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Abstract

Cryptosystems have been developed over the years under the typical prevalent setting which assumes
that the receiver’s key is kept secure from the adversary, and that the choice of the message to be sent is
freely performed by the sender and is kept secure from the adversary as well. Under these fundamental
and basic operational assumptions, modern Cryptography has flourished over the last half a century
or so, with amazing achievements: New systems (including public-key Cryptography), beautiful and
useful models (including security definitions such as semantic security), and new primitives (such as
zero-knowledge proofs) have been developed. Furthermore, these fundamental achievements have been
translated into actual working systems, and span many of the daily human activities over the Internet.

However, in recent years, there is an overgrowing pressure from many governments to allow the
government itself access to keys and messages of encryption systems (under various names: escrow en-
cryption, emergency access, communication decency acts, etc.). Numerous non-direct arguments against
such policies have been raised, such as “the bad guys can utilize other encryption system” so all other
cryptosystems have to be declared illegal, or that “allowing the government access is an ill-advised pol-
icy since it creates a natural weak systems security point, which may attract others (to masquerade as
the government).” It has remained a fundamental open issue, though, to show directly that the above
mentioned efforts by a government (called here “a dictator” for brevity) which mandate breaking of the
basic operational assumption (and disallowing other cryptosystems), is, in fact, a futile exercise. This is
a direct technical point which needs to be made and has not been made to date.

In this work, as a technical demonstration of the futility of the dictator’s demands, we invent the
notion of “Anamorphic Encryption” which shows that even if the dictator gets the keys and the messages
used in the system (before anything is sent) and no other system is allowed, there is a covert way
within the context of well established public-key cryptosystems for an entity to immediately (with
no latency) send piggybacked secure messages which are, in spite of the stringent dictator conditions,
hidden from the dictator itself! We feel that this may be an important direct technical argument against
the nature of governments’ attempts to police the use of strong cryptographic systems, and we hope to
stimulate further works in this direction.

1 Introduction

Cryptography, like most scientific fields, has a profound impact on our Society, and even more so as it touches
upon one of the most basic human rights, the right to privacy. The threats to privacy posed by the increased
reliance on electronic forms of communication has been very well identified (see, for example,[DL]) and there
has been a very vigorous debate between technologists and politicians about the ways of limiting the power
of encryption as a safeguard to privacy (see the discussion on escrow systems below). One of the beneficial
effects of the debate has been the increased awareness of the need to protect our privacy; this is witnessed by
the growing use of end to end encryption (E2E encryption) in, for example, messaging apps [MP16, Wha20].

∗Università di Salerno, Salerno, Italy. giuper@gmail.com
†Telecom Paris, Institut Polytechnique de Paris, France. hieu.phan@telecom-paris.fr
‡Google LLC, and Columbia University, USA. motiyung@gmail.com

1



Cryptography “rearranges power”[Rog15] and it obviously attracts the attention of the institutions and
individuals that hold the same power that Cryptography threatens to rearrange. Among these power holding
institutions, our main concerns involve the institutions that have the power to undermine the two assumptions
on which Cryptography relies. As we argue below these assumptions, which have long gone overlooked (or
implicit), are rather different in nature from the usual cryptographic assumptions (e.g., about the computing
power of parties). More precisely, the security guarantees offered by Cryptography even for its most basic and
classic setting, two-party private communication [Sha49], rely on two implicit and fundamental assumptions,
one regarding the sender and one regarding the receiver, that can be challenged by exactly those parties whose
power Cryptography threatens to limit. When these assumptions are challenged, all privacy guarantees are
void (this holds for symmetric [Fei73] as well as for public key [DH76, RSA78, GM84] systems).

Concretely, it is assumed that the encryption and the decryption processes are conducted freely and
privately by the sender and the receiver, respectively. Specifically, on the receiver’s side, a message, once
encrypted, is considered private based on the assumption that the receiver’s (Bob’s) private key (regardless
of where it resides) is not compromised. In fact, relying solely on the key not being compromised and not on
other obscurities is known as the Kerckhoffs principle and was already formulated in 1883 [Ker83]. On the
sender’s side, in turn, it is concretely assumed that the sender (Alice) is free to pick the message to be sent.

Indeed, if Alice is not free to pick the message to be sent, we can hardly talk of communication “from Alice
to Bob.” Similarly, if Bob’s secret key is compromised (and the key is the only source of secrecy), we cannot
consider the communication to be private. In other words, Cryptography currently implements private
communication assuming that encryption takes as input a message freely chosen by Alice and that, among
all other parties, only Bob has access to the key necessary for decryption. We call these two assumptions
the sender-freedom assumption and the receiver-privacy assumption, respectively.

Both assumptions are realistic for normal settings, and thus, it is not a big surprise that the majority
of symmetric and asymmetric encryption systems have been developed under them, and it is so natural
that these are implicit in the modeling. Yet, these assumptions fail to exist in a dictator-led country where
law enforcement agencies have the (legal) power to get the private key of citizens to be surrendered upon
request (thus undermining the receiver-privacy assumption). Furthermore, in a dictatorship, individuals can
be forced by the authorities to encrypt and send some adversary selected (e.g., wrong) statements (thus
undermining the sender-freedom assumption). Note that while we characterize the above as a dictator-led
country, it is quite prevalent around the world today for governments (of all types) to ask for at least some
of the above powers when discussing encryption!

Let us now discuss the two assumptions more in depth.

The receiver-privacy assumption. Achieving security without having to rely on this assumption asks
us to consider the classical cryptographic problem of two parties that wish to privately communicate in the
presence of an adversary that has the ability to eavesdrop on all communication between the two parties
and the power to request the receiver’s secret key1. At first sight, achieving privacy against such an ad-
versary seems like an impossible task since, by definition, the secret key allows for the decryption of any
ciphertext and, once an adversary has gained access to the secret key, nothing can stop it from decrypting
the ciphertexts.

Before giving an intuitive idea of how we plan to approach this seemingly impossible problem, we want
to elaborate on the security threat that we address and how it puts further constraints on the solution space.
As mentioned before, this setting models adversaries of the scale of a nation state whose government has
the “legal” power to force citizens to reveal their secret keys. In such a setting, it is expected that a citizen
would abide by the request as any refusal could be considered as evidence that the communication was
unlawful (or be considered such in the eyes of the adversary/government); in fact, the citizens may wish (as
an advantage in an hostile environment) to be able to prove the benign nature of their messages. As we
shall see, addressing the needs of privacy in the presence of such a powerful adversary in an effective way
cannot be achieved by introducing new constructions that would immediately be ruled as illegal, but rather
by showing that existing constructions can be adapted to support the new need. Indeed, for its own nature,

1This is masterly described in xkcd comic 538 (see https://xkcd.com/538).

2



the deployment itself of countermeasures must be hidden from the adversary as a government has the legal
means and the power to make it illegal.

The sender-freedom assumption. This assumption posits that the sender Alice is free to choose which
message to encrypt; without this assumption, the meaning of communication originating from Alice is lost.
It is not difficult to imagine a setting in which someone is under duress to send a ciphertext with a fake
message. Specifically, the sender might be forced to produce a ciphertext ct for a given message m, the
forced message, with respect to a given public key fPK, the forced public key. In addition the adversary will
want to see the coin tosses R used to produce ct so as to be able to check that ct = Enc(fPK,m;R). Is there
a way for the sender to satisfy the adversary but still send a message other than m to some other party?
Clearly, if the adversary has the power to pick the message m and the randomness to be used, then the
sender has no maneuvering space. This would be equivalent to the adversary holding Alice’s cellphone and
using it to send messages on Alice’s behalf; clearly (with no freedom to choose anything) nothing can be done
to prevent this (which is a, de facto, impersonation of Alice). Instead, we do not consider impersonation,
but rather consider the setting in which the more remote adversary does select the message to be sent, lets
Alice compute the ciphertext ct and later on Alice is required to exhibit the coin tosses used to compute ct;
i.e., the adversary does not completely control the cryptographic device as in an impersonation attack, it
allows strong cryptography as well, but forces a valid explanation for the ciphertext for messages it chooses,
including possibly some one-way hash post-processing of truly random bits to produce the random bits used
in encryption, to prevent, e.g., some meaningful message being part of the randomness used for systems that
encrypt over a message and randomness, and issues of this sort.

Again, in authoritarian regimes, under threats, dissidents are often forced to send false statements to
public and international newspapers. In this situation, an international human rights organization (HR)
that is not under the control of the dictator can release its public key. When dissidents in a country ruled by
a dictator are forced by the authority to send false statements to an international newspaper, say AP News
under the public key of AP News, dissidents can obey that request while being able to add hidden messages
to HR, for example saying that what they are saying is false, as an additional protection.

Normative Prescriptions. One may ask: most of Cryptography is based on computational assumptions
and this has not slowed down its deployment in real-world applications; why should we be worried by two
extra assumptions? Let us pause and ask ourselves why we believe in the assumptions we use to design
cryptographic schemes. The assumed hardness of computational problems reflects our current intuition
about and understanding of Nature (and thus, its representation within mathematical models): randomness,
one-way functions, and trapdoor functions do exist in our current understanding of Nature. On the other
hand, let us look at the receiver-privacy assumption. Why do we believe that users will not be forced to
reveal their private key? Essentially because there is a normative prescription2 by which forcing someone
to do something against its will is a punishable crime. In other words, society attaches a punishment to
anybody who violates the receiver-privacy assumption. The same holds for the sender-freedom assumption.
However normative prescriptions are not laws of Nature (not inherent to the way things are!) and they can
be modified by a new social/normative re-order. And this is exactly what a dictator will do. On the other
hand, quite obviously, no dictator will ever be able to make a one-way function efficiently invertible or will
be able to predict a random bit3.

Indeed Cryptography can be seen as an effort to replace assumptions based on normative prescriptions
with milder assumptions leveraging our understanding of Nature and, more specifically, of Computational
Complexity (combined with Information Theory) and/or of Computing Architectures. A primary example
of this effort is the concept of Secure Multiparty Computation (aka Private Function Evaluation). If we
accept assumptions based on normative prescriptions, then we can identify some individual to act as a
trusted third party (TTP); that is, the TTP receives the private inputs and returns the value of the function

2We do not use the term “law” to mark the conceptual difference from “law of Nature.”
3In “The Game-Players of Titan,” a novel by Philip K. Dick, randomness is the only weapon humans can use against

silicon-based telepath aliens from Titan, called vugs.

3



to be computed. A law (a normative prescription) will describe the expected behavior of the TTP and
identify the penalties for not following the prescription. On the other hand, the field of Secure multi-party
computation [Yao86, GMW87] has shown how to achieve the same without relying on normative prescriptions
regarding the TTP (replacing it with reliance on computational complexity assumptions and/or architectural
separation and isolation of computing elements).

