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High-Performance Polynomial Multiplication
Hardware Accelerators for KEM Saber and NTRU

Elizabeth Carter, Pengzhou He, and Jiafeng Xie,

Abstract—Along the rapid development in building large-scale
quantum computers, post-quantum cryptography (PQC) has
drawn significant attention from research community recently
as it is proven that the existing public-key cryptosystems are
vulnerable to the quantum attacks. Following this direction,
this paper presents a novel implementation of high-performance
polynomial multiplication hardware accelerators for key en-
capsulation mechanism (KEM) Saber and NTRU, two PQC
algorithms that are currently under the consideration by the
National Institute of Standards and Technology (NIST) PQC
standardization process. In total, we have carried out three
layers of efforts to obtain the proposed work. First of all,
we have proposed a new Dual Cyclic-Row Oriented Processing
(Dual-CROP) technique to build a high-performance polynomial
multiplication hardware accelerator for KEM Saber. Then, we
have extended this hardware accelerator to NTRU with proper
innovation and adjustment. Finally, through a series of com-
plexity analysis and implementation based comparison, we have
shown that the proposed hardware accelerators obtain better
area-time complexities than known existing ones. It is expected
that the outcome of this work can impact the ongoing NIST PQC
standardization process and can be deployed further to construct
efficient cryptoprocessors.

Index Terms—Dual cyclic-row oriented processing (Dual-
CROP), high-performance, key encapsulation mechanism (KEM)
Saber, NTRU, polynomial multiplication hardware accelerator,
post-quantum cryptography (PQC)

I. INTRODUCTION

With the rapid progression in quantum computing, it is
proven that most of the existing public key cryptographic
algorithms will no longer be secure as they can be solved
by large-scale quantum computers executing Shor’s algorithm
[1], [2], [3], [4]. Consequently, it is predicted that the widely
used Rivest Shamir Adleman (RSA) algorithm and Elliptic-
Curve Cryptography (ECC), will no longer be secure or viable
options within 10-15 years[1], [2], [3], [4].

In response, cryptosystems resistant to quantum, attacks
known as post quantum cryptography (PQC), have been pro-
posed as alternatives. In particular, the National Institute of
Standards and Technology (NIST) has started the PQC stan-
dardization process with the goal to standardize algorithms for
public-key encryption, key-establishment and digital authenti-
cation which will remain secure even with use of quantum
computers. In total, NIST has received 69 submissions for
potential standards and NIST has moved forward to the 3rd
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round of the standardization process with four finalists for
public-key encryption and key-establishment schemes as of
July of 2020 [5].

As indicated by the 3rd round PQC standardization process
[5], there are lattice-based cryptography(LBC), code-based
cryptography, isogeny-based cryptography (etc.) currently un-
der consideration for PQC candidates. Of these PQC clas-
sifications, lattice-based cryptography is recognized as one
of the most promising [5], [6], [7]. Furthermore, among the
announced four public-key and key-establishment finalists,
three out of the four are LBC schemes; these being Crystals-
Kyber, Saber, and N -th degree truncated polynomial ring
(NTRU)[8], [9], [10]. The announced finalists echoed the
on-going research trend that LBC is widely recognized as
one of the most prominent PQC classes due to its ease of
implementation and strong security proof, which is based on
worst-case hardness [6], [7], [11], [12].

In general, the LBC algorithms are built on two types of
lattice problems, namely the NTRU problem and the learning-
with-errors (LWE) problem. There also exist several variants
of these problems, such as the Ring-LWE problem and the
learning-with-round (LWR) problem as well as their module
variants. Quite a good number of works have been released
on the LWR problem [?], including the key encapsulation
mechanism (KEM) Saber [5], which is one of the NIST 3rd
round PQC finalists. Furthermore, among the NIST announced
third round public-key finalists, NTRU is based on the NTRU
problem, KYBER is based on the module Ring-LWE (MLWE)
problem, and Saber is based on the module LWR (MLWR)
problem [5].

