tx.inputRe f s[i].index] = ti

2. ∀i < n : hash(si) = s.tx.inputRe f s[i].stxId

3. pk1, pk2 ∈ txPart(K,s.tx.out put)

4. s∪S⊆ C .GetStxs(p1) ∧ s∪S ⊈ C .GetStxs(p2)

Definition 2 (UPC consensus). A protocol π implementing a
UPC scheme is said to achieve consensus if the probability
that A wins game Gc is negligible.

3.3.2 Ideal functionality emulation

For privacy and other desirable properties listed at the begin-
ning of section 3.3 we create a simulation-based definition of
security, which we model as follows.

Each game is defined for a tuples (E ,π,A), where E is
some PPT machine representing environment, π is some PPT
protocol, A is a PPT machine representing an adversary. We
denote a game n for some (E ,π,A) as GE ,π,A

n . FUPC is ideal
functionality for UPC protocol, as described in appendix A.

In game GE ,π,A
r , representing the real world, C runs par-

ties P of protocol π and simply forwards each message from
E to some p ∈ P, where p is specified by the environment.
Responses from protocol parties are returned to E . Some
number c <= |P| of protocol parties are corrupted. After each
activation of one of corrupted parties, challenger sends tuple
(pid,msg,out,st) to A , where pid is identifier of a corrupt
party p, which was activated, msg is a message from the
environment, which activated p, out is a response (to the envi-
ronment) from p, st is the current state of p. At the end of the
game (after the last message was sent by the environment), C
returns state of A to E . E then outputs 1 bit value.

In game GE ,π,S
i , which represents the ideal world, C runs

ideal functionality FUPC and forwards each message from E
to it and returns all outputs of FUPC back to E . FUPC can leak
certain data to adversary. We call these messages - backdoor
messages. All of these messages are collected by C . At the
end of execution, C calls some PPT simulator S passing it all
the collected backdoor messages. Output of S is then passed
to E . E then outputs 1 bit.
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Informally, the task of S in this game is to generate state
of A and pass it as output, such that it would not help E to
distinguish if GE ,π,A

i was run or GE ,π,A
r , for any E .

We denote a bit produced as output by E , after execution of
some game g as EXEC(g,k), where k is a security parameter
used in execution.

Definition 3 (Emulation of ideal UPC functionality). Pro-
tocol π is said to emulate UPC ideal functionality FUPC if for
any PPT adversary A , there exists such PPT simulator S , that
for any PPT environment E , the following would hold:

{EXEC(GE ,π,A
r ,k)}k∈N

c≡ {EXEC(GE ,π,S
i ,k)}k∈N

where
c≡ denotes computational indistinguishability of proba-

bility ensembles in [27].

Definition 4 (Secure UPC protocol). A protocol π imple-
menting a UPC scheme is said to be secure if it achieves
consensus and emulates ideal functionality FUPC.

4 UPC construction

This section introduces a specific construction of a UPC
scheme, called Dialektos.

The design for this protocol is based on the consensus -
atomic broadcast equivalence [13]. Instead of using consen-
sus protocol for validating all transactions, we use it only
for ordering of transactions. That is, we use it as an atomic
broadcast protocol.

Atomic broadcast protocols (or ABPs in the remaining text)
are simply a set of protocols that ensure that all the parties
agree on the set of messages that were received and their or-
der. As already mentioned in section 1.1.2, atomic broadcast
and consensus problems are reducible to each other, which
means that Dialektos can use almost any consensus protocol
(including existing blockchains) as an atomic broadcast pro-
tocol to achieve the needed transaction ordering. The only
requirements are:

1. The same ABP must be used to spend the state as was
used to create it.

2. The chosen ABP must allow embedding arbitrary data
of arbitrary size in its messages (or transactions for, say,
blockchain protocols).

There might be ways to overcome the first limitation - to
migrate some states to other atomic broadcast protocol, but
this is a topic for further research. The second requirement
enables Dialektos to embed its transactions in ABP messages.

If consensus protocol (or ABP) is not used for validating
transactions, but only for ordering that means that transactions
contents are not that important for this protocol. It might as
well be ordering encrypted transactions, which is the approach
taken by Dialektos in order to achieve privacy.

Parties running Dialektos protocol apply a set of rules to
transactions ordered by ABP protocol to determine which
of them are valid. These rules are called validity rules of
transactions in Dialektos. They are the essence of Dialektos
protocol. Once parties have consensus on a sequence of valid
transactions they can reach consensus on the application state,
by executing transactions using deterministic state machines.

Validity rules of transactions have to satisfy some require-
ments, most of which can be inferred from the ideal function-
ality presented in appendix A. First and foremost, they have to
be deterministically computable, so that two Dialektos parties
validating the same transaction reach the same conclusion
regarding its validity. Second, these validity rules have to re-
solve conflicts (cases where to transactions spend the same
input), in order to prevent double-spends. Third, we want to
preserve privacy. For this purpose, all transactions submitted
to ABP network are encrypted. This makes the consensus
requirement harder to achieve, but we use the fact that in
the privacy-preserving smart contract platform parties do not
need to achieve consensus on the whole state, they only need
consensus on the part of the state that is relevant to them (if ev-
eryone would have consensus on the whole state, there could
be no privacy). This is where the UTXO model fits perfectly:
transaction outputs (and transactions themselves) are revealed
only to the relevant parties. Therefore, parties in Dialektos do
not achieve consensus on validity of all transactions, but only
on transactions which are relevant to them. This brings us to
another requirement: Dialektos has to ensure that parties are
able to get access (decrypt) all transactions which are relevant
to them, in order to determine their validity. The protocol
described in the following sections is constructed according
to these requirements.

In the following sections we first introduce cryptographic
building blocks, data structures of Dialektos and then transac-
tion validity rules. These validity rules determine both how
transactions should be validated as well as how to create a
valid transaction, so in a sense, they are the essence of the pro-
tocol. The more detailed pseudocode specification for validity
rules and the rest of the protocol is in appendix B.

4.1 Building blocks

Here we introduce syntax for some cryptographic building
blocks that Dialektos uses. Below, k represents a security
parameter.

Collision-resistant hash function. hash(v) → h. Takes a
value v of arbitrary size and returns its hash. It is compu-
ationaly infeasible to find two distinct values v,v′, such
that hash(v) = hash(v′).

Deterministic asymetric encryption. AEnc = (Kg,E,D).
Kg generates a keypair containing public key and se-
cret key: AEnc.Kg(1k)→ (pk,sk). AEnc.E(pk,m)→ c
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encrypts a message m ∈Mk. AEnc.D(sk,c)→ m/⊥ de-
crypts ciphertext c using secret key sk. We assume AEnc
is deterministic (meaning same plaintext always encrypts
to the same ciphertext) and is PRIV-IND-MU secure
as defined in [9]. PRIV-IND-MU, like its predecessor,
PRIV [7] defines security for deterministic asymetric
encryption, such that if the plaintext is sampled from
high enough min-entropy it is secure against chosen-
plaintext attacks. PRIV-IND-MU extends PRIV security
definition to multi-user, multi-message setting, where
adversary can potentially have auxilary information re-
lating to the plaintext.