Our result in a nutshell: What is the point of being a dictator if you cannot dictate? A dictator
is very likely going to declare Cryptography which is not available to the regime unlawful (it may outlaw
Cryptography whatsoever, but in this case it will lose an advantage over the commons as Cryptography
rearranges power! [Rog15]). This will stand against all normative assumptions and is the ultimate goal of an
extreme “escrow encryption.”

Our goal is to show that based on well established cryptosystems, under the dictator rules (that is,
getting the receiver key and getting to dictate the messages of the sender, before the system starts sending
any message), there is a way for a selected set of users (those who are trusted to not be agents of the regime)
to use the system in a special way. Namely, there is always a way to use the system to send messages as
requested by the dictator and to prove to the dictator the messages were sent, while at the same time using
the system between the selected group in an “anamorphic fashion,” i.e., the selected receiver (with access
to a special key) will get a distorted view of the ciphertext and will extract a covert message, yet any other
receiver will get the dictated message (and it will be easy to prove to the dictator that this was indeed the
message sent and that there is no other way to decrypt messages).

The above scenario (which we explain and formalize in the sequel) shows that with acceptable existing
cryptosystems (which pre-existed our work, and were not designed with the above goal in mind) it is possible
to nevertheless bypass the dictator. With these cryptosystems, any benefit of using them also allows the
bypassing of the dictator decree with a built-in cover up. This seems to be a first clear indication that,
directly and inherently (not due to potential weakening of the system by an increased external cyber-security
attacks or software security weaknesses) Cryptography allows for bypassing the stringent dictator’s rules and
regulation. Therefore: If you want technology development and society to enjoy the fruits of Cryptography
(as, for example, is given in [MY15] for the case of smartphones), then you have to know that it may not be
controllable, and any attempt to do so is, in fact, an exercise in futility!

2 Related Works

Having presented the crux of our notion, let us examine related works and notions dealing with other aspects
of violations of the two implicit normative assumptions above.

Key-Escrow. The availability and proliferation of E2E encryption for smartphone messaging applications
(see [MP16, ACD19, Wha20] for two of the most widely used applications and for some of the formal
treatment of the Cryptography on which they are based) has renewed the debate between law enforcement
and government security agencies, and technologists. Actually, the debate goes back to at almost 30 years
ago when the Internet became mainstream (early 1990s).The following quote is from [Dak96]:

Presently, anyone can obtain encryption devices for voice or data transmissions. Unfortunately, this
group may include criminals, terrorists and drug dealers. Law enforcement groups believe this could soon
create a devastating problem because these authorities commonly rely on electronic surveillance, also known
as ”wiretapping,” as a tool for fighting crime. That is, if criminals can use advanced encryption technology in
their transmissions, electronic surveillance techniques could be rendered useless because of law enforcement’s
inability to decode the message.

Much research in Cryptography has focused on methods to make the strong privacy guarantees offered by
encryption ineffective under very specific and well identified situations. An early prototypical and pioneering
example of this kind of work is the concept of a Fair Cryptosystem by Micali [Mic] that was one of the first
to consider the possibility of targeted revocation of the privacy offered by encryption. Roughly speaking,
this was achieved by sharing the secret key among a number of parties (the majority of which is assumed to
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be honest, say) and each would reveal its share, so as to allow reconstruction, only if a court order to that
effect would be produced. In 1993 (essentially at the same time of Fair Cryptosystems), the US government
put forth The Clipper proposal [Cli] by which all strong encryption systems had to retain a copy of keys
necessary to decrypt information with a trusted third party who would turn over keys to law enforcement
upon proper legal authorization. The Clipper chip was attempting to bind the ability to identify the key of
the sender to facilitate government access and the ability to decrypt. The proposal had a flaws involving
a too small authentication field [Bla94] and, actually, the binding was shown to be broken so as to bypass
the mechanism [FY93]. All the above systems employed either trusted hardware or other trusted elements
(trustees) added to the Public-Key Infrastructure setting. An open question at the time was to construct a
“software only” escrow, employing the existing trusted point of the certification authority within the existing
public key infrastructure as a handle (see [YY98]).

Given general security concerns, the report by Abelson et al. [AAB+97] (see also [AAB+15]) identifies
the major threats of such a key-escrow system (primarily, the availability of an access method to the user’s
encrypted data which is not under the user own responsibility). The possibility that a key-escrow system
could be abused by law-enforcement agency to violate the privacy of the users and to conduct large scale
surveillance, which is our main concern in this paper, and was identified in the first report [AAB+97] that
looked into the privacy issues arising from the Clipper chip and from other key-escrow mechanisms. We note
that, obviously, the same concerns and more hold if weak Cryptography, which can be broken with enough
feasible resources, is mandated in our modern time and with available public computational resources, such
Cryptography simply does not work.

The main approach taken by cryptographers to address the above important point regarding escrow
has been to construct systems relying on cryptographic tools (mathematical assumptions) that will make it
impossible for governments to infringe on the privacy of the individuals and the guarantees made relying on
a combination of normative assumptions as well as on cryptographic primitives. For example, the guarantee
offered by a Fair Cryptosystem rely on the cryptographic strength of the secret-sharing primitives and on the
normative prescription that the majority of shareholders will only act upon a request from the recognized
authority, which, in turn, relies on the assumption that share holder are honest and uncoercible. From our
point of view it is natural to ask: What if the authority is a dictator, and thus normative prescriptions have
no effect?

Along these lines, the very recent work of Green et al. [GKVL] offers the most complete approach by
formally defining the desired properties for a law enforcement access system and putting forth the notion
of an abuse-resistant law enforcement access system (ARLEAS). In addition, they give a feasibility result
using standard cryptographic techniques. Most systems, including ARLEAS [GKVL], consider three types of
parties: users, that employ encryption to exchange messages; law enforcement, that need to access encrypted
messages produced by users; judiciary, that grants or denies authorizations to the access requests of the law
enforcement. Note that such a system does not offer any protection against dictatorial states. First of all,
in most dictatorships the judiciary is not an independent power thus making the abuse-resistant property
nothing more than a wish. Actually, a key-escrow system makes it even easier for a dictator to violate the
privacy of the users as it is enough to nominate themselves, as dictators tend to do, to be the judiciary and
law enforcement. Even more importantly, note that all such systems still rely on the receiver-privacy and
sender-freedom assumptions.

The main technical objective of our work is to show that one can achieve privacy in communication
using existing cryptographic systems even in the presence of a dictator without relying on any normative
prescription.

Deniable Encryption. The concept of Deniable Encryption, put forth by Canetti et al. [CDNO97], might
seem relevant to our setting. A deniable encryption scheme allows the sender to generate fake coin tosses
that make the ciphertext look like an encryption of another, innocent, cleartext. So whenever the sender is
requested to open a ciphertext by surrendering the coin tosses, he can just generate fake coin tosses and thus
effectively conceal the real plaintext. However, an assumption in deniable encryption is that the adversary
has the power to approach the sender after the ciphertext was transmitted. It was mentioned in [CDNO97]
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that deniability is impossible in the context of direct physical access, where “Eve [the adversary] approaches
Alice [the sender] before the transmission and requires Alice [the sender] to send specific messages”. It was
clearly stated in the original paper [CDNO97] that “Certainly, if Alice [the sender] must hand Eve [the
adversary] the real cleartext and random bits then no protection is possible”. Hence, while deniability is an
important property, it does not solve the issue of facing a dictator.

Kleptography. The concept of having a cryptosystem inside another cryptosystem was used in Kleptog-
raphy [YYa, YY97, YYb]. However, the goal in Kleptography is to attack the cryptosystem owner by using
inside an implementation (or a specification) a method to leak exclusively to an adversary. This goal is in
fact, not to help against an adversary, but to covertly introduce an adversary, and is a tool to help a dictator!.
In some sense it can be used as an implicit key escrow, and in some formal sense it negated the US govern-
ment plan to distribute cryptography in black-box hardware devices. Due to Snowden revelations, in fact,
an Elliptic Curve variant of the repeated DH kleptogram in the above works was deployed in the Dual-EC
pseudorandom generator standard, as was verified in [CNE+14]. As a response, nowadays, the cryptographic
community is working on systems and architectures which can mitigate such system subversion attacks (see
[BPR14, RTYZ16, RTYZ17]).

Steganography and “chaffing and winnowing”. The other tool to send secret messages with is
steganography, where a message is concealed within another message (exploiting some redundancy in the
message structure and style). This is always possible, but systems of this nature are hard to deploy widely
and systematically as part of an established large scale computing base in a situation it is not allowed (by
the dictator).

In a response to the US government possibly restricting encryption systems while allowing authentication
methods as part of its cryptographic export control, Rivest proposed in 1998 the “chaffing and winnowing”
system [Riv]. This system shows how sharing a MAC key for authentication is turned into a method for
sending concealed message (in some steganographic sense). This clearly demonstrated that the separation
of cryptography for authentication and cryptography for confidentiality, proposed by the possible export
regulation, is quite artificial, and gave a way to bypass key escrow using authentication keys which were not
proposed to be part of escrow encryption schemes at the time. Note that in our scenario of the dictator, the
dictator can certainly ask for a MAC (authentication) key as well and get the concealed message itself.

PublicKey Steganography and Subvertable Backdoored Encryption. von Ahn and Hopper [vAH04]
were the first to study steganographic public key and key exchange. Their constructions rely on the exis-
tence of a public random string that cannot be tampered or chosen by the dictator. The work of Horel
et al. [HPRV19] removes this assumptions by showing that steganographic key exchange can be achieved
without resorting to public information. The key exchange is used then in conjunction with the rejection
sampling technique (see Section 5.1).

Comparing our model with the one of [HPRV19], we note that our model assumes the parties have
originally shared (private and thus un-tampered by dictator) information. This, importantly, allows for
zero-latency communication hidden from the dictator. In Section 5.3 nevertheless, we show how to com-
bine [HPRV19] with our construction thus sacrificing zero-latency and dispensing with the need of shared
information. Comparing, in turn, one of our main solutions (see Section 5.3) with the one of Horel et
al. [HPRV19] we note that, for a ciphertext carrying λ bits, rejection sampling allows to transmit O(log λ)
extra bits whereas our construction carries λ thus achieving bandwidth rate of 1 (as opposed to (log λ)/λ).
Such a bandwidth rate is rare in steganographic systems in general. Our second result in Section 6 also
achieves zero latency, and does not need the parties to share a private key.
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3 Our approach

In this section, we would like to give a taste of our approach, and present a generic but limited solution that
shows its feasibility. For concreteness, we consider the receiver’s side.

As we have already observed, there is no hope for preventing an adversary that is in possession of the
secret key from decrypting a ciphertext. In turn, one might think of ciphertexts that carry two messages and
a different key is needed for each of them. When asked for the secret key, the receiver might release only one
of the two keys, thus protecting one of the messages. But then, if the adversary knows that there are two
keys, why should he be happy to receive just one key? Because we will make sure that the adversary believes
that there is no second key! Roughly speaking, we would like to have an encryption scheme for which it is
possible to generate a public key with one secret key or, alternatively, to generate a public key that has two
associated secret keys. More precisely, the technical core of our proposed solution consists of the concept of
an Anamorphic Encryption scheme, a special encryption scheme whose public keys can be generated in one
of two possible modes: normal or anamorphic.