One of the “drawbacks” for LBC, however, lies in the fact
that LBC algorithms typically require relatively large key sizes
[6], [7], [11], [12]. Following the NIST PQC standardization
process, more attention has been gradually focused on the
efficient hardware implementation of the two PQC schemes
Saber and NTRU. As these algorithms move forward in the
standardization process or for other purposes, research has
been carried out on various implementations for optimizations
to handle the size of data used and to additionally speed
up the computation process. Within hardware platforms like
field-programmable gate arrays (FPGAs) especially, there is
potential for optimizations of LBC in aspects of resource
consumption and time complexity.

Based on this consideration, this work proposes novel
design methods for targeted LBC algorithms, in compact and
time efficient hardware accelerators on the FPGA platform.
In general, LBC algorithms require polynomial multiplication
(PM) at many points of key generation, encryption, and
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Fig. 1: The existing polynomial multiplication structure [20],
where the produced outputs (in parallel) need to be transferred
into serial format to be stored in the external memory.
decryption, and these PMs are extremely time and resource
intensive processes. For instance, within Saber, PM takes
up to 56% of overall computation time [13]. Reducing
the clock cycles of PM can in turn reduce the overall
implementation time complexity of the LBC schemes. To
obtain the targeted performance metrics, this work specifically
focuses on novel implementation methods of PM and related
point-wise multiplication (PWM). Overall, this work focuses
on optimizing the PM hardware accelerators for Saber and
NTRU PQC schemes.

Existing Works. KEM Saber is built on the Module-
LWR (MLWR) problem, which is a module variant of LWR.
Upon its original introduction in [9], [?], many works have
been released on this interesting PQC scheme, ranging from
security level, implementation, and attack analysis [?], [14],
[15]. Especially for the hardware implementations, including
both the system-level and component-level designs (such
as polynomial multiplication), we can categorize them into
two types: (i) hardware-software co-design; and (ii) full
hardware design. The first type includes the recent one of
[16], where the Toom-Cook method is used to implement the
polynomial multiplication for KEM Saber. Another recent
design of [17] also uses the Toom-Cook approach to achieve
high-performance implementation. A very recent report has
proposed to use the number theoretic transform (NTT) [18]
for the implementation of the polynomial multiplication of
KEM Saber on the RISC-V accelerator. For the second type,
a new coprocessor for KEM Saber is introduced in [13],
where the polynomial multiplication is based on a schoolbook
based method. A Karatsuba algorithm based KEM Saber is
reported in [19] for high-performance operation. Optimized
polynomial multiplication structures for the polynomial
multiplication in KEM Saber is recently presented in [20],
which has better area-time complexities than the previous
designs of [16], [21]. Overall, these two types of designs are
the major hardware implementation works for KEM Saber.

The polynomial multiplication over ring Zl/(x
n + 1) (l is

either q or p [9], [13]) is the critical arithmetic operation of
KEM Saber. But the existing works have not well covered

its efficient implementation: (i) the existing high-performance
works, such as the structure of Fig. 1 in [20] (see Fig. 1
here) produces the multiplication outputs in a parallel format,
which actually requires extra resources such as multiplexers
(MUXes) to transfer the parallel outputs into serial style
to be stored in the external memory for further usage; (ii)
not many efficient hardware structures for the polynomial
multiplication have been proposed for KEM Saber. Noticing
that polynomial multiplications over other fields such as
binary field have been investigated widely in the literature
[22], [23], [24], [25], we just follow this trend to propose
an efficient implementation of polynomial multiplication for
KEM Saber on the field-programmable gate array (FPGA)
platform for high-performance applications. Specifically, we
have followed the design style presented in [26] and have
proposed a novel cyclic-row oriented processing (CROP)
strategy that all the outputs are circularly accumulated and can
be very easily transferred to the external memory in a serial
format with little extra resource usage (simple operation).