Authenticated symetric encryption. SSenc = (Kg,E,D).
SSenc is an authenticated symetric encryption scheme,
which is one-time secure (AE-OT) as defined in [19].
AE-OT security definition captures privacy (indistin-
guishability against one-time attacks) and authentic-
ity (ciphertext authenticity against one-time attacks).
SSenc.Kg(1k)→ key outputs keys key ∈ Kk, which are
uniformly distributed. SSenc.E(key,m) → c encrypts
message m∈M′k using key∈Kk. SEnc.D(key,c)→m/⊥
decrypts ciphertext c using key ∈ Kk.

Hybrid encryption HEnc = (E,D). We use AEnc and
SSenc to construct a hybrid encryption scheme HEnc,
which works as shown in figure 1. Its E algorithm takes
a number of public keys and encrypts a single plain-
text with them, using the same symetric key. D decrypts
ciphertext using one of c1,c2 pairs produced by AEnc.E.

We assume that HEnc is secure against chosen-plaintext
attacks (i.e.: is IND-CPA secure). We do not show here
that such constructions of SSenc, AEnc and HEnc exist,
but based on results from Hofheinz et al. [19] and Her-
anz et al. [18] we conjecture that they do. Note that in
our hybrid encryption as defined in 1 the plaintext that
is used for symetric encryption is always random (as
already mentioned SSenc.Kg returns keys from a uni-
form distribution). Therefore, the main point of attack
for breaking deterministic encryption scheme in IND-
CPA/IND-CCA setting (running the same deterministic
encryption algorithm with the same inputs as challenger
does) is unavailable. In that case AEnc achieves security
against chosen plaintext attacks (definition of PRIV-IND-
MU [9]). According to [18] security of key encapsulation
mechanism against chosen-plaintext attacks is enough
to achieve IND-CPA security of a hybrid encryption
scheme.

Unforgeable digital signatures. Sig = (Kg,Sign,Valid).
Kg generates a keypair: Sig.Kg(1k) → (pksig,sksig).
Sign creates a signature on some message m:
Sig.Sign(sksig,m) → s. V validates some signature s:
Sig.Valid(s, pksig,m)→⊤/⊥.

1: procedure E(pks,m) for HEnc
2: k← SSenc.Kg()
3: c2← SSenc.E(k,m)
4: cs← []
5: for pk in pks
6: c1← AEnc.E(pk,k)
7: cs← cs∥ (pk,c1)
8: return (cs,c2)

9: procedure D(sk,(c1,c2)) for HEnc
10: k← AEnc.D(sk,c1)
11: m← SSenc.D(k,c2)
12: if k ̸=⊥∧m ̸=⊥ then
13: return (k,m)
14: else
15: return ⊥

Figure 1: HEnc scheme

Atomic broadcast protocol. FABP = (Submit,Read). In
our construction we assume the presence of an
ABP protocol ideal functionality we denote by FABP.
Submit : ABPMsg→⊤ function takes a message of type
ABPMsg assigns it a number, records it in the state of
FABP and leaks this message to adversary. Read : →
ABPMsg[] returns all the messages that has been submit-
ted, ordered by their number (the order of submition).

4.2 Data structures
Before introducing validity rules of transactions it is necessary
to introduce the data structures that these rule operate on.
Dialektos uses data structures of UTXO-based smart contract
model and UPC schemes defined in the previous sections.
Plus it introduces some additional data structures.

Parties running Dialektos protocol interact (exchange mes-
sages) only with ABP protocol, by submitting transactions
and retrieving transactions from it. In order to create a trans-
action party creates a SignedT x value, encrypts it, wraps it in
a ABP protocol message and sends this message to the ABP
protocol. This ABP protocol message is represented by the
ABPMsg type:

ABPMsg = (num, payload)

Here, num is the sequence number given to the message by
the ABP protocol. Remember that it is the purpose of a ABP
protocol to order messages. So num value represents this order.
The payload field can be anything as far as ABP protocol
is concerned: it does not validate it. We use it to store our
Dialektos transactions.

ABP messages that represent Dialektos transactions have a
payload value of type ABPT xMsg:

ABPT xMsg = (encKeys, inputRe f s,etx)
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Field etx stores an encrypted transaction. It is a symetric
encryption of T xMsg, which is defined below. The purpose of
inputRe f s is to store state references (values of type StateRe f
defined in section 2.2), that transaction encrypted in etx field
spends. The encKeys field is a mapping of public keys to
ciphertexts:

EncKeys = Map[PKey,c]

The purpose of encKeys field is to provide decryption keys for
etx to the participants of transaction. Each (pk,c) pair in this
mapping should be constructed by taking a symetric key k,
that was used when encrypting some T xMsg (defined below)
value to etx, and encrypting it with pk using a deterministic
public key encryption scheme (why it has to be deterministic
will be explained in the section 4.3). This way, only the owner
of the private key corresponding to pk can decrypt a symetric
key, which decrypts etx.

The value, which is encrypted as etx in ABPT xMsg, has a
T xMsg type:

T xMsg = (stx,depKeys)

The stx field holds the actual transaction. It is a value of
type SignedT x defined in 2.2 section. The second field is a
mapping from message identifiers to symetric keys:

Map[MsgId,Key]

The identifier (MsgId) of an ABPMsg is a hash of that
ABPMsg. In depKeys field, each message identifier m should
map to a symetric key used to encrypt a transaction that m
identifies.

4.3 Transaction validity rules
Every time an honest Dialektos party is activated it checks the
ABP protocol for new messages which have one of their public
keys in encKeys field and downloads them. Then they decrypt
them, by first decrypting the symetric key that is encrypted
with their public key in encKeys field and then using that
symetric key to decrypt etx. Then they validate the decrypted
transaction and add it to their ledger if it is valid. Here we
describe the validation part of this process as a set of rules,
with rationale for each of the rules. These rules apply to a
single value of type ABPMsg as well as everything wrapped
within it (ABPT xMsg and T xMsg encrypted as etx within
it). If any of the rules fail, the transaction represented by a
particular ABP message is considered invalid. A more formal
definition of validity rules in a form of pseudocode is in B.

First and foremost, before applying any of the other validity
rules Dialektos party has to check that, decrypted etx produces
value that is indeed T xMsg. If it is not, validation fails and
ledger is not updated.

Rule 1 (Transaction format). A value computed by decrypt-
ing etx field of ABPTxMsg, has to be of type T xMsg.

The decryption might not produce a value of type T xMsg
for a couple of reasons. Party submitting a transaction could
have provided an arbitrary value for etx or it could have en-
crypted a wrong symetric key for one specific party. The latter
case is especially interesting: what happens if a message en-
crypts different symetric keys for different participants, such
that some of them decrypt to valid T xMsg values and some
do not? Or what if some participants are not provided by
the encKeys field with an encrypted value at all? Obviously,
we need to make sure that all participants decrypt the same
value, because we need them to reach consensus on transac-
tion validity. The "Encrypted keys" rule defined below, solves
this.

Next we check that transaction stx in the T xMsg decrypted,
has the authorizations it claims to have.

