
Secure Hierarchical Deterministic Wallet Supporting Stealth
Address

Xin Yin1[0000−0001−8761−183X], Zhen Liu1[0000−0001−9268−702X], Guomin Yang2[0000−0002−4949−7738],
Guoxing Chen1[0000−0001−8107−5909], and Haojin Zhu1[0000−0001−5079−4556]

1 Shanghai Jiao Tong University, China
{yinxin,liuzhen,guoxingchen,zhu-hj}@sjtu.edu.cn

2 University of Wollongong, Australia
gyang@uow.edu.au

Abstract. Over the past decade, cryptocurrency has been undergoing a rapid development. Digital
wallet, as the tool to store and manage the cryptographic keys, is the primary entrance for the public
to access cryptocurrency assets. Hierarchical Deterministic Wallet (HDW), proposed in Bitcoin Im-
provement Proposal 32 (BIP32), has attracted much attention and been widely used in the community,
due to its virtues such as easy backup/recovery, convenient cold-address management, and supporting
trust-less audits and applications in hierarchical organizations. While HDW allows the wallet owner
to generate and manage his keys conveniently, Stealth Address (SA) allows a payer to generate fresh
address (i.e., public key) for the receiver without any interaction, so that users can achieve “one coin
each address” in a very convenient manner, which is widely regarded as a simple but effective way
to protect user privacy. Consequently, SA has also attracted much attention and been widely used in
the community. However, as so far, there is not a secure wallet algorithm that provides the virtues
of both HDW and SA. Actually, even for standalone HDW, to the best of our knowledge, there is no
strict definition of syntax and models that captures the functionality and security (i.e., safety of coins
and privacy of users) requirements that practical scenarios in cryptocurrency impose on wallet. As a
result, the existing wallet algorithms either have (potential) security flaws or lack crucial functionality
features.
In this work, we formally define the syntax and security models of Hierarchical Deterministic Wal-
let supporting Stealth Address (HDWSA), capturing the functionality and security (including safety
and privacy) requirements imposed by the practice in cryptocurrency, which include all the versatile
functionalities that lead to the popularity of HDW and SA as well as all the security guarantees that
underlie these functionalities. We propose a concrete HDWSA construction and prove its security in the
random oracle model. We implement our scheme and the experimental results show that the efficiency
is suitable for typical cryptocurrency settings.

Keywords: Signature Scheme · Hierarchical Deterministic Wallet · Stealth Address · Blockchain ·
Cryptocurrency.

1 Introduction

Since the invention of Bitcoin in 2008, cryptocurrency has been undergoing a tremendous development and
been attracting much attention in the community. As the name “cryptocurrency” implies, cryptography plays
a crucial role in cryptocurrencies. Particularly, Digital Signature [20, 18] is employed in cryptocurrencies to
enable users to own and spend their coins. More specifically, each coin is assigned to a public key (which is
also referred to as coin-address), implying that the coin belongs to the owner of the public key. When a user
wants to spend the coin on a public key pk, he needs to generate a transaction tx and a signature σ such that
(tx, σ) is a valid (message, signature) pair with respect to the public key pk, authenticating the spending of
the coin by this transaction. In such a mechanism, the secret key is the only thing that a user uses to own
and spend his coins. Naturally, key management plays a crucial role in cryptocurrencies. Different from the
key management in pure cryptography systems, the key management in cryptocurrency needs to work like
a “wallet” for the coins, providing some particular features reflecting the functionalities of currency, such as

making the transfers among users convenient and/or preserving the users’ privacy. Actually, digital wallet is
indispensable for any cryptocurrency system. A secure, convenient, and versatile wallet is desired.

Hierarchical Deterministic Wallet and Its Merits. Hierarchical Deterministic Wallet (HDW), proposed
in BIP32 (Bitcoin Improvement Proposal 32) [27], has been accepted as a standard in the Bitcoin community.
It is so popular that almost each cryptocurrency has implemented or is planing to implement a HDW. Roughly
speaking, HDW is characterized by three functionality features: deterministic generation property, master
public key property, and hierarchy property. As the name implies, the deterministic generation property means
that all keys in a wallet are deterministically generated from a “seed” directly or indirectly, so that when
necessary (e.g., the crash of the device hosting the wallet) the wallet owner can recover all the keys from
the seed. The master public key property means that a wallet owner can generate derived public keys from
the wallet’s master public key and use the derived public keys as coin-addresses to receive coins, without
needing any secrets involved, and subsequently, the wallet owner can generate the corresponding derived
secret keys to serve as the secret signing keys, which are used to sign and authenticate the transactions of
spending the coins on the derived public keys. The hierarchy property means that the derived key pairs could
serve as the master key pairs to generate further derived keys. With these three functionality features, HDW
provides very appealing virtues which lead to its popularity in the community. In particular, the deterministic
generation property allows the low-maintenance wallets with easy backup and recovery, the master public
key property supports convenient cold-address generation and enables the use case of trust-less audits, and
the hierarchy property enables the use case of treasurer allocating funds to departments and gives HDW
great potential to be applied in hierarchical organizations (e.g., large companies and institutions). Readers
are referred to [27, 14, 9, 16] for the details of these use cases.

“One Coin Each Cold-address” via HDW for Enhanced Coin Safety and User Privacy. In
cryptocurrencies, before the corresponding secret key appears in vulnerable online devices (referred to as
“hot storage”, e.g., computers or smart phones that are connected to Internet), a public key (i.e., coin-
address) is referred to as a “cold-address”. Once the corresponding secret key is exposed in any hot storage,
it is not cold any more and thus becomes a “hot address”. The cold/hot-address mechanism (or referred to
as cold/hot wallet mechanism) is used to reduce the exposure chance of secret keys and achieve better safety
of the coins. Namely, it recommends to store only a small amount of cryptocurrency coins on hot addresses
while transfer large amounts of coins to cold-addresses. As shown in Fig. 1, comparing with traditional
wallet (where the public/secret key pairs are generated via a standard key generation algorithm), HDW’s
master public key property enables the wallet owner to generate cold-addresses much more conveniently.
Namely, the owner stores the master public key in a hot storage (e.g., a server connected to Internet), and
when needed, he can generate derived public keys from the master public key without needing any secrets.
Note that these derived public keys keep to be cold-addresses until the owner generates the corresponding
derived secret keys and uses them in a hot storage to spend the coins. In addition, as considered in [27,
10, 11, 17, 9, 1, 8], the convenient cold-address generation implied by master public key property is also used
to enhance the privacy of the wallet owner, say achieving transaction unlinkability. In particular, “one coin
each address” mechanism is a simple but effective way to achieve transaction unlinkability. However, for
traditional wallets (with standard key generation mechanism), this will result in a huge cost on generating
and managing a large number of (public key, secret key) pairs, especially when cold-address mechanism is
considered simultaneously. Consequently, many users would hesitate to adopt this mechanism and still use
one coin-address to handle multiple or even many coins (referred to as address-reuse). This will definitely
weaken the users’ privacy and even may weaken the safety of their coins. In contrast, for wallets with master
public key property, generating derived public keys from master public key is very simple and convenient, and
the generated derived public keys are inherently cold (since the corresponding secret keys will be generated
only when they are needed for signing transactions). Therefore, a wallet owner will be very willing to generate
a fresh derived public key (i.e., a new cold-address) for each payment (i.e., each coin), achieving “one coin
each cold-address” 3 efficiently.

3 Note that we change the term from “one coin each address” to “one coin each cold-address”, to explicitly emphasize
that it is not only for the privacy-preservation but also for the safety of coins. More specifically, “one coin each
cold-address” mechanism means that, each address is used to host only one coin (i.e., no address-reuse), and before

2

𝑝𝑘!, 𝑠𝑘! ← 𝐾𝑒𝑦𝐺𝑒𝑛()
⋮

𝑝𝑘", 𝑠𝑘" ← 𝐾𝑒𝑦𝐺𝑒𝑛()

𝑝𝑘!
⋮
𝑝𝑘"

𝑚𝑝𝑘,𝑚𝑠𝑘 ← 𝑀𝑎𝑠𝑡𝑒𝑟𝐾𝑒𝑦𝐺𝑒𝑛()

Cold storageHot storage
Move safely

Payers

𝑚𝑝𝑘
𝑝𝑘!
⋮
𝑝𝑘"

⋮

⋮

Wallet Owner

𝑚𝑝𝑘,𝑚𝑠𝑘 ← 𝑀𝑎𝑠𝑡𝑒𝑟𝐾𝑒𝑦𝐺𝑒𝑛()𝑚𝑝𝑘

𝑝𝑘!
⋮
𝑝𝑘"

𝑝𝑘!
⋮
𝑝𝑘"

𝑚𝑝𝑘
𝑝𝑘!
⋮
𝑝𝑘"

1. Traditional Wallet

3. Stealth Address

Distribute

Distribute

Fetch

Derive

2. Wallet with Master Public Key Property

Fig. 1. Cold Address Generation and Distribution.

Stealth Address for Efficient, Non-interactive and Privacy-preserving Payment. While HDW
focuses on the key generation/derivation and management from the view point of a wallet owner managing his
wallet (i.e., keys), stealth address (SA), introduced by [6, 22, 23], is another popular key-derivation mechanism
in the community, which is also related to key generation and management, but from the perspective of
privacy-preservation when transferring coins among users. More specifically, with SA mechanism, each user
publishes his master public key, and for each payment, the payer could generate a fresh derived public key
for the payee from the payee’s master public key, without needing any interaction with the payee. On the
payee’s side, when he wants to spend a coin on a derived public key belonging to him, he can generate
the corresponding derived secret/signing key by himself, without needing any interaction with the payer or
anyone else. While the derived public keys serve as the coin-addresses, the master public key never appears
in any transaction or blockchain of the cryptocurrency, and no one (except the payer and payee) could link
a derived public key and corresponding coin/signature/transaction to the corresponding master public key,
so that master public key is “stealth” from the public. In summary, by SA mechanism, each coin-address is
fresh and unique by default (unless the payer uses the same random data for each of his payments to the
same payee 4), so that there is no such issue as “address reuse” by design. In other words, SA is an inherent
mechanism for “one coin each cold-address”. As a convenient way to protect user privacy, say achieving
transaction unlinkability, SA has attracted much attention and been widely used in the community, for
example in Monero [19, 13], which is one of the most popular privacy-centric cryptocurrencies.

Hierarchical Deterministic Wallet supporting Stealth Address for Improved Versatility and
Security. Noting the virtues of HDW and SA, as well as the facts that both are related to key genera-
tion/derivation and management and both take convenient cold-address generation as an important virtue,

the coin is spent, the address keeps to be cold, i.e., the address becomes hot only after the coin is spent. As a
result, ideally, even if the secret key for a coin-address is compromised (note that this may happen only when the
secret key is exposed in hot storage to spend the coin), it is useless to the attackers, since the only coin on the
address has been spent.

4 Note that the payee can detect such malicious behaviors easily.

3

Table 1. Comparison with Existing Works

Support Support Support Secure again Privacy-Preserving when Formally
Scheme 1 Master Public Hierarchy Stealth privilege escalation cold-address generation Modeled

Key Property? Property? Address? attack? material (in hot storage) & Proved?
compromised?

[27] ! ! # # # #

Hardened [27] # ! # ! — 2 #

[14] ! ! # Partially 3 # Partially 3

[10, 11] ! ! # ! # #

[17] ! Partially 4 # ! # !

[9, 1] (CCS’19, ’20) ! # # — 5 Partially 6 !

[8] (CCS’21) ! ! # Partially 7 # 7 !