Major Contributions. We have proposed a novel algorithmic
derivation, architectural design, and implementation
techniques to achieve efficient implementation of polynomial
multiplication within KEM Saber and NTRU. In total, we
have carried out three layers of innovative works, as:

• A new Dual Cyclic-Row Oriented Processing (Dual-
CROP) technique to build a high-performance polynomial
multiplication hardware accelerator for KEM Saber.

• A modified Dual CROP, in order to extended this hard-
ware accelerator to NTRU with proper innovation and
adjustment.

• A thorough complexity analysis and comparison (in-
cluding both the theoretical analysis and FPGA based
implementation performance) to show that the proposed
polynomial multiplications have better area-time com-
plexities than the state-of-the-art solutions.

Overall, the proposed polynomial multiplication possesses
three main unique features: (i) simple and easy operation on
the output result delivering; (ii) flexible offering of processing
throughput; and (iii) low-complexity. Discussions about the
further extension and application of the proposed polynomial
multiplications have also been provided.

The rest of this paper is organized as follows. The prelim-
inary knowledge is introduced in Section II. The formulation
of the proposed Dual CROP strategy is detailed presented
in Section III along with proposed algorithms. The proposed
hardware polynomial multiplication structures, for both Saber
and NTRU, are provided in Section IV. Complexity analysis
and comparison are presented in Section V. Finally, conclu-
sions are given in Section VI.

II. PRELIMINARIES

In this section, we briefly give the introduction of the KEM
Saber, NTRU, and the involved polynomial multiplication.
Interested readers can refer to the original papers of [9], [?],
[10] for details.
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A. The MLWR Scheme (KEM Saber)

The LWR is a variant of LWE [27], which uses the rounding
operation to replace the previous Gaussian distributed errors to
obtain the hardness of the lattice problem. The LWR problem
is based on the equation of (a, b = ⌊p

q ⟨a, s⟩⌉p) ∈ Zn
q × Zp

(where both p and q are power-of-two moduli), and the MLWR
scheme is the module version of the LWR. It operates on the
ring Rq = Zq[X]/(xn +1) with the modulus of (xn +1) [9],
[?].

Saber is an MLWR scheme based PQC, which achieves both
classical and quantum security [?]. Saber is first constructed as
a Chosen Plaintext Attack (CPA) secure public-key encryption
scheme and then developed into KEM Saber through the
Fujisaki-Okamoto transformation [28].

Similar to other PQC schemes, the Saber public-key
encryption scheme consists of three operational phases, i.e.,
the key generation, the encryption, and the decryption phases
[9], [?]. In the key generation phase, the public matrix of
polynomials A and a secret vector of polynomials s are used
to produce the scaling and rounding output of As (also the
vector b), where the public key is composed of A and b and
the secret key is the vector s. In the encryption phase, the
original message is encrypted through v′ = s′b (generated
new secret s′) and the final produced ciphertext involves the
vector b′ (from rounding As′). The decryption phase uses the
secret key to obtain v, which is approximately the same as v′

in the encryption phase (allows the recovering of the original
message from the ciphertext). KEM Saber uses the Fujisaki-
Okamoto transformation [28] to further ensure its CCA-secure.

Parameter Setting [9]. The polynomial multiplication
involved within KEM Saber is set as degree of n = 256 and
the two moduli are q = 213 and p = 210, respectively. The
related secrets are sampled from the binomial distribution.
Additionally, KEM Saber uses a modulo ring of (xn + 1).

Polynomial Multiplication for Saber The polynomial
multiplication (degree of 256) is the key arithmetic operation
in the above mentioned phases. One polynomial involves
coefficients generated from the binomial sampler, and these
coefficients lie in the value range of −4 to +4 [20], while
another polynomial operand consists of coefficients of either
10-bit or 13-bit (the 13-bit based design can also be used
for the 10-bit based computation). The design of [20]
has used the schoolbook algorithm to derive the desired
high-performance structures. But the proposed polynomial
multiplication structures have not fully optimized the output
delivery, and hence further efforts are needed in this area.

