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Abstract—Code-based cryptography received attention after
the NIST started the post-quantum cryptography standardization
process in 2016. A central NP-hard problem is the binary
syndrome decoding problem, on which the security of many
code-based cryptosystems lies. The best known methods to
solve this problem all stem from the information-set decoding
strategy, first introduced by Prange in 1962. A recent line of
work considers augmented versions of this strategy, with hints
typically provided by side-channel information. In this work,
we consider the integer syndrome decoding problem, where the
integer syndrome is available but might be noisy. We study
how the performance of the decoder is affected by the noise.
We provide experimental results on cryptographic parameters
for the BIKE and Classic McEliece cryptosystems, which are
finalist and alternate candidates for the third round of the NIST
standardization process, respectively.

Index Terms—Code-based cryptography, Syndrome decoding
problem, Information-set decoding

I. INTRODUCTION

a) Post-quantum cryptography: on its way to become
reality: With the practical feasibility of a quantum computer
of sufficient capacity getting more and more probable by the
day, the threat posed by Shor’s algorithm [1] on number theory
base cryptosystems grows as well. To address this threat, NIST
began a standardization process in 2016 for post-quantum
cryptography. The third round of this process ended in July
2020 when, in the Key Encapsulation Mechanism category,
four finalists and five alternate candidates were announced.
Among them, the Classic McEliece [2] and the BIKE [3]
cryptosystems are two solutions based on error-correcting
codes. Their security relies on the NP-hardness of the binary
syndrome decoding problem (SDP) [4]. Given a parity-check
matrix H of a binary linear code, a binary syndrome vector s∗

and an integer t, the SDP consists in finding a binary vector
x of Hamming weight t such that Hx = s∗.

There are three main techniques for solving the SDP, i.e.,
statistical decoding [5], [6], [7], [8], information set decod-
ing (ISD) [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21] and generalized inverse based decoding
[22]. The best known strategy to solve the SDP is the ISD.
Originally proposed by Prange in 1962 [23], it has been in-
crementally refined since by Lee and Brickell [10], Stern [11]
and, more recently, by May, Meurer and Thomae [18] and by

Becker, Joux, May and Meurer [19]. The complexity of the
ISD method has been used to better tune the parameters of the
cryptosystems [24] according to the required security levels.

We would like to point out that SDP is the core hard prob-
lem of several code-based cryptosystems like the Niederreiter
public-key encryption scheme [25], the FSB hash function
[26], the SYND stream cipher [27] or the Stern identification
scheme [28].

b) Integer syndrome decoding: a variant of the syndrome
decoding with side information: One recent line of work
considers modified versions of the SDP, for which additional
information is available, for instance via side-channel analysis
on implementations of the aforementioned cryptosystems. In
[29], authors study the case where parts of the error are known,
or only their Hamming weight. The case where the integer
syndrome s is available, instead of the binary one, as if the
matrix-vector multiplication had been performed in the integer
ring instead of the binary finite field, is considered in [30].
One method to obtain the integer syndrome is by laser fault
injection attack, as presented in [31]. The problem one has to
solve in this case is the integer syndrome decoding, referred
to as N−SDP, where the input is the parity-check matrix H ,
the integer syndrome vector s and the weight of the solution
t. The same question is raised, whether Hx = s admits a
solution of weight t. This problem can be tackled down by
means of Integer Linear Programming [31] or probabilistic
methods [32].

Another method of obtaining an integer syndrome, much
more feasible and realistic than laser fault injection, is by
side-channel analysis [33]. However, due to physical factors,
the integer values of the syndrome might not be perfectly
accurate. Hence, in the resulting problem, the N − SDP in
the presence of noise, we are given a noisy integer syndrome
s̃ = s + ϵ, where ϵ models the noise as a vector of random
variables. The solution proposed in [33] uses a combination
of ISD techniques and the score decoder from [32]. However,
only simulations are provided to assess the performance of
this proposal.

Contributions: In this article, we analyze in detail the
algorithm proposed in [33], referred to as ISD-score decoder,
and provide the following contributions. First, we demonstrate
that the ISD-score decoder finds a solution to the N − SDP



in the presence of noise with high probability, as long as the
weight is sub-linear in n, more exactly, t ≤ O

(
n−k

log(n−k)

)
,

where n is the length of the code and k the dimension. We con-
sider two noise models, present in several schemes/scenarios,
i.e., Binomial centered in zero and Bernoulli variables. We
demonstrate that the ISD-score decoder can tolerate noise
levels that are linear in the weight of the solution t. For
that we partially build our demonstration on the techniques
used in [32]. We incorporate the noise models into these
techniques and, by using sharper inequalities, determine a
much clearer condition for having a higher probability of
success. One consequence of this new method is that when
the noise is null and the ISD part is ignored, equivalently the
ISD-score decoder boils down to the algorithm proposed in
[32], the conditions we propose on the range of t for which
the algorithm succeeds is larger that those from [32]. This
gives a lower bound on the number of syndrome entries, or
the number of rows in the parity-check matrix, required to find
a solution, known as the information theoretic bound.

Outline of the article

In Section II we introduce the SDP and its variants, N −
SDP and N − SDP in presence of noise. We also recall the
cryptographic context where these problems occur. Section III
begins by recalling the score decoder proposed in [33]. Then
it analyzes the distribution of the discriminant function for the
N − SDP in presence of noise. The sections ends with the
description of the ISD-Scode decoder. Next, we analyse the
succes probability of the ISD-Score decoder in Section IV.
The theoretical results from this part are being compared with
numerical values from our implementation of the algorithm
in Section V. The section also makes a parallel between the
efficiency of the ISD-Score decoder and other methods such
as ILP. Finally, we conclude the article in Section VI.

II. PRELIMINARIES

a) Notations: A finite field is denoted by F, and the ring
of integers by Z. We write N∗

n = {1, . . . , n} and Z−n,n =
{−n, . . . , 0, . . . , n}. For p ∈ [0, 1] and n ∈ N∗ we denote the
Bernoulli distribution by Ber(p) and the Binomial distribution
by B(n, p). We denote by W (x) the Lambert W function.
Matrices and vectors are written in bold capital, respectively
small letters. We also use HW(c) to denote the Hamming
weight of the vector c.

b) Error correcting codes: Let n and k be two positive
integers such that k ≤ n. An [n, k] linear code can be defined
as a sub-vector space of dimension k of the vector space Fn. A
code can be specified either by its generator matrix G ∈ Fk×n

(a basis for the code), or by its parity-check matrix H ∈
F(n−k)×n (a basis for the dual code). The minimum distance,
or the Hamming distance of a code C, is the minimum of all
HW(v) for v ∈ C,v ̸= 0.

One of the main features of linear codes is their ability
to decode noisy information/data. Several general decoding
strategies exist, the syndrome decoding problem being one of
them.

c) Some variations of the Syndrome decoding problem:
Let us start by formaly defining the binary syndrome decoding
problem.

Definition 1 (SDP).
Inputs: H ∈ F(n−k)×n

2 , s∗ ∈ Fn−k
2 , t ∈ N∗.

Output: x ∈ Fn
2 s.t. Hx = s∗, and HW(x) = t.

This problem is NP-Complete [4] and, as we shall quickly
see, it constitutes the building block of code-based solution
for post-quantum cryptography.

Now, a slightly different problem, the N− SDP [31], [30],
considers matrix-vector multiplication over the ring of integers
instead of the binary field F2. Formally, the problem can be
stated as follows.