Rule 2 (Signatures). sigs field of stx in T xMsg must con-
tain a signature for all public keys declared as signers of
any of commands in the cmds field of stx.tx and these sig-
natures have to be valid signatures of tx by the private keys
corresponding to these public keys.

Later we will check that transaction does not spend states
that are already spent by other transactions, but first we check
that the same transaction does not spend the same state twice.

Rule 3 (No duplicates). No StateRe f value can appear in
inputRe f s field of ABPT xMsg more than once.

Both ABPT xMsg and SignedT x within it have inputRe f s
field, which specifies which states transaction intends to spend.
For ABPT xMsg this field is needed to detect conflicting trans-
actions (which is needed for "Conflicts" rule below). For
SignedT x it is needed to specify whole state transition, which
can be signed by the authorizing parties. These collections of
input references have to be equal.

Rule 4 (Input references). The inputRe f s value in stx.tx
field of T xMsg, must be equal inputRe f s value declared in the
ABP message (ABPT xMsg) that carries this T xMsg value.

Input state references and rest of the fields of T x are not
enough to verify the state transition that a particular transac-
tion represents. Actual states that input state references refer
to are needed. But these states are part of transactions which
are stored encrypted in an ABP network. Therefore, it needs
to be ensured that every participant of transaction, has a key
to decrypt all of the needed dependencies. This is the purpose
of depKeys field of T xMsg.

Rule 5 (Dependencies). The depKeys field of T xMsg has to
contain a a symetric encryption key for every direct depen-
dency of stx within the T xMsg and all of direct dependencies
decrypted this way must be valid

This means that all the validity rules defined here (includ-
ing this one) have to be applied to every direct dependency
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of the transaction being validated. This validates the whole
transaction tree. In case any dependencies of transaction is
invalid, it is invalid too. This also means, that transaction can
be invalid if it provides the wrong dependency keys in the
depKeys field.

Next, we define a rule to ensure that all participants of
transaction get access to it:

Rule 6 (Encrypted keys). encKeys field of ABPT xMsg must
contain encrypted value for each participant public key of
transaction, and these encrypted values must decrypt to the
same symetric key.

If the same symetric key is encrypted for all participants of
a transaction and stored in encKeys field, then all participants
will get the same value when decrypting etx, which ensures
that they will come to the same conclusion regarding transac-
tion validity when applying the rest of the deterministic rules
defined here. In order to enable checking this rule we use
deterministic public key encryption. It ensures that the same
value encrypted with the same public key will always produce
the same ciphertext. So to fully check this rule a Dialektos
party does the following:

1. Determines participant public keys of transaction stx
in question, using txPart function (defined in section
2.3 and input, output states of stx (input states have to
already be retrieved from dependencies).

2. Checks if encKeys contains a public key - ciphertext pair
for each participant public key from the previous step.

3. Checks that for every (pk,c) pair within encKeys the
following equation holds: aenc(pk,k) = c, where aenc
is deterministic public key encryption of the second argu-
ment using the public key in the first argument, and k is
the symetric key that the validating party used to decrypt
the transaction being validated.1

Do these checks really translate to the Rule 6? The first two
steps ensure that encKeys includes all participant public keys
which is the purpose of the first part of rule 6. The third step
is intended to ensure that encKeys maps these public keys to
ciphertexts, which are encryptions of the same symetric keys.
Let’s say we have a symetric key k with which we decrypted
etx of some ABPT xMsg. If encKeys field of that ABPT xMsg
provides encryptions of the same k for all public keys then
we should get the same ciphertexts if we encrypt k with these
same public keys (otherwise encryption scheme would not be
deterministic). So if the check fails either we have the wrong
k or encKeys provides encryptions of different symetric keys
for different public keys. In the second case, the transaction
is clearly invalid because it does not follow rule 6. In the

1Note that, if the validating party has already come to this validation
step it means that it decrypted etx field using some symetric key. This is the
symetric key that is represented by k in the third step.

first case, we should think about where we get k. If we get
it by decrypting a ciphertext provided by encKeys for our
public key, then we know that rule 6 is not satisfied, because a
different key is encrypted for us than from some of the other
public keys, and so transaction is invalid. We could have also
received k from depKeys in T xMsg of transaction which uses
the transaction in question as a dependency. In that case it is
both possible that this key provided by depKeys is wrong as
well as that encKeys is invalid. Fortunatelly, for validation of
transaction which provides the depKeys, it does not matter
which of these two cases is true since the conclusion is the
same: the validation of dependencies failed, which means that
validation of transaction failed and the ledger should not be
updated.

Next, we check if stx within the T xMsg value decrypted
represents a valid state transition according to all the target
smart contracts:

Rule 7 (State transition). For every target smart contract
(stateTypes,cmdTypes,verify′) of stx, verify′ function must
pass: verify′(stx) =⊤.

Finally, we need to check if the states being spent by a
transaction are not already spent. For that purpose we need
to get all conflicts of the transaction we are validating. These
are all ABP messages which attempt to spend any of the
same states. The inputRe f s field of ABPT xMsg declares what
states references a transaction within the message spends, so
the protocol uses that to detect all messages representing
conflicting transactions. We call the set of states, which are
referenced by inputRe f s of both m and t, common input states
of m and t. Then the following rule is applied to T xMsg we
are validating, which we call t:

Rule 8 (Conflicts). For every conflicting ABP message m of
t, if the following holds:

1. m is recorded in the ABP protocol used to record t

2. For every participant public key, of every common input
state of m and t, encKeys within m contains a mapping
for that public key.

Then the following must hold too:

1. depKeys of t must contain a decryption key k for m.

2. The validation of m using decryption key k, must fail.

4.4 Security analysis
Theorem 1. Dialektos achieves consensus property (def. 2)
in a world with ideal functionality FABP.

Proof (sketch). A proof by contradiction. Let’s say the adver-
sary is successful and there exists two parties p1, p2 with cor-
responding public keys pk1, pk2, a transaction s∈ SignedT x, a
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sequence S of n other transactions {s0, ...,sn} and a sequence
K of State values {t0, ..., tn}, such that the four statements in
the adversary winning conditions would hold.

If s ∈ C .GetStxs(p1), that means that there exists some
amsg∈ ABPMsg, such that it is recorded by the ABP network
that Dialektos uses and triggered an update to the ledger of
p1 such that s was added to it. This means that amsg and
s it contains satisfies all the validity rules according to p1.
All parties use atomic broadcast protocol ideal functionality
FABP, which ensures that if adversary submits ABPMsg to
FABP, then all parties get it the next time they update their
state and before handling any other messages. That means
that p2 received amsg too, but it or the SignedT x within it
did not pass its validity rule checks or p2 ignored it, because
encKeys in amsg did not contain a public key - ciphertext pair
for p2. In case of validation error p2 throws an error and stops
validating on the first rule that transaction fails. Let’s consider
each potential cause for consensus failure in p2 case by case.