B. The NTRU Scheme

The NTRU PQC scheme is built on the N th degree
TRUncated polynomial ring (NTRU) problem that is quantum
secure and was originally defined in 1998 [?], [?]. NTRU is
know to be a secure option for PQC standardization.

Parameter Setting The polynomial multiplication involved
with NTRU is a set as a degree of n = 821 and q = 212.

Variations in the parameters for different levels of security
can be further explored in [10], however n is always a prime
value and q is a power of two.

Polynomial Multiplication for NTRU The polynomial
multiplication (degree of 821) is the key arithmetic operation
in the above mentioned phases. Two polynomials of both
consists of coefficients of 12-bit in signed magnitude form.
Unlike Saber which uses a modulo ring of (xn + 1) , NTRU
uses a modulo of (xn−1) [10], [11]. This reduces the overall
complexity of computations since a negation is not required
during the cyclic shifting process.

III. DUAL CROP: MATHEMATICAL FORMULATION

This section presents the mathematics behind a novel
hardware implementation technique to design PMs within
Saber and NTRU. PM of polynomials B =

∑n−1
i=0 bix

i and
A =

∑n−1
i=0 aix

i over a modulus ring can be represented by
multiplication of a n × n matrix with a n × 1 vector, shown
in Figure 2. Here the multiplication is done with the modulus
(xn + 1) and a degree of n = 4.

The Dual Cyclic Row Oriented Processes (Dual CROP)
design offers a time-efficient yet lightweight format to
calculate PMs within the targeted PQC schemes of Saber
and NTRU. The proposed design is based on the CROP
technique (originally proposed in [?]). This work proposes a
new CROP-based method that offers hardware acceleration
by reducing the over all number of cycles for computing the
polynomial product. To do this, the operands A and B are
divided into two groups. The Figure 2 also depicts how this
deviation is made within the case study example matrix. Each
divided group is fed into a respective PM unit and computed
concurrently to produce the intermediate products, shown in
Figure 3. For a degree of n = 4, the values a0, a1, ..., an−1

are multiplied with b1 and b0, while the modulus values
−an−2,−an−1, ..., a1 are multiplied with b2 and b3. This
process is stated in Definition 4.1 for Saber. For NTRU,
Definition 4.1 can be used by replacing the modulus (xn+1),
by simply replacing all negations generated by the ring with
positives equivalents and inserting a zero value to account for
the odd degree of n .

Definition 4.1 (Mathematical basics for Dual CROP
based PM of Saber)
Define polynomials A =

∑n−1
i=0 aix

i, B =
∑n−1

i=0 bix
i and

C =
∑n−1

i=0 cix
i where

C = BAmod (xn + 1). (1)

This can be rewritten as

C = b0(Axi mod (xn+1))+ ...+ bn−1(Axi mod (xn+1)).
(2)

Also, since xn ≡ −1, we can then substitute it in (4.2) to
get

C =b0(a0 + a1x+ ...+ an−1x
n−1)

+b1(−an−1 + a0x+ ...+ an−2x
n−1)

+....

+bn−1(−a1 − a2x− ...+ a0x
n−1).

(3)
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As a further extension, C can be split into C0 and C1 where
C = C0 + C1, for

C0 =b0(a0 + a1x+ ...+ an−1x
n−1)

+b1(−an−1 + a0x+ ...+ an−2x
n−1)

+....

+bn/2−1(−a1+n/2 − a2+n/2x− ...+ a2x
n−1),

(4)

and

C1 =bn/2(−an/2 − a1+n/2x− ...+ an/2−1x
n−1)

+bn/2+1(−an/2−1 − an/2x− ...+ an/2−2x
n−1)

+....

+bn−1(−a1 − a2x− ...+ a0x
n−1).

(5)

Fig. 2: Matrix representation of the proposed Dual CROP
based technique for Saber, which can be extended to NTRU
without negations.

Fig. 3: Concept of a Dual CROP based PM (for Saber, which
can apply to NTRU without the sign control).