[22, 19] — 8 — 8 ! # ! #

[16, 15] ! # ! ! ! !

This work ! ! ! ! ! !
1 All schemes in this table support deterministic generation property.
2 The Hardened BIP32 in [27] does not support convenient cold-address generation, since it loses the master

public key property.
3 The scheme in [14] considers only the resistance to complete key-recovery against only severely restricted

adversary.
4 The definition in [17] requires the hierarchy organization to be predefined in the setup of the wallet.
5 The security models in [9, 1] do not capture the attack of derived secret key compromising (i.e., the privilege

escalation attack).
6 The schemes in [9, 1] consider only forward-unlinkability, for the generated keys prior to a hot wallet breach.
7 The HDW in [8] still suffers from the same security flaws as the initial HDW and the Hardened HDW in [27].
8 The schemes in [22, 19] focus on stealth address, without considering the wallet properties.

it is natural to consider Hierarchical Deterministic Wallet supporting Stealth Address (HDWSA), which will
be a more versatile wallet providing virtues of HDW and SA simultaneously, and consequently will empower
more applications in cryptocurrency. However, designing a secure HDWSA is quite challenging, rather than
a trivial combination of two existing mechanisms. To the best of our knowledge, as shown in Table 1, such a
wallet has not been proposed yet. Existing wallet algorithms either suffer from (potential) security flaws or
lack crucial functionality features.

We now explain that Hierarchical Deterministic Wallet supporting Stealth Address is well motivated by
realistic scenarios, and how existing schemes fail to achieve both security and full functionality. In particular,
as shown in [27, 14, 9, 1, 8], master public key property enables convenient cold-address generation, thus
supports “one coin each cold-address”, and finally helps achieve transaction unlinkability, which is one of the
most important features that the users in practice are interested in. Note that master public key property
means that the wallet owner can generate cold-addresses from only information stored in hot storage (which
we refer to as “cold-address generation material” below), without needing any sensitive secrets. Considering
this property of HDW more comprehensively and deeply, we can find two issues: (1) to use these cold-addresses
to receive coins, the wallet owner has to somehow distribute these cold-addresses to the corresponding payers,
and (2) as storing the cold-address generation material in hot storage is the fundamental setting that enables
the master public key property, the cold-address generation material is very likely to be leaked due to its
continuous exposure in hot storage. Note that the first issue may cause concerns not only on convenience but
also on privacy, since the relation between the cold-addresses and the wallet owner may be leaked somehow
during the distribution. As for the second issue, for the existing typical HDW algorithms [27, 14, 9, 1, 8], if the
cold-address generation material is leaked, the privacy (i.e., the transaction unlinkability) is compromised
completely (e.g., [27, 14, 8]) or partially (e.g., [9, 1]). In contrast, as shown in Fig. 1, SA mechanism does
not suffer from these concerns at all, namely, the owner of a master public key only needs to publish his
master public key, then any one (including the payers and the wallet owner himself) can generate fresh

4

cold-addresses from the master public key, without needing any interaction or distribution, and as the master
public key serves as the only published cold-address generation material, there are no concerns on the leakage
of cold-address generation material. Thus, when compared with HDW, HDWSA will provide deterministic
generation property and hierarchy property as HDW does, and will provide enhanced master public key
property, which enables much better convenience and privacy; and when compared with SA, HDWSA will
provide hierarchy property, which is crucial to its applications in large companies and institutions, most of
which are hierarchical organizations. These features will enable HDWSA to support more applications in
practice than standalone HDW and SA.

Security Shortfalls of Prior Wallet Schemes. As the above mentioned functionality features lead to
the popularity of HDW and SA respectively, security is always the primary concern on these cryptographic
mechanisms. Actually, the initial HDW algorithm in BIP32 [27] suffers from a fatal security flaw, namely, as
pointed out in [27] and [5], once an attacker obtains a derived secret key and the master public key somehow,
he could figure out the master secret key and compromise the wallet completely and steal all the related coins.
Note that this is a very realistic attack (also referred to as privilege escalation attack [10, 11]), for example, in
practice, in the use case of trust-less audits, the master public key will be given to an auditor, and in the use
case of treasurer allocating funds to departments, derived secret keys will be distributed to the department
managers, so that the auditor and some department manager may collude to launch such an attack. Also,
from the cryptographic design or fault tolerant perspective, this issue is unsatisfactory, since as pointed out
by Liu et al.[16], in essence it means that, when a minor fault happens (say, one derived key is compromised
somehow), the damage is not limited to the leaked derived key only. Instead, it renders the master key
and all derived keys compromised. Since then, a series of works [27, 14, 10, 11, 16, 15, 17] have attempted to
address this problem. However, as shown in Table 1, the Hardened BIP32 in [27] loses the master public
key property (i.e., the parent secret key is required when generating a derived public key). The HDW wallet
in [14] considers only the resistance to complete key-recovery against only severely restricted adversaries
(which cannot query the signing oracle) rather than the standard unforgeability of signature. The wallet in
[10, 11] lacks formal security analysis and actually still suffers from a similar flaw. The wallet in [17] requires
the hierarchical organization to be preset in the setup phase of the wallet and does not support transaction
unlinkability 5. The algorithms in [16, 15] do not support the hierarchy property.

On the other side, based on the wide acceptance that provable security, i.e., formal security analysis
under formal definition of syntax and security models, will provide solid confidence on the security, existing
works [14, 16, 9, 15, 17, 1, 8] focus on providing formal definitions and security analysis for HDW and/or SA.
However, as shown in Table. 1, while the formal definitions and provably secure constructions for SA have
been proposed [16, 15], HDW still lacks a formal definition (of syntax and security models) that captures
the functionality and security requirements in practice. In particular, the scheme in [14] considers only a
model for resistance to complete key-recovery against only severely restricted adversary; the schemes in [9,
1] consider only a weak unforgeability model (without considering the compromising of derived secret keys,
i.e., the realistic privilege escalation attack considered in [27, 14, 10, 11, 16, 15, 17]) and a weak unlinkability
model (referred to as forward unlinkability, meaning that only the generated keys prior to a hot wallet breach
cannot be linked to the master public key), and does not consider the hierarchy property; the definition in
[17] requires the hierarchical organization to be preset in the setup phase of the wallet and does not support
privacy-preservation (namely, once a coin is spent, the corresponding signature will be linked to the wallet);
the schemes in [16, 15] do not support the hierarchy property. The latest work in providing provable security
for HDW is due to Das et al. [8], which focuses on the formal analysis of BIP32 system [27]. Although the
formal definition of syntax and models in [8] captures the deterministic generation property, master public
key property, and hierarchy property of BIP32 HDW wallet in [27], it inherits the flaws of BIP32 wallet in
[27], namely, (1) the compromising of any non-hardened node’s secret key may lead to the compromising of
all nodes in the hierarchical wallet, and (2) the hardened nodes escape from this flaw but lose the master
public key property.

5 [17] discussed how to support dynamic hierarchy but does not give formal model or proof, and discussed a method
to achieve transaction unlinkability, but will lose the master public key property.

5

2. 𝑅𝑜𝑜𝑡𝑊𝑎𝑙𝑙𝑒𝑡𝐾𝑒𝑦𝐺𝑒𝑛

PP

1.	𝑆𝑒𝑡𝑢𝑝

(𝑤𝑝𝑘!"#, 𝑤𝑠𝑘!"# = (𝑤𝑠𝑠𝑘!"# ,	𝑤𝑠𝑣𝑘!"#))

3. 𝑊𝑎𝑙𝑙𝑒𝑡𝐾𝑒𝑦𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒

root admin

𝐼𝐷′ = (𝑖𝑑$,	𝑖𝑑%)

𝐼𝐷 = (𝑖𝑑$)	

……

……

……

……

……

(𝐼𝐷# ,	𝑤𝑝𝑘!"#)

5.1
𝑉𝑒𝑟𝑖𝑓𝑦𝐾𝑒𝑦 −

𝐶ℎ𝑒𝑐𝑘

5.2
𝑆𝑖𝑔𝑛𝐾𝑒𝑦-
𝐷𝑒𝑟𝑖𝑣𝑒

5.3
𝑆𝑖𝑔𝑛

6.	𝑉𝑒𝑟𝑖𝑓𝑦
4.

𝑉𝑒𝑟𝑖𝑓𝑦𝐾𝑒𝑦 −
𝐷𝑒𝑟𝑖𝑣𝑒

……
𝑑𝑣𝑘1

𝑑𝑣𝑘'

0/1 𝑑𝑠𝑘

……
𝜎1

𝜎'

(𝐼𝐷′,	𝑤𝑝𝑘!"# ,	𝑤𝑠𝑣𝑘!"#) (𝐼𝐷# ,	𝑤𝑝𝑘!"#,	𝑤𝑠𝑘!"#)

Blockchain

Function
5

……

(𝑤𝑝𝑘!"	 ,	𝑤𝑠𝑘!" =
(𝑤𝑠𝑠𝑘!" 	, 𝑤𝑠𝑣𝑘!"))

Fig. 2. System model.

1.1 Our Contribution

In this work, we propose a novel Hierarchical Deterministic Wallet supporting Stealth Address (HDWSA)
scheme. In particular, we first formalize the syntax and the security models for HDWSA, capturing the func-
tionality and security (including safety of coins and privacy of users) requirements that the cryptocurrency
practice imposes on wallet. Then we propose a HDWSA construction and prove its security (i.e., unforge-
ability for safety and unlinkability for privacy) in the random oracle model. We implement our scheme and
the experimental results show that it is practical for typical cryptocurrency settings. The full-fledged func-
tionality, provable security, and practical efficiency of our HDWSA scheme will empower its applications in
practice.

System Model On the functionality, as the first attempt to formally define a primitive that provides
the functionalities of HDW and SA simultaneously, we would like to present the system and illustrate how
HDWSA works in cryptocurrency. In particular, as shown in Fig. 2, there are two layers in HDWSA, namely,
the layer supporting the management of hierarchical deterministic wallets for hierarchical organizations, and
the layer supporting stealth address for the wallet of each entity in an organization. In other words, from
the point of view of wallet management, HDWSA is a hierarchical deterministic wallet with the hierarchy
property and the deterministic generation property, and from the point of view of transactions, HDWSA
provides enhanced master public key property so that the wallet owners can enjoy the virtues of stealth
address (i.e., more convenient and more secure fresh cold-address generation). More specifically, to capture
the essence of hierarchical organizations (as shown later in Sect. 2.1), each entity is identified by a unique
identifier ID = (id0, id1, . . . , idt) with t ≥ 0, and a HDWSA scheme consists of eight polynomial-time
algorithms (Setup, RootWalletKeyGen, WalletKeyDelegate, VerifyKeyDerive, VerifyKeyCheck, SignKeyDerive,
Sign, Verify), which, from the functionality and data-flow view points, work as follows:

• (1) The Setup() algorithm is run to generate the system parameters PP.

6

(𝑤𝑝𝑘, 𝑤𝑠𝑠𝑘, 𝑤𝑠𝑣𝑘)

(𝑤𝑝𝑘, 𝑤𝑠𝑠𝑘, 𝑤𝑠𝑣𝑘) (𝑤𝑝𝑘, 𝑤𝑠𝑠𝑘, 𝑤𝑠𝑣𝑘)

(𝑤𝑝𝑘, 𝑤𝑠𝑠𝑘, 𝑤𝑠𝑣𝑘) (𝑑𝑣𝑘,𝑑𝑠𝑘) (𝑑𝑣𝑘,𝑑𝑠𝑘) (𝑑𝑣𝑘,𝑑𝑠𝑘)

(𝑑𝑣𝑘,𝑑𝑠𝑘)

*

Fig. 3. Safety of Coins. For a target coin (e.g., the starred one), as long as the derived signing key of the coin and
the wallet secret spend keys of its owner and its owner’s ancestor entities (i.e., the boxed ones) are safe, the coin is
safe, even if all other keys (i.e., the non-boxed ones) in the organization are compromised.