Case 1: p2 ignores amsg. This is the case where p2 does not
decrypt amsg.payload.etx because for all public keys pk
of p2, pk /∈ getMapKeys(amsg.payload.encKeys). But,
from the hypothesis at the beginning of the proof, we
know that p2 is a participant of s (second statement
in the adversary winning conditions), which is within
amsg. We also know, that honest party p1 was able to
decrypt amsg.payload.etx to s and that p1 included s
in its ledger (4th statemend in the adversary winning
conditions). In turn, this means, that s and amsg passed
all the validity rules, including rule 6, which states that
amsg.payload.encKeys contains a mapping for each par-
ticipant public key of s. A contradiction: rule 6 cannot
be satisfied if participant key of p2 is not within the
encKeys.

Case 2: Rule 1 is not satisfied. In this case the value com-
puted by p2 decrypting amsg.payload.etx field is not
a valid value of type T xMsg. But we know that it did
decrypt to a correctly formatted T xMsg for p1. The
ams.payload.etx is the same for both parties since amsg
is the same. Therefore, p2 must have used a different
symetric key for decryption of etx if it decrypts to a
different value than what p1 decrypts. Both parties com-
pute this symetric key by decrypting c from some pair
(pk,c) ∈ encKeys, using a private key corresponding
to pk. So if parties received different symetric keys, it
means that different (pk,c) pairs in encKeys encrypt dif-
ferent symetric key. But this is a contradiction to the rule
6, which means that validation performed by p1 should
have failed and it must not have included s in its ledger.
A contradiction.

Case 3: One of the rules 2, 3, 4 or 6 are not satisfied.
This is the case where one of these rules do not
pass when applied to T xMsg that p2 decrypts from

amsg.payload.etx. We know that p2 used the same
symetric key to decrypt etx as p1, because otherwise
rule 6 check would have failed according to p1 and it
would not have included s in its ledger. Therefore, we
know that p2 must apply these rules to the same value
s as p1 did and we know that s satisfies them, because
honest party p1 included s in its ledger. A contradiction.

Case 5: One of the rules 5, 7 or 8 are not satisfied The
proof for impossibility of this case is equivalent to the
proof of the previous case, except for these three rules
some information needs to be retrieved from the ABP
protocol. Specifically, a set of ABP messages for rules
5 and 8, as well as a smart contract for rule 7. Smart
contracts are uploaded using ABP messages and hence
downloading a smart contracts is reduced to retrieving
ABP message as well. We know that both parties p1 and
p2 see the same sequence of ABP messages from FABP.
Therefore, if s satisfies rules 5, 7 and 8 according to p1,
then they must pass for p2 too.

So for each case where validation performed by p2 could
fail, we get a contradiction. Therefore, honest party p2 must
include s in its ledger, and the initial hypothesis stated at the
start of the proof is false.

Theorem 2. Dialektos emulates UPC ideal functionality
FUPC as per def. 3.

Theorem 3. Dialektos is a secure UPC protocol as per def.
4.

Proof for theorem 2 is in the appendix C. If proofs presented
here for theorems 1 and 2 hold, it is trivial to see that theorem
3 holds too.

4.5 Further research

This paper only analyses a theoretical construction of UPC
protocol. Further research is needed to measure performance
of Dialektos implementation in reality. One important area,
not covered by security analysis in this paper is resilience
against DOS attacks. Invalid transactions have to be processed
by honest Dialektos parties in case they conflict with any
transactions that they want to submit. An attacker could spam
the network with invalid conflicting transactions, increasing
the work required from an honest party. In order to perform
this attack, attacker needs to have state references, of states
that honest party will want to spend, which often will not be
the case. However, the attack might work in some contexts.
Various techniques could be employed to combat this or make
it more expensive, which are not within the scope of this
paper.
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Appendix

A UPC ideal functionality

We denote ideal functionality of a UPC scheme FUPC. It is
a trusted third-party which securely executes all transactions
for all parties. Code is provided is provided in figure 2, 3.
Some helper functions that FUPC uses are defined in figure 4.

B Dialektos protocol

Here we provide pseudocode for our UPC construction, called
Dialektos (figures 5, 6, 7). It uses additional functionality
provided by helper functions, defined in figures 8, 9, 10 and
FDB defined in figures 11, 12. FDB is a functionality providing
database-like access to set of transactions recorded in the ABP
network. It simplifies the Dialektos algorithms by providing
the following interface:

• GetSpends(re f s)→ amsgs - takes a set of state refer-
ences and returns ABP messages which claim to spend
any of them.

• GetTx(msgId) → amsg/⊥ - takes ABP message id
(which is a hash of some ABPMsg) and if message with
that id is recorded by the ABP protocol, that message is
returned.

• GetTxUpdate(pks, f rom)→ ( f ,amsgs) - takes a set of
public keys and an integer f rom. Returns ( f ,amsgs),
where amsgs is a set of ABP messages (num, payload),
which as payload contain transactions which claim to
have one of pks public keys as participant public keys
(according to encKeys field) and where num ≥ f rom.
The f returned is f = f rom+n, where n is the number
of new ABP messages that have been processed in the
process.

• GetContract(cre f )→ Contract - takes contract refer-
ence and returns the corresponding contract if it is
recorded by the ABP protocol.

• UploadContract(c)→⊤/⊥ - uploads contract c to the
ABP.

• Update() - FDB reads new messages in the ABP protocol
and updates its state accordingly.

C Proof of theorem 2

Proof (sketch). We need to show that for any PPT adversary
A , there exists such PPT simulator S , that for any PPT envi-
ronment E , the following would hold:

{EXEC(GE ,PDLT ,A
r ,k)}k∈N

c≡ {EXEC(GE ,PDLT ,S
i ,k)}k∈N

1: state of FUPC
2: ▷ VAR_NAME : TY PE = INIT IAL_VALUE
3: pkeyParty : Map[PKey,PartyId] = /0

4: partyPKeys : Map[PartyId,Set[PKey]] = /0

5: pkeySkey : Map[PKey,SKey] = /0

6: txCount : int = 0
7: txNums : Map[StxId, int] = /0

8: con f irmedT xs : StxMap = /0

9: spentStates : Set[StateRe f ] = /0

10: contracts : Map[Hash,Contract] = /0

11: partyT xs : Map[PartyId,Set[StxId]] = /0

12: adversaryT xs : Set[StxId] = /0

13: corruptions : Set[PartiId] ▷ Set of corrupt party ids
14:
15: procedure verifyStx(t : SignexT x, i : State[]) for FUPC
16: ((inRe f s,out puts,cmds),sigs,∗)← t
17: verifySigs(t)
18: verifyNoDuplicates(inRe f s)
19: verifyContracts(i,out puts,cmds,contracts)
20: for re f in inRe f s
21: if re f ∈ spentStates then
22: throw DOUBLE_SPEND_AT T EMPT
23: procedure addAdversaryTx(stx : SignedT x) for FUPC
24: id← hash(stx)
25: adversaryT xs← adversaryT xs∪{id}
26: send backdoor (RevealedTx,txNums[id],stx) to A
27: procedure addDepsToParty(p : PartyId, tx : T x) for