Definition 2 (N− SDP).
Inputs: H ∈ {0, 1}(n−k)×n, s ∈ Nn−k, t ∈ N∗.
Output: x ∈ {0, 1}n, s.t. Hx = s, and HW(x) = t.

To define N−SDP in the presence of noise as generally as
possible, we model the noise ϵ = (ϵ1, . . . , ϵn−k) as a vector
of random variables ϵi ∼ D, where D is a discrete probability
distribution. In the N− SDP in the presence of noise, instead
of having access to an instance of the N−SDP, i.e., (H, s, t),
we are given a noisy syndrome s̃ = s+ϵ and the value s∗ = s
(mod 2) (component-wise).

Definition 3 (N− SDP in the presence of noise ϵ).
Inputs: H ∈ {0, 1}(n−k)×n, s̃ ∈ Zn−k

s∗ ∈ {0, 1}n−k, t ∈ N∗

Output: x ∈ {0, 1}n, s.t. Hx = s∗ with HW(x) = t
s∗ = s mod 2, and s̃ = s+ ϵ.

Remark that N−SDP in presence of noise is the SDP with
additional information. Under certain conditions, we hope that,
given (H, s∗, t, s̃), we can find x, solution to the SDP. Also,
when the noise is zero we face the classic N− SDP.

d) The Niederreiter encryption framework: Both, Classic
McEliece [2] and BIKE [3], are based on the Niederreiter
encryption scheme [34]. The key generation, encryption and
decryption functions of the Niederreiter cryptosystem are
given in Algorithms 1, 2 and 3 respectively.

Algorithm 1 Niederreiter key generation

1: function KEYGEN(n, k, t)
2: C an [n, k] code that corrects t errors
3: A parity-check matrix of C: H
4: An n× n permutation matrix P
5: An (n− k)× (n− k) invertible matrix S
6: Compute Hpub = SHP
7: pk = (Hpub, t)
8: sk = (S,H,P )
9: return (pk, sk)



Algorithm 2 Niederreiter encryption

1: function ENCRYPT(m, pk)
2: Encode m→ x with HW(x) = t
3: Compute s∗ = Hpubx
4: return s∗

Algorithm 3 Niederreiter decryption

1: function DECRYPT(s∗, sk)
2: Compute x

′
= Decode(S−1s∗,H)

3: Compute m from P−1x
′

4: return m

Recvent message recovery attacks are pointing the en-
cryption step, where the cipher-text is obtained from the
multiplication of the public parity-check matrix Hpub and
the secret error vector x. Hence, in [33], [35] the matrix-
vector multiplication is targeted as leakage point (line 3 in
Algorithm 2). We shall not insist here on the technical details
that allow the derivation of the integer syndrome s or the
noisy integer syndrome s̃ from this matrix-vector computation.
However, such an exploit is achievable, hence enabling one to
tackle the N− SDP or the N− SDP in presence of noise, in
order to retrieve the secret message.

The sets of (n, k, t) parameters defined in [2] and [3] are
given in Table I.

TABLE I: (n, k, t) parameters for Classic McEliece and BIKE

n k t

Classic McEliece

3488 2720 64
4608 3360 96
6688 5024 128
8192 6528 128

BIKE
24646 12323 134
49318 24659 199
81946 40973 264

III. ISD-SCORE DECODER

A. Score decoder

The idea of assigning a score to each column was already
used in for the N−SDP in [33]. The objective is to distinguish
columns of H in the support of the solution vector from
columns which are outside the support. We shall begin by
defining a score decoder, as introduced in [32], that proved
to be particularly discriminant in the context of N − SDP.
For a better illustration of the nice features of the decoder
in the presence of noise, we will express it in function of the
noiseless decoder. As we shall see, this method allows not only
to derive a particularly simple relation between those two, but
also to deduce conditions on the tolerated noise level.

Definition 4. Let H ∈ {0, 1}(n−k)×n, s ∈ Nn−k and t ∈ Z∗

be the input of N− SDP. Then define the score of a column:

∀i ∈ N∗
n ψi(s) =

n−k∑
ℓ=1

(hℓ,isℓ + (1− hℓ,i)(t− sℓ))) . (1)

For the N−SDP in the presence of noise we shall use ψi(s̃).
The next result, rephrased from [32], expresses the capability
of the score decoder to distinguish between columns in the
support of the solution vector from columns which are outside
the support.

Theorem 1. Let H ∈ {0, 1}(n−k)×n be a random matrix,
with distribution given by hj,i ∼ Ber( 12 ) and s ∈ Nn−k such
that ∃ x ∈ {0, 1}n with HW(x) = t satisfying Hx = s. Then
ψi(s) follows the distribution

ψi(s) ∼
{
B((n− k)t, 12 ) , i ̸∈ Supp(x)
B((n− k)(t− 1), 12 ) + n− k , i ∈ Supp(x)

Moreover, the following holds{
E(ψi(s)) =

(n−k)t
2 , for i ̸∈ Supp(x)

E(ψi(s)) =
(n−k)t

2 + n−k
2 , for i ∈ Supp(x){

V ar(ψi(s)) =
(n−k)t

4 for i ̸∈ Supp(x)

V ar(ψi(s)) =
(n−k)t

4 − n−k
4 for i ∈ Supp(x)

The proof of this theorem is given in the appendix. The
difference in the mean points out that ψ can be a distinguisher
between positions in the support and outside the support of the
vector x. In addition, the variance also differs, fact that will
be used in the tail bounds. Moving forward, we will consider
the noisy version of this problem in the next section.

B. Score decoder in the presence of noise

As in [33], we make some assumptions on the noise consid-
ered here, i.e., ϵi are independent and identically distributed
random variables, the noise does not depend on the distribution
of the entries in H and the distribution D is symmetric.

Proposition 1 ([33]). For j ∈ Z∗
n−k let ϵj be i.i.d. discrete

random variables following a symmetric distribution over the
set Z−d,d, s.t. ϵj and hi,j are independent. Then

Prob (ψi(s̃)− ψi(s) = α) = Prob

n−k∑
j=1

ϵj = α

 .

Proof. Let Yℓ,i = hℓ,iϵℓ − (1− hℓ,i)ϵℓ. Then we have,

ψi(s̃) =

n−k∑
ℓ=1

(hℓ,i(s̃ℓ + (1− hℓ,i)(t− s̃ℓ)))

=

n−k∑
ℓ=1

(hℓ,i(sℓ + ϵℓ + (1− hℓ,i)(t− sℓ − ϵℓ)))

ψi(s̃) = ψi(s) +

n−k∑
ℓ=1

(hℓ,iϵℓ − (1− hℓ,i)ϵℓ)

= ψi(s) +

n−k∑
ℓ=1

Yℓ,i

For any fixed value of ℓ ∈ Z∗
n−k we have Prob(Yℓ,i = αℓ) =

Prob(ϵℓ = αℓ) for any αℓ ∈ Z−d,d (using the symmetry
property and the independence of hℓ,i and ϵℓ). Hence Yℓ,i



follows the same distribution as ϵℓ. Thus, ψi(s̃) − ψi(s) ∈
Z−(n−k)d,(n−k)d with probability distribution

Prob(ψi(s̃)− ψi(s) = α) = Prob

(
n−k∑
ℓ=1

Yℓ,i = α

)

= Prob

n−k∑
j=1

ϵj = α



Remark 1. Notice that, to keep the difference ψi(s̃)− ψi(s)
as small as possible, it is not necessary that the ϵi values are
small. Indeed, the ϵi values may be large, as long as

∑n−k
i=1 ϵi

is close to zero.