(𝑤𝑝𝑘, 𝑤𝑠𝑠𝑘, 𝑤𝑠𝑣𝑘)

(𝑤𝑝𝑘, 𝑤𝑠𝑠𝑘, 𝑤𝑠𝑣𝑘) (𝑤𝑝𝑘, 𝑤𝑠𝑠𝑘, 𝑤𝑠𝑣𝑘)

(𝑤𝑝𝑘, 𝑤𝑠𝑠𝑘, 𝑤𝑠𝑣𝑘) (𝑑𝑣𝑘,𝑑𝑠𝑘) (𝑑𝑣𝑘,𝑑𝑠𝑘) (𝑑𝑣𝑘,𝑑𝑠𝑘)

(𝑑𝑣𝑘,𝑑𝑠𝑘)

?

*

*

Fig. 4. Privacy of Users. For a target wallet (e.g., the starred one), as long as the wallet secret key and its ancestor
entities’ wallet secret keys (i.e., the boxed ones) are safe, no attacker can tell whether a target coin (e.g., the starred
one) belongs to the target wallet, even if the attacker compromises all other keys (i.e., the non-boxed ones) in the
organization, including the derived signing key of the target coin.

• (2) For any organization, the root administrator of the organization can set a unique identifier (e.g., the
name of the organization) ID = (id0) and run the RootWalletKeyGen() algorithm, generating the root wallet
key pair (wpkID,wskID) of the organization.

• (3) With the root wallet key pair (wpkID,wskID) with ID = (id0), the root administrator can run
the WalletKeyDelegate() algorithm to generate a wallet key pair (wpkID′ ,wskID′) for its direct subordinate
with identifier ID′ = (id0, id1), where id1 ∈ {0, 1}∗ identifies a direct subordinate of ID. Furthermore,
more generally, with a wallet key pair (wpkID,wskID), the wallet owner (i.e., the entity with identifier
ID = (id0, . . . , idt)) can run the WalletKeyDelegate() algorithm to generate wallet key pair (wpkID′ ,wskID′)
for its any direct subordinate with identifier ID′ = (id0, id1, . . . , idt, idt+1), where idt+1 ∈ {0, 1}∗ identifies
a unique direct subordinate of the entity ID.

• (4) For each entity, its identifier and wallet public key will serve as the cold-address generation material.
In particular, given an identifier ID and corresponding wallet public key wpkID, anyone (e.g., the payer
of a transaction) can run the VerifyKeyDerive() algorithm to generate a fresh derived verification key dvk,
which will be used as a coin-address for the wallet key owner (i.e., the entity with identifier ID). Note that
VerifyKeyDerive() does not need secret keys and is a randomized algorithm, namely, each time it outputs
a fresh (different) derived verification key (even on input the same (ID, wpkID)), so that “one coin each
cold-address” is achieved in a natural and very convenient manner.

7

• (5) From the view of a wallet owner, say an entity with identifier ID, the wallet secret key wskID is divided
into two parts: a wallet secret spend key wsskID and a wallet secret view key wsvkID. For any coin on the
blockchain, a wallet owner can use his wallet secret view key (together with his identifier and wallet public
key) to run the VerifyKeyCheck() algorithm to check whether the coin’s address dvk belongs to him (i.e., was
generated from his (ID, wpkID)), and for a derived verification key belonging to him, say dvk, the owner can
use his wallet secret spend key (together with his identifier, wallet public key, and wallet secret view key) to
run the SignKeyDerive() algorithm to generate the signing key dsk corresponding to dvk. Moreover, with the
dsk, the wallet owner can run the Sign() algorithm to authenticate a transaction, spending the coin on dvk.
Note that wsskID is more sensitive and high-value than wsvkID while wsvkID is used more frequently than
wsskID, such a separation enhances the security from the point of view of practice since it greatly reduces
the exposure chance of the high-value wsskID. In addition, such a separation enables our HDWSA to support
the promising applications such as trust-less audits, by allowing the wallet owner to provide the wallet secret
view key to the auditor while keeping the wallet secret spend key secret.6

• (6) For any coin on the blockchain, suppose the coin-address is dvk, anyone can run the Verify() algorithm
on inputs dvk and a (transaction, signature) pair (tx, σ), checking the validity of the signature (i.e. whether
the transaction is authenticated to spend the coin). In other words, from the view of the public, they can
check the transaction’s validity using only the information on the blockchain, without needing (or more
precisely, being able to learn) any information about the wallet/coin owner.

HDWSA Features, Security and Efficiency Based on the above system model, it is easy to see that our
HDWSA scheme achieves the deterministic generation property, the (enhanced) master public key property,
and the hierarchy property of HDW, and simultaneously provides the virtues of stealth address, namely the
convenient fresh cold-address generation and privacy-preserving features. Here we would like to clarify that
the master public key property of our HDWSA exactly captures the essence of this property imposed by
the practical applications, in the sense that the derived verification keys (i.e., coin-addresses) are generated
by using only public information (say user’s identifier and wallet public key) which are publicly posted in
hot-storage without incurring any security concerns. Note that this is the original motivation of the master
public key property and we indeed achieved, we do not pursue the “master public key property” for wallet
key generation (i.e., wallet key delegation). Actually, from the point of view of practice, it is natural for an
entity to use its wallet public key and secret key to generate wallet key pairs for its direct subordinates in
a safe environment (i.e., cold storage), and then each entity can publish its wallet public key and enjoy the
advantage of master public key property for derived verification key (i.e., coin-address) generation.

On the security, our HDWSA scheme achieves full resistance to privilege escalation attack. Namely, as
shown in Fig. 3, the compromising of a derived signing key will not affect the security of any other derived
signing key or wallet secret key, and the compromising of a wallet secret key will not affect the security of
any derived signing key or wallet secret key except those of the compromised wallet and its direct/indirect
subordinates. In other words, from the coin safety point of view, for a target derived verification key dvk
that belongs to entity ID = (id0, . . . , idt) with t ≥ 0, as long as the corresponding derived signing key dsk
is safe and the wallet secret spend keys of the entity (say wsskID) and its ancestor entities 7 (say wsskID|i
for i = 0, . . . , t − 1) are safe, the coin on dvk is safe, i.e., no attacker can spend the coin on dvk, even if
the attacker obtains all other wallet secret keys and derived signing keys, as well as wallet secret view keys
wsvkID|i(i = 0, . . . , t). And from the point of view of the privacy of users, as shown in Fig. 4, for a target
wallet owner with identifier ID, as long as its wallet secret key and its ancestors’ wallet secret keys are safe,
given a target derived verification key dvk, no one (except the creator of dvk) can tell whether dvk belongs
to ID. The security of our HDWSA scheme is proved in the random oracle mode, based on the standard
Computational Diffie-Hellman Assumption in bilinear map groups.

On the efficiency, from the experimental results shown in Table 2 and Table 3 (in Sect. 5), we can see
that the efficiency of our HDWSA scheme is lower than that of ECDSA, but is still practical for typical

6 This separation is borrowed from the stealth address mechanisms in [22, 16].
7 For an entity with identifier ID = (id0, . . . , idt) with t ≥ 1, we say the entities with identifiers ID|i := (id0, . . . , idi)

(i = 0, . . . , t− 1) are its ancestor entities.

8

cryptocurrency settings. Given the versatile functionalities and provable security provided by our HDWSA
scheme, such costs are reasonable and acceptable.

With the above versatile functionalities and the strong (i.e., provable) security that underlies these
functionalities, our HDWSA scheme could solidly (without any security concern) support the promising
use cases that have led to the popularity of HDW and SA, such as low-maintenance wallets with easy
backup and recovery, convenient fresh cold-address generation, trust-less audits, treasurer allocating funds
to departments in hierarchical organizations, and privacy-preservation, and so on, as shown in Appendix A.

1.2 Related Work

Table 1 gives a comprehensive comparison between our work and the existing related works, and below we
would like to give further details on the comparison with the state-of-the-art HDW and SA.

When compared with the state-of-the-art HDW [8], besides providing the virtues of SA, our HDWSA can
be regarded as a more secure HDW than the HDW in [8] and can support more promising applications. More
specifically, the HDW in [8] consists of two types of nodes, say non-hardened nodes and hardened nodes,
where the hardened nodes are leaf nodes of the hierarchy. If any of the non-hardened nodes is compromised,
then the privilege escalation attack will work and all nodes (including the root node and all hardened nodes)
will be compromised completely. The compromising of hardened nodes will not affect the security of other
nodes, but the cost is that the public key generation of a hardened node requires its parent node’s secret
key, i.e., losing the master public key property. In addition, on the privacy, if the cold-address generation
material (i.e., the public key and the chain code) of any non-hardened node is leaked, then the privacy of
all its descendent non-hardened nodes is compromised. As a result, due to its vulnerability to the privilege
escalation attack, the HDW in [8] cannot support the use case of treasurer allocating funds to departments
(which is supposed to be the main reason that leads to HDW’s popularity in hierarchical organizations),
and due to the existing of hardened nodes, the HDW in [8] cannot support the use case of trust-less audits.
In contrast, when working as a HDW, our HDWSA does not have these concerns at all and can support
all the promising use cases that lead to the popularity of HDW in the community. It is worth mentioning
that the advantage of the HDW in [8] over our HDWSA is its compatibility with ECDSA, as well as the
resulting better efficiency. Actually, the above advantages and disadvantages are not surprising, since while
[8] focuses on formalizing the BIP32 HDW system and its security, our work focuses on (1) establishing the
functionality and security requirements of HDW (with SA) that underlie the use cases leading to its popularity
in the community, and (2) proposing a concrete construction with provable security and practical efficiency.
Finally, we would like to point out that while the HDW in [8] only works under the assumption that the
non-hardened nodes are trusted (i.e., would not attempt to compromise other nodes’ secret keys) and could
protect their secret keys from being compromised, our HDWSA scheme does not need such assumptions and
can work in much more harsh environments.

When compared with the state-of-the-art SA [16, 15], the advantage of our HDWSA is the hierarchy
property, which will enable our HDWSA scheme to be applied in the hierarchical organizations (i.e., large
companies and institutions) and support the use cases such as treasurer allocating funds to departments.
While this work is the first one to formalize the definition and security models of Hierarchical Deterministic
Wallet supporting Stealth Address, the construction in this work seems to follow the approach of [16].
We would like to point out that this is not trivial, since supporting hierarchy property makes the formal
definition, the construction, and the formal security proof pretty challenging. The effort from provably secure
deterministic wallet [9, 1] to provably secure hierarchical deterministic wallet [8] could serve as an evidence
of such challenges.

In addition, as our construction employs the concept of hierarchical identifier to support the hierarchy
property and is indeed a signature scheme that makes use of the techniques of identity-based cryptography to
resist the privilege escalation attack, it is natural to consider whether such a construction could be obtained
directly from a Hierarchical Identity-Based Signature (HIBS) scheme [12, 7, 21]. We would like to point out
that, similar to that pointed out by Liu et al. [16], neither the definition nor the existing constructions of
HIBS consider protecting the signer’s privacy, whereas achieving privacy-preservation is one of the most

9

challenging issues in the construction and proof of HDWSA. Consequently, it is not trivial to convert a HIBS
scheme to a HDWSA scheme.