FUPC
28: for re f in tx.inputRe f s
29: if p ∈ corruptions then
30: addAdversaryTx(con f irmedT xs[re f .stxId])
31: partyT xs[p]← partyT xs[p]∪{re f .stxId}
32: addDepsToParty(p,con f irmedT xs[re f .stxId].tx)
33: procedure addTxToParties(stx : SignedT x, ps : Set[PKey])

for FUPC
34: id← hash(stx)
35: for p in ps
36: if p ∈ getMapKeys(pkeyParty) then
37: party← pkeyParty[p]
38: if party ∈ corruptions then
39: addAdversaryTx(con f irmedT xs[id])
40: partyT xs[party]← partyT xs[party]∪{id}
41: addDepsToParty(party,stx.tx)
42: procedure recordStx(stx : SignexT x, parts : Set[PKey])

for FUPC
43: for re f in stx.tx.inputRe f s
44: spentStates← spentStates∪{re f}
45: con f irmedT xs[hash(stx)]← stx
46: txNums[hash(stx)]← txCount
47: txCount← txCount +1
48: addTxToParties(stx, parts)

Figure 2: FUPC: ideal functionality for UPC. Part 1
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49: procedure getPartyStxs(p)→ StxMap for FUPC
50: return map(partyT xs[p], i 7→ (i,con f irmedT xs[i]))
51: procedure partyState(p) →

(Map[PKey,SKey],StxMap,Map[Hash,Code] for
FUPC

52: kps← []
53: if p ∈ getMapKeys(partyPKeys) then
54: kps ← map(partyPKeys[p],k 7→

(k, pkeySkey[k]))
55: return (kps,getPartyStxs(p),contracts)
56: procedure respond(name, p,args,m) for FUPC
57: if p ∈ corruptions then
58: send backdoor (name,p,args,m,partyState(p))

to A
59: send output (m) to p

60: on input (NewKeyPair, ) to FUPC from p
61: (pk,sk)← AEnc.Kg()
62: pkeyParty[pk]← p
63: partyPKeys[p]← partyPKeys[p]∥ pk
64: pkeySKey[pk]← sk
65: respond(NewKeyPair, p,(), pk)
66: on input (UploadContract, c) to FUPC from p
67: ret←⊤
68: try
69: ▷ Compiles contract and adds it to contracts
70: ▷ Throws error if comppilation errors happen
71: code← addContract(c,contracts)
72: catch err
73: ret←⊥
74: send backdoor (NewContract,c,code) to A
75: respond(UploadContract, p,(c),ret)
76: on input (GetStxs, ) to FUPC from p
77: ret← getPartyStxs(p)
78: respond(GetStxs, p,(),ret)
79: on input (SubmitTx, stx : SignedT x) to FUPC from p
80: try
81: ((inRe f s,out puts,cmds),sigs,∗)← stx
82: for re f in inRe f s
83: (stxid,∗)← re f
84: if stxid /∈ partyT xs[p] then
85: throw ERR_NO_ACCESS_TO_T X
86: inputs← getStates(inRe f s,con f irmedT xs)
87: pks← partyPKeys[p]
88: if ¬statesSpendable(inputs, pks) then
89: throw ERR_NOT _PART ICIPANT
90: verifyStx(stx, inputs)
91: allPart← txPart(inputs,out puts)
92: recordStx(stx,allPart)
93: s← size(stx)
94: send backdoor (NewTx,inRe f s,allPart,s, p) to

A
95: catch err
96: return ⊥
97: return ⊤

Figure 3: FUPC: ideal functionality for UPC. Part 2

1: function getMapKeys(m : Map[T,∗])→ Set[T ]
2: return map(m,(k,v) 7→ k)
3: function getStates(rs : StateRe f [], ts : StxMap) →

State[]
4: return map(rs,r 7→ ts[r.stxId].out puts[r.index])
5: procedure verifySigs(stx : SignedT x)
6: (tx,sigs,∗)← stx
7: for cmd in tx.cmds
8: for signer in cmd.signers
9: if signer /∈ getMapKeys(sigs) then

10: throw SIG_NOT _PRESENT
11: if ¬Sig.Valid(sigs[signer],signer, tx) then
12: throw SIG_INVALID
13: procedure verifyNoDuplicates(re f s : StateRe f [])
14: rset← /0

15: for r in re f s
16: if r ∈ rset then
17: throw DUPL_INPUT
18: else
19: rset← rset ∪{r}
20: function getContractRefs(s : State[])→ Set[Hash]
21: return map(s,st 7→ st.contractRe f )
22: procedure verifyContracts(i : State[],o : State[],

cmds : Command[], cs : Map[Hash,Contract])
23: cre f s← getContractRefs(i)∪getContractRefs(o)
24: for cre f in cRe f s
25: c← cs[c] ▷ Throws if contract does not exist
26: if ¬c.verify(i,o,cmds) then
27: throw INVALID_STAT E_T RANSIT ION
28: procedure addContract(c,cs : Map[Hash,Contract])
→Contract

29: code← compileContract(c)
30: cid← hash(c)
31: if cid ∈ getMapKeys(cs) then
32: throw CONT RACT _ALREADY _EXIST S
33: cs[cid]← code
34: return code
35: function getStParticipants(sts : State[])→ Set[PKey]
36: pks← /0

37: for st in sts
38: pks← pks∪ st.participants
39: return pks
40: function txPart(i : State[],o : State[])→ Set[PKey]
41: return getStParticipants(i)∪getStParticipants(o)
42: function statesSpendable(st : State[], pk : PKey[]) →
⊤/⊥

43: for s in st
44: if st.participants∩ pk = /0 then
45: return ⊥
46: return ⊤

Figure 4: Helper functions. Part 1
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1: state of PDLT
2: ▷ VAR_NAME : TY PE = INIT IAL_VALUE
3: id : PartyId, ▷ Id of this node
4: keypairs : Map[PKey,SKey] = /0,
5: txs : StxMap = /0,
6: txKeys : Map[MsgId,Key] = /0,
7: stxIds : Map[MsgId,StxId] = /0

8: msgIds : Map[StxId,MsgId] = /0

9: txCount : int = 0
10: db : FDB ▷ Trusted syntax node
11:
12: types
13: Dep = (msgId : MsgId, txMsg : T xMsg,key : Key)
14: DepMap = Map[StxId,Dep]

Figure 5: PDLT : Dialektos UPC construction. Part 1

where GE ,PDLT ,A
r and GE ,PDLT ,S

i work as described in section
3.3.2.

For this purpose, we will need alternative versions of Di-
alektos protocol, which we denote by P ′(Okg,Oe). They be-
have identically to PDLT , except whenever they need to use
AEnc.Kg they use Okg.Kg instead and whenever they need to
use HEnc.E, they use Oe.E instead.

Oe is a stateful machine, which contains a list of pre-
generated outputs to return for each call to Oe.E. This ma-
chine is created by a function genEncOracle(bm) → Oe,
which constructs a list of outputs for the generated Oe to
return by taking a sequence of backdoor messages from
FUPC, parsing RevealedTx messages from them, so that nth
call to Oe.E returns nth encrypted transaction as revealed
by RevealedTx. For transactions, which do not have a cor-
responding RevealedTx message among the backdoor mes-
sages, a value of s ∈N zeroes is encrypted, where s is the size
of that transaction as revealed by corresponding NewTx back-
door message from FUPC. Fig. 14 displays this functionality
in pseudocode.