• A Normal public key is associated with a Normal secret key and it can be used for the normal encryption
functionality: the sender encrypts the message m using the public key, and the receiver decrypts the
ciphertext using the secret key. An adversarial authority (i.e., the dictator) that is in possession of
a ciphertext can (legally) force the receiver to surrender the secret key and thus gain access to the
message.

• An Anamorphic4 public key instead is associated with two secret keys: a normal secret key and a double
secret key. A ciphertext ct produced with an anamorphic public key carries two messages: the normal
message m0, that can be obtained by decrypting ct using the normal secret key; and the anamorphic
message m1, only visible to parties that have the double secret key. When requested to surrender his
secret key to allow inspection of the ciphertexts, the owner of an anamorphic public key will pretend
that the key is normal and reveal the normal secret key. Thus, the dictator will gain access only to the
normal message m0 and the special message m1 is kept private.

Normal public keys can be used by receivers who do not expect their secret keys to be requested by the
adversarial authority. Actually, these users need not even know about anamorphic public keys and their
operations will not be affected in any way. Anamorphic public keys could instead be generated by someone
who has reasons to believe that the dictator will want to get the information he has received; for example,
an investigative reporter or an opposition leader. As an example, consider an investigative reporter Bob
who wants to communicate in a private way with his informant, Alice. Bob sets up his public key as an
anamorphic key and gives Alice the double secret key. Note that Bob publishes his anamorphic public key
for everybody to use. However, when Alice has some sensitive information for Bob, she uses the double key
obtained from Bob to produce an anamorphic ciphertext carrying two messages: m0 is set equal to some
innocent looking message (for example, a general question about the work of the reporter; recall that in a
dictatorship Alice does not even have a free choice of this message), and message m1 will instead contain
the sensitive information that Alice wishes to communicate to Bob. Should Bob be requested to surrender
his secret key, he will pretend that his public key is just a normal public key and will reveal the normal
secret key. In this way the adversary will be able to read message m0 (the innocent message containing no
sensitive information) and will gain no access to the potentially incriminating message m1.

Clearly, for this to work the following conditions must be satisfied:

• a pair of anamorphic public and secret keys must be indistinguishable from a normal corresponding
pair; and

• the ciphertexts produced using an anamorphic public key must be indistinguishable from those pro-
duced by a normal public key.

4The adjective Anamorphic is used to denote a drawing with a distorted projection that appears normal when viewed from
a particular point or with a suitable mirror or lens. Similarly, an anamorphic ciphertext will reveal a different plaintext when
decrypted with a suitable key.
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In addition, we are interested in performance parameters: We would like the system to have zero-latency in
the sense that the anamorphic system is ready to be used whenever the normal system is ready. Additionally,
we are interested in system where the anamorphic bandwidth rate (i.e, number of anomorphic bit transmitted
divided by the number of normal bits transmitted) is high (whenever and as much as possible).

A simple solution that does not work. At first, one might think that constructing an Anamorphic
Encryption scheme is not difficult and indeed it is possible to turn any encryption scheme E into a Anamorphic
Encryption AME in the following rather straightforward way by adding redundancy to the ciphertext. The
normal encryption process of AME consists of computing a ciphertext ct according to E and then outputting
(ct, R), where R is a randomly selected string. During the decryption process of AME with the normal secret
key, the random string R is ignored and the message is obtained by decrypting ct according to E . Thus, a
normal pair of public and secret key for AME is simply a pair of keys from E . An anamorphic public key
instead is associated also with the secret key K of a symmetric encryption scheme E ′ with pseudorandom
ciphertexts (e.g., it is a pseudorandom permutation). During the anamorphic encryption process, ciphertext
ct is an encryption of m0 according to E and the random string R that is appended to ct is an encryption
of m1 with respect to E ′ computed using key K that, thus, plays the role of the double key. Note that
the public keys are identical and, by the pseudorandomness properties of the ciphertexts of E ′, a normal
ciphertext, in which R is truly random, is indistinguishable from an anamorphic ciphertext in which R is a
ciphertext of E ′.

So, the question is: do we have a satisfactory solutions? Hardly so! The mere fact of using a standard
encryption scheme and augmenting each ciphertext with a random string is suspicious and, moreover, a user
not interested in sending hidden messages has no incentive to append a random string to the ciphertext
just to attract the attention of the dictator. Rather we are interested in showing that existing encryption
schemes can be used, in the form in which they have been originally designed, to provide a second channel
that is secure also with respect to an adversary that has access to the secret key of the receiver. In practice,
this will not raise any suspicion since all ciphertexts will be from a standard encryption scheme or will be
indistinguishable from them. In addition, no extra action (like generating and appending a random string
to each ciphertext) is required from the normal users who can actually be completely unaware of the special
mode of operation.

In other words the question we ask is not
Can we construct an Anamorphic Encryption scheme?

but rather:
Is any of the existing encryption schemes also Anamorphic?

A positive answer to this question will constitute technical evidence of the futility of the efforts of
governments around the world (dictatorships and democracies) to control encryption.

Rejection Sampling Encryption. We give a quick description of our approach by presenting the rejection
sampling encryption, a simple cryptosystem that gives guarantees even if the secret-key assumption and the
sender-freedom assumption do not hold. Rejection sampling encryption is inspired by the biased-ciphertext
attack of [BPR14]. We note that the objective of the biased-ciphertext attack is to subvert an encryption
scheme so that the private key can be leaked without the legitimate owner noticing any abnormal behaviour.
It is interesting to note that this technique can be used to setup a dictator setting, as shown in [BPR14], as
well as for the opposite of objective, as we show below.

Consider any public key encryption scheme E = (KG,Enc,Dec) and a family of Pseudo-Random Func-
tions F (·, ·). The normal pair of public and secret keys (PK, SK) is obtained by running the key-generation
algorithm of E and encryption and decryption algorithms of E are used to create and decrypt ciphertexts.
The anamorphic public key is generated in the same way but, in addition, a double key is selected by pick-
ing a random seed K for F . Now suppose that the sender wants to encrypt a normal plaintext m0 and a
one-bit hidden plaintext m1. The sender proceeds by producing ciphertexts ct of m0 w.r.t PK until one is
obtained such that F (K, ct) = m1. Upon receiving ct, m0 is obtained by decrypting ct using the decryption
algorithm of E and m1 is obtained by computing F (K, ct).
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Why does this satisfy our needs? First, the anamorphic encryption of m1 is a sound procedure due
to the rejected sampling procedure on one-bit message where F is a pseudorandom function over random
ciphertexts. Then, observe that in both cases the public key is simply a randomly generated public key
for E and there is no indication that the double key has been selected. Given these facts, the receiver
can plausibly deny the existence of a special secret key (no key is used to generate any field, it is rather via
rejection sampling and a key not used in the process that the anamorphic message is generated). If requested
by the adversary, the sender can give the random coin-tosses used to generate ct Note that this are not
truly random as the ciphertext obtained has the property F (K, ct) = m1 but they are indistinguishable
from truly random coin tosses by the properties of the PRF F . Note that the adversary does not have
access to the special secret key K: it is not even sure that such a key exists! In other words, this simple
construction allows secure two-party communication without having to rely on the secret-key assumption nor
on the sender-freedom assumption. Moreover, it can be used without raising any suspicion as its operations
can be plausibly described as obtained from using a standard encryption scheme and compliance with some
requests about the randomness employed.

Still, we must point out two important limitations of the construction. First of all, the special plaintext
is restricted to be 1 bit. It is not difficult to modify the construction so that m1 can be of any length l, at the
cost of making the running time (of the rejection sampling) exponential in l, which is clearly unsatisfactory.
In addition, the sender and the receiver must agree on common special secret key K for this to work.

Our Main Technical Contributions. The rest of this paper consists of identifying encryption schemes
that appear in the literature which address the two limitations we identified above.

• Receiver’s side. We show that the Naor-Yung paradigm for CCA secure encryption from CPA
secure encryption gives receiver-Anamorphic Encryption schemes (see Def. 1) with a bandwidth rate
of 1. That is, each ciphertext for λ plaintext bits carries λ additional bits that are hidden from the
dictator. Moreover, as in the public key model, communication hidden from the dictator can start
with zero latency.

• Sender’s side. We show that a lattice based cryptosystems from the literature [Reg05, GPV08] are
sender-Anamorphic Encryption (see Def. 3) and they also achieve hidden communication with zero
latency. In addition, they do not require the sender and receiver to share any secret (just that there is
an additional receiver in the system), thus, enhancing their practicality.

Given these, one can conclude that the “Crypto Wars” which consists of attacks on the free use of strong
cryptography (involving requirements to give keys of such cryptographic schemes to the dictator) are possibly
futile. One may then conclude that dictators should mandate only weak cryptography! But, due to earlier
battles, we are already know that disallowing strong Cryptography is totally unhelpful to and imposes limits
on the development of advanced information technology systems, implying dire consequences to the economy
and to society.

Roadmap. In Section 4, we put forth the concept of a Receiver-Anamorphic Encryption and give a formal
notion of security. In Section 5.3, we show that the Naor-Yung paradigm [NY90] gives Receiver-Anamorphic
Encryption with zero latency and bandwidth rate 1. In Section 6, we define the concept of an Sender-
Anamorphic Encryption that can be used to obtain private communication when the sender-freedom assump-
tion does not hold. We show that lattice-based cryptosystems have this property (and give some evidence
that other public key cryptosystems are not Sender-Anamorphic Encryption). The scheme is zero-latency as
well.

4 Receiver-Anamorphic Encryption

In this section we present the concept of a Receiver-Anamorphic Encryption scheme that provides private
communication without relying on the receiver-privacy assumption (while in Section 6 we will present the
concept of a Sender-Anamorphic Encryption scheme.)
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A Receiver-Anamorphic Encryption scheme (a Receiver-AM scheme) consists of two encryption schemes:
the normal scheme (KG,Enc,Dec) and the anamorphic scheme (aKG, aEnc, aDec). It can be deployed as
normal scheme in which case Bob runs the (real) key generation algorithm KG to obtain a pair of keys
(PK, SK) and, as usual, publishes PK. When Alice wishes to send message m, she produces ciphertext ct by
running the (real) encryption algorithm Enc by using PK and m. When ct is received by Bob, it is decrypted
by running the (real) decryption algorithm Dec and using SK. Thus, when deployed as normal a Receiver-AM
is just a regular public-key encryption scheme. If the dictator comes for the secret key, Bob surrenders SK.