In the sequel, the following result will be needed for
estimating the distinguishing capacity of the score function
on the noisy syndrome.

Proposition 2. For any j ∈ Z∗
n−k let ϵj be a discrete random

variable satisfying the conditions from Proposition 1 and let
σ2 = V ar(ϵj). Let g(n, k, t) be a function in the parameters
of N− SDP. Then for any α > σ

√
(n− k)g(n, k, t)

Prob(ψi(s̃)− ψi(s) ≥ α) ≤
1

g(n, k, t)
. (2)

Proof. Use Chebyshev inequality for the sum of ϵj and the
linearity of the variance.

a) The case of centered binomial noise: For a centered
binomial noise, we deduce the following.

Corollary 1. Let d ∈ N. If ϵi ∼ −d+ B(2d, 12 ) then ψi(s̃) is
a random variable that follows the distribution

• for i ̸∈ Supp(x)

ψi(s̃) ∼ −d(n− k) + B
(
(n− k)(t+ 2d),

1

2

)
• for i ∈ Supp(x)

ψi(s̃) ∼ −(d− 1)(n− k)+B
(
(n− k)(t− 1 + 2d),

1

2

)
Moreover, E(ψi(s̃)) = E(ψi(s)) and V ar(ψi(s̃)) =
V ar(ψi(s)) + (n− k)d/2.

To maintain the capability to distinguish between positions
inside the support and positions outside the support, the noise
parameter d from B(2d, 12 ) should be restricted.

Corollary 2. Let ϵi ∼ −d + B(2d, 12 ). Then w.h.p. we have

|ψi(s̃)− ψi(s)| ≤
√

d(n−k) log log(n−k)
2 . Moreover, for any

d ≤ n−k
8 log log(n−k) , the function ψ(s̃) distinguishes positions

in Supp(x) from positions outside Supp(x) w.h.p.

Remark 2. Notice that any function g(n, k, t) which tends to
infinity when the parameters tend to infinity, is a valid choice.
In particular, g(n, k, t) = log log t or g(n, k, t) = log log n.

Figure 1 shows the distribution of ψi values for different
levels of noise, ranging from d = 0, i.e. the noiseless setting,
to a very high noise of B(2t, 12 ). Notice that the distinguishing
capability is much higher for the BIKE parameters, as shown
in Figure 1a, than for the Classic McEliece parameters, as
shown in Figure 1b.

b) Bernoulli noise: In the case of a noise of the form
ϵi ∼ Ber({0, 1}, 1/2), we deduce the following.

Proposition 3. Let ϵi ∼ Ber({0, 1}, 1/2). Then ψi(s̃)
is a random variable that follows the distribution{
B((n− k)(t+ 2), 12 )− (n− k) , i ̸∈ Supp(x)
B((n− k)(t+ 1), 12 ) , i ∈ Supp(x)

.

Moreover, E(ψi(s̃)) = E(ψi(s)) and V ar(ψi(s̃)) =
V ar(ψi(s)) + (n− k)/2.

Notice that, in the case of a Bernoulli type of noise, the
behavior is equivalent to the case of a centered binomial noise.
(equivalent to d = 1 in Corollary 1). Indeed, the result in
Proposition 3 is equivalent to the one given in Corollary 1
with d = 1.

C. Combining ISD and score decoder

The idea in [33] was to boost the distinguishing capability
of the score decoder with ISD-like techniques. To this end,
the score decoder is integrated in the “permutation” step of
the ISD method. Indeed, this method starts by performing a
permutation on the columns of H that will hopefully rearrange
the solution in a useful way. More precisely, in the first ISD
algorithm, the Prange decoder [23], a “good” permutation (Π)

is one that satisfies Π−1x =

(
x1

0

)
. Hence, the initial system

becomes HΠΠ−1x = s∗. By Gaussian elimination on HΠ
one can find an invertible matrix A s.t. AHΠ =

(
I∥B

)
.

Hence, the system becomes
(
I∥B

)(x1

0

)
= As∗ which

yields x1 = As∗. In the original ISD methods, permutations
are sampled randomly until a “good” one is obtained. Thanks
to the extra-information provided by s or s̃, the function ψ
allows to construct a permutation which by no means is ran-
dom. Indeed, we have seen that ψ, by its nature, allows one to
distinguish between positions in the support of x and positions
outside. Hence, the underlying permutation, hopefully is a
“good” permutation. As pointed out in [33], sorting the list of
values ψi(s̃) in descending order is equivalent to generating a
permutation Π. Algorithm 4 finds a solution to the N− SDP
in the presence of noise as long as Π is “good” enough.

Algorithm 4 PRANGE SCORE DECODER(H, s, t)

1: Compute Π from the list ψi(s̃)
2: Compute A∗,H∗ ← rref(HΠ)
3: if HW(A∗s∗) = t then

4: return x = Π

(
A∗s∗

0n−r

)
▷ r = rank(A)

The procedure rref(HΠ), which stands for “reduced row
echelon form”, is equivalent to performing a partial Gaussian
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Fig. 1: Distribution of ψi for ϵ ∼ −d+ B(2d, 12 )

elimination over F2. Indeed, there is an (n−k)×(n−k) non-

singular matrix A∗ such that, A∗HΠ =

[
Ir

0n−k−r,r
∥B∗

]
where HΠ = [A∥B] with A a (n−k)× r matrix satisfying

A∗A =

[
Ir

0n−k−r,r

]
, and B∗ = A∗B. In the of a full rank

matrix A we have A∗A = In−k. From the description of the
algorithm above, the following result can be deduced.

Proposition 4 ([33]). PRANGE SCORE DECODER outputs a
valid solution as long as there exists at least one set L ⊂
N∗

n \ Supp(x) with #L ≥ n − r such that min{ψi(s̃), i ∈
Supp(x)} > max{ψi(x̃), i ∈ L}.

The overall time complexity of PRANGE SCORE DECODER
is O((n− k)3), since it is dominated by the partial Gaussian
elimination, i.e. the computation of A∗.

Since the permutation Π might not move all the positions
in the support of x in the first n−k positions, more powerful
ISD methods may be used, e.g. Lee-Brickell [10], Stern
[11] or Dummer [13]. The idea is to allow a number of
δ positions from Supp(x) outside the first n − k positions.
This is equivalent to extending PRANGE SCORE DECODER so
that it covers error vectors with a more general pattern. The
Lee-Brickell score decoder, where δ positions are searched
exhaustively, is thus proposed in [33] as a possible solution.

Algorithm 5 Lee-Brickell Score Decoder ([33])

1: function LEE-BRICKELL SCORE DECODER(H, s̃, s∗, t)
2: Compute Π← SORT(H, s̃, t)
3: Set HΠ = [A ∥B]
4: Compute A∗,H∗ ←rref(HΠ) and B∗ = A∗B
5: Compute s

′
= A∗s∗

6: if HW(s
′
) == t then

7: return x = Π(s
′ ∥ 0k)

t

8: else
9: for i← 1, δ do

10: S = Gener-Subsets({1, . . . , k},i)
11: for E in S do
12: x

′′ ← Vector({0, 1}, k, E)
13: x

′ ← s
′ −B∗x

′′

14: if HW(x
′
) == t− i then

15: return
(
Π(x

′ ∥ x′′
)t,Π

)

When the Lee-Brickell variant is used and δ = O(1), k =
O(n), the work factor of the resulting algorithm becomes
polynomial in n.