Okg is a similar stateful machine, which contains a list of
pre-generated outputs to return for each call to Okg.Kg. This
list of outputs is generated by a function that creates Okg:
genKgOracle(bm)→ Okg. It does so by parsing sequence of
backdoor messages of type NewKeyPair generated by FUPC,
and making generated Okg return the public keys specified in
those messages.

The algorithm for simulator S(bm,Okg,Oe) is in figure 13.
After these preparations, we proceed by constructing a se-

quence of games and applying a hybrid argument to them.

Game 1. We construct GE ,PDLT ,S
1 by making the following

changes to GE ,PDLT ,A
r :

• E interacts with FUPC instead of PDLT protocol
parties.

15: procedure recordStx(t : T xMsg,k : Key, id : MsgId) for
PDLT

16: stxid← hash(t.stx)
17: if stxid /∈ getMapKeys(txs) then
18: txs[stxid]← t.stx
19: stxIds[id]← stxid
20: msgIds[stxid]← id
21: txKeys[id]← k
22: procedure declareConflicts(t : T xMsg) for PDLT
23: inRe f s← t.stx.inputRe f s
24: send input (GetSpends,inRe f s) to db and
25: receive output msgs
26: for m in msgs
27: oldId← hash(m)
28: cInRe f s← inRe f s∩m.payload.inputRe f s
29: cInputs← getStates(cInRe f s, txs)
30: cPart← getStParticipants(cInputs)
31: ePKeys← getMapKeys(m.payload.encKeys)
32: if cPart ⊆ ePKeys then
33: myKeys← getMapKeys(keypairs)∩ ePKeys
34: ekey← ePKeys[myKeys[0]]
35: key← AEnc.D(keypairs[myKeys[0]],ekey)
36: t.depKeys[oldId]← key
37: procedure constructTx(s : SignedT x) →

(ABPMsg,T xMsg) for PDLT
38: txMsg : T xMsg← (s, /0)
39: for inRe f in s.tx.inputRe f s
40: if inRe f .stxId /∈ getMapKeys(txs) then
41: throw ERR_NO_ACCESS_TO_T X
42: depId← msgIds[inRe f .stxId]
43: txMsg.depKeys[depId]← txKeys[depId]
44: inputs← getStates(s.tx.inputRe f s, txs)
45: pk← getMapKeys(keypairs)
46: if ¬statesSpendable(inputs, pk) then
47: throw ERR_NOT _PART ICIPANT
48: declareConflicts(txMsg)
49: all p← txPart(inputs,s.tx.out puts)
50: (ek,etx)← HEnc.E(all p, txMsg)
51: tm← ABPT xMsg(ek,s.tx.inputRe f s,etx)
52: return (ABPMsg(∞, tm), txMsg)

Figure 6: PDLT : Dialektos UPC construction. Part 2
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53: procedure updateState() for PDLT
54: send input (Update,) to db
55: p← getMapKeys(keypairs)
56: send input (GetTxUpdate,p, txCount) to db and
57: receive output (n,msgs)
58: txCount← n
59: ▷ Iterates from older to newer
60: for msg in msgs
61: depMap← /0

62: try
63: depMap← verifyABPMsg(msg,keypairs)
64: catch err
65: ▷ Don’t record invalid txs
66: continue ▷ Skip to next loop iteration
67: for (stxId,(msgId, txMsg, txKey)) in depMap
68: recordStx(txMsg, txKey,msgId)
69: on input (NewKeyPair, ) to PDLT from p
70: updateState()
71: (pk,sk)← AEnc.Kg()
72: keypairs[pk]← sk
73: return pk
74: on input (UploadContract, contr) to PDLT from p
75: updateState()
76: send input (UploadContract,contr) to db and
77: receive output resp
78: send output (resp) to p
79: on input (GetStxs, ) to PDLT from p
80: updateState()
81: send output (txs) to p
82: on input (SubmitTx, stx : SignedT x) to PDLT from p
83: updateState()
84: try
85: (msg, txm)← constructTx(stx)
86: verifyABPMsg(msg,keypairs)
87: catch err
88: send output (err) to p
89: stop
90: send input (Submit,msg) to FABP
91: send output (⊤) to p

Figure 7: PDLT : Dialektos UPC construction. Part 3

1: procedure verConfl(m1: ABPMsg, t2: T xMsg,d : DepMap)
2: inRe f s← m1.payload.inputRe f s
3: commonInRe f s← inRe f s∩ t2.stx.inputRe f s
4: commonInputs← getDepStates(commonInRe f s,d)
5: commonPart← getStParticipants(commonInputs)
6: epk← m1.payload.encKeys
7: if commonPart ⊈ getMapKeys(epk) then
8: return ▷ m1 invalid
9: if hash(m1) /∈ getMapKeys(t2.depKeys) then

10: throw CONFLICT _KEY _MISSING▷ t2 invalid
11: depMsgIds←map(d,(k,(i,∗,∗)) 7→ i)
12: if hash(m1) ∈ depMsgIds then
13: throw DOUBLE_SPEND_AT T EMPT ▷ t2

invalid
14: else
15: return ▷ m1 invalid
16: procedure verifyConflicts(n : int, t : T xMsg,vdeps : DepMap)

for
17: inRe f s← t.stx.inputRe f s
18: send input (GetSpends,inRe f s) to FDB and
19: receive output msgs
20: for m in msgs
21: ▷ Skip t (m.num = n) and all txs that come after it
22: if m.num < n then
23: verConfl(m, t,vdeps)
24: procedure getContract(cre f : Hash)→Code
25: send input (GetContract,cre f ) to FDB and
26: receive output c
27: if c =⊥ then
28: throw CONT RACT _DOES_NOT _EXIST
29: else
30: return c
31: function getDepStates(rs : StateRe f [],d : DepMap)→

State[]
32: return map(rs,r 7→

d[r.stxId].txMsg.stx.tx.out puts[r.index])
33: procedure verifyEncKeys(ek : Map[PKey,String],

i : State[],o : State[],k : Key)
34: parts← txPart(i,o)
35: for pkey in parts
36: if pkey /∈ getMapKeys(ek) then
37: throw KEY _FOR_PART ICIPANT _MISSING
38: for (pk,c) in ek
39: eT xKey← AEnc.E(pk,k)
40: if eT xKey ̸= c then
41: throw KEY _ENCRY PT ION_MISSMATCH

Figure 8: Helper functions. Part 2
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42: procedure verifyInputRefs(m : ABPT xMsg, t : T x)
43: ▷ Sequences should be equal
44: if m.inputRe f s ̸= t.inputRe f s then
45: throw PUBLIC_INPUT _REFS_INVALID
46: procedure verifyTxMsg(t : T xMsg,vdeps : DepMap)
47: for inRe f in t.stx.tx.inputRe f s
48: if inRe f .stxId /∈ getMapKeys(vdeps) then
49: throw DEP_NOT _V ERIFIED
50: procedure verifyStx(m : ABPMsg, t : T xMsg,k : Key,
51: d : DepMap)
52: (((inRe f s,out puts,cmds),∗,∗),∗)← t
53: verifyTxMsg(t,d)
54: verifySigs(t.stx)
55: verifyNoDuplicates(inRe f s)
56: verifyInputRefs(m.payload, t)
57: inputs← getDepStates(inRe f s,d)
58: verifyEncKeys(m.payload.encKeys, inputs,out puts,k)
59: verifyContracts(inputs,out puts,cmds,getContract)
60: function joinMaps(m1: Map[K,V ],m2: Map[K,V ])→