By simultaneously computing the intermediate products, the
final polynomial product is computed within half of the clock
cycles as the original design. Similar to the original design,
the final output is delivered through a serial processing format
and therefore does not require the additional processing and
multiplexers that are required in [20] (the hardware cost is
thus reduced).

Overall, one cycle is required to reset the registers, n cycles
for loading in the first set coefficients, n/2 cycles are needed
for computing the products and finally n cycles for serially
outputting the results. One advantage of this structure is that
it can be utilized to produce the product of multiple polyno-
mials sequentially without resetting the registers before each
computation. This allows for the multitude of multiplications
required within PQC schemes to occur back to back without
the cost of an additional clock cycle with each operation.

In the following sections, we will introduce two main
variants of the Dual CROP based structure, one for Saber
and one for NTRU. The Saber-based design is first discussed
in detail as a case study example, and then modifications
are made to obtain the proposed structure for NTRU. The
two proposed designs are largely the same except on the
implementation methods for PWMs, related data bit sizes, and
deployed polynomial sizes.

IV. DUAL CROP BASED HARDWARE STRUCTURES (KEM
SABER)

KEM Saber requires the PWM of coefficients with 13-bits
or 10-bits with coefficients with 4-bits [20]. The 13-bit/10-
bit values are in the form of two’s complement while the 4-
bit values are usually represented in signed magnitude form.
This structure is designed for Saber which uses a secret (s) in
the range of [-4, 4] instead of LightSaber or FireSaber which
has a range of [-5, 5] or [-3, 3] respectively. Nevertheless,
the implemented hardware structure could be expanded to
LightSaber and FireSaber by altering the overall value ranges
and related bit width. Saber utilizes modulus (xn + 1) and n
values of power of two, and the proposed hardware structure
requires a sign control unit for the modular related operation.

Fig. 4: Top-level discription of the Dual CROP based PM for
Saber. (NTRU does not need the sign control).

The top level entity in Figure 4 depicts the overall hard-
ware accelerator structure for PM within Saber. The original
computation is split into two major PM components and it is
also shown that how various types of components are shared
between the two structures. The serial-in parallel-out shift
register (SR-SIPO) is first loaded with a values (4-bits in
Saber, which could be 12-bits for NTRU). Once all values
are stored in the shift register, computations begin in the PM
unit as two b values are delivered-in simultaneously. For the
first PM, a values are fed into the accelerator in parallel and
in order. For the second PM, the a values are selected in a
manner that the inputs are shifted by n/2 rotations from their
initial state (i.e. an/2, an/2+1, ...an/2−1). Each of the two PM
components generate the intermediate products in series (i.e.,
C0 and C1), which are summed to return the final product,
i.e., C = c0, c1, ...cn−1.
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Fig. 5: PM unit for Dual CROP based hardware accelerator
(Saber).

A single PM component for Saber is shown in Figure
5. This hardware unit calculates the point-wise products and
accumulates those values in a circular fashion. No inputs are
required to be shifted according to this setup, i.e., all the shift-
ing is done by the circulate unit involved with the registers,
and meanwhile a new b coefficient is fed to the structure on
each iteration. After n cycles, the first intermediate product is
produced at the first register. As the values are output serially,
the results will be shifted through the cyclic structure. To avoid
unnecessary accumulations during the output delivery time, the
input b need to be set to zero. On the other hand, another set
of operands can be input into the PM to compute back to back
polynomial products.

Notice that the inverter is removed from the original PM
design (Figure 3) and is replaced with sign controls driving
the carry-ins. This sign control, creates the modulus (xn + 1)
related operation that Saber uses. During the computational
stage, a sign control component generates the negations
required by Saber’s modulus. Figure 6 depicts the sign control
component.

Fig. 6: Sign control component for Dual CROP based PM
accelerator (for Saber, but not for NTRU).