Proposition 5. The δ-ISD-score decoder outputs a valid
solution as long as there are at most δ indices i ∈ Supp(x)
with values ψi(s̃) < ψj(s̃) with j in a set J ⊂ Nn of
cardinality n− k.

IV. SUCCESS PROBABILITY OF THE ISD-SCORE DECODER

A. Main results

The following result gives a condition on the parameters for
having a high probability of success for the ISD score decoder
on the N− SDP in presence of noise.

Theorem 2. Let ϵi ∼ −d + B(2d, 12 ). If the interval[√
t+2d
n−kW

(
n−t

n−k−t+δ+1
e
√
2

π

)2
, 1−

√
t+2d−1
n−k W

(
t

δ+1
2e
π

)2]
is non-empty, then w.h.p. the ISD-score decoder succeeds in
finding a valid solution.

To prove this theorem we shall use 3 steps. More precisely,
we first give an estimation on the tails of the distributions
ψi(s̃), then we insert these results into a generic upper
bound on the probability of sccess of the ISD-score decoder,
and finally we study the range of parameters for which our
conditions are valid.

1) Tail bounds on the distribution of ψi(s̃) and ψi(s).:
We will first give a result on the distribution of ψi(s). As the
average value of ψi(s) equals (n−k)t/2, for i ̸∈ Supp(x) and
(n−k)t/2+(n−k)/2, for i ∈ Supp(x) we will fix a parameter
β ∈ (0, 1) which gives the distance from the average value of
ψi(s). Our estimation can be stated as follows.

Theorem 3. Let β ∈ (0, 1) and Bβ = (n−k)t
2 + β(n−k)

2 . Then
we have
for i ̸∈ Supp(x)

Prob (ψi(s) ≥ Bβ) ≤
e√
2πβ

√
t

n− k
e−

n−k
2t β2

, (3)

for i ∈ Supp(x)

Prob (ψi(s) ≤ Bβ) ≤
e

π(1− β)

√
t− 1

n− k
e−

n−k
2(t−1)

(1−β)2 . (4)



Moving forward, in the case of a binomial noise we have
the following.

Theorem 4. Let ϵi ∼ −d + B(2d, 12 ), β ∈ (0, 1) and Bβ as
previously defined. Then we have
for i ̸∈ Supp(x)

Prob (ψi(s̃) ≥ Bβ) ≤
e√
2πβ

√
t+ 2d

n− k
e−

(n−k)β2

2(t+2d) , (5)

for i ∈ Supp(x)

Prob (ψi(s̃) ≤ Bβ) ≤
e

π(1− β)

√
t+ 2d− 1

n− k
e−

(n−k)(1−β)2

2(t+2d−1) .

(6)

The proof of these theorems is given in Appendix VII. Let
us denote the upper bound by UbSupp(x)(n, k, t, β) and by
UbSupp(x)c(n, k, t, β) the upper bounds for the tail of ψi(s̃)
in Theorem 4 for i ∈ Supp(x), and i ̸∈ Supp(x), resp.
Notice that taking d = 0 in UbSupp(x)(n, k, t, β) leads to the
distribution of ψ(s).

2) A general bound on the success probability using tail es-
timations: A general theorem regarding the success probability
of ISD-score decoder can be stated. For that we suppose that
the distribution ψi(s̃) when i ∈ Supp(x) has to be different
from ψi(s̃) when i ̸∈ Supp(x), e.g., it is at least shifted. If not
it is obvious that ISD-score decoder can not retrieve a valid
solution with high probability.

Theorem 5. Let ψi(s̃) be random variables and
f(n, k, t, d, B), g(n, k, t, d, B) be two functions s.t.

Prob(ψi(s̃) ≤ B) ≤ e−f(n,k,t,d,B) , i ∈ Supp(x) (7)

Prob(ψi(s̃) ≥ B) ≤ e−g(n,k,t,d,B) , i ̸∈ Supp(x) (8)

Then if it exists a value B∗ s.t. the following conditions are
satisfied

• 0 ≤ 1− t
δ+1e

−f(n,k,t,d,B∗) ≤ 1,
• 0 ≤ 1− n−t

n−k−t+δ+1e
−g(n,k,t,d,B∗) ≤ 1,

• t
δ+1e

−f(n,k,t,d,B∗) + n−t
n−k−t+δ+1e

−g(n,k,t,d,B∗) is close
to zero,

then w.h.p. ISD-score decoder succeeds in finding a valid
solution.

Typically, the theorem gives a sufficient condition for having
a high probability of success. Indeed, if one finds a value Bβ

for which the lower bound tends to 1 then Score function
achieves its goal, namely to distinguish positions in the support
of x from those outside it. The proof of this result is given in
the Appendix.

Combining the tail bounds on the distribution of ψi(s̃) with
the condition on β∗ for having a high probability of success
enables the following result. Denote

LbSupp(x)c = 1 − e(n−t)√
2πβ(n−k−t+δ+1)

√
t+2d
n−k e

− (n−k)β2

2(t+2d) ,

LbSupp(x) = 1− e.t
π(1−β)(δ+1)

√
t+2d−1
n−k e−

(n−k)(1−β)2

2(t+2d−1) .

Proposition 6. Let ϵi ∼ −d + B(2d, 12 ). Then if it exists
a value β∗ ∈ (0, 1) s.t. LbSupp(x),LbSupp(x)c ∈ [0, 1] and

LbSupp(x)LbSupp(x)c is close to 1,then w.h.p. ISD-score de-
coder succeeds in finding a valid solution.

Putting d = 0 in the above theorem implies the needed
conditions for ISD-score decoder to retrieve a valid solution
when a perfect syndrome is used.

Corollary 3. When d = 0 and δ = 0 the condition on β∗

simplifies to

• 0 ≤ et
π(1−β)

√
t

n−ke
− (n−k)(1−β)2

2t ≤ 1,

• 0 ≤ e(n−t)

(
√
2πβ)(n−k−t)

√
t

n−ke
− (n−k)β2

2t ≤ 1,

• et
π(1−β)

√
t

n−ke
− (n−k)(1−β)2

2t +

e(n−t)

(
√
2πβ)(n−k−t)

√
t

n−ke
− (n−k)β2

2t is close to zero,

To fairly compare with state-of-the-art techniques such as
the algorithm in [32], which is only valid for the noiseless sce-
nario, we adapted the conditions from [32] to the noise model
considered here. This gives two similar functions in β, namely

1− n−t
n−k−t

√
t+2d
n−k e

− (n−k)β2

2(t+2d) , and 1−t
√

t+2d−1
n−k e−

(n−k)(1−β)2

2(t+2d−1) .

In Figure 2, we plot the modified functions from [32] (dashed
lines) and LbSupp(x),LbSupp(x)c (solid lines).
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(c) n = 24646, d = t, δ = 3
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Fig. 2: Valid β interval from the bounds in [32] (dashed lines)
and the proposed ones (solid lines)

In dark green and light green, the valid interval/region for
the adapted functions from [32], and our functions, respec-
tively, is represented. Notice that for all parameter sets and
all noise levels considered here, our function offers a larger
interval. Hence, this implies that for some sets of parameters,
e.g., in Figure 2d, the interval is empty w.r.t. conditions in
[32], while w.r.t. our conditions the interval exists.

3) Range of valid parameters: Here, we shall determine
the conditions on the parameters such that the conditions in



Proposition 6 are satisfied. We will begin by determining the
existence of β∗. We will need to denote by W (x) the Lambert
W function.