1.3 Outline

We formalize the syntax and security models for HDWSA in Sect. 2. Then we propose a HDWSA construction
in Sect. 3 and present the proof sketches in Sect. 4. Finally we describe an implementation of our HDWSA
construction in Sect. 5 and conclude the paper in Sect. 6. In Appendix. A we show that HDWSA supports
the promising use cases, and the security proof is given in Appendix. B.

2 Definitions of HDWSA

In this section, we first clarify the notations of hierarchical wallet, then we formalize the syntax and security
models of HDWSA.

2.1 Notations of Hierarchy

In this work, we use the typical hierarchical identifiers to capture the features of hierarchical organiza-
tions/wallets. In particular,

• All wallet owners are regarded as entities in hierarchical organizations.8

• Each entity in the system has a unique identifier ID in the form of ID = (id0, . . . , idt) with t ≥ 0 and
idi ∈ {0, 1}∗(i = 0, . . . , t).

• For any identifier ID = (id0, . . . , idt) with t ≥ 0 , we define ID|i := (id0, . . . , idi) for i = 0, . . . , t, and we
have that (1) ID|t is just ID, (2) ID|(t−1) is the identifier of ID’s parent (i.e., direct supervisor) entity, (3)
ID|i(i = 0, . . . , t − 1) are the identifiers of ID’ ancestor entities, and (4) ID|0 is the identifier of the root
entity (root administrator) of the organization that ID belongs to.

• For an identifier ID = (id0, . . . , idt) with t ≥ 0, we say that the entity lies in the Level-t of an organization
with identifier ID|0 = (id0). Note that for any Level-0 identifier ID, it is the identifier of the root entity of
some organization, and does not have parent entity.

From now on, we will denote a hierarchical organization by the identifier of its root entity, say a Level-0
identifier, e.g., “organization ID0”, and for an entity in some organization, we will use its identifier to denote
the entity or its wallet, e.g., “ID’s wallet public key”.

2.2 Algorithm Definition

A Hierarchical Deterministic Wallet supporting Stealth Address (HDWSA) scheme consists of eight polynomial-
time algorithms (Setup, RootWalletKeyGen, WalletKeyDelegate, VerifyKeyDerive, VerifyKeyCheck, SignKeyDerive,
Sign, Verify) as below:

• Setup(λ)→ PP. On input a security parameter λ, the algorithm runs in polynomial time in λ, and outputs
system public parameter PP.

The system public parameter PP consists of the common parameters used by all entities (e.g., wallet
owners, users, etc.) in the system, including the underlying groups, hash functions, and some specific rules
such as the hierarchical identifier rules in Sect. 2.1, etc. Below, PP is assumed to be an implicit input to all
the remaining algorithms.

• RootWalletKeyGen(ID) → (wpkID,wskID). This is a randomized algorithm. On input a Level-0 identifier
ID, the algorithm outputs a root (wallet public key, wallet secret key) pair (wpkID,wskID) for ID, where

8 Actually, an individual user can also be regarded as a special organization, for example, a user may manage his
wallets in a hierarchy manner.

10

wskID := (wsskID,wsvkID) consists of two parts, say wallet secret spend key wsskID and wallet secret view
key wsvkID.

The root administrator of each organization can run this algorithm to generate the root wallet key pair
for the organization.

• WalletKeyDelegate(ID,wpkID|(t−1)
,wskID|(t−1)

) → (wpkID, wskID). This is a deterministic algorithm. On

input an entity’s identifier ID = (id0, . . . , idt) with t ≥ 1 and its parent entity’s (wallet public key, wallet
secret key) pair, say (wpkID|(t−1)

, wskID|(t−1)
), the algorithm outputs a (wallet public key, wallet secret key)

pair (wpkID,wskID) for ID, with wskID := (wsskID,wsvkID) consisting of wallet secret spend key wsskID
and wallet secret view key wsvkID.

Each entity in the system, including the root entities of the organizations and any entity in any organi-
zation, can run this algorithm to generate wallet key pairs for its direct subordinates.

• VerifyKeyDerive(ID,wpkID)→ dvk. This is a randomized algorithm. On input an entity’s identifier ID =
(id0, . . . , idt) with t ≥ 0 and its wallet public key wpkID, the algorithm outputs a derived verification key
dvk belonging to the entity.

Anyone can run this algorithm to generate a fresh public/verification key for an entity at Level ≥ 0.

• VerifyKeyCheck(dvk, ID,wpkID,wsvkID) → 1/0. This is a deterministic algorithm. On input a derived
verification key dvk, an entity’s identifier ID = (id0, id1, . . . , idt) with t ≥ 0, and the entity’s wallet public
key wpkID and wallet secret view key wsvkID, the algorithm outputs a bit b ∈ {0, 1}, with b = 1 meaning
that dvk belongs to the entity (i.e., is a valid derived verification key generated for the entity), and b = 0
otherwise.

Each entity can use this algorithm to check whether a verification key belongs to him (i.e., was derived
from his identifier and wallet public key). Note that only the wallet secret view key is needed here, rather
than the whole wallet secret key.

• SignKeyDerive(dvk, ID,wpkID,wskID)→ dsk or ⊥. On input a derived verification key dvk, an entity’s iden-
tifier ID = (id0, . . . , idt) with t ≥ 0, and the entity’s (wallet public key, wallet secret key) pair (wpkID,wskID),
the algorithm outputs a derived signing key dsk, or ⊥ implying that dvk is not a valid verification key derived
from (ID,wpkID).

• Sign(m, dvk, dsk)→ σ. On input a message m in message space M and a derived (verification key, signing
key) pair (dvk, dsk), the algorithm outputs a signature σ.

• Verify(m,σ, dvk)→ 1/0. This is a deterministic algorithm. On input a (message, signature) pair (m,σ) and
a derived verification key dvk, the algorithm outputs a bit b ∈ {0, 1}, with b = 1 meaning the validness of
signature and b = 0 otherwise.

Correctness. HDWSA scheme must satisfy the following correctness property:
For any ID = (id0, . . . , idt) with t ≥ 0, any 0 ≤ j ≤ t, and any message m ∈M, suppose

PP← Setup(λ), (wpkID|0 ,wskID|0)← RootWalletKeyGen(ID|0),

(wpkID|i ,wskID|i)

←WalletKeyDelegate(ID|i,wpkID|(i−1)
,wskID|(i−1)

) for i = 1, . . . , j,

dvk← VerifyKeyDerive(ID|j ,wpkID|j),

dsk← SignKeyDerive(dvk, ID|j ,wpkID|j ,wskID|j),

it holds that

VerifyKeyCheck(dvk, ID|j ,wpkID|j ,wsvkID|j) = 1 and

Verify(m,Sign(m, dvk, dsk), dvk) = 1.

Remark : The deterministic algorithm WalletKeyDelegate() enables the deterministic generation property and
hierarchy property, and the randomized VerifyKeyDerive() algorithm enables the enhanced master public key

11

property where the identifier and wallet public key of the target wallet owner serve as the cold-address
generation material. Also, the algorithms VerifyKeyDerive(), VerifyKeyCheck(), and SignKeyDerive() together
enable the features of SA.

In addition, as the hierarchical identifiers are the foundation on which the hierarchy features are built on,
in the above syntax, each entity, as well as its wallet, is uniquely identified by its (hierarchical) identifier. Here
we would like to point out that, the binding of an entity’s wallet public key and its identifier could be achieved
using the standard approach of digital certificates. More specifically, for each hierarchical organization,
starting from the root administrator, when an entity generates wallet key pair for a direct subordinate, it
also issues a corresponding certificate to bind the subordinate’s identifier and wallet pubic key. Thus, from
the view of a user who wants to send coins to an entity, he can check the certificate chain and make sure he
is using the right wallet public key. Note that each payer only needs to verify the target payee’s certificate
one time, rather than for each transfer. While the details of certificate mechanism are out of the scope of this
work, here we would like to point out that, in our HDWSA, publishing the binding relation of wallet public
key and its owner’s (real) identifier will not cause any problem of privacy. Instead, this is an advantage of
HDWSA over pure HDW and traditional wallet (in Bitcoin). In particular, in pure HDW and traditional
wallet, the privacy is achieved by artificially hiding the real identity of a coin-address’ owner, whereas in
HDWSA, each entity can enjoy the convenience of (wallet) public key distribution while keeping its privacy
protected, as the wallet public key is stealth in the blockchain, i.e., no one could link the derived verification
keys or the corresponding signatures to the corresponding wallet public key and identifier. For simplicity,
below we will assume that each entity’s wallet public key and its identifier are integrated, i.e., each wallet
public key is identified by corresponding identifier.

2.3 Security Models

In this section, we define the security models for HDWSA, capturing the requirements on the safety (of
coins) and privacy (of users) by unforgeability and (wallet) unlinkability, respectively.

In particular, unforgeability is defined by the following game GameEUF, which captures that, as shown
in Fig. 3, for a target derived verification key dvk belonging to a target entity/wallet in some organization,
as long as the corresponding derived signing key dsk is safe and the wallet secret spend keys of the target
entity and its ancestor entities are safe, no attacker can forge a valid signature with respect to dvk, even if
the attacker compromises all other wallet secret keys and derived signing keys in the organization.

Definition 1. A HDWSA scheme is existentially unforgeable under an adaptive chosen-message attack (or
just existentially unforgeable), if for all probabilistic polynomial time (PPT) adversaries A, the success prob-
ability of A in the following game GameEUF is negligible.

� Setup. PP← Setup(λ) is run and PP is given to A.
An empty set Lwk = ∅ is initialized, each element of which will be an (identifier, wallet public key, wallet
secret key) tuple (ID,wpkID,wskID).
An empty set Ldvk = ∅ is initialized, each element of which will be a (derived verification key, identifier) pair
(dvk, ID).
Note that the two sets are defined just for the simplicity of description, and A knows the (ID,wpkID) pairs
in Lwk and (dvk, ID) pairs in Ldvk.

A submits a Level-0 identifier, say ID∗0 , to trigger the setup of the target organization.
(wpkID∗0 ,wskID

∗
0
) ← RootWalletKeyGen(ID∗0) is run, wpkID∗0 is given to A, and (ID∗0 ,wpkID∗0 ,wskID

∗
0
) is

added into Lwk.
This captures that the adversary may somehow manipulate the target organization’s identifier. Note that
RootWalletKeyGen() does not take any secret information as input and the adversary can also run this algo-
rithm on input any identifier of its choice, this captures that even if the adversary also runs RootWalletKeyGen()
on ID∗0 again, it could not break the unforgeability defined by this game.

� Probing Phase. A can adaptively query the following oracles:

12

• Wallet Key Delegate Oracle OWKeyDelegate(·):
On input an entity’s identifier ID = (id0, . . . , idt) with t ≥ 1 such that ID|(t−1) ∈ Lwk,9 this oracle runs
(wpkID, wskID) ← WalletKeyDelegate(ID,wpkID|(t−1)

, wskID|(t−1)
), returns wpkID to A, and sets Lwk =

Lwk ∪ (ID,wpkID,wskID),10 where (wpkID|(t−1)
, wskID|(t−1)

) is the (wallet public key, wallet secret key) pair
for ID|(t−1).
This captures that A can trigger the wallet key delegation for any identifier ID of its choice, as long as
ID|(t−1) ∈ Lwk, i.e., ID’s parent entity’s wallet key pair has been generated (resp. delegated) previously
due to A’s trigger in the Setup phase (resp. A’s query on OWKeyDelegate(·)). Note that the requirement
ID|(t−1) ∈ Lwk is natural although it makes A have to query OWKeyDelegate(·) level-by-level starting from
ID∗0’s direct subordinates, since ID∗0 is the target organization and A will attack some derived verification
key belonging to some entity in the organization ID∗0.