Bob deploys the scheme as anamorphic when he wants to protect the confidentiality of the communication
with Alice even in the event that he is forced to surrender his secret decryption key to the dictator. In this
case, Bob runs the anamorphic key generation algorithm aKG that returns a pair of anamorphic public-
secret keys (aPK, aSK) along with a special key, dkey, called the double key. As usual, Bob publishes aPK

and keeps aSK private but dkey is shared with Alice. If asked, Bob will surrender aSK to the dictator.
The pair (aPK, aSK) is a fully functional pair of keys: if a message m is encrypted by using Enc and aPK,
it can be decrypted by Dec on input aSK. Key dkey is instead used by Alice to send Bob messages that
remain confidential even if aSK is compromised. Specifically, whenever Alice has a message m1 that must
remain confidential, she picks an innocent looking message m0 and encrypts (m0,m1) using the anamorphic
encryption algorithm aEnc with dkey. The ciphertext ct produced by aEnc has the property that it returns
m0 when decrypted with the normal decryption algorithm Dec and with key aSK; whereas it returns m1

when decrypted by running the anamorphic decryption algorithm aDec on input the double key dkey. In
other words, the authority will obtain m0 and Bob will obtain m1. Clearly, the ciphertext produced by Alice
must indistinguishable from a ciphertext of m1 produced using Enc even to an adversary that has access to
aSK. We stress again that Alice and Bob share a key, dkey, in order to achieve privacy without having to
rely on the secret-key assumption.

We are interested in Receiver-AM schemes in which the normal scheme is an established and already used
cryptosystem.

4.1 Syntax

In this section we formally define the concept of a Receiver-Anamorphic Encryption scheme. Then in
Section 4.3 we will present the corresponding security notion.

Definition 1. An encryption scheme AME = (AME.KG,AME.Enc,AME.Dec) is a Receiver-Anamorphic En-
cryption (or, simply, a Receiver-AM) if there exists an anamorphic triplet aAME = (AME.aKG,AME.aEnc,AME.aDec)
with the following syntax

• AME.aKG takes as input the security parameter 1λ and returns an anamorphic public key aPK, an
anamorphic secret key aSK and a double key dkey.

• AME.aEnc takes as input the double key dkey and two messages m0 and m1 and returns an anamorphic
ciphertext act.

• AME.aDec takes as input the double key dkey and an anamorphic ciphertext act, computed by running
AME.aEnc on input dkey and messages m0 and m1, and returns message m1.

As we have seen previously, a Receiver-AM scheme can be deployed as normal or as anamorphic. When
Bob deploys the Receiver-AM scheme as anamorphic, Alice (or any other user that has received dkey from
Bob) can use aEnc to produce ciphertexts. However, Bob cannot instruct all users to use aEnc as that would
be like admitting that he has deployed the scheme as anamorphic; in other words users that are unaware
that the scheme has been deployed as anamorphic will use Enc. It is thus crucial that the encryption-
decryption functionality does not break for these users, despite using the normal encryption algorithm with
an anamorphic public key. Indeed, the fact that ciphertexts generated by the normal encryption algorithm
cannot be decrypted could be a strong evidence, if not a proof, that the public key is anamorphic.

Next, we formally identify the four different modes of operations that arise from mixing normal, and
anamorphic algorithms and keys and then in Section 4.3 we present our security notion.
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Key Gen. Encryption Decryption
Fully Anamorphic aKG aEnc aDec
Anamorphic with Normal Dec aKG aEnc Dec
Anamorphic with Normal Enc aKG Enc Dec
Normal KG Enc Dec

Figure 1: The four modes of operation of an anamorphic encryption scheme. The fully anamorphic mode is
used by Bob to communicate privately with Alice. The anamorphic mode with normal decryption is used by
Bob when the dictator requests the decryption of an anamorphic ciphertext sent by Alice. The anamorphic
mode with normal encryption is used by Charlie, unaware that Bob has an anamorphic key, to send a message
to Bob. The normal mode is used by Charlie that sets up his key in normal mode to receive messages from
other users. The normal mode offers no privacy guarantee against the dictator.

4.2 Modes of Operation

A Receiver-AM scheme AME naturally defines the following four modes of operation, each corresponding
to a different scenario. Of these four modes, one uses the normal keys and three use anamorphic keys.
The security definition (see Definition 4) will require that, roughly speaking, the the normal and the fully
anamorphic mode be indistinguishable. This is sufficient to prove that all of them are indeed pairwise
indistinguishable. Next, we formally define the modes of operations.

1. The fully anamorphic encryption mode is used when Bob deploys the scheme as anamorphic and Alice
uses dkey to send Bob a private message. This mode is associated with the triplet of algorithms
fAMEm̂ = (AME.aKG3,AME.aEnc1,m̂,AME.aDec) where, for every message m̂,

• AME.aKG3(1λ) is the algorithm that runs AME.aKG(1λ) obtaining (aPK, aSK, dkey) and returns
dkey. Note that the index in aKG3 denotes the components of the triplet generated by aKG that
is selected to appear in the output.

• AME.aEnc1,m̂(aPK,m) is the algorithm that returns AME.aEnc(aPK, m̂,m). Note that index 1 in
AME.aEnc1,m̂ denotes that message m̂ will be passed as first message to algorithm aEnc.

Note that fAMEm̂ is, for every m̂, a symmetric encryption scheme.

2. The anamorphic with normal decryption mode is used when Bob deploys the scheme as anamorphic
(and thus the public key is generated using algorithm AME.aKG), the ciphertext ct is produced by
Alice by running the anamorphic encryption algorithm AME.aEnc on input (m0,m1) and the double
key dkey, and the ciphertext is decrypted by the dictator by running the normal encryption algorithm
AME.Dec on input aSK.

More formally, the mode is associated with the triplet andAMEm̂ = (aKG1,2, aEnc2,m̂,Dec), where, for
every m̂,

• andAME.aEnc2,m̂(aPK,m) is the algorithm that returns AME.aEnc(aPK,m, m̂). Note that the index
2 in AME.aEnc2,m̂ denotes that message m̂ will be passed as second message to algorithm aEnc.

3. The anamorphic with normal encryption mode is used when Bob deploys the scheme as anamorphic
(and thus the anamorphic public key aPK is used as public key) and a sender encrypts messages using
the normal encryption algorithm AME.Enc. The ciphertexts produced in this way can be read by the
dictator that has the secret key aSK associated with aPK by running the normal decryption algorithm
AME.Dec.

More formally, the mode is associated with the triplet aneAME = (aKG1,2,Enc,Dec), where

• aKG1,2(1λ) is the algorithm that runs AME.aKG(1λ), obtaining (aPK, aSK, dkey), and returns the
pair (aPK, aSK). Note that the indices in aKG1,2 denote the components of the triplet generated
by aKG that are selected to appear in the output.
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4. The normal mode of operation is associated to the triple of algorithms nAME = (AME.KG,AME.Enc,
AME.Dec) and it corresponds to the scenario in which the scheme is deployed and used in normal
mode; that is, the keys are generated by running KG, the ciphertexts are constructed by running Enc
and decrypted by running Dec.

4.3 Security Notion

We are now ready to define the notion of a Secure Receiver-AM scheme. As we shall see, the security notion
posits that no PPT dictator can distinguish whether the Receiver-AM scheme is in normal mode or in fully
anamorphic mode. In other words, it is indistinguishable whether nAME or fAMEm̂, for message m̂, is being
used. We first make two interesting remarks:

• No explicit security requirement is made for the security of the fully anamorphic mode; in other words,
it is not explicitly required that Alice’s secret message m1 is actually secret.

• No explicit security and functional requirement regarding the partial anamorphic modes of operation,
anamorphic with normal encryption and anamorphic with normal decryption, is made.

The requirements in both bullets above are clearly desirable: first, we would like Alice’s secret message to
be kept secure from the authorities; and we do not want the authority to be able to distinguish whether the
normal mode or one of the other anamorphic modes is being used. As we shall see, the security notion of
Definition 2 is sufficient for the requirements in the two bullets above. Let us now proceed more formally
and define the following two games involving a dictator D.

NormalGameAME,D(λ)

1. Set (PK, SK)← AME.KG(1λ) and send (PK, SK) to D.

2. For i = 1, . . . , poly(λ):

• D issues query (mi
0,m

i
1) and receives ct =

AME.Enc(PK,mi
0).

3. Return D’s output.

FullyAGameAME,D(λ)

1. Set (aPK, aSK, dkey)← AME.aKG(1λ) and send (aPK, aSK) to D.

2. For i = 1, . . . , poly(λ):

• D issues query (mi
0,m

i
1) and receives ct =

AME.aEnc(dkey,mi
0,m

i
1).

3. Return D’s output.

Note that in NormalGame the key is normal (that is, output by KG) and the i-th ciphertext is an encryption
of mi

0 computed using Enc. In other words, D interacts with the scheme in normal mode. On the other
hand, in FullyAGame the key is output by aKG and the i-th ciphertext carries both messages mi

0 and mi
1. In

other words, D with the scheme in fully anamorphic mode. Note that in both cases, D is given the public
key and the associated secret key.

More formally, we denote by pNormalGame
AME,D (λ) (respectively, pFullyAGame

AME,D (λ)) the probability that NormalGameAME,D(λ)
(respectively, FullyAGameAME,D(λ)) outputs 1 and we introduce the following definition.
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Definition 2. A Receiver-AM scheme AME = (KG,Enc,Dec) with anamorphic triplet (aKG, aEnc, aDec) is
a Secure Receiver-AM scheme if

1. AME is an IND-CPA scheme;

2. for every message m̂, fAMEm̂ is a symmetric encryption scheme;

3. for all PPT dictators D, ∣∣∣pNormalGame
AME,D (λ)− pFullyAGame

AME,D (λ)
∣∣∣ ≤ negl(λ).

In the rest of this section, we prove that the fully anamorphic mode (used by Alice and Bob to com-
municate privately) is an IND-CPA private key encryption scheme, thus addressing the observation in the
first bullet above. We start in Section 4.4 by proving that the anamorphic modes with normal encryption
is indistinguishable from the fully anamorphic mode and from the normal mode. We then build on this to
prove the security of the fully anamorphic mode in Section 4.5. We will address the observation in the second
bullet in Appendix B.

4.4 Properties of the Anamorphic Mode with Normal Encryption

We start by defining game aneGameAME,A, for a Secure Receiver-AM AME and a PPT adversary A. As
usual, we denote by paneGame

AME,A (λ) the probability that aneGameAME,A(λ) outputs 1. Game aneGame describes
the Anamorphic Mode with Normal Encryption.

aneGameAME,A(λ)

1. Set (aPK, aSK, dkey)← AME.aKG(1λ) and send (aPK, aSK) to A.

2. For i = 1, . . . , poly(λ):

• A issues query (mi
0,m

i
1) and receives ct =

AME.Enc(aPK,mi
0).

3. Return A’s output.

We note that A issues encryption queries (mi
0,m

i
1) and that, clearly, A can also use the keys in its possession

to encrypt and decrypt ciphertexts of its choice. The next lemma proves that aneGame is indistinguishable
from NormalGame thus yielding that the Normal Mode is indistinguishable from the Anamorphic Mode with
Normal Encryption.