Proposition 7. For any β ≥
√

t+2d
n−kW

(
n−t

n−k−t+δ+1
e√
2π

)2
we have that n−t

n−k−t+δ+1UbSupp(x)c(n, k, t, d, β) ≤ 1, and

for any β ≤ 1 −
√

t+2d−1
n−k W

(
t

δ+1
e
π

)2
we have that

t
δ+1UbSupp(x)(n, k, t, d, β) ≤ 1.

Having both functions positive and strictly smaller than 1,
at the same time, can be achieved as long the the interval
defined by the two extreme points, in the previous Proposition
is non-empty.

Corollary 4. As long as

√
t+2d
n−kW

(
n−t

n−k−t+δ+1
e√
2π

)2
≤

1−
√

t+2d−1
n−k W

(
t

δ+1
e
π

)2
we have that

n−t
n−k−t+δ+1UbSupp(x)c(n, k, t, d, β) ≤ 1 and
t

δ+1UbSupp(x)(n, k, t, d, β) ≤ 1.

To give a more sensitive meaning of our result, we
could approximate the value of the Lambert W func-
tion by W (m) = logm − log logm + log logm

logm as m
tends to infinity. Using only the first term we define

Iβ =

[√
2(t+2d)
n−k log n−t

n−k−t+δ+1 , 1−
√

2(t+2d−1)
n−k log t

δ+1

]
.

Hence, we deduce the following result.

Proposition 8. If Iβ ̸= ∅ then the probability of success of
the ISD-score decoder is at least1− e

2π

1√
log n−t

n−k−t+δ+1

1− e√
2π

1√
log t

δ+1

 .

Typically, our result gives a sub-interval where the con-
ditions are safely satisfied. When simulations are to be per-
formed, one could solve the inequalities in order to determine
a more accurate interval. However, in using the Taylor series
of the LambertW function we can deduce the following.

Corollary 5. Let fn,k,t,δ = n−t
n−k−t+δ+1 and f∗t,δ = t

δ+1 .
The extreme points of the interval where the first two
conditions in Theorem 6 are satisfied, converges to√

t+2d
n−k

(
2 log fn,k,t,δ − log 2 log fn,k,t,δ +

log 2 log fn,k,t,δ

2 log fn,k,t,δ

)
,

and 1−
√

t+2d−1
n−k

(
2 log f∗t,δ − log 2 log f∗t,δ +

log 2 log f∗
t,δ

2 log f∗
t,δ

)
.

B. Information-theoretic bounds

1) Bounding the value of t: To see how large the weight of
the error t must be to have a non empty interval, the following
rough estimate can be used.

Theorem 6 (Upper bound on t). Let k ≤ n− t+ δ+1− (n−
t)(δ + 1)/t and d = ct/2. Then Iβ ̸= ∅ as long as we have

t ≤ n− k

8(1 + c)W
(

n−k
8(1+c)(δ+1)

) (9)

Moreover, when n→∞, we have that t ≤ O
(

n−k
log(n−k)

)
.

Using a first term approximation for the Lambert W func-
tion near infinity, we obtain a threshold on t. More exactly
this value can be approximated by n−k

8(1+c) log n−k
8(1+c)(δ+1)

.

Now, recall that we have determined a preliminary condition
on d, such that the ψ function can distinguish between
positions in the support of the solution and outside it. This
condition was d ≤ n−k

8 log log(n−k) . Taking a slightly smaller
noise level, e.g. d = n−k

8 log(n−k) ≤
n−k

8 log log(n−k) validates
the choice in the hypothesis d = ct/2, as per Theorem 6
t ≤ O

(
n−k

log(n−k)

)
. Taking into account this condition and

the hypothesis of Theorem 6, i.e. d = ct/2, we deduce the
following upper bound on t

d =
ct

2
≤ n− k

8 log t
⇒ t log t ≤ n− k

4c
. (10)

This improves the constant term by t ≤ n− k
4cW (n−k

4c )
.

Remark 3. Notice that we cannot decrease the non-constant
factors lower than what we have achieved here. More exactly
we need to have at least t log t

δ+1 ≤
n−k

2(1+c) to possibly make
the interval from Proposition 8 non-empty. Therefore, the mini-
mum number of syndrome entries required for this algorithm to
output a valid solution has to be at least 2(1+c)t log t/(δ+1).
In the noiseless scenario, this becomes 2t log t.

2) Bounding the required ratio of syndrome entries: The
existence of a value such that the ISD-score decoder succeeds
in finding a solution using fewer syndrome entries could be
deduced. It suffices to replace (n−k) with γ(n−k), where γ ∈
(0, 1] represents the percentage of syndrome entries required
to achieve a high probability. This value can be deduced from
Theorem 6. Typically, given a number of rows n − k, the
maximum value of t for which the success probability is close
enough to 1 also determines the minimum number of required
rows. More exactly, for a fixed value of t and n − k, we
can compute γ(n− k), the value for which t satisfies 8t(1 +
c) log t

δ+1 = γ(n − k). By Theorem 6, with only γ(n − k)
rows, one can recover a solution of weight at most t with high
probability. Formally, the following holds.

Corollary 6. Let d = ct/2 where c is a constant. Then the
minimum quantity of information required by the ISD-score
decoder to find a valid solution is 4(1+c)t log t

δ+1 . Moreover,
in the noiseless scenario, the minimum quantity of information
becomes 4t log t

δ+1 .

Consequently, we deduce that one could improve the con-
stant term as pointed out in Remark 3, however not lower than
2(1 + c) log t

δ+1 .

V. EXPERIMENTAL RESULTS

The following experiments have been carried out on a
standard laptop embedding an 8-core processor running at
1.6 GHz and 32 GB of RAM. The ILP solver we used
is provided by the Scipy Python package [36] under the
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Fig. 3: Number of ones in the first n−k positions for some of the Classic McEliece and BIKE sets of parameters and different
levels of a centered binomial noise.

scipy.optimize.linprog function. The score decoder
is implemented using the Numpy Python package [37] to
perform matrix computations.

A. Success probability and ratio of syndrome entries

For the results presented below, we set the (n, k, t) parame-
ters according to the specifications of the Classic McEliece [2]
and BIKE [3] cryptosystems.

The following experiments look at the number of syndrome
entries required to bring t−δ ones in the first n−k positions,
as dictated by the ISD method. Results are shown in Figure 3,
for both the Classic McEliece and the BIKE cryptosystems.
Let us explain the meaning of the plots, when these are read
horizontally. One way this could be read is as the weight of
solutions retrieved by the ISD-Score decoder with probability
1. The green stripe represents the region corresponding to
possible values of δ. The value of δ for the [t− δ; t] interval
is lower for the BIKE cryptosystem since it comes with much
larger values of n, making the exhaustive search for the correct
permutation much more costly. Conversely, we allow for δ = 3
in the case of Classic McEliece since the n values are smaller.
For example, when n = 8192 and noise level equal to t
we can hope to retrieve solutions of weight at most 122
(which is smaller that the proposed parameters), while for the
same length and noise smaller than t/2 we can retrieve any
solution of weight at most 128 using the ISD-score decoder
using δ = 3, or equivalently solutions of weight 125 using
the Prange-score decoder. To summarize, except for the case
n = 8192 with noise levels strictly greater than t/2, all the
plots suggests that the ISD-score decoder is able to retrieve
with high probability a valid solution of weight t in presence
of noise.