Map[K,V ]
61: for (k,v) in m2
62: if k /∈ getMapKeys(m1) then
63: m1[k]← v
64: return m1
65: procedure verifyTxTree(m : ABPMsg, t : T xMsg,k : Key)
→ DepMap

66: depMap : DepMap← /0

67: for (msgId,key) in t.depKeys
68: send input (GetTx,msgId) to FDB and
69: receive output msg
70: if msg =⊥ then
71: throw DEP_DOES_NOT _EXIST
72: (txNum,depMsg)← msg
73: ▷ Deps of t have to come before it
74: if txNum≥ m.num then
75: throw NEWER_T X_IN_DEPS
76: try
77: ▷ Throws if decrypted value is not TxMsg
78: d : T xMsg← SEnc.D(key,depMsg.etx)
79: dd← verifyTxTree(msg,d,key)
80: depMap← joinMaps(depMap,dd)
81: catch err
82: ▷ Dep might not be required, so ignore
83: continue ▷ Skip to next loop iteration
84: verifyStx(m, t,k,depMap)
85: verifyConflicts(m.num, t,depMap)
86: depMap[hash(depT x.stx)]← (hash(m), t,k)

Figure 9: Helper functions. Part 3

87: procedure unpackTx(m : ABPMsg,k : Map[PKey,SKey])
→ (Key,T xMsg)

88: (∗,(eks,∗,etx))← m
89: pks← getMapKeys(eks)∩getMapKeys(k)
90: if pks = /0 then
91: throw NO_T X_KEY
92: (k, txMsg)← HEnc.D(k[pks[0]],(eks[pks[0]],etx))
93: if txMsg is T xMsg then
94: return (k, txMsg)
95: else
96: throw WRONG_TY PE
97: procedure verifyABPMsg(m : ABPMsg,
98: keypairs : Map[PKey,SKey])→ DepMap
99: (txMsg, txKey)← unpackTx(m,keypairs)
100: return verifyTxTree(msg, txMsg, txKey)

Figure 10: Helper functions. Part 4

1: state of FDB
2: ▷ VAR_NAME : TY PE = INIT IAL_VALUE
3: txs : Map[MsgId,ABPMsg] = /0

4: txOrdered : MsgId[] = []
5: contracts : Map[Hash,Code] = /0,
6: spends : Map[StateRe f ,MsgId[]] = /0

7: msgCount : int = 0
8:
9: procedure recordTx(t : ABPMsg) for FDB

10: txid← hash(t)
11: txs[txid]← t
12: txOrdered← txOrdered ∥ txid
13: (∗,re f s,∗)← t.payload
14: for r in re f s
15: spends[r]← spends[r]∥{txid}

Figure 11: FDB: protocol for syntax node. Part 1.
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16: procedure update(msgs : ABPMsg[]) for FDB
17: while msgCount < len(msgs) do
18: (num,m)← msgs[msgCount]
19: if m is ABPT xMsg then
20: recordTx((num,m))
21: else m is ABPContractMsg
22: try
23: code← addContract(m,contracts)
24: catch err
25: ▷ Ignore invalid contracts
26: msgCount← msgCount +1
27: on input (UploadContract, c : Contract) to FDB from p
28: try
29: cs← contracts ▷ Copy contract to cs
30: code← addContract(c,cs)
31: catch err
32: send output ((⊥)) to p
33: stop
34: send input (Submit,ABPMsg(∞,c)) to FABP
35: send output (⊤) to p
36: on input (GetSpends, re f s : StateRe f []) to FDB from p
37: msgs← []
38: for r in re f s
39: if r ∈ getMapKeys(spends) then
40: for msgid in spends[r]
41: msgs← msgs∥ txs[msgid]
42: send output (msgs) to p
43: on input (GetTx, msgId : MsgId) to FDB from p
44: if msgId ∈ getMapKeys(txs) then
45: send output (txs[msgId]) to p
46: else
47: send output (⊥) to p
48: on input (GetContract, cre f : Hash) to FDB from p
49: if cre f ∈ getMapKeys(contracts) then
50: send output (contracts[cre f ]) to p
51: else
52: send output (⊥) to p
53: on input (GetTxUpdate, pks : Set[PKey], f romT x : int)

to FDB from p
54: msgs← []
55: while f romT x < len(txOrdered) do
56: m← txs[txOrdered[ f romT x]]
57: f romT x← f romT x+1
58: (∗,(eks,∗,∗))← m
59: if pks∩getMapKeys(eks) ̸= /0 then
60: msgs← msgs∥m
61: send output ( f romT x,msgs) to p
62: on input (Update, ) to FDB from p
63: send input (Read,) to FABP and
64: receive output msgs
65: update(msgs)

Figure 12: FDB: protocol for syntax node. Part 2.

• At the end of the execution, instead of
returning state of A , value given by
S(bm,genKgOracle(bm),o) is returned to
the environment, where bm are backdoor messages
generated by FUPC. Value o here is generated
by o ← genEncOracle(bm′), where bm′ is bm
plus additional RevealedTx messages added by
challenger for each transaction that was submitted
by E , but which were not leaked by FUPC.

Observe that in FUPC.UploadContract() the
same checks are performed on the input as in
PDLT .UploadContract(). Meaning these functions
always return the same value ⊤/⊥ for the same input.
Since same inputs from the environment are passed to
FUPC as to PDLT , we can conclude that these functions
behave identically from the perspective of environemnt.

The same holds for FUPC.SubmitTx() and
PDLT .SubmitTx(). Although, output of
FUPC.SubmitTx() additionally depends on the
transactions already recorded, transactions for parties
are recorded based on the same conditions as in PDLT .
This means that calls to SubmitTx and GetStxs work
identically in both worlds from the perspective of
environent.

As for NewKeyPair, in FUPC these keypairs are gener-
ated using the same key generation method, so the output
to the environment is indistinguishable as well.

So E will not be able to distinguish GE ,PDLT ,A
r from

GE ,PDLT ,S
1 , based on outputs alone.

Next we need to consider the view that S generates to the
adversary. This view consists of ABP messages submit-
ted to FABP and backdoor messages generated by corrupt
parties of PDLT . The way simulator works is that it runs
corrupt parties of protocol P ′(Okg,Oe) which differ from
PDLT parties only in that it uses Okg.Kg and Oe.E instead
of AEnc.Kg and HEnc.E. But from the way Okg and Oe
are generated, we see that values returned by these ora-
cle are actually generated using the same methods and
inputs as in PDLT . For Okg they are generated using the
same method in FUPC, and for Oe they are generated by
using the same HEnc to encrypt the same transactions.
Note that Oe in this game was generated using full in-
formation about all transactions that were submitted by
the environment, so every transaction submitted by the
environment through a corrupt party is encrypted the
same way as in PDLT .