Lemma 1. Let AME be a Secure Receiver-AM scheme. Then for all PPT adversaries A, we have∣∣pNormalGame
AME,A (λ)− paneGame

AME,A (λ)
∣∣ ≤ negl(λ).

Proof. Suppose that there exists an adversary A that distinguishes aneGame from NormalGame. We will use
A to construct a dictator D that distinguishes NormalGame from FullyAGame, thus violating the security
of AME. D receives the challenge pair of keys (PK?, SK?) and runs A on input (PK?, SK?). For each query
(mi

0,m
i
1) issued by A, D replies by returning Enc(PK?,mi

0). When A stops and returns b, D outputs b. This
terminates the description of D. Note that D issues no encryption query.

Now observe that if D is playing FullyAGame then (PK?, SK?) are output by aKG and thus D is simulating
aneGame for A. On the other hand, if D is playing NormalGame then (PK?, SK?) are output by KG and thus
D is simulating NormalGame for A. This concludes the proof.

Transitivity of indistinguishability gives the following lemma.

Lemma 2. Let AME be a Secure Receiver-AM scheme. Then for all PPT adversaries A, we have∣∣∣pFullyAGame
AME,A (λ)− paneGame

AME,A (λ)
∣∣∣ ≤ negl(λ).
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4.5 Security of the Fully Anamorphic Mode

We are now ready to prove that the fully anamorphic mode of a Secure Receiver-AM scheme is IND-CPA
even for an adversary that has access to (aPK, aSK) but not to dkey.

Let us start by formally defining the notion of IND-CPA security of the fully anamorphic mode of a
Secure Receiver-AM scheme. For η = 0, 1, message m̂, and stateful PPT adversary A, we define game
IndCPAηAME,A,m̂ as follows.

IndCPAηAME,A,m̂(λ)

1. Set (aPK, aSK, dkey)← AME.aKG(1λ).

2. (m0
1,m

1
1)← AaEnc(dkey,m̂,·)(aPK, aSK).

3. Compute ct← aEnc(dkey, m̂,mη
1).

4. b← AaEnc(dkey,m̂,·)(ct).

We denote by pcpaηAME,A,m̂ the probability that, in game IndCPAηAME,A,m̂, adversary A outputs 1 . We will
prove the following theorem.

Theorem 1. If AME is a Secure Receiver-AM scheme, then, for every message m̂, fAMEm̂ is IND-CPA
secure. That is, for all PPT adversaries A and every m̂∣∣pcpa0

AME,A,m̂(1λ)− pcpa1
AME,A,m̂(1λ)

∣∣ ≤ negl(λ).

To prove the theorem above, we consider, for η = 0, 1, the hybrid game Hη
AME,A,m̂, in which all A’s oracle

calls to aEnc(dkey, m̂, ·) in IndCPAη are replaced with calls to Enc(aPK, m̂) and the challenge ciphertext ct

at Line 3 of IndCPAη is computed as ct← Enc(aPK, m̂). We denote by hcpaηAME,A,m̂(1λ) the probability that

A outputs 1 in Hη
AME,A,m̂ with security parameter λ.

We have the following lemma whose proof relies on Lemma 2 above.

Lemma 3. If AME is a Secure Receiver-AM then, for η = 0, 1, we have∣∣∣pcpaηAME,A,m̂(1λ)− hcpaηAME,A,m̂(1λ)
∣∣∣ ≤ negl(λ).

Proof. For the sake of contradiction, assume there exists an adversary A that violates the lemma. We then
construct an efficient dictator D that distinguishes aneGame and FullyAGame thus contradicting Lemma 2.
D receives the pair (aPK, aSK) computed by aKG and has access to an encryption oracle O(·, ·). D runs

A on input (aPK, aSK) and when A issues a query for m, D returns O(m̂,m). Similarly, when A outputs the
pair of messages (m0

1,m
1
1), D returns O(m̂,mη

1). At the end, D returns A’s output.
If D is playing game aneGame then O(m̂,m) returns Enc(aPK, m̂). Therefore ct is computed as ct ←

Enc(aPK, m̂). This implies that D simulates Hη
A,AME,m̂ for A. On the other hand, if D is playing FullyAGame

then O(m̂,m) returns aEnc(dkey, m̂,m). Therefore ct is computed as ct← Enc(aPK, m̂,mη
1) and D simulates

IndCPAηA,AME,m̂(1λ) for A. This concludes the proof of the lemma.

We are now ready to prove Theorem 1.

Proof of Theorem 1. The theorem follows from Lemma 3 and from the observation that game Hη
A,AME,m̂ is

independent from η and thus
hcpa0

A,AME,m̂(1λ) = hcpa1
A,AME,m̂(1λ).
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5 Constructions

In this section we present two constructions of AM schemes. We first review the simple construction for a
(log λ)-bit AM scheme discussed in the Introduction and then, in Section 5.2, we present a construction for
poly(λ) bits.

5.1 Rejection Sampling

In this section we present our first construction 1bit, a simple cryptosystem that gives guarantees even if the
secret-key assumption and the sender-freedom assumption do not hold. It is based on the rejection sampling
technique inspired by the biased-ciphertext attack of [BPR14] and it is used also by Horel et al. [HPRV19].
We review it here just to give a first example of a Receiver-Anamorphic Encryption. We note that the
objective of the biased-ciphertext attack is to subvert an encryption scheme so that the private key can
be leaked without the legitimate owner noticing any abnormal behaviour and it is interesting to note that
this technique can be used to setup a dictator setting, as shown in [BPR14], as well as for the opposite of
objective, as we show below.

The normal triplet of 1bit is any IND-CPA secure encryption scheme E = (KG,Enc,Dec) and the anamor-
phic triplet is defined as follows:

• 1bit.aKG, on input the security parameter 1λ, runs the key generation algorithm KG of E obtaining
(PK, SK) and random seed K for PRF F . The anamorphic public key is aPK = PK, the anamorphic
secret key is aSK = SK and the double key dkey = (PK,K).

• 1bit.aEnc takes as input the double key dkey = (PK,K) and two messages m0 and m1 ∈ {0, 1}.
Algorithm 1bit.aEnc samples ciphertexts ctEnc(PK,m0) and the anamorphic ciphertext act is set equal
to the first ct such that F (K, ct) = m1.

• 1bit.aDec takes as input act and dkey and returns m1 = F (K, act).

Note that 1bit can be extended to l-bit of hidden plaintexts at the cost of pushing the expect encryption time
to O(2l). Therefore l = O(log λ) hidden bits per ciphertext will keep encryption polynomial and it gives a
bandwidth rate of O((log λ)/λ). To prove that 1bit is a Secure Anamorphic Encryption we observe that the
anamorphic keys have the same distribution as the normal keys. In addition the only difference between the
normal ciphertext ct and the anamorphic ciphertext act is that the former is randomly distributed over the
set of ciphertexts for PK and m0 whereas act is randomly chosen over the set of ciphertexts for aPK = PK and
m0 such that F (K, act) = m1. From the pseudorandomness of F and the fact that K is randomly chosen
and hidden from the adversary A, we can conclude that 1bit is secure.

Theorem 2. If F is a PRF and E is an IND-CPA Encryption scheme then 1bit is a Secure Anamorphic
Encryption.

We also observe that the sender of 1bit, should she be forced to encrypt a given message m and reveal
the coin tosses used, can still send a secret bit of her choice to Bob. In other words, the security of 1bit
does not rely on the sender-freedom assumption. In Section 6, we will show that this can be achieved by
encryption schemes based on lattice hardness assumptions without the sender and receiver having to share
a key beforehand.

5.2 The Naor-Yung transform

In this section we describe the Naor-Yung transform [NY90] (see also [Sah99]) that, when applied to an
IND-CPA public-key cryptosystem E and a simulation sound NIZK Π for a specific polynomial-time relation
EqMsgE , gives a CCA public-key cryptosystem NYE. The formal definitions of the concepts used in the
construction (IND-CPA, simulation sound NIZK) are found in Appendix A.
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The polynomial time relation EqMsgE is defined by setting the witness for instance ((PK0, ct0), (PK1, ct1))
to be the triplet (r0, r1,m) of two coin tosses and one message m such that

ct0 = Enc(PK0,m; r0) and ct1 = Enc(PK0,m; r1).

The key generation algorithm NYE.KG constructs the public key NYE.PK = (PK0, PK1,Σ) as consisting of
two random and independently chosen public keys PK0 and PK1 of E and of a random string Σ. The secret
key NYE.SK = (SK0) associated with NYE.PK consists solely of the secret key SK0 associated with PK0.

To encrypt messagem, the encryption algorithm NYE.Enc first computes ciphertexts ct0 = Enc(PK0,m; r0)
and ct1 = Enc(PK1,m; r1), using random and independent coin tosses r0 and r1. Then, it runs the prover’s
algorithm of Π to produce a proof π that ct0 and ct1 encrypt the same message. More precisely, the
prover’s algorithm of Π is run on input instance ((PK0, ct0), (PK1, ct1)) and witness (r0, r1,m) using Σ found
in NYE.PK as reference string. The ciphertext PK is finally set to (ct0, ct1, π).

The decryption algorithm NYE.Dec, on input ciphertext ct = (ct0, ct1, π), runs the verifier algorithm of
Π to check π and, if successful, outputs m obtained by decrypting ct0 using SK0.

5.3 The NY Transform Gives Receiver-AM Encryption

In this section we describe Receiver−AM scheme NY with bandwidth rate 1 that is derived from NYE. The
normal triplet of NY consists of the triple (NYE.KG,NYE.Enc,NYE.Dec) described in the previous section.
Next we define the anamorphic triplet
(NYE.aKG,NYE.aEnc,NYE.aDec).

• The anamorphic key generation algorithm NYE.aKG constructs the anamorphic public key NYE.aPK =
(PK0, PK1,Σ) as consisting of two random and independently chosen public keys PK0 and PK1 of E ; the
string Σ instead is obtained by running simulator S0(1λ) that returns the pair (Σ, aux). The secret key
aSK = (SK0) is set equal to the secret key associated with PK0 whereas the double key is set equal to
dkey = (PK0, PK1, SK1, aux).

• The anamorphic encryption algorithm NYE.aEnc takes as input the dkey and two messages m0 and
m1 and starts constructing the anamorphic ciphertext by computing ct0 = Enc(PK0,m0) and ct1 =
Enc(PK1,m1). The proof π is constructed by running the simulator S1 on input instance ((PK0, ct0),
(PK1, ct1)) and auxiliary information aux. Note that m0 and m1 are two messages of the same length
and thus the construction has a bandwidth rate of 1

• The anamorphic decryption algorithm NYE.aDec takes an anamorphic ciphertext act = (ct0, ct1, π)
and uses SK1 found in dkey to decrypt ct1 to obtain m1.