The sign control generates half of the sign controls required
(i.e., sc0, sc1, ...scn/2−1), and then they are fed into both PM
units. The sign controlled values (scn/2, scn/2+1, ..., scn−1)
are constants and hence there is no need for them to be gen-
erated via the sign control unit. This allows for a smaller sign
control unit as only half the values need to be generated during
each iteration. For PM0, the values (scn/2, scn/2+1, ..., scn−1)

are always zero, while for PM1 they are always one. This
is due to the nature of the matrix A in Figure 2 that the
upper values (e.g., a3 and a2) in blue are never negated and
they are directly sent into PM0, while the upper values in red
are always negated and then sent into PM1. Within the PM
component, the sign control and the highest order bit of b
are used to decide whether a negation occurs. If a negation is
going to occur then the carry-ins of the respective adder is set
high to compute according to the two’s complement negation
by adding an additional one to the sum. Additionally, if the
negation is going to occur, there is also an inversion needed
for a two’s complement negation inside the related PWM.

Fig. 7: Multiples component for PWM used in Dual CROP
based hardware accelerator of Saber.

For Saber, the PM units use the lookup table based approach
for the involved PWMs. [?] and [13] introduced a PWM
scheme that one can select the product based on one of the
operands. Since the range of all possible values is relatively
small, the number of all possible products is also small. By
computing all possible products a multiplexer can be used to
select the appropriate precomputed product. Additionally, as
the 4-bit value is of signed magnitude form, only 4 values
absolute values must be precomputed (0, di, 2di, 3di, 4di) and
if the negative values (−di,−2di,−3di,−4di) are required
they are selected with the sign bit in a subsequent step. The
sign bit controls a second multiplexer which either selects the
inverse or the existing value.

The multiples component computes all absolute value
combinations and then multiplexers are used to select the
appropriate product, as shown in Figure 7. This unit can be
shared among all multiplexer units, so only one multiples
component is need for each of the two PM units. This
greatly reduces the area consumption of all the PWMs. If a
negative value is needed, the sign control selects the product’s
complement and a value of one is added via the carry-in within
the PM unit.

V. DUAL CROP BASED HARDWARE STRUCTURES (NTRU)

The design previously discussed for Saber in the previous
section can be applied to NTRU as well. With modification
to the modulus, the bit width, and the related PWMs. NTRU
uses mod(xn − 1) with a degree n = 821 and coefficients
of bit size of 12 (q = 212). As NTRU applies the modulus
(xn−1) rather than the modulus (xn+1) that Saber applies, we
can simplify the hardware Dual CROP based PM accelerator.
The sign control unit can be removed as there is no need for
negations during the accumulations. Additionally, the carry-in
of each adder in the PM unit can be set to 0. Finally, operand
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and product bit widths are adjusted to 12-bits according to the
parameter setting of NTRU.

The method used in the Saber design (i.e. the lightweight
look up table method) is not ideal for NTRU as the absolute
values represented with 12-bits are too large for the original
look up table method, when considering area-efficiency. The
look up table design can be applied to other operand bit
lengths, however, as the number of total possible products
increases so does the area consumption. As a result reduced
logic add and shift method is used with the NTRU design.

VI. COMPLEXITY ANALYSIS AND COMPARISON

Complexity Analysis: Table I summarizes the area-time
complexities of the design proposed along with other compet-
ing designs in the literature. The theoretical area-complexity
of the proposed Dual CROP based PM accelerator for Saber
is listed as follows: each PM unit of the proposed accelerator
has N 13-bit registers, N adders, and N multipliers. The Dual
CROP based PM for KEM Saber also involves one final adder,
a control unit, and a sign control unit.

For NTRU, the theoretical area-complexity of the proposed
accelerator is listed as follows. Each PM units has N 12-bit
registers, N adders, and N multipliers. Additional resources
are allocated to the control unit and one final adder. Within
NTRU, the number of multipliers and resources for PWMs
depends on the multiplication method selected. For simplicity
of discussion, we just use the proposed logic-reduced method
discussed.