• Wallet Secret Key Corruption Oracle OWskCorrupt(·):
On input an entity’s identifier ID = (id0, . . . , idt) with t ≥ 0 11 such that ID ∈ Lwk, this oracle returns the
wallet secret key wskID of ID to A.
This captures that A can obtain the wallet secret keys for the existing wallet public keys of its choice.

• Wallet Secret View Key Corruption Oracle OWsvkCorrupt(·):
On input an entity’s identifier ID = (id0, . . . , idt) with t ≥ 0 such that ID ∈ Lwk, this oracle returns the
wallet secret view key wsvkID of ID to A.
This captures that A can obtain the wallet secret view keys for the existing wallet public keys of its choice.

• Verification Key Adding Oracle ODVKAdd(·, ·):
On input a derived verification key dvk and an entity’s identifier ID = (id0, . . . , idt) with t ≥ 0 such that
ID ∈ Lwk, this oracle returns b ← VerifyKeyCheck(dvk, ID,wpkID, wsvkID) to A, where wpkID and wsvkID
are ID’s wallet public key and wallet secret view key respectively. And if b = 1, this oracle sets Ldvk =
Ldvk ∪ (dvk, ID).
This captures that A can probe whether the derived verification keys generated by it are accepted by the
owners of the target wallets.

• Signing Key Corruption Oracle ODSKCorrupt(·):
On input a derived verification key dvk such that there is a corresponding pair (dvk, ID) in Ldvk, this oracle
returns
dsk← SignKeyDerive(dvk, ID,wpkID,wskID) to A, where (wpkID, wskID) is the wallet key pair of ID.
This captures that A can obtain the derived signing keys for the existing derived verification keys of the target
wallets, of its choice.

• Signing Oracle OSign(·, ·):
On input a messagem ∈M and a derived verification key dvk ∈ Ldvk12, this oracle returns σ ← Sign(m, dvk, dsk)
to A, where dsk is a signing key corresponding to dvk.
This captures that A can obtain the signatures for messages and derived verification keys of its choice.

� Output Phase. A outputs a message m∗ ∈ M, a signature σ∗, and a derived verification key dvk∗ such
that dvk∗ ∈ Ldvk.

Let (dvk∗, ID∗) ∈ Ldvk be the pair corresponding to dvk∗, and suppose the target wallet identifier ID∗

be a Level-t∗ identifier, say ID∗ = (id∗0, . . . , id
∗
t∗). A succeeds in the game if

Verify(m∗, σ∗, dvk∗) = 1 under the restrictions that (1) A did not query OWskCorrupt(·) on ID∗|i for any i

9 Note that we are abusing the concept of ‘∈’. In particular, if there exists a tuple (ID,wpkID,wskID) ∈ Lwk for
some (wpkID,wskID) pair, we say that ID ∈ Lwk.

10 Note that WalletKeyDelegate(·, ·, ·) is a deterministic algorithm, so that querying OWKeyDelegate(·) on the same
identifier will obtain the same response.

11 Note that actually A should not make such a query with t = 0 (as required by the success conditions defined in
later Output Phase), since that means A is querying the root wallet secret key of the target organization and
will win the game trivially.

12 Note that we are abusing the concepts of ‘∈’. In particular, if there exists a pair (dvk, ID) ∈ Ldvk for some ID, we
say that dvk ∈ Ldvk.

13

such that 0 ≤ i ≤ t∗, (2) A did not query ODSKCorrupt() on dvk∗, and (3) A did not query OSign() on
(m∗, dvk∗).

Remark : It is worth mentioning that A is allowed to query the wallet secret view keys for ID∗|i (i = 0, . . . , t∗)

by OWsvkCorrupt(·). This is important since it will guarantee the safety of coins when the trust-less audits
functionality is employed.

As the above unforgeability model captures the attackers’ ability exactly and completely, below we also
present a weaker unforgeability model, where the adversary is required to commit its target wallet’s identifier
(i.e., ID∗, which the target derived verification key dvk∗ belongs to) in ahead.

Definition 2. A HDWSA scheme is existentially unforgeable under an adaptive chosen-message attack with
selective wallet (or just selective wallet existentially unforgeable), if for all PPT adversaries A, the success
probability of A in the following game GameswEUF is negligible.

The game GameswEUF is identical to the above game GameEUF, except that the adversary commits its target
wallet in the Setup phase. More specifically, just before the start of Probing Phase, the adversary A
commits the identifier of the its target wallet, say, ID∗ = (id∗0, id

∗
1, . . . , id

∗
t∗) with t∗ ≥ 0 and ID∗|0 = ID∗0

(i.e., the identifier of an entity in the target organization ID∗0), committing that the target derived verification
key dvk∗ in the Ouput Phase will be one belonging to ID∗.

The wallet unlinkability is defined by the following game GameWUNL, which captures that, the adversary
is unable to identify the wallet, out of two wallets, from which a target derived verification key was generated
from, whatever the two wallets belong to the same organization or different organizations. Note that such
an “indistinguishability” model captures the intuition in Fig. 4 well.

Definition 3. A HDWSA scheme is wallet unlinkable, if for all PPT adversaries A, the advantages of A
in the following game GameWUNL, denoted by AdvWUNL

A , is negligible.

� Setup. PP← Setup(λ) is run and PP is given to A.
As in the Setup phase of GameEUF, two empty sets Lwk = ∅ and Ldvk = ∅ are initialized.
A submits two different Level-0 identifiers, say ID∗0

(0) and ID∗0
(1).

For k = 0, 1: (wpkID∗0 (k) ,wskID∗0 (k)) ← RootWalletKeyGen(ID∗0
(k)) is run, wpkID∗0 (k) is given to A, and

(ID∗0
(k),wpkID∗0 (k) ,wskID∗0 (k)) is added into Lwk.

This captures that the adversary may somehow manipulate the target organizations’ identifiers.

� Probing Phase 1. Same as the Probing Phase of GameEUF.

� Challenge. A submits two different challenge wallets’ identifiers ID(0) = (id
(0)
0 , . . . , id

(0)

t(0)
) and ID(1) =

(id
(1)
0 , . . . , id

(1)

t(1)
), such that t(0) ≥ 0, t(1) ≥ 0, and ID(0), ID(1) ∈ Lwk (implying ID

(0)
|0 , ID

(1)
|0 ∈ {ID

∗(0)
0 , ID

∗(1)
0 }).

A random bit c ∈ {0, 1} is chosen, dvk∗ ← VerifyKeyDerive(ID(c), wpkID(c)) is given to A.
(dvk∗, ID(c)) is added into Ldvk.

� Probing Phase 2. Same as Probing Phase 1.

� Guess. A outputs a bit c′ ∈ {0, 1} as its guess to c.
A succeeds in the game if c′ = c under the restrictions that (1) A did not query OWskCorrupt(·) or

OWsvkCorrupt(·) oracle on any ID ∈ {ID(0)
|i | 0 ≤ i ≤ t

(0)} ∪ {ID(1)
|i | 0 ≤ i ≤ t

(1)}, and (2) A did not query

oracle ODVKAdd(·, ·) on (dvk∗, ID(0)) or (dvk∗, ID(1)).
The advantage of A is AdvWUNL

A = |Pr[c′ = c]− 1
2 |.

Remark : Note that the adversary is allowed to choose the challenge identifiers ID(0) and ID(1) of its choice
completely, namely, they could be from same or different organizations, from same or different levels, or one
could be an ancestor of another. Note that the adversary is allowed to query the ODskCorrupt() and OSign()

14

oracles on the challenge derived verification key dvk∗, and this captures that neither the signature or the
derived signing key leaks the privacy of the owner of dvk∗.

It is worth noticing that, while the adversary in GameEUF should not query OWskCorrupt(·) on an identifier
ID = (id0, . . . , idt) with t = 0 such that ID ∈ Lwk (since it means corrupting the root wallet secret key of the
target organization ID∗0), the adversary in GameWUNL may query OWskCorrupt(·) and/or OWsvkCorrupt(·)
on an identifier ID = (id0, . . . , idt) with t = 0 such that ID ∈ Lwk, depending on its challenge wallet

identifier pair (ID(0), ID(1)). In particular, if ID
(0)
|0 = ID

(1)
|0 = ID

∗(k)
0 , then the adversary is allowed to

query OWskCorrupt(·) and/or OWsvkCorrupt(·) on ID
∗(1−k)
0 .

As the above unlinkability model captures the attackers’ ability exactly and completely, below we also
present a weaker unlinkability model, where the adversary is required to commit its challenge wallets in
ahead.

Definition 4. A HDWSA scheme is selective wallet unlinkable, if for all PPT adversaries A, the advantage
of A in the following games GameswWUNL, denoted by AdvswWUNL

A , is negligible.

The game GameswWUNL is identical to the above game GameWUNL, except that the adversary commits the
two challenge wallet identifiers in the Setup phase. More specifically, just before the start of Probing

Phase 1, the adversary A commits the two challenge wallet identifiers, namely, ID(0) = (id
(0)
0 , . . . , id

(0)

t(0)
)

and ID(1) = (id
(1)
0 , . . . , id

(1)

t(1)
) such that t(0) ≥ 0, t(1) ≥ 0, and ID

(0)
|0 , ID

(1)
|1 ∈ {ID

∗
0
(0), ID∗0

(1)}.

3 Our Construction

In this section, we first review some preliminaries, including the bilinear map groups and CDH assumption.
Then we propose a HDWSA construction.

3.1 Preliminaries

Bilinear Map Groups [4] Let λ be a security parameter and p be a λ-bit prime number. Let G1 be an
additive cyclic group of order p, G2 be a multiplicative cyclic group of order p, and P be a generator of G1.
(G1,G2) are bilinear map groups if there exists a bilinear map ê : G1 × G1 → G2 satisfying the following
properties:

1. Bilinearity: ∀(S, T) ∈ G1 ×G1,∀a, b ∈ Z, ê(aS, bT) = ê(S, T)ab.
2. Non-degeneracy: ê(P, P) 6= 1.
3. Computable: ∀(S, T) ∈ G1 ×G1, ê(S, T) is efficiently computable.

Definition 5 (Computational Diffie-Hellman (CDH) Assumption [25]). The CDH problem in bi-
linear map groups (p,G1,G2, P, ê) is defined as follows: given (P, aP, bP) ∈ G3

1 as input, output an element
C ∈ G1 such that C = abP . An algorithm A has advantage ε in solving CDH problem in (p,G1,G2, P, ê) if
Pr[A(P, aP, bP) = abP] ≥ ε, where the probability is over the random choice of a, b ∈ Zp and the random
bits consumed by A.

We say that the (t, ε)-CDH assumption holds in (p,G1,G2, P, ê) if no t-time algorithm has advantage at
least ε in solving the CDH problem in (p,G1,G2, P, ê).

3.2 Construction

• Setup(λ)→ PP. On input a security parameter λ, the algorithm chooses bilinear map groups (p,G1,G2, P, ê)
and cryptographic hash functions H0 : SID → G∗1, H1 : G1 × G1 → Z∗p, H2 : G1 × G1 → Z∗p, H3 :
G1 × G1 × G1 → G∗1, and H4 : (G1 × G2) × M × G2 → Z∗p, where G∗1 = G1\{0}, M = {0, 1}∗, and
SID := {ID = (id0, id1, . . . , idt) | t ≥ 0, idi ∈ {0, 1}∗ ∀0 ≤ i ≤ t}. The algorithm outputs public parameter

PP = ((p,G1,G2, P, ê), H0, H1, H2, H3, H4),

15

where the message space is M and the identifier space is SID.
PP is assumed to be an implicit input to all the algorithms below.