We next prove that the anamorphic encryption scheme NY is secure according to Definition 4; that is,
that games NormalGame and FullyAGame are indistinguishable. To do so, we consider the hybrid game aneG
and will show that aneG and NormalGame are indistinguishable by the security properties of the NIZK and
that aneG and FullyAGame are indistinguishable by the security of the encryption scheme E . This implies
that that NormalGame and FullyAGame are indistinguishable thus satisfying Definition 4. Let us now proceed
more formally by instantiating game NormalGameNY. We remind the reader that pNormalGame

NY,A (λ) denote the
probability that adversary A outputs 1 in game NormalGameNY,A. Next we define game aneGNY that differs
from NormalGameNY in the way in which the public key and ciphertexts cti, replies to A’s queries, are
computed. Specifically, the reference string Σ, that is part of the public key, and the proof πi, that is part
of the i-th ciphertext cti, are computed by running the simulator. We define paneGNY,A(λ) to be the probability
that adversary A outputs 1 in game aneGNY,A.
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NormalGameNY,A(λ)

1. Set (PK0, SK0), (PK1, SK1)← E .KG(1λ).

2. Set Σ← {0, 1}λ.

3. Send PK = (PK0, PK1,Σ) and SK = (SK0) to A.

4. For i = 1, . . . , poly(λ):

A issues query (mi
0,m

i
1) and receives cti computed as follows:

• Set cti0 = Enc(PK0,m
i
0; ri0).

• Set cti1 = Enc(PK1,m
i
0; ri1).

• Set πi ← Prover(((PK0, ct
i
0), (PK1, ct

i
1)), (ri0, r

i
1),Σ).

• Set cti = (cti0, ct
i
1, π

i).

5. A outputs b ∈ {0, 1}.

aneGNY,A(λ)

1. Set (PK0, SK0), (PK1, SK1)← E .KG(1λ).

2. Set (Σ, aux)← S0(1λ) and dkey = (PK0, PK1, SK1, aux).

3. Send PK = (PK0, PK1,Σ) and SK = (SK0) to A.

4. For i = 1, . . . , poly(λ):

A issues query (mi
0,m

i
1) and receives cti computed as follows:

• Set cti0 = Enc(PK0,m
i
0; ri0).

• Set cti1 = Enc(PK1,m
i
0; ri1).

• Set πi ← S1(((PK0, ct
i
0), (PK1, ct

i
1)), aux).

• Set cti = (cti0, ct
i
1, π

i).

5. A outputs b ∈ {0, 1}.

Lemma 4. If Π = (Prover,Verifier) is a NIZK then for all PPT adversaries A∣∣paneGNY,A(λ)− pNormalGame
NY,A (λ)

∣∣ < negl(λ).

Proof. Suppose, for the sake of contradiction, that there exists a PPT A for which∣∣paneGNY,A(λ)− pNormalGame
NY,A (λ)

∣∣ ≥ 1/poly(λ).

Then we construct an adversary B that receives a string Σ and has access to an oracle O that returns proofs
and that breaks the zero-knowledge property of Π.

1. B(Σ) sets (PK0, SK0), (PK1, SK1)← E .KG(1λ).

2. B receives Σ and starts A on input PK = (PK0, PK1,Σ) and SK = (SK0).

3. For i = 1, . . . , poly(λ)

(a) B receives query (mi
0,m

i
1) from A.
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(b) B sets cti0 = Enc(PK0,m
i
0; ri0).

(c) B sets cti1 = Enc(PK1,m
i
0; ri1).

(d) B invokes the oracle O on input instance ((PK0, ct
i
0), (PK1, ct

i
1)) and witness (ri0, r

)
1 and receives

proof πi.

(e) B returns cti = (cti0, ct
i
1, π

i) to A.

4. B returns A’s output.

Now observe that if B is playing experiment RealZK, then Σ is randomly chosen from {0, 1}λ and O =
Prover and therefore A’s view is the same as in NormalGame. On the other hand, if B is playing experiment
IdealZK then Σ is output by S0 and O = Oracle and therefore A’s view is the same as in aneG. Since
we assumed that A distinguishes between NormalGame and aneG then we can conclude that B breaks the
Zero-Knowledge property of Π.

Next we instantiate the anamorphic security game FullyAGameNY. We remind the reader that pFullyAGame
NY,A (λ)

denote the probability that adversary A outputs 1 in game FullyAGameNY,A.

FullyAGameNY,A(λ)

1. Set (PK0, SK0), (PK1, SK1)← E .KG(1λ).

2. Set (Σ, aux)← S0(1λ) and dkey = (PK0, PK1, SK1, aux).

3. Send PK = (PK0, PK1,Σ) and SK = (SK0) to A.

4. For i = 1, . . . , poly(λ):

A issues query (mi
0,m

i
1) and receives cti computed as follows:

• Set cti0 = Enc(PK0,m
i
0; ri0).

• Set cti1 = Enc(PK1,m
i
1; ri1).

• Set πi ← S1(((PK0, ct
i
0), (PK1, ct

i
1)), aux).

• Set cti = (cti0, ct
i
1, π

i).

5. A outputs b ∈ {0, 1}.

We have the following Theorem.

Theorem 3. If E is an IND-CPA secure encryption scheme then for all PPT adversaries A∣∣∣paneGNY,A(λ)− pFullyAGame
NY,A (λ)

∣∣∣ < negl(λ).

Proof. Suppose, for the sake of contradiction, that there exists a PPT A for which∣∣∣paneGNY,A(λ)− pFullyAGame
NY,A (λ)

∣∣∣ ≥ 1/poly(λ).

Then we construct an adversary B that receives a public key PK and has an encryption oracle O(PK, ·, ·) that
returns a ciphertext.

1. B(PK) sets (PK0, SK0) and PK1 = PK.

2. B sets (Σ, aux)← S0(1λ) and runs A on input PK = (PK0, PK1,Σ) and SK = (SK0).

3. For i = 1, . . . , poly(λ):

A issues query (mi
0,m

i
1) and receives cti computed as follows:
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• B sets cti0 = Enc(PK0,m
i
0; ri0);

• B sets ct1
1 = O(PK,mi

0,m
i
1);

• B sets πi ← S1(((PK0, ct
i
0), (PK1, ct

i
1)), aux).

• B sets cti = (cti0, ct
i
1, π

i).

4. B returns A’s output.

Now observe that if B is playing the IndCPA0
E game then O(PK,m0,m1) = Oracle0(PK,m0,m1) returns an

encryption of m0 and therefore A’s view is exactly as in aneGNY. On the other hand, if B is playing the
IndCPA0

E game then O(PK,m0,m1) = Oracle1(PK,m0,m1) returns an encryption of m1 and therefore A’s view
is exactly as in FullyAGameNY. Since we assumed that A distinguishes between aneGNY and FullyAGameNY,
we can conclude that B breaks the IND-CPA security of E .

Bootstrapping the NY construction. In the description of the anamorphic triplet for the NY construction
we have assumed that the sender and the receiver have a safe way to exchange dkey. This is a reasonable
assumption for most applications as it is expected that the dictator is able to monitor online communication
but it will be difficult to monitor a physical exchange. We next briefly note how to use the bootstrap
technique of Horel et al. [HPRV19] in combination with the NY construction. Note that the result scheme
does not enjoy the zero-latency property. Observe that dkey consists of (PK0, PK1, SK1, aux). However PK0 and
PK1 are public and SK1 is not used by the sender and it is only used by the receiver to decrypt the message.
Therefore, it is enough for the two parties to share the random string used by simulator S0 to generate aux
and this can be achieved by using the two-step bootstrap procedure of Horel et al. [HPRV19].

6 Sender-Anamorphic Encryption

In this section we address the sender-freedom assumption. In the introduction, and more formally in Sec-
tion 5.1, we presented a simple cryptosystem whose security does not rely on the sender-freedom assumption.
Specifically, Alice, fearing that she might be forced by the authorities to send a fake message, sets up a pri-
vate shared key K with Bob that allows to produce, for every adversarially chosen message m0, a ciphertext
ct carrying m0 and the coin tosses used to produce ct such that, when decrypted with K, ct gives a one-bit
message m1 for Bob to receive privately. The main drawback of this setting is that Alice and Bob must
interact in advance to share the key K and this is not always possible: Alice might not know of Bob when
she first sets up her public key or might not have a way of securely sending K to Bob.

Next, we show that prior communication between Alice and Bob is not necessary and formalize the concept
of a Sender-Anamorphic Encryption in this context. It seems again impossible (seems like decryption is not
well defined?). However, the existence of other receivers and public channels save the day!

Specifically, when Alice is forced by the authorities to send the forced message m0 to Carol using Carol’s
public key fPK as the forced receiving public key, Alice might decide to embed a duplicate message m1 in the
ciphertext that is revealed when the ciphertext is decrypted with Bob’s key; that is, the secret key associated
with the duplicate public key dPK. We stress again that dPK, Bob’s public key, is generated by Bob without
even knowing that one day he might receive a message from Alice and no secret is shared between Alice and
Bob. To do so, we equip Alice with a special coin-toss faking algorithm fRandom that on input the forced
public key fPK, the duplicate public key dPK, the forced message m0, and the duplicate message m1 outputs
coin tosses to produce a ciphertext ct that gives m0 or m1 depending on whether it is decrypted with the
secret key associated with the forced public key or with the secret key associated with the duplicate public
key.

We next present formal definition for Sender-Anamorphic Encryption. Our definition is tailored for the
no-shared secret setting that we have described. Similarly to the receiver side, it could be possible to define
the notion of Sender-Anamorphic Encryption also for the case in which sender and receiver share a secret.

Definition 3. We say that a public-key encryption scheme E = (KG,Enc,Dec) is a Sender-Anamorphic
Encryption scheme (Sender-AM) if there exists a coin-toss faking algorithm fRandom that, on input the
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forced public key fPK, and the forced message m0, and the duplicate public key dPK and the duplicate message
m1, outputs the faking coin tosses R? = fRandom(fPK, m0, dPK, m1) such that

• Let ct = Enc(fPK, m0;R?) be the ciphertext computed using the faking coin tosses; then Dec(dSK, ct) =
m1, except with negligible probability. The probability is taken over the coin tosses of fRandom and the
coin tosses used to generate fPK and dPK.

To define the concept of a Secure Sender-Anamorphic Encryption we introduce two experiments. In both
experiments, the adversary receives one public key fPK and gives polynomially many pairs of forced and
duplicate message and for each pair receives as a reply a ciphertext for the first message and the random
coin tosses used to produce it. In the real experiment, the ciphertext is produced by Alice that uses random
coin tosses output by fRandom with respect to randomly chosen duplicate key. We require the real experiment
to be indistinguishable from the ideal experiment in which there is only one public key and the forced message
is encrypted by using truly random coin tosses.

IdealE,A(λ)

1. Set (fPK, fSK)← KG(1λ) and send fPK to A.

2. For i = 1, . . . , poly(λ):

• A issues query (mi0, m
i
1) and receives ct = Enc(fPK, mi0;Ri),

where Ri are randomly chosen coin tosses.