We can also read the plots vertically. This gives us the
ratio of syndrome entries required to find a solution of given
weight with high probability. The abscissa of the points of
intersection between the curves and the green stripe gives
minimum percentage of syndrome entries required in the
ISD-score decoder to successfully retrieve a valid solution of
weight t. For the BIKE cryptosystem, the ratio of syndrome

TABLE II: Theoretical lower bound on the ratio of syndrome
entries necessary for the ISD-score decoder

n noiseless B( t
4
, 1
2
) B( t

2
, 1
2
) B( 3t

4
, 1
2
) B(t, 1

2
)

Classic McEliece

3488 0.46 0.58 0.69 0.81 0.92
4608 0.49 0.61 0.73 0.86 0.98
6688 0.53 0.67 0.80 0.93 1.00
8192 0.53 0.67 0.80 0.93 1.00

BIKE

24646 0.09 0.11 0.14 0.16 0.18
49318 0.07 0.09 0.11 0.13 0.15
81946 0.06 0.08 0.09 0.11 0.13

entries required to bring at least t − 1 ones in the first
n− k positions ranges from 4.75 % to 6.5 %. For the Classic
McEliece cryptosystem, the ratio of syndrome entries required
to bring at least t − 3 ones in the first n − k positions
ranges from 48 % to 62 %. We have also computed the best
theoretical lower bound we could hope for, i.e., the percentage
of syndrome entries should be at least 2(1+c)t

n−k log t
δ+1 . When

comparing the experimental results shown in Figure 3 and
Table II, we observe that theoretical values are around 10 %
smaller than the experimental values.

B. ILP sover and ISD-score decoder

a) Percentage of required entries: To compare the ILP
solver with the ISD-score decoder we used the parameters for
the Classic McEliece proposal. We decided to consider only
the Classic McEliece because the execution time of the ILP
solver for the smallest parameters of BIKE exceeded tens of
minutes for a single instance of the N− SDP. Obtaining in a
reasonable time a solid statistical evidence of the performance
of the ILP solver for BIKE, would assume a much more
optimized implementation of the solver, which is not the main
purpose of this article. The results for the ILP solver in the
noiseless scenario are given in Figure 4. The success rate
is computed for ten evenly spaced ratios ranging from 1 to
100 %.
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We observe that the behavior is the same for all sets of
parameters. When considering 30 % of syndrome entries, the
ILP solver failed at recovering the error vector ten times out of
ten. Conversely, when considering 40 % of syndrome entries,
the ILP solver succeeded at recovering the error vector ten
times out of ten. Hence, the main drawback of the ILP solver,
when compared to the ISD-score decoder, is that the ILP
cannot be used when only a small percentage of syndrome
entries are known.

b) Noisy setting: In a noisy setting, the differences be-
tween the ILP solver and the ISD-score decoder is even more
dramatic. Indeed, the ILP solver either succeeds in finding a
valid solution, with t ones in the first t positions, or it fails.
Conversely, the ISD-score decoder has a succeeds if t − δ
ones are in the first (n−k) positions, providing a much larger
margin in the noisy setting.

Eventually, the permutation returned by the ISD-score de-
coder is always better than a random permutation. Therefore,
one can always resort to exhaustive search afterwards.

c) Computation time: When comparing the time required
by the two algorithms for retrieving a valid solution, we notice
a significant gap between the two algorithms. From Figure
5 we can see that it takes less than 0.1 s for the ISD-score
decoder, while for the ILP it takes at least 10 s for any of the
parameters of the Classic McEliece scheme. Broadly speaking,
the ILP solver is three orders of magnitude slower than the
ISD-score decoder.

VI. CONCLUSION

This article evaluated the efficiency of the score decoder
for integer syndrome decoding in the presence of noise. We
proved that, even in the presence of noise, this decoder is
indeed able to successfully bring t − δ ones in the first
n − k positions, as required by the ISD-based methods. We
then experimentally validate this capability considering the
parameter sets of two post-quantum cryptosystems, Classic
McEliece and BIKE. Future works could investigate other
types of noise or improve the efficiency of the decoder,
bringing it closer to the information-theoretic bound.
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APPENDIX

Proof of Theorem 1

Theorem (1). Let H ∈ {0, 1}(n−k)×n be a random matrix,
with distribution given by hj,i ∼ Ber( 12 ) and s ∈ Nn−k such
that ∃ x ∈ {0, 1}n with HW(x) = t satisfying Hx = s. Then
ψi(s) follows the distribution

ψi(s) ∼
{
B((n− k)t, 12 ) for i ̸∈ Supp(x)
n− k + B((n− k)(t− 1), 12 ) for i ∈ Supp(x)

(11)
Moreover, the following holds{

E(ψi(s)) =
(n−k)t

2 , for i ̸∈ Supp(x)

E(ψi(s)) =
(n−k)t

2 + n−k
2 , for i ∈ Supp(x){

V ar(ψi(s)) =
(n−k)t

4 for i ̸∈ Supp(x)

V ar(ψi(s)) =
(n−k)t

4 − n−k
4 for i ∈ Supp(x)

Proof. By definition 4 we have that

ψi(s) =

n−k∑
ℓ=1

(hℓ,isℓ + (1− hℓ,i)(t− sℓ))) . (12)



Let us denote Xℓ = hℓ,isℓ + (1 − hℓ,i)(t − sℓ)). As sℓ =∑
j∈Supp(x)

hℓ,j we deduce that

Xℓ = hℓ,i
∑

j∈Supp(x)

hℓ,j +(1−hℓ,i)(t−
∑

j∈Supp(x)

hℓ,j)). (13)

We have two cases :
• if i ̸∈ Supp(x) then

Xℓ =


∑

j∈Supp(x)

hℓ,j = sℓ , if hℓ,i = 1

t−
∑

j∈Supp(x)

hℓ,j = t− sℓ , if hℓ,i = 0

(14)
As sℓ ∼ B(t, 12 ) we deduce that Xℓ ∼ B(t, 12 ) for
all i ̸∈ Supp(x), and by independence we obtain
ψi(s) ∼ B((n − k)t, 12 ), then E(ψi(s)) = (n−k)t

2 and
V ar(ψi(s)) =

(n−k)t
4 .

• if i ∈ Supp(x) we have that sℓ and hℓ,i are dependent
random variables. Hence we obtain

Xℓ =


1 +

∑
j∈Supp(x)\{i}

hℓ,j , if hℓ,i = 1

1 + (t− 1)−
∑

j∈Supp(x)\{i}
hℓ,j , if hℓ,i = 0

(15)
As sℓ − hℓ,i ∼ B(t − 1, 12 ) we deduce that Xℓ ∼ 1 +
B(t− 1, 12 ) for all i ∈ Supp(x), and by independence of
the variables Xℓ we obtain ψi(s) ∼ (n − k) + B((n −
k)(t− 1), 12 ).

Proof of Corollary 2
Corollary (2). Let ϵi ∼ −d+ B(2d, 12 ). Then w.h.p. we have

|ψi(s̃)− ψi(s)| ≤
√

d(n−k) log log(n−k)
2 . Moreover, for any

d ≤ n−k
8 log log(n−k) , the function ψ(s̃) distinguishes positions

in Supp(x) from positions outside Supp(x) w.h.p.