• RootWalletKeyGen(ID) → (wpkID,wskID). On input a Level-0 identifier ID, the algorithm chooses uni-
formly random αID, βID ∈ Z∗p, then outputs a (root) waller key pair (wpkID,wskID) as :

wpkID := (AID, BID) = (αIDP, βIDP) ∈ G1 ×G1,

wskID := (wsskID,wsvkID) = (αID, βID) ∈ Z∗p × Z∗p.

• WalletKeyDelegate(ID,wpkID|(t−1)
,wskID|(t−1)

) → (wpkID,wskID). On input an entity’s identifier ID =

(id0, . . . , idt) with t ≥ 1 and its parent entity’s (wallet public key, wallet secret key) pair, say wpkID|(t−1)
∈

G1 ×G1 and wskID|(t−1)
= (αID|(t−1)

, βID|(t−1)
) ∈ Z∗p × Z∗p, the algorithm proceeds as below:

1. Compute QID = H0(ID) ∈ G∗1,

2. Compute αID = H1(QID, αID|(t−1)
QID) ∈ Z∗p,

3. Compute βID = H2(QID, βID|(t−1)
QID) ∈ Z∗p,

4. Output wallet key pair (wpkID,wskID) for ID as

wpkID := (AID, BID) = (αIDP, βIDP) ∈ G1 ×G1,

wskID := (wsskID,wsvkID) = (αID, βID) ∈ Z∗p × Z∗p.

• VerifyKeyDerive(ID,wpkID) → dvk. On input an entity’s identifier ID = (id0, . . . , idt) with t ≥ 0 and the
entity’s wallet public key wpkID = (AID, BID) ∈ G1 ×G1, the algorithm proceeds as below:

1. Choose a uniformly random r ∈ Z∗p,
2. Output a derived verification key dvk := (Qr, Qvk) with

Qr = rP ∈ G1,

Qvk = ê(H3(BID, rP, rBID),−AID) ∈ G2.

• VerifyKeyCheck(dvk, ID,wpkID,wsvkID) → 1/0. On input a derived verification key dvk = (Qr, Qvk) ∈
G1 × G2, an entity’s identifier ID = (id0, . . . , idt) with t ≥ 0, and the entity’s wallet public key wpkID =
(AID, BID) ∈ G1 × G1 and wallet secret view key wsvkID = βID ∈ Z∗p, the algorithm checks whether

Qvk
?
= ê(H3(BID, Qr, βIDQr),−AID) holds. If it holds, the algorithm outputs 1, otherwise outputs 0.

• SignKeyDerive(dvk, ID,wpkID,wskID)→ dsk or ⊥. On input a derived verification key dvk = (Qr, Qvk) ∈
G1 × G2, an entity’s identifier ID = (id0, . . . , idt) with t ≥ 0, and the entity’s (wallet public key, wallet
secret key) pair, say wpkID = (AID, BID) ∈ G1 × G1 and wskID = (αID, βID) ∈ Z∗p × Z∗p, the algorithm
checks whether
Qvk

?
= ê(H3(BID, Qr, βIDQr),−AID) holds. If it holds, the algorithm outputs a derived signing key dsk as

dsk = αIDH3(BID, Qr, βIDQr) ∈ G1,

otherwise, outputs ⊥.

• Sign(m, dvk, dsk) → σ. On input a message m in message space M, a derived verification key dvk =
(Qr, Qvk) ∈ G1 ×G2, and a derived signing key dsk ∈ G1, the algorithm proceeds as below:

1. Choose a uniformly random x ∈ Z∗p, then compute X = ê(xP, P) ∈ G2.

2. Compute h = H4(dvk,m,X) ∈ Z∗p.
3. Compute Qσ = h · dsk + xP ∈ G1.

4. Output σ = (h,Qσ) ∈ Z∗p ×G1 as the signature for m.

16

• Verify(m,σ, dvk) → 1/0. On input a (message, signature) pair (m,σ) with σ = (h,Qσ) ∈ Z∗p × G1 and a

derived verification key dvk = (Qr, Qvk) ∈ G1×G2, the algorithm checks whether h
?
= H4(dvk,m, ê(Qσ, P) ·

(Qvk)h) holds. If it holds, the algorithm outputs 1, otherwise outputs 0.

Correctness. The correctness is satisfied, since

βIDQr = βID(rP) = r(βIDP) = rBID,

ê(Qσ, P) · (Qvk)h = ê(h · dsk + xP, P) · ê(H3(BID, rP, rBID),−AID)h

= ê(h · αIDH3(BID, Qr, βIDQr), P) · ê(xP, P)

· ê(H3(BID, rP, rBID),−αIDP)h

= ê(xP, P) = X.

4 Security Proofs

In this section, we prove our HDWSA construction is selective wallet existentially unforgeable (with respect
to Definition 2) and is selective wallet unlinkable (with respect to Definition 4). In addition, we also show
that at the cost of a reduction loss factor, our construction can be proven unforgeable and unlinkable in the
adaptive model.

4.1 Proof of Selective Unforgeability

Theorem 1. The HDWSA scheme is selective wallet existentially unforgeable under the CDH assumption
in the random oracle model.

Proof (Sketch). We give a sketch of the proof below and give the proof details in Appendix B.1.
In the proof we will show that, if there exists a PPT adversary A that can win GameswEUF for our HDWSA

construction with non-negligible probability, then we can construct a PPT algorithm B that can solve the
CDH problem with non-negligible probability.
B is given bilinear groups (p,G1,G2, P, ê) and a tuple (P,A = aP,B = bP) ∈ G3

1 for unknown a, b ∈ Z∗p,
and the target of B is to compute an element C ∈ G1 such that C = abP .

Let A’s target wallet identifier be ID∗ = (id∗0, . . . , id
∗
t∗). To simulate the game GameswEUF to A, B

programs random oracles for hash functions H0, H1, H3 and H4 and sets wallet keys for ID∗|i (i = 0, . . . , t∗)
as below:

• For i = 0, . . . , t∗: B sets (AID∗|i = α′ID∗|i
A, BID∗|i = βID∗|iP), where α′ID∗|i

and βID∗|i are chosen uniformly

at random from Z∗p. Note that this means that B knows wsvkID∗|i = βID∗|i but does not know the value of

wsskID∗|i (i.e., α′ID∗|i
a).

• B programs H0 so that H0(ID) = QID = bIDB for ID ∈ {ID∗|i | 1 ≤ i ≤ t∗} and H0(ID) = QID = bIDP

for ID /∈ {ID∗|i | 1 ≤ i ≤ t∗}, where bID is chosen uniformly at random from Z∗p.
• Note that with the above two settings, H1 is implicitly programmed so that H1(QID∗|i , (α

′
ID∗|(i−1)

a)QID∗|i) =

α′ID∗|i
a (for i = 1 . . . , t∗). Note that B does not need to worry that it cannot output hash value α′ID∗|i

a for such

a query, since if A made such a query, the second input, say (α′ID∗|(i−1)
a)QID∗|i actually provides a solution for

CDH problem (note that (α′ID∗|(i−1)
a)QID∗|i = (α′ID∗|(i−1)

bID∗|i)abP). For any other queries to H1, B chooses

uniformly random value from Z∗p as the output hash value.

• With the above settings, and by calling H2 as a normal hash function, B can generate wallet key pairs
wpkID = (AID = αIDP,BID = βIDP) for any ID /∈ {ID∗|i | 0 ≤ i ≤ t∗}, where αID and βID are

outputs of H1 and H2 respectively. This means that, for any ID /∈ {ID∗|i | 0 ≤ i ≤ t∗}, B can simulate the

OWKDelegate(), OWskCorrupt(), and OWsvkCorrupt() to A. On the other side, for any ID ∈ {ID∗|i | 0 ≤

17

i ≤ t∗}, B can simulate OWKDelegate() by returning the corresponding wpkID∗|i
, and can simulate the

OWsvkCorrupt() by returning corresponding βID∗|i . Note that A does not query OWskCorrupt() on any ID ∈
{ID∗|i | 0 ≤ i ≤ t∗}.

•Note thatA’s target derived verification key dvk∗ must be one valid with respect to ID∗ (i.e., ODVKAdd(dvk∗,
ID∗) returns 1), which must be based on aH3-query on input (BID∗ , input2, input3) for some input2, input3 ∈
G1 such that ê(BID∗ , input2) = ê(P, input3). B chooses a uniformly random j∗ ∈ {1, . . . , qH3

+ qvka} as its
guess that (1) the j∗-th query to H3, say on inputs (input∗1, input

∗
2, input

∗
3), will satisfy input∗1 = BID∗ AND

ê(input∗1, input
∗
2) = ê(P, input∗3), and (2) the target derived verification key dvk∗ will be based on the j∗-th

query to H3.13 Then B programs H3 such that, for j-th H3-query where j 6= j∗, H3(input1, input2, input3) =
Vj = ηjP , and for j∗-th H3-query, H3(input∗1, input

∗
2, input

∗
3) = Vj = ηjB, where ηj ∈ Z∗p is chosen uniformly

at random. Note that the probability that A guess the right j∗ is at least 1/(qH3
+ qvka).

• With the above settings, B can simulate the ODVKAdd() to A, since it knows the wallet secret view key
βID for any ID. Further, B can simulate the ODSKCorrupt() to A. In particular, consider a queried dvk
belonging to ID: if ID /∈ {ID∗|i | 0 ≤ i ≤ t∗}, B can compute dsk = αID(ηjP); if ID ∈ {ID∗|i | 0 ≤ i ≤ t∗}
and dvk 6= dvk∗, B can compute dsk = α′ID∗|i

ηjA (note that αID∗|i = α′ID∗|i
a). Note that A does not query

ODSKCorrupt() on dvk∗.

• With the above settings, B can simulate the OSign() to A. In particular, for any dvk 6= dvk∗, B just runs
the signing algorithm, since it knows the corresponding dsk as shown above. For dvk∗, B does not know the
value of dsk∗ = (α′ID∗a) · (ηj∗B), but it can set X = ê(x1A,B) · ê(x2P, P), implicitly setting x = x1ab+ x2,
and program H4 to make h = H4(dvk∗,m,X) = − x1

α′
ID∗ηj∗

, so that Qσ = x2P = h · dsk∗ + xP .

• Finally, by programming H4 and applying rewinding and forking lemma [2], B can extract a solution for
the CDH problem.

4.2 Proof of Selective Unlinkability

Theorem 2. The HDWSA scheme is selective wallet unlinkable under the CDH assumption in the random
oracle model.

Proof (Sketch). We give a sketch of the proof below and give the proof details in Appendix B.2.
In the proof we will show that, if there exists a PPT adversary A that can win GameswWUNL for our

HDWSA construction with non-negligible advantage, then we can construct a PPT algorithm B that can
solve the CDH problem with non-negligible probability.
B is given bilinear groups (p,G1,G2, P, ê) and a tuple (P,A = aP,B = bP) ∈ G3

1 for unknown a, b ∈ Z∗p,
and the target of B is to compute an element C ∈ G1 such that C = abP .