3. A outputs b ∈ {0, 1}.

RealfRandomE,A (λ)

1. Set (fPK, fSK)← KG(1λ) and send fPK to A.

2. Set (dPK, dSK)← KG(1λ).

3. For i = 1, . . . , poly(λ):

• A issues query (mi0, m
i
1) and receives ct = Enc(fPK, mi0;Ri),

where Ri = fRandom(fPK, mi0, dPK, m
i
1).

4. A outputs b ∈ {0, 1}.

We denote by pIdealE,A (λ) (respectively, pRealE,A(λ)) the probability that IdealE,A (respectively, RealE,A) outputs
1 and present the following definition.

Definition 4. A Sender-AM scheme E = (KG,Enc,Dec) with coin-toss faking algorithm fRandom is a
SSender-AM scheme if

1. E is an IND-CPA scheme;

2. for all PPT adversaries A, ∣∣pIdealE,A (λ)− pRealE,A(λ)
∣∣ ≤ negl(λ).

Deniable encryption comparison. We stress again that the guarantee offered by Anamorphic Encryp-
tion with no shared key is different from, and in a sense stronger than, the guarantees of Deniable Encryption.
Specifically,
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1. Deniable encryption helps the sender to deny having sent some plaintext. It allows Alice to send an
encryption ct of a message m to Bob then deny it by presenting fake randomness and a fake message
m′ that corresponds to ct, under the same public key of Bob. Because ct correspond to two different
messages m and m′ under the same public key of Bob, it was specified in [CDNO97] that no standard
encryption guarantees deniability. This contradicts our objective to use standard encryptions to avoid
any suspicion.

2. The security threat we consider is different. While deniable encryption considers the scenario where the
adversaries approaches Alice after the ciphertext was transmitted, we consider the situation where the
adversary approaches Alice before and forces Alice to send a specific message chosen by the adversary.

3. AM with no-shared key could serve for some kinds of deniability: To deny sending a message m to Bob,
we do not need to present another message for Bob. In the 90’s where communication was almost about
point-to-point communication, Eve can be sure that Alice did send the ciphertext to Bob. Therefore,
it makes sense to require Alice to present another message under Bob’s public key. Nowadays, to send
a message to Bob, Alice could simply broadcast the ciphertext over public channels or puts it in a
cloud database/ blockchain and anyone can easily get it. Therefore, to deny sending a message m to
Bob, Alice can say that she sends another message m′ to Carol and prove that the suspected ciphertext
corresponds indeed to an encryption of m′ under the public key of Carol. AM with no-shared key can
exactly serve this type of deniability by avoiding the restriction of presenting two different messages
under the same public key, we can use standard encryptions for AM.

Difficulties in achieving Sender-AM with no shared key. Not every standard encryption can be
used as AM with no shared key. In order to embed a secret message in a ciphertext for public key fPK a valid
ciphertext for Bob’s public key PK, it must be the case that the ciphertext is a valid ciphertext for both keys.
From this point of view, the schemes with redundancy (in particular, with validity check in the decryption)
seem difficult to employ because a ciphertext for Bob should probably be an invalid ciphertext to Carlos.
Almost all known CCA encryption with redundancy (like the one based on the Naor-Yung transform) cannot
be used in this context.

But the lack of redundancy is not sufficient for a scheme to be used as AM with no shared key. For the
schemes that do not have the property of common randomness, we do not know how to add secret messages
to ciphertexts. For example, in Goldwasser-Micali cryptosystem [GM84], the very first semantically secure
encryption, two users generate two independent moduli N0 and N1 and the secret key of one system is
independent of the other one. Therefore, given a ciphertext ct for N0, without the knowledge of the
factorization of N1, it is hard to decide whether this ciphertext is a quadratic residue modulo N1. As
a result, Alice does not know the underlying plaintext for the ciphertext ct with respect to Bob’s key.
Consequently, this gives evidence that it seems impossible for Alice, in the no-shared-key model, to embed
a secret message to a ciphertext in the Goldwasser-Micali cryptosystem. We next identify a set of sufficient
conditions for AM with no shared key and then we describe some encryption schemes from the literature
that satisfy the conditions.

6.1 Sufficient Conditions for Sender-AM with no shared key

In this section, we introduce three sufficient conditions for a one-bit cryptosystem E = (KG,Enc,Dec) to be
Sender-AM with no shared key.

1. Common randomness property. Public key encryption scheme E satisfies the common randomness
property if:

for every two public keys PK0 and PK1 output by KG and for every ciphertext ct produced using public
key PK0 and coin tosses R there exists a message m such that ct = Enc(PK1,m;R); that is, ct is a
ciphertext also for public key PK1 with the same coin tosses R.

For example, the Elgamal encryption-s over a public group satisfies this common randomness property.
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2. Message recovery from randomness. A public key encryption scheme E satisfies the common random-
ness property if:

it is possible to recover the plaintext carried by a ciphertext ct from the randomness R used to produce
it and the public key PK.

3. Equal Distribution of Plaintexts. A one-bit public key encryption scheme satisfies the property of equal
distribution of plaintexts if the following properties are verified:

• all public keys share the same ciphertext space;

• for a ciphertext ct in the common ciphertext space and for a random key pair (PK, SK) as sampled
by the key generation algorithm, ct is the ciphertext of the bit 0 with a probability 1

2 .

We now show that, if a one-bit public key encryption satisfies the above three properties, it is a Sender-AM
with no shared key.

Theorem 4. If an IND-CPA secure one-bit public key encryption scheme satisfies the three properties of
common randomness, message recovery from randomness, and equal distribution of plaintexts, then it is a
Sender-AM scheme with no shared key.

Proof. Let E = (KG,Enc,Dec) be an IND-CPA secure scheme and define
fRandom(fPK,m0, dPK,m1) as follows:

1. Randomly choose coin tosses R;

2. Compute ct = Enc(fPK,m0;R);

3. By the property of common randomness, ct is also a ciphertext according to dPK and it is computed
using the same coin tosses R.

4. By the property of message recovery from randomness, message m′ carried by ct w.r.t. to dPK can be
computed; that is Enc(dPK,m′;R) is equal to ct.

5. If m′ = m1 then return (ct, R) and halt; otherwise, go back to Step 1.

The fRandom defined above satisfies Definition 3. Indeed, the correctness is directly verified. Now observe
that the coin tosses R selected at step 1 of fRandom have probability 1/2 of being the output in the last
step, over the choices of random dPK, by the equal distribution of plaintexts. As dPK is uniformly distributed
(and unknown) to the adversary, the adversary cannot distinguish the outputted coin tosses with a real
randomness.

6.2 Constructions based on LWE Encryption schemes

Theorem 5. The LWE Encryption and the Dual LWE Encryption are each a Sender-AM scheme with no
shared key.

Proof. A detailed exposition of LWE Encryption, Dual LWE Encryption can be found in [Reg05, GPV08].
We recall here a quick description of these schemes and their properties assuring that they are AM schemes
with no shared key.

We first recall the LWE encryption [Reg05] in Figure 2. It is parameterized by some r ≤ ω(
√

logm)),
which specifies the discrete Gaussian distribution DZm,r over the integer lattice Zm from which the secret
keys are chosen.

• From the ciphertext (a, b), we see that, for any user, the implicit random input is the same. This
satisfies the property of common randomness.
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Setup: The system is characterized by m, q and a probability distribution
χ on Znq . All users share a common matrix A ∈ Znmq chosen uniformly
at random, which is the index of the function fA(e) = Ae mod q.

Key Generation:

• Choose s ∈ Znq uniformly at random. The private key is s.

• Choose error vector e← DZm,r.The public key consists of (A,b =
fA(s) + e)

Encryption: The encryption of a bit x ∈ {0, 1} is done by choosing a
random subset S of [m] and then defining the ciphertext of x as
(
∑
i∈S ai, xb q2c+

∑
i∈S bi)

Decryption: The decryption of (a, b) is 0 if b− 〈a, s〉 is closer to 0 than to
b q2c modulo q, and 1 otherwise.

Figure 2: LWE public-key encryption

• From the random input and the public-key, one can get the plaintext. This satisfies the property of
message recovery from randomness.

• For a ciphertext (a, b), with a public key that is returned from the key generation, the vector ~b
is indistinguishable from a randomly chosen vector in Znq , the underlying plaintext is thus 0 with

probability 1
2 . This satisfies the property of equal distribution of plaintexts.

We now recall the Dual LWE encryption [GPV08] in Figure 3. It is parameterized by two integers m, q
and a probability distribution χ on Zq. We show that it supports AM in the similar way as in the case of
the LWE encryption:

• From the ciphertext (p, c), we see that, for any user, the implicit random input is the same. This gives
the property of common randomness.

• From the random input and the public-key, one can get the plaintext. This satisfies the property of
message recovery from randomness.

• For a ciphertext (p, c), with a public key that is returned from the key generation, the vector uT s
is indistinguishable from a randomly chosen vector in Zq, the underlying plaintext is thus 0 with
probability 1

2 . This satisfies the property of equal distribution of plaintexts.

7 Conclusion

This is the first and most likely not the last work on Anamorphic Encryption as our framework does not cover
all the schemes. In this first work, we have shown the anamorphic property for some standard encryptions
with specific properties. This does not mean that it is impossible for schemes without these properties. It
is also reasonable to wonder what would happen if the dictator can ban these schemes from being used.
However, in this way, the dictator will always need to run after our research and this will force the dictator
to assure that his children will get a PhD in Cryptography.

The open natural question of this work is whether the systems are unique examples or this is a prevalent
phenomenon. In a coming work we introduce numerous new techniques for anamorphic cryptography, and we

23



Setup: all users share a common matrix A ∈ Znmq chosen uniformly at
random, which is the index of the function fA(e) = Ae mod q.

Key Generation:

• Choose an error vector e← DZm,r which is the secret key.

• The public key is the syndrome u = fA(e).

Encryption: to encrypt a bit b ∈ {0, 1}, choose s ∈ Znq uniformly and

p = AT s + x ∈ Zmq , where x ∈ χm. Output the ciphertext (p; c =

uT s + x+ bb q2c) ∈ Zmq × Zq, where x← χ.

Decryption: Compute z = c− eTp ∈ Zq. Output 0 if z is closer to 0 than
to b q2c mod q, otherwise output 1.

Figure 3: Dual LWE public-key encryption

further demonstrate how they cover a wide area of known cryptosystems, making anamorphic cryptography
a much more viable tool for bypassing dictators and a possible stronger answer to the futility of crypto wars.

Of course, we leave it to others to determine, based on policy, law, and other societal aspects beyond pure
technology, whether our results are aiming toward being the final nail in the coffin of governments control of
the use of strong cryptographic systems. Our meta-conjecture (and induced policy implication) is that for
any standard scheme, there is a technical demonstration (perhaps employing Anamorphism+stego+klepto)
of the futility of the dictator’s demands.
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A Preliminaries

In this section we review some of the concepts that we use in our constructions (with a deeper technical
emphasize than in the introduction).