Proof. Apply Proposition 2 and Corollary 1 to obtain the the
results. In order to determine the upper bound on d, we start by
computing the intervals of confidence for ψi(s̃) by substituting
g(n, k, y) = log log(n − k) in Proposition 2. This yields an
interval Is̃(i) defined by the two extremal points E(ψi(s̃))−√

d(n−k) log log(n−k)
2 and E(ψi(s̃)) +

√
d(n−k) log log(n−k)

2 .
More exactly we have

• i ̸∈ Supp(x) the following extremal points
(n−k)t

2 −
√

d(n−k) log log(n−k)
2 , and

(n−k)t
2 +

√
d(n−k) log log(n−k)

2

• i ∈ Supp(x) the following estremal points
(n−k)t

2 + n−k
2 −

√
d(n−k) log log(n−k)

2 , and
(n−k)t

2 + n−k
2 +

√
d(n−k) log log(n−k)

2 .

Since we require that the two intervals should be disjoint, we
require to have

2

√
d(n− k) log log(n− k)

2
≤ n− k

2
(16)

Hence, we should have d ≤ n−k
8 log log(n−k) .

Proof of Theorem 3 and Theorem 4

Let us begin by giving a useful result on the tail of binomial
distribution.

Lemma 1 ([38]). Let X ∼ B(n, 1/2) and n/2 ≤ α ≤ n.
Then

Prob(X ≥ α) ≤ α+ 1

2α− n+ 1
Prob(X = α). (17)

Lemma 2 ([32]). Let X ∼ B(n, 1/2) and α ≤ n/2. Then

Prob
(
X =

n

2
+ α

)
≤ e

2π

√
n

n2

4 − α2
e−

2α2

n . (18)

Proposition 9. Let X ∼ B(n, 1/2) and α < n. Then

Prob
(
X ≥ n

2
+
α

2

)
≤ e

2π

(
1 +

n+ 1

α+ 1

)√
n

n2 − α2
e−

α2

2n .

(19)

Proof. Use Lemma 1 and 2.

Now, we can proceed to the demonstration. Let us recall
the result we want to prove.

Theorem (3). Let β ∈ (0.1) and Bβ = (n−k)t
2 + β(n−k)

2 . Then
we have
for i ̸∈ Supp(x)

Prob (ψi(s) ≥ Bβ) ≤
e√
2πβ

√
t

n− k
e−

n−k
2t β2

, (20)

for i ∈ Supp(x)

Prob (ψi(s) ≤ Bβ) ≤
e

π(1− β)

√
t− 1

n− k
e−

n−k
2(t−1)

(1−β)2 .

(21)

Proof. Recall that

ψi(s) ∼
{
B((n− k)t, 12 ) for i ̸∈ Supp(x)
n− k + B((n− k)(t− 1), 12 ) for i ∈ Supp(x)

By Proposition 9 this yields for i ̸∈ Supp(x) we have that
Prob (ψi(s) ≥ Bβ) is smaller than or equal to

≤
e
2π

(
1 + (n−k)t+1

(n−k)β+1

)√
(n−k)t

(n−k)2t2−(n−k)2β2

e
(n−k)2β2

2(n−k)t

(22)

=

e
2π

(
1 + (n−k)t+1

(n−k)β+1

)√
t

(n−k)t2−(n−k)β2

e
(n−k)β2

2t

(23)

≤ e

2π

(
1 +

t

β

)√
t

(n− k)(t2 − β2)
e−

(n−k)β2

2t (24)

≤ e

2πβ

√
t+ β

t− β

√
t

(n− k)
e−

(n−k)β2

2t (25)

≤ e√
2πβ

√
t

(n− k)
e−

(n−k)β2

2t (26)



For i ∈ Supp(x) we have that E(ψi(s)) =
(n−k)t

2 + n−k
2 . Hence, by Proposition 9 we obtain that

Prob
(
ψi(s) ≤ (n−k)t

2 + (n−k)β
2

)
is upper bounded by

≤
e
2π

(
1 + (n−k)(t−1)+1

(n−k)(1−β)+1

)√
(n−k)(t−1)

(n−k)2(t−1)2−(n−k)2(1−β)2

e
(n−k)2(1−β)2

2(n−k)(t−1)

(27)

=

e
2π

(
1 + (n−k)(t−1)+1

(n−k)(1−β)+1

)√
t−1

(n−k)((t−1)2−(1−β)2)

e
(n−k)(1−β)2

2(t−1)

(28)

≤

e
2π

(
1 + t−1

1−β

)√ t− 1

(n− k)((t− 1)2 − (1− β)2)

e
(n−k)(1−β)2

2(t−1)

(29)

≤ e

2πβ

√
t− β

t+ β + 2

√
t− 1

(n− k)
e−

(n−k)(1−β)2

2(t−1) (30)

≤ e

2πβ

√
t− 1

(n− k)
e−

(n−k)β2

2(t−1) . (31)

Let us recall the second theorem to demonstrate.

Theorem (4). Let ϵi ∼ −d+ B(2d, 12 ) and β ∈ (0, 1), Bβ =
(n−k)t

2 + β(n−k)
2 . Then we have

for i ̸∈ Supp(x)

Prob (ψi(s̃) ≥ Bβ) ≤
e√
2πβ

√
t+ 2d

n− k
e−

(n−k)β2

2(t+2d) , (32)

for i ∈ Supp(x)

Prob (ψi(s̃) ≤ Bβ) ≤
e

π(1− β)

√
t+ 2d− 1

n− k
e−

(n−k)(1−β)2

2(t+2d−1) .

(33)

Proof. Recall that we have
• for i ̸∈ Supp(x)

ψi(s̃) ∼ −d(n− k) + B
(
(n− k)(t+ 2d),

1

2

)
• for i ∈ Supp(x)

ψi(s̃) ∼ −(d− 1)(n− k)+B
(
(n− k)(t− 1 + 2d),

1

2

)
The proof is thus identical with that of Theorem 3 by simply

putting t′ = t + 2d when i ̸∈ Supp(x) and t′ = t + 2d − 1
when i ∈ Supp(x).

Proof of Theorem 5

Theorem (5). Let ψi(s̃) be random variables and
f(n, k, t, d, B), g(n, k, t, d, B) be two functions s.t.

Prob(ψi(s̃) ≤ B) ≤ e−f(n,k,t,d,B) , i ∈ Supp(x) (34)

Prob(ψi(s̃) ≥ B) ≤ e−g(n,k,t,d,B) , i ̸∈ Supp(x) (35)

Then if it exists a value B∗ s.t. the following conditions are
satisfied

• 0 ≤ 1− t
δ+1e

−f(n,k,t,d,B∗) ≤ 1,
• 0 ≤ 1− n−t

n−k−t+δ+1e
−g(n,k,t,d,B∗) ≤ 1,

• t
δ+1e

−f(n,k,t,d,B∗) + n−t
n−k−t+δ+1e

−g(n,k,t,d,B∗) is close
to zero,

then w.h.p. the ISD-score decoder succeeds in finding a valid
solution.

Proof. Let XB denote the number of indices j ∈ Supp(x)
for which ψi(s̃) ≤ B, and YB the number of indices j ̸∈
Supp(x) for which ψi(s̃) ≥ B. The probability of success of
our algorithm equals

=
∑
B

Prob(XB ≤ δ)Prob(YB ≤ n− k − t+ δ)

=
∑
B

(1− Prob(XB ≥ δ + 1))·

(1− Prob(YB ≥ n− k − t+ δ + 1))

≥
∑
B

(
1− t

δ + 1
e−f(n,k,t,d,B)

)
·(

1− n− t
n− k − t+ δ + 1

e−g(n,k,t,d,B)

)
.