This is the case for corrupt parties. For parties which
are not corrupt simulator only needs to generate ABP
messages (no need for party state). It does so through
encryption oracle, which as already mentioned, encrypts
all transactions using the same methods as in the real
protocol run.
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Therefore, P ′(Okg,Oe) protocol run simulated by S pro-
ceeds identically to PDLT protocol run with the same
inputs (just places where some values are computed is
changed) and the view generated by S for A is indistin-
guishable from the real one.

EXEC(GE ,PDLT ,S
1 ,k) is indistinguishable from

EXEC(GE ,PDLT ,S
r ,k).

Game 2. GE ,PDLT ,S
2 works the same way as GE ,PDLT ,S

1 ex-
cept the encryption oracle is different. In this game it
is generated by o′← genEncOracle(bm), where bm is a
sequence of backdoor messages from FUPC, unchanged.
This change to encryption oracle means that some trans-
actions submitted by simulated protocol parties are fake
(meaning they are zeroes encrypted instead of real en-
cryptions). Fortunatelly, this is only the case for trans-
actions which are not leaked by FUPC, and these are
transactions, which corrupted parties should not be able
to decrypt anyway.

In order to show that GE ,PDLT ,S
2 and GE ,PDLT ,S

1 are indis-
tinguishable, we use the fact that o.E() produces proba-
bility distribution indistinguishable from o′.E(). To see
this, note that HEnc, that both of these encryption oracles
use, is secure against chosen-plaintext attacks. So even
if distinguisher knows that one of the oracles encrypts
zeroes instead of some transactions, that does not allow
it to distinguish output of one oracle from another.

Then to see that GE ,PDLT ,S
2 is indistinguishable from

GE ,PDLT ,S
1 note that we can construct an algorithm

which takes one of {o,o′} and without any input regard-
ing which one it took, runs GE ,PDLT ,S

1 if it was o and
GE ,PDLT ,S

2 if it was o′. All this algorithm needs to do is
work like challenger in GE ,PDLT ,S

2 or GE ,PDLT ,S
1 , except

use the encryption oracle it receives as input, instead of
generating it itself.

Next, observe that GE ,PDLT ,S
2 is indistinguishable from

GE ,PDLT ,S
i . The difference between GE ,PDLT ,S

2 and GE ,PDLT ,S
i

is that in GE ,PDLT ,S
i no encryption or key generation oracle

is passed to the simulator. But note that in GE ,PDLT ,S
2 these

oracles are generated by passing only the backdoor mes-
sages generated by FUPC. This is the same information that
is passed to the simulator as well in GE ,PDLT ,S

i . So we can
simply modify the simulator used in GE ,PDLT ,S

i , so that it runs
genEncOracle(bm) and genKgOracle(bm) itself.

Thus by hybrid argument, we know that GE ,PDLT ,A
r is in-

distinguishable from GE ,PDLT ,S
i , from the point of view of E ,

which is what we needed to prove.

1: types
2: Msg = (name : String,args)
3: function S (bm : Msg,kg : Okg,enc : Oe)→ A
4: cp : Map[PartyId,P ′(Okg,Oe)]← []
5: for pid in corruptions
6: cp[pid]← P ′(kg,enc)
7: abp← FABP()
8: adv← A()
9: for (m, index) in bm

10: if m.name = NewTx then
11: if bm[index+1].name ̸= SubmitTx then
12: ▷ These oracles ignore inputs
13: (ek,etx)← enc.E(∗,∗)
14: (∗,(inRe f s,∗,∗,∗))← m
15: m←ABPMsg(∞,ABPT xMsg(ek, inRe f s,etx))
16: advNoti f ← abp.Submit(m)
17: send input (Submit,m) to abp and
18: receive output b
19: send b to adv
20: else if m.name = SubmitTx then
21: (∗,(pid,args,∗,∗))← m
22: ▷ This call sends a message to ABP and ad-

versary. b holds these messages
23: send input (SubmitTx,args) to cp[pid] and
24: receive output b
25: send input (Submit,b[0]) to abp and
26: receive output b′

27: send b′ to A
28: send b[1] to A
29: else if m.name = GetStxs then
30: send input (GetStxs,) to cp[pid] and
31: receive output b
32: send b to A
33: else if m.name = NewKeyPair then
34: (∗,(pid,∗,∗,∗))← m
35: send input (NewKeyPair,) to cp[pid] and
36: receive output b
37: send b to A
38: else if m.name = UploadContract then
39: (∗,(pid,a,∗,∗))← m
40: r← cp[pid]
41: send input (UploadContract,a) to r and
42: receive output b
43: send b to A
44: else if m.name = NewContract then
45: next← bm[index+1].name
46: if next ̸= UploadContract then
47: (∗,(pid,args,∗,∗))← m
48: mc← ABPMsg(∞,args)
49: advNoti f ← abp.Submit(mc)
50: send advNoti f to A
51:

Figure 13: S : simulator.20



1: state of Oe
2: ▷ VAR_NAME : TY PE = INIT IAL_VALUE
3: db : ((PKey,String)[],String)[] = []
4: callNum : int← 0
5:
6: procedure E(pks,m) for Oe
7: v← db[callNum]
8: callNum← callNum+1
9: return v

10: function genEncOracle(bm : Msg)→ Oe
11: o← Oe()
12: (opk,osk)← AEnc.Kg()
13: rtxs : (SignedT x,PKey[])[]← []
14: txs : StxMap = /0,
15: txKeys : Map[MsgId,Key] = /0,
16: msgIds : Map[StxId,MsgId] = /0

17: count← 0
18: for m in bm
19: if m.name = NewTx then
20: (∗(∗, parts,size,∗))← m
21: rtxs[count] = (0∗ size, parts)
22: count← count +1
23: for (m, index) in bm
24: if m.name = RevealedTx then
25: (∗,(num,stx))← m
26: rtxs[num]← (stx,∗)
27: for ((stx, parts), index) in rtxs
28: if stx ̸= 0 then
29: stxid← hash(stx)
30: ▷ Construct txMsg
31: t← T xMsg
32: for inRe f in stx.tx.inputRe f s
33: depId← msgIds[inRe f .stxId]
34: t.depKeys[depId]← txKeys[depId]
35: i← getStates(stx.tx.inputRe f s, txs)
36: all p← txPart(i,stx.tx.out puts)∪{opk}
37: (ek,etx)← HEnc.E(all p, t)
38: (k,∗)← HEnc.D(osk,(ek[opk],etx))
39: ek← ek \ (opk,∗)
40: a← ABPT xMsg(ek,s.tx.inputRe f s,etx)
41: amsg← ABPMsg(index,a)
42: mid← hash(amsg)
43: ▷ Record
44: txs[stxid]← stx
45: msgIds[stxid]← mid
46: txKeys[mid]← k
47: o.db[index]← (ek,etx)
48: else
49: o.db[index]← HEnc.E(parts,stx)
50: return o

Figure 14: Encryption oracle
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