A.1 Encryption schemes

We start by defining the notion of a public-key encryption scheme.

Definition 5. A public-key encryption scheme E is a triplet E = (KG,Enc,Dec) of probabilistic algorithms
with the following syntax

1. the key-generator algorithm KG takes as input the security parameter 1λ and returns the public key PK

and the secret key SK.

2. the encryption algorithm Enc takes as input the public key PK and a message m and returns a ciphertextct←
Enc(PK, m).

3. the decryption algorithm Dec takes as input the secret key SK and a ciphertext ct and returns a message
m.

that enjoys the following correctness property:

• for every m and every λ,

Prob
[
(PK, SK)← KG(1λ); ct = Enc(PK, m) : Dec(SK, ct) 6= m

]
≤ negl(λ).

When we wish to stress the random coin tosses R used by the encryption algorithm we will write
ct← Enc(PK, m;R).

Let us now review the security notion for public-key encryption schemes by presenting the IndCPA games.
More precisely, for public-key encryption scheme E , η = 0, 1 and PPT adversary A, we consider the following
game IndCPAηE,A.

IndCPAηE,A(λ)

1. (PK, SK)← E .KG(1λ);

2. Return
AOracleη(PK,·,·)(PK),

where Oracleη(PK,m0,m1) = Enc(PK,mη).

We denote by pIndCPA
η

E,A (λ) the probability that IndCPAηE,A(λ) outputs 1.

Definition 6. An encryption scheme E = (KG,Enc,Dec) is IND-CPA secure if for all PPT adversary A∣∣∣pIndCPA0

E,A (λ)− pIndCPA
1

E,A (λ)
∣∣∣ ≤ negl(λ).

For symmetric encryption schemes instead we have the following definitions.

Definition 7. A symmetric encryption scheme E is a triplet E = (KG,Enc,Dec) of probabilistic algorithms
with the following syntax

1. the key-generator algorithm KG takes as input the security parameter 1λ returns the secret key SK.
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2. the encryption algorithm Enc takes as input the secret key SK and a message m and returns a ciphertext
ct← Enc(SK, m).

3. the decryption algorithm Dec takes as input the secret key SK and a ciphertext ct and returns a message
m.

that enjoys the following correctness property:

• for every m and every λ,

Prob
[
SK← KG(1λ); ct = Enc(SK, m) : Dec(SK, ct) 6= m

]
≤ negl(λ).

When we wish to stress the random coin tosses R used by the encryption algorithm we will write
ct← Enc(SK, m;R).

Let us now review the security notion for symmetric encryption schemes by presenting the IndCPA games.
More precisely, for an encryption scheme E , η = 0, 1, and PPT adversary A, we consider the following security
games that, with a slight abuse of notation, we call IndCPAηE,A.

IndCPAηE,A(λ)

1. SK← E .KG(1λ);

2. Return

AOracleηc (SK,·,·),Oraclee(SK,·),(1λ),

where Oracleηc (SK,m0,m1) = Enc(SK,mη)
and Oraclee(SK,m) = Enc(SK,m).

We denote by pIndCPA
η

E,A (λ) the probability that IndCPAηE,A(λ) outputs 1.

Definition 8. A symmetric scheme E = (KG,Enc,Dec) is IND-CPA secure if for all PPT adversary A∣∣∣pIndCPA0

E,A (λ)− pIndCPA
1

E,A (λ)
∣∣∣ ≤ negl(λ).

A.2 Simulation Sound NIZK

In this section we review the notion of a Simulation Sound NIZK [BDSMP91, FLS99, Sah99].

Definition 9. A polynomial-time relation Rel is a subset Rel ⊆ {0, 1}?×{0, 1}? of pairs (x,w) of instances
and witnesses for which there exists a verification algorithm Ver running in time polynomial in the length of
its first input such that Ver(x,w) = 1 iff (x,w) ∈ Rel.

The language LRel associated with relation Rel is defined as LRel = {x|∃w : (x,w) ∈ Rel}.

Definition 10 (NIZK [BDSMP91, FLS99]). A NIZK Π = (Prover,Verifier) for polynomial-time relation Rel
consists of a pair of PPT algorithms (Prover,Verifier) such that, for some polynomial l,

1. Completeness. For all (x,w) ∈ Rel, with |x| = poly(λ), and all Σ ∈ {0, 1}λ, Verifier(x,Prover(x,w,Σ),Σ) =
1.

2. Soundness. For all adversaries A, the probability over Σ chosen at random from {0, 1}λ that A
outputs (x, π) with |x| = poly(λ), x 6∈ LRel, and Verifier(x, π,Σ) = 1 is negligible in λ.
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3. Zero Knowledge. There exists a simulator S = (S0, S1) consisting of two PPT algorithms such that
for all stateful PPT adversaries A we have that∣∣∣Prob

[
RealZKA(λ) = 1

]
− Prob

[
IdealZKSA(λ) = 1

]∣∣∣ negl(λ),

where

RealZKA(λ);
Σ← {0, 1}λ;
return AProver(·,·,Σ)(Σ).

IdealZKSA(λ);
(Σ, aux)← S0(1n);
return AOracleaux(·,·,Σ)(Σ);

where Oracleaux(x,w,Σ) returns S1(x, aux).

In the definition above, the verifier is guaranteed that no prover can make the verifier accept x 6∈ LRel

if the reference string Σ is randomly chosen. In a simulation sound NIZK this guarantee holds even if Σ
is constructed by the simulator and the adversary is allowed to see the proof for an x of his choice. More
formally, we have the following definition.

Definition 11 (Simulation Sound NIZK [Sah99]). A NIZK (Prover,Verifier) for polynomial-time relation Rel
with simulator S is Simulation Sound if for all PPT adversaries A = (A0,A1) we have that Prob [ExpSSA(n) = 1]
is negligible, where

ExpSSA(n);
(Σ, aux)← S0(1n);
(x, τ)← A0(Σ);
π ← S1(x,Σ, aux);
(x′, π′)← A1(x, π,Σ, τ);
if π 6= π′ and x′ 6∈ LRel and Verifier(x′, π′,Σ) = 1 then

return 1;
else

return 0;

B Functionality and Security of the Partial Anamorphic Modes

In this section, we show that the two Partial Anamorphic modes, that is the Anamorphic Mode with Normal
Decryption and the Anamorphic Mode with Normal Encryption, are functional and secure. Specifically, the
decryption algorithm is the functional inverse of the encryption algorithm and that security is preserved.
We will used aneGame defined in Section 4.4.

B.1 Properties of the Anamorphic Mode with Normal Encryption

In this section, we use Lemma 1 to show that the encryption scheme aneAME associated with the Anamorphic
mode with Normal Encryption is indeed an encryption scheme and that it is secure.

Lemma 5. Let AME be a Secure Receiver-AM scheme. Then aneAME = (aKG1,2,Enc,Dec) is an encryption
scheme.

Proof. For the sake of contradiction, suppose there exist message m̂ and poly(·) such that

Prob
[
(aPK, aSK)← aKG1,2(1λ); ct← Enc(aPK, m̂) : Dec(aSK, ct) 6= m̂

]
≥ 1/poly(λ). (1)
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This can be used to distinguish NormalGame from aneG by an adversary A that receives the pair of keys
(PK?, SK?), uses PK? to encrypt m̂ in ciphertext ct and then outputs 1 if and only if decryption of ct with
SK? is successful. In NormalGame, A, by the correctness of the normal encryption scheme, will output 1
will probability 1 − negl(λ). On the other hand, in aneG, by Eq. 1, A outputs 1 with probability at most
1− 1/poly(λ). This contradicts Lemma 1.

The next lemma establishes the security properties of aneAME.

Lemma 6. Let AME be an IND-CPA secure Secure Receiver-AM. Then aneAME is IND-CPA secure.

Proof. Suppose there exists a successful IND-CPA adversary A for aneAME. Then we construct the following
adversary B that contradicts Lemma 1.
B receives (PK?, SK?) and passes PK? to A. When A issues the challenge query (m0,m1), B randomly

selects η ← {0, 1}, encrypts mη by using fPK? and Enc and returns the ciphertexts to A. Finally, when A
outputs its guess η′, B outputs 1 iff η = η′. Let us now bound the probability that B outputs 1 when playing
NormalGame and aneG.

If B is playing NormalGame then (PK?, SK?) is output by KG and, by the security of AME, A has probability
at most 1/2 + negl(λ) of guessing η. On the other hand, if B is playing aneG then (PK?, SK?) is output by
aKG1,2 and thus, by assumption, A has probability at least 1/2 + 1/poly(λ) of guessing η. This concludes
the proof.

We note that the above proof can be used to show that if AME is IND-CCA then so is aneAME. Roughly
speaking, we can modify B so that, whenever A issues a decryption query, B replies by decrypting the
ciphertext received by using SK? and Dec.

B.2 Properties of the Anamorphic Mode with Normal Decryption

In this section we consider the properties of the encryption scheme andAME associated with the Anamorphic
Mode with Normal Decryption. We remind the reader that this corresponds to the case the adversarial
authority A, that has access to the anamorphic keys (aPK, aSK), tries to decrypt an anamorphic ciphertexts
one using Dec and aSK (instead of aDec and dkey).

We prove that for every m̂, the scheme andAMEm̂ associated with Anamorphic Mode with Normal
Decryption is indeed an encryption scheme according to Definition 5.

Lemma 7. Let AME be a Secure Receiver-AM scheme. Then, for every m̂, andAMEm̂ is an encryption
scheme according to Definition 5.

Proof. For the sake of contradiction, let m̂0 and m̂1 be two messages such that

Prob
[
(aPK, aSK, dkey)← aKG(1λ); ct← aEnc(dkey, m̂0, m̂1) : Dec(aSK, ct) 6= m̂0

]
≥ 1/poly(λ). (2)

Consider the following adversary A that distinguishes aneG from FullyAGame. A receives (aPK?, aSK?) and
sends the pair of messages (m̂0, m̂1) to the challenger. Then A tries to decrypt the ciphertext ct received
by running Dec and by using key fSK and it outputs 1 iff the decryption returns m̂0.

If A is playing game FullyAGame then the ciphertext is computed aEnc and thus, by Eq. 2, the probability
that A returns 1 is at most 1− 1/poly(λ). On the other hand if A is playing aneG then ct is computed by
running algorithm Enc with aPK and, by Corollary 5, the probability that m̂0 is returned by Dec, and thus
A returns 1, is at least 1− negl(λ). This contradicts Lemma 2.

As far as the IND-CPA security of andAME we observe that andAME and fAME use the same key-
generation algorithm and the same encryption algorithm and therefore IND-CPA security of andAME follows
from the IND-CPA security of fAME established in Theorem 1.

Lemma 8. Let AME be an IND-CPA Secure Receiver-AM scheme. Then, for every m̂, andAMEm̂ is IND-
CPA.
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