TABLE I: Area-Time Complexities for PM Accelerators

Complexity Comparison for Different PM Accelerators
Scheme #Mul. #Add. #Registers Latency Output Style

CROP[?] N N N 2N-1 serial
HS CROP[?] 2N 2N N 3N/2-1 serial

HS-I[20] N N N 2N parallel*1
Dual CROP 2N 2N+1 2N 3N/2 serial

LFSR[?]* N N N 2N serial
Dual CROP* 2N 2N+1 2N 3N/2 serial

*: NTRU implementations.
*1: Extra resources to transfer output into a serial form, mostly refer to
MUXes and registers.
Latency refers to the loading and computational cycles

The latency defined includes processing time and loading
time excluding the off loading time or the time to deliver
all the outputs. The latency of the proposed accelerator is
3N/2 cycles, i.e., N cycles to load A ’s coefficients and
N/2 cycles for computation. As seen in Table I, the Dual
Crop based PM accelerator for Saber offers significant lower
time-complexity when compared to both the original CROP
design and the first high speed design (HS-I) proposed in
[20]. It is also noted that when comparing out proposed
design to the original high speed CROP design, the area-
complexity of the proposed accelerator is reduced, however,
there are more registers involved with the PM which offers
further opportunity for area reduction. For NTRU, while the
area complexity has been increased in comparison to [?],
the time complexity is greatly reduced. Additionally, the area

complexity of the NTRU design is comparable to the high
speed designs for Saber.

Implementation Results: The proposed designs are coded
in VHDL and their functions have been verified through soft-
ware simulation. The implementation results are also obtained
through Xilinx Vivado 2020.2 on the targeted device of Xilinx
FPGA UltraScale+ XCZU9EG-FFVB1156-2. Table II reports
the metrics of each implementation results, including the
number of cycles, maximum clock frequency (MHz), dynamic
power consumption (Watts), the number of LUTs, the number
of FFs, the number of DSPs, and the number of slices/CLBs.
The implementation results for the proposed PM accelerators
of Saber and NTRU are listed in the same table along with
a few existing designs. Note that the existing designs do not
report the power consumption and the number of slices and
thus we do not include them here.

TABLE II: Comparison of Different PM Hardware Accelera-
tors for Saber and NTRU

Implementations of PM
Scheme FPGA Cycles Clk Freq. LUT FF DSP CLB Power

CROP[?] CV 511 136.63 – – 0 6,921 –
HS-CROP[?] CV 383 103.62 – – 0 14,579 –

HS-I [20] U+ 512 250 10,844 5,150 0 – –
HS-II [20] U+ 387 250 15,625 14,136 128 – –

Standard[13] U+ 512 250 13,869 5,150 0 – –
Dual CROP U+ 384 310 22,127 7,841 0 3,427 0.747

Dual CROP*1 U+ 384 187 54,478 9,227 0 8,728 0.268
Dual CROP*2 U+ 384 171.9 66,138 9,240 0 11,166 1.798

Ultrascale+ (U+). Intel Cyclone V 5CSXFC6D6F31I7ES devices (CV). Clk
Frequency measured in MHz, Power measured in W. Cycles of loading and
multiplication(excludes outputting products)
*1: NTRU design with reduced logic PWM with n = 256.
*2: NTRU design with look up table based PWM with n = 256.

From Table II, one can see that the proposed Dual CROP
based PM accelerator involves the highest operational fre-
quency. Though the area usage of the proposed design, mainly
the numbers of LUTs and FFs, is larger than the one in [20]
(HS-I), the proposed accelerator has better time-complexity
as well as the overall area-time efficiency. In comparison to
(HS-II) [20], the area is reduced by removing DSP blocks, and
implementing less FFs. Meanwhile, the implementation results
also confirm the efficiency of the proposed PM accelerator for
NTRU. Table II also depicts the comparison of two PWM
methods utilized within the Dual CROP PM for NTRU. It is
shown that the reduced logic method of PWM offers a smaller
area complexity and higher frequency.

VII. CONCLUSION

This work introduced a novel Dual CROP based method
to implement the hardware accelerators in Saber and NTRU.
The proposed method and architectural details are detailed
provided. Implementation results are also given to confirm the
efficiency of the proposed work.
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