Let A’s two challenge wallet identifiers be ID(k) = (id
(k)
0 , . . . , id

(k)

t(k)) for k = 0, 1. Let SchID :=

{ID(0)
|i | 0 ≤ i ≤ t(0)} ∪ {ID(1)

|i | 0 ≤ i ≤ t(1)}. To simulate the game GameswWUNL to A, B programs

random oracles for hash functions H0, H2, and H3 and sets wallet keys for ID ∈ SchID as below:

• For ID ∈ SchID: suppose ID = ID
(k)
|i , B sets (A

ID
(k)

|i
= α

ID
(k)

|i
P , B

ID
(k)

|i
= β′

ID
(k)

|i
B), where α

ID
(k)

|i
and

β′
ID

(k)

|i
are chosen uniformly at random from Z∗p. Note that this means B knows wssk

ID
(k)

|i
= α

ID
(k)

|i
but does

not know the value of wsvk
ID

(k)

|i
(i.e., β′

ID
(k)

|i
b).

• B programs H0 so that H0(ID) = QID = aIDA for ID ∈ {ID(0)
|i | 1 ≤ i ≤ t(0)} ∪ {ID(1)

|i | 1 ≤ i ≤ t(1)}
and H0(ID) = QID = aIDP for ID /∈ {ID(0)

|i | 1 ≤ i ≤ t(0)} ∪ {ID(1)
|i | 1 ≤ i ≤ t(1)}, where aID is chosen

uniformly at random from Z∗p.

13 It is assumed that the adversary makes qH3 queries to random oracle H3 and qvka queries to the verification key
adding oracle ODVKAdd().

18

• Note that with above two settings, H2 is implicitly programmed so that H2(Q
ID

(k)

|i
, (β′

ID
(k)

|(i−1)

b)Q
ID

(k)

|i
) =

β′
ID

(k)

|i
b for ID

(k)
|i ∈ {ID

(0)
|i | 1 ≤ i ≤ t(0)} ∪ {ID(1)

|i | 1 ≤ i ≤ t(1)}. Note that B does not need to worry that

it cannot output hash value β′
ID

(k)

|i
b for such a query, since if A made such a query (we denote this event

by E2), the second input, say (β′
ID

(k)

|(i−1)

b)Q
ID

(k)

|i
actually provides a solution for CDH problem (note that

(β′
ID

(k)

|(i−1)

b)Q
ID

(k)

|i
= (β′

ID
(k)

|(i−1)

a
ID

(k)

|i
)abP). For any other queries to H2, B chooses uniformly random value

from Z∗p as the output hash value.

• With the above settings, and by calling H1 as a normal hash function, B can generate wallet key pairs
wpkID = (AID = αIDP,BID = βIDP) for any ID /∈ SchID, where αID and βID are outputs of H1 and H2

respectively. This means that, for any ID /∈ SchID, B can simulate the OWKDelegate(), OWskCorrupt(), and
OWsvkCorrupt() toA. On the other side, for any ID ∈ SchID, B can simulate OWKDelegate() by returning the
corresponding wpk

ID
(k)

|i
. Note that A does not query OWskCorrupt() or OWsvkCorrupt() on any ID ∈ SchID.

• For the H3-queries and ODVKAdd()-queries, B behaves in different manners before and after the Challenge
Phase. In particular,

1. In Probing Phase 1: B programs H3 in a standard manner, namely, for each query on new/different
inputs, B chooses a uniformly random V ∈ G1 and returns V . Consequently, for any ODVKAdd()-query,
say on (dvk = (Qr, Qvk), ID), B just runs the normal VerifyKeyCheck(), namely, identifies the H3-tuple

(BID, Qr, input3, V) ∈ LH3
and checks whether ê(BID, Qr) = ê(P, input3) and Qvk

?
= ê(V,−AID) hold.

2. In Challenge Phase, B chooses a random c ∈ {0, 1}, and sets dvk∗ = (Q∗r , Q
∗
vk) with Q∗r = A,Q∗vk =

ê(V ∗,−AID(c)) where V ∗ ∈ G∗1 is chosen uniformly at random. Note that B is implicitly programming
H3 such that H3(BID(c) , A, β′ID(c)aB) = V ∗, although it does not know the value of the third input
β′
ID(c)aB. Note that B does not need to worry that A has made such a query to H3, since this is the

first time the group element A appears in A’s view.
3. In Probing Phase 2: When H3 is queried on a tuple (BID(k) , A, input3) for some k ∈ {0, 1} and
input3 ∈ G1 , B checks whether ê(input3, P) = ê(BID(k) , A) holds (this event is denoted by E3). If
E3 happens, B outputs 1

β′
ID(k)

input3 as its solution for the CDH problem and aborts the game, otherwise,

B acts as the same way as in that of Probing Phase 1. When ODVKAdd() is queried on a pair
(dvk = (Qr, Qvk), ID), if ID /∈ {ID(0), ID(1)} OR Qr 6= Q∗r , B just runs the normal VerifyKeyCheck(),
otherwise (i.e, ID ∈ {ID(0), ID(1)} AND Qr = Q∗r AND Qvk 6= Q∗vk), B directly returns 0 to A (the
probability that B’s simulation is incorrect is bounded by qvka/(p − 1), the analysis is referred to the
proof details in Appendix B.2).

•With the above settings, B can simulate ODSKCorrupt() to A, since it knows αID for any ID and programs
the H3 oracle. Particularly, when Amakes ODSKCorrupt() on dvk∗, B returns dsk∗ = αID(c) ·V ∗. Furthermore,
B can simulate the OSign() to A, since it knows the derived signing key for any derived verification key,
including dvk∗.

• Finally, if neither E2 nor E3 happens, and B does not simulate ODVKAdd() wrongly (which happens only
with probability qvka/(p − 1)), the game simulated by B is identical to the real game. Meanwhile, in the
simulated game, V ∗ is uniformly chosen and unknown to A, so no information of c is leaked through dvk∗

and dsk∗ and the advantage of A is 0 over a random guess. Therefore, under the assumption that A has a
non-negligible advantage εA in GameswWUNL, we conclude that Pr[E2 ∨ E3] ≥ εA − qvka

p−1 in the simulation,
and B can solve the CDH problem with the same probability.

4.3 Unforgeability and Unlinkability in the Adaptive Model

Following Boneh et al.’s approach for achieving full security of Hierarchical Identity Based Encryption (HIBE)
construction [3], our HDWSA construction can be proven unforgeable in the adaptive model, at the cost of a
reduction loss factor of 1

h+1
1
qhH0

, where qH0
is the number of hash oracle queries to H0 and h is the maximum

19

Table 2. Sizes of Signature and Keys of an Implementation

Derived Verification Key Signature Wallet Public Key Wallet Secret Key Derived Signing Key

193 Bytes 97 Bytes 130 Bytes 64 Bytes 65 Bytes

Table 3. Time of Key Generation/Derivation, Signing and Verification of an Implementation of Our HDWSA Scheme

Setup RootWalletKeyGen WalletKeyDelegate VerifyKeyDerive VerifyKeyCheck SignKeyDerive Sign Verify

7.769 ms 0.920 ms 4.111 ms 3.352 ms 3.122 ms 3.322 ms 1.505 ms 0.665 ms

level of identifiers/entities in an organization. Note that for hierarchical systems, it is natural to set such a
parameter h, and in a practical organization hierarchy, h would be a small integer.

The approach to proving adaptive unforgeability is to guess the target wallet before interacting with the
adversary as follows. In the Setup phase, the challenger simulates the root wallet key for the root identifier
ID∗0 = (id∗0) as in the current proof for selective unforgeability. Then, before the start of the Probing Phase,
the challenger chooses a random integer t∗ ∈ [0, h] as its guess that the target wallet will be at Level-t∗.
Then the challenger chooses random j∗1 ∈ [1, qH0

], j∗2 ∈ [1, qH0
], . . . , j∗t∗ ∈ [1, qH0

], as its guess that ID∗0 ’s
j∗1 -th subordinate, say ID∗1 = (id∗0, id

∗
1), will be the Level-1 ancestor of the target wallet, ID∗1 ’s j∗2 -th

subordinate, say ID∗2 = (id∗0, id
∗
1, id

∗
2), will be the Level-2 ancestor of the target wallet, . . . , and ID∗t∗−1’s j∗t∗

-th subordinate, say ID∗t∗ = (id∗0, id
∗
1, id

∗
2, . . . , id

∗
t∗), will be the target wallet. Note that for the case of t∗ = 0,

the challenger guesses ID∗0 = (id∗0) as the target wallet and does not need to choose the random j∗1 , . . . , j
∗
t∗ .

To deal with the above random guess, each identifier should be assigned an index in the hash table for H0.
In the Probing Phase, when the adversary queries H0 on input an identifier ID at Level-k of organization
ID∗0 , say ID = (id∗0, id1, . . . , idk), for each i ∈ [1, k], if IDi := (id∗0, id1, . . . , idi) has not been queried before,
the challenger simulates a query to H0 on input IDi to add IDi into the hash table for H0.

In such a way, the challenger can program H0 as in the current proof for selective unforgeability, even
when the target wallet identifier is selected adaptively, rather than committed in advance as in the selective
model. If the adversary queries OWskCorrupt() on any of the guessed identifiers (i.e., the guessed target
wallet or its ancestors), the challenger aborts (i.e., the challenger’s guess is wrong), otherwise, the proof is
the same as the current proof for selective unforgeability.

Note that the challenger can guess the right target with probability at least 1
h+1 (1

qH0
)t
∗ ≥ 1

h+1
1
qhH0

.

The proof for unlinkability in the adaptive model is similar.

It is worth mentioning that, removing such a reduction loss factor in the adaptive unforgeability and
unlinkability proof could be pretty challenging. As the situation is similar to that of HIBE’s development,
the techniques for adaptive HIBE, e.g., the dual system encryption [26], could be potential tools to address
this problem. We leave this as our future work.

5 Implementation

We implemented our HDWSA scheme in Golang and the source codes are available at
https://github.com/cryptoscheme/hdwsa. Our implementation uses the Pairing-Based Cryptography Li-
brary [24], and uses a type A pairing on elliptic curve y2 = x3 + x over Fq for a 512-bit q and group
with 160-bit prime order, implying 80-bit security. Our implementation uses SHA-256 to implement the
hash functions.

Table 2 and Table 3 show the experimental results of our implementation on a usual computation environ-
ment, namely, a desktop with Intel(R) Core(TM) i7 10700 CPU @2.90GHz., 16 GB memory, and operating
system Ubuntu 20.04 LTS. We clarify that our implementation was simply experimental and did not optimize
further. We clarify further that we use point compression in computing the size of element in group G1.

20

6 Conclusion

In this work, we formally define the syntax and security models of Hierarchical Deterministic Wallet sup-
porting Stealth Address, which captures all the versatile functionalities that lead to the popularity of HDW
and SA as well as all the security guarantees (including the safety and privacy) that underlie these function-
alities. We propose a concrete HDWSA construction and prove its security in the random oracle model. We
implement our scheme and the experimental results show that the time and space consumption is suitable
for cryptocurrency settings.

References

1. Alkadri, N.A., Das, P., Erwig, A., Faust, S., Krämer, J., Riahi, S., Struck, P.: Deterministic wallets in a quantum
world. In: CCS ’20. pp. 1017–1031 (2020)

2. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Juels,
A., Wright, R.N., di Vimercati, S.D.C. (eds.) CCS 2006. pp. 390–399. ACM (2006)

3. Boneh, D., Boyen, X., Goh, E.: Hierarchical identity based encryption with constant size ciphertext. In: EURO-
CRYPT 2005. pp. 440–456 (2005)

4. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: CRYPTO 2001. pp. 213–229
(2001)

5. Buterin, V.: Deterministic wallets, their advantages and their understated flaws. Bitcoin Magazine (2013)
6. ByteCoin: Untraceable transactions which can contain a secure message are inevitable (2011),

https://bitcointalk.org/index.php?topic=5965.0
7. Chow, S.S.M., Hui, L.C.K., Yiu, S., Chow, K.P.: Secure hierarchical identity based signature and its application.