In the last equation we have used Markov’s inequality. Also,
the last sum is over those values B for which the two terms
in the sum are both positive and smaller than 1. Now suppose
that a B∗ satisfying the required condition exists. Then the
probability of success is

≥
(
1− t

δ + 1
e−f(n,k,t,d,B∗)

)
·(

1− n− t
n− k − t+ δ + 1

e−g(n,k,t,d,B∗)

)

≥ 1− t

δ + 1
e−f(n,k,t,d,B∗)−

n− t
n− k − t+ δ + 1

e−g(n,k,t,d,B∗)

.

Range of valid parameters: proofs and comments
The first useful results concerns the monotony of the two

upper bounds.

Lemma 3. The functions t
δ+1UbSupp(x)(n, k, t, d, β) and

n−t
n−k−t+δ+1UbSupp(x)c(n, k, t, d, β) in β ∈ (0, 1), are positive
increasing, and positive decreasing, resp.

Proof. Let f(n, k, t, d, β) = t
δ+1UbSupp(x)(n, k, t, β

∗) and
g(n, k, t, d, β) = n−t

n−k−t+δ+1UbSupp(x)c(n, k, t, d, β). We
have that both functions f, g are positive. We also have

∂g(n, k, t, d, β)

∂β
=

− (n− k)β2 + (t+ 2d)

β(t+ 2d)
g(n, k, t, d, β)



∂f(n, k, t, d, β)

∂β
=

(n− k)(1− β)2 + (t+ 2d− 1)

(1− β)(t+ 2d− 1)
f(n, k, t, d, β).

Using the fact that f and g are positive we deduce the
wanted result.

Now we can demonstrate Proposition 7. Let us first recall
this result.

Proposition (7). For any β ≥
√

t+2d
n−kW

(
n−t

n−k−t+δ+1
e√
2π

)2
we have that n−t

n−k−t+δ+1UbSupp(x)c(n, k, t, d, β) ≤ 1, and

for any β ≤ 1 −
√

t+2d−1
n−k W

(
t

δ+1
e
π

)2
we have that

t
δ+1UbSupp(x)(n, k, t, d, β) ≤ 1.

Proof. Let us consider the limit point β where the two
functions equal 1. As the first function is decreasing we then
obtain a lower bound on β.

n− t
n− k − t+ δ + 1

UbSupp(x)c(n, k, t, d, β) = 1 (36)

n− t
n− k − t+ δ + 1

e√
2πβ

√
t+ 2d

n− k
e−

(n−k)β2

2(t+2d) = 1 (37)(
n− t

n− k − t+ δ + 1

e√
2π

)2
t+ 2d

(n− k)β2
= e

(n−k)β2

t+2d

(38)

By letting y = (n−k)β2

t+2d we have

eyy =

(
n− t

n− k − t+ δ + 1

e√
2π

)2

, (39)

admitting a real solution y = W
(

n−t
n−k−t+δ+1

e√
2π

)2
, where

W is the Lambert W function. From this we deduce β =√
t+2d
n−kW

(
n−t

n−k−t+δ+1
e√
2π

)2
. The second function is in-

creasing hence, it gives an upper bound on β.

t

δ + 1
UbSupp(x)(n, k, t, d, β) = 1 (40)

t

δ + 1

e

π(1− β)

√
t+ 2d− 1

n− k
e−

(n−k)(1−β)2

2(t+2d−1) = 1 (41)(
t

δ + 1

e

π

)2
t+ 2d− 1

(n− k)(1− β)2
= e

(n−k)(1−β)2

t+2d−1

(42)

As in the first case we obtain 1 − β =√
t+2d−1
n−k W

(
t

δ+1
e
π

)2
.

Proposition 8 given a slightly weaker condition, however, it
helps understanding the order of magnitutde of the parameters.
Let us demonstrate the result.

Proof. Let β ≥ β1 =
√
2 t+2d

n−k log n−t
n−k−t+δ+1 . Then the

quantity n−t
n−k−t+δ+1UbSupp(x)c(n, k, t, d, β) equals

=
n− t

n− k − t+ δ + 1

e√
2πβ

√
t+ 2d

n− k
e−

(n−k)β2

2(t+2d) (43)

≤ n− t
n− k − t+ δ + 1

e

2π
√
log n−t

n−k−t+δ+1

e− log n−t
n−k−t+δ+1

(44)

=
e

2π

1√
log n−t

n−k−t+δ+1

. (45)

Let 1 − β ≥ β2 =
√
2 t+2d−1

n−k log t
δ+1 . Then the quantity

t
δ+1UbSupp(x)(n, k, t, d, β) equals

=
t

δ + 1

e

π(1− β)

√
t+ 2d− 1

n− k
e−

(n−k)(1−β)2

2(t+2d−1) (46)

≤ e√
2π

1√
log t

δ+1

. (47)

From this we deduce√
2(t+ 2d)√
n− k

√
log

n− t
n− k − t+ δ + 1

≤ β (48)

β ≤ 1−
√
2(t+ 2d− 1)√

n− k

√
log

t

δ + 1
. (49)

Now, suppose that [β1, β2] is non-empty and take β∗ ∈
[β1, β2]. Since t

δ+1UbSupp(x)(n, k, t, d, β) is increasing in β,
this implies that t

δ+1UbSupp(x)(n, k, t, d, β
∗) is upper bounded

by

t

δ + 1
UbSupp(x)(n, k, t, d, β2) =

e√
2π

1√
log t

δ+1

. (50)

Also, as n−t
n−k−t+δ+1UbSupp(x)c(n, k, t, d, β) is decreasing in

β we have that n−t
n−k−t+δ+1UbSupp(x)c(n, k, t, d, β

∗) is upper
bounded by

≤ n− t
n− k − t+ δ + 1

UbSupp(x)c(n, k, t, d, β1) (51)

≤ e

2π

1√
log n−t

n−k−t+δ+1

. (52)

Equations (50) and (51) implies that both function
n−t

n−k−t+δ+1UbSupp(x)c(n, k, t, d, β),
t

δ+1UbSupp(x)(n, k, t, d, β)
are smaller than 1 in β∗ and that the probability of success
is at least1− e

2π

1√
log n−t

n−k−t+δ+1

1− e√
2π

1√
log t

δ+1

 .

(53)

Proof of Theorem 6



Proof. Taking the simplified interval for β, the existence of
this interval implies√

2(t+ 2d)√
n− k

√
log

n− t
n− k − t+ δ + 1

≤

1−
√
2(t+ 2d− 1)√

n− k

√
log

t

δ + 1
(54)

√
log

n− t
n− k − t+ δ + 1

+

√
log

t

δ + 1
≤√

n− k
2(t+ 2d)

(55)

Using the condition on k we deduce√
log

n− t
n− k − t+ δ + 1

≤√
log

n− t
n− (n− t+ δ + 1− (n−t)(δ+1)

t )− t+ δ + 1
(56)

√
log

n− t
n− k − t+ δ + 1

≤
√
log

t

δ + 1
. (57)

Hence, the following should hold

2

√
log

t

δ + 1
≤

√
n− k

2(1 + c)t
(58)

t

δ + 1
log

t

δ + 1
≤ n− k

8(1 + c)(δ + 1)
, (59)

which is satisfied as long as t ≤ n−k
8(1+c)W ( n−k

8(1+c)(δ+1)
)
.

The initial condition on k implies t ≤
n−k+2δ+2−

√
(n−k+2δ+2)2−4n(δ+1)

2 which is greater than
or equal to n−k

8(1+c)W ( n−k
8(1+c)(δ+1)

)
.

As for the asymptotic, use one term approximation for the
LambertW function near infinity.