In: ICICS 2004. pp. 480–494 (2004)
8. Das, P., Erwig, A., Faust, S., Loss, J., Riahi, S.: The exact security of BIP32 wallets. In: CCS ’21. pp. 1020–1042

(2021)
9. Das, P., Faust, S., Loss, J.: A formal treatment of deterministic wallets. In: CCS 2019. pp. 651–668 (2019)

10. Fan, C., Tseng, Y., Su, H., Hsu, R., Kikuchi, H.: Secure hierarchical bitcoin wallet scheme against privilege
escalation attacks. In: IEEE Conference on Dependable and Secure Computing, DSC 2018. pp. 1–8 (2018)

11. Fan, C., Tseng, Y., Su, H., Hsu, R., Kikuchi, H.: Secure hierarchical bitcoin wallet scheme against privilege
escalation attacks. Int. J. Inf. Sec. 19(3), 245–255 (2020)

12. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: ASIACRYPT 2002. pp. 548–566 (2002)
13. getmonero.org: monero (April 2014), https://www.getmonero.org
14. Gutoski, G., Stebila, D.: Hierarchical deterministic bitcoin wallets that tolerate key leakage. In: FC 2015. pp.

497–504 (2015)
15. Liu, W., Liu, Z., Nguyen, K., Yang, G., Yu, Y.: A lattice-based key-insulated and privacy-preserving signature

scheme with publicly derived public key. In: ESORICS 2020, Part II. pp. 357–377 (2020)
16. Liu, Z., Yang, G., Wong, D.S., Nguyen, K., Wang, H.: Key-insulated and privacy-preserving signature scheme

with publicly derived public key. In: 2019 IEEE European Symposium on Security and Privacy (EuroS&P). pp.
215–230. IEEE (2019)

17. Luzio, A.D., Francati, D., Ateniese, G.: Arcula: A secure hierarchical deterministic wallet for multi-asset
blockchains. In: CANS 2020. pp. 323–343 (2020)

18. NIST: Fips pub 186-4, https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf. Accessed 10 January 2021
19. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger, vol. 1, pp. 1-18 (2016)
20. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems.

Communications of the ACM 21(2), 120–126 (1978)
21. Rückert, M.: Strongly unforgeable signatures and hierarchical identity-based signatures from lattices without

random oracles. In: PQCrypto 2010. pp. 182–200 (2010)
22. van Saberhagen, N.: Cryptonote v 2.0 (2013), https://cryptonote.org/whitepaper.pdf
23. Todd, P.: Stealth addresses. Post on Bitcoin development mailing list, https://www. mail-archive.

com/bitcoindevelopment@ lists. sourceforge. net/msg03613. html (2014)
24. Unger, N.: The pbc go wrapper (December 2018), https://github.com/Nik-U/pbc
25. Waters, B.: Efficient identity-based encryption without random oracles. In: EUROCRYPT 2005. pp. 114–127

(2005)
26. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In: CRYPTO

2009. pp. 619–636 (2009)
27. Wuille, P.: Bip32: Hierarchical deterministic wallets. https://github.com/bitcoin/bips/blob/master/bip-0032. me-

diawiki (2012)

21

A Applications Use Cases

In this section, we would like to show that our HDWSA scheme can support the appealing use cases which
have led to the popularity of HDW and SA. And most importantly, our HDWSA scheme does not cause any
security concerns.

Hierarchical Manangement. For an organization14 that employs our HDWSA scheme, the root administrator
can generate the root wallet key pair, then generates wallet key pairs for its direct subordinates, without
needing to be involved in the management of its indirect subroutines. And further, each entity only manages
its direct subordinates. On the safety of coins, each entity has privilege to only the coins belonging to itself
and its direct/indirect subordinates, and the collusion of a set of malicious entities cannot make them to
access the coins of other entities.

Low-maintenance wallets with easy backup and recovery. To backup the wallets for the whole organization,
the root administrator only needs to backup its root wallet secret key, say (αID0

, βID0
) ∈ Z∗p × Z∗p. For

any entity in the organization, say with identifier ID = (id0, . . . , idt) with ID|0 = ID0, when necessary,
for example, the device hosting ID’s wallet crashes, the wallet key pair (wpkID,wsskID,wsvkID) can be
recovered from (αID0

, βID0
) by repeatedly calling the WalletKeyDelegate() algorithm on ID|i for i = 1, . . . , t.

Then the entity can use (wpkID,wsvkID) to scan the blockchain, find the derived verification keys belonging
to it, and fetch all the related coins.

Fresh cold-address generation. Each entity can publish its wallet public key wpkID and ask the payers to
generate coin-addresses by themselves, without any concerns on its coins’ safety or its privacy. It is worth
mentioning that if a payer maliciously uses repeated coin-address to a target entity, the entity can detect it
easily and refuse to acknowledge the transaction (e.g., refuse to ship the goods.)

Flexible trust-less audits. Note that the delegation of wallet secret view key and the delegation of wallet secret
spend key are actually independent, say βID = H2(QID, βID|(t−1)

QID) and αID = H1(QID, αID|(t−1)
QID).

This enables our HDWSA scheme to support flexible trust-less audits. In particular, the root administrator
of an organization can reveal his wallet secret view key wsvkID0

to an auditor so that the auditor can
delegate the wallet secret view key for each entity in the organization and then view all coins/transactions
related to any entity in the organization. On the other side, the administrator can only reveal the wallet
secret view key wsvkID for a specific entity (with identifier ID) to the auditor, so that the auditor can only
view the coins/transactions related to the direct and indirect entities of the entity ID. While enjoying the
functionality of such a flexible audits, the entities do not need to worry the safety of their coins, which is
guaranteed by the strict and formal security models and proof of our HDWSA scheme.

B Detailed Security Proofs

B.1 Proof of Theorem 1

Now we give the details of Theorem 1 and its proof.

The HDWSA scheme is selective wallet existentially unforgeable under the CDH assumption in the random
oracle model. Specifically, assume that there exists a t-time adversary A that makes qHi queries to random
oracles Hi(i = 0, 1, 3, 4), qD queries to the wallet key delegate oracle, qvka queries to the verification key
adding oracle, qC queries to the signing key corruption oracle, qS queries to the signing oracle, and has a
non-negligible success probability in the GameswEUF, then we can construct a t′-time algorithm B that can
solve the CDH problem with a non-negligible probability where t′ = 2t+O(t∗+ qH0

+ qH1
+ qH3

+ qD + qvka +
qC + qS)τmul + O(qH1 + qD + qvka + qS)τp. Here τmul (τp, resp.) denotes the time of performing a scalar
multiplication operation (a pairing operation, resp.).

14 Note that an individual user can also use our HDWSA wallet, for example, manage his wallets in a hierarchy
manner or just use the root wallet key pair.

22

Proof. Below we show that, if there exists a PPT adversary A that can win GameswEUF for our HDWSA
construction with non-negligible advantage εA, then we can construct a PPT algorithm B that can solve the
CDH problem with non-negligible probability.

� Setup. B is given an instance of CDH problem on bilinear map groups, i.e., bilinear groups (p,G1,G2, P, ê)
and a tuple (P,A = aP,B = bP) ∈ G3

1 for unknown a, b ∈ Z∗p, and the target of B is to compute an element
C ∈ G1 such that C = abP .
B gives PP :=

(
(p,G1,G2, P, ê), H0, H1, H2, H3, H4

)
to A, where H0, H1, H3 and H4 are hash functions

modeled as random oracles and H2 is a collision-resistant hash function.
To model the hash functions H0, H1, H3 and H4 as random oracles, B initializes the following empty lists

– LH0 = ∅, each element of which will be an (identifier, hash value, scalar value) tuple.
– LH1

= ∅, each element of which will be an (input 1, input 2, hash value) tuple.
– LH∗1 = ∅, each element of which will be an (input 1, input 2 information, hash value information) tuple.
– LH3

= ∅, each element of which will be an (input 1, input 2, input 3, hash value, index, scalar value)
tuple.

– LH4
= ∅, each element of which will be an (input 1, input 2, input 3, hash value) tuple.

B initializes an empty set Lwk = ∅, each element of which will be an (identifier, wallet public key, wallet
secret key information) tuple (ID,wpkID,wskinfID).
B initializes an empty set Ldvk = ∅, each element of which will be a (derived verification key, identifier,

index) tuple (dvk, ID, j), where the index j is used to identify the tuple in H3 that dvk is based on.

A submits a Level-0 identifier for the target organization’s root entity, say ID∗0 .
B chooses uniformly random α′ID∗0 , βID

∗
0
∈ Z∗p, sets AID∗0 = α′ID∗0A, BID∗0 = βID∗0P , and gives wpkID∗0 =

(AID∗0 , BID∗0) to A.

B adds
(
ID∗0 ,wpkID∗0 , (α

′
ID∗ , βID∗0)

)
to Lwk. Note that actually AID∗0 = (α′ID∗0a)P , we have that the

(root) wallet secret key for wpkID∗0 is wskID∗0 = (αID∗0 , βID∗0), where wsskID∗0 = αID∗0 = α′ID∗0a is unknown
to B while wsvkID∗0 = βID∗0 is known to B.

A commits the identifier of the target wallet, i.e., an identifier ID∗ = (id∗0, id
∗
1, . . . , id

∗
t∗) with t∗ ≥ 0 and

ID∗|0 = ID∗0 .

For i = 1, . . . , t∗: 15

1. B chooses a uniformly random bID∗|i ∈ Z∗p, sets QID∗|i = bID∗|iB, and adds (ID∗|i, QID∗|i , bID
∗
|i

) to LH0
,

implicitly setting H0(ID∗|i) = QID∗|i = bID∗|iB.

2. B chooses a uniformly random α′ID∗|i
∈ Z∗p, and sets AID∗|i = α′ID∗|i

A.

Note that B is implicitly setting H1(QID∗|i , αID
∗
|(i−1)

QID∗|i) = αID∗|i with αID∗|i = α′ID∗|i
a, where actually

αID∗|(i−1)
= α′ID∗|(i−1)

a and αID∗|(i−1)
QID∗|i = α′ID∗|(i−1)

a · bID∗|iB are unknown to B.

B adds (QID∗|i , α
′
ID∗|(i−1)

, α′ID∗|i
) to LH∗1 , since B is unable to compute the value of αID∗|(i−1)

QID∗|i or αID∗|i .

3. B computes βID∗|i = H2(QID∗|i , βID
∗
|(i−1)

QID∗|i) and BID∗|i = βID∗|iP .

4. B sets wpkID∗|i
= (AID∗|i , BID

∗
|i

), then gives wpkID∗|i
to A.16

5. B adds
(
ID∗|i,wpkID∗|i

, (α′ID∗|i
, βID∗|i)

)
to Lwk. Note that the wallet secret key for wpkID∗|i

is wskID∗|i =

(αID∗|i , βID
∗
|i

), where wsskID∗|i = αID∗|i = α′ID∗|i
a is unknown to B while wsvkID∗|i = βID∗|i is known to B.

In addition, B initializes j = 0, and chooses a uniformly random j∗ ∈ {1, . . . , qH3
+qvka} as its guess that

(1) the j∗-th tuple in LH3
, say (input∗1, input

∗
2, input

∗
3, V

∗, j∗, ηj∗) ∈ LH3
, will satisfy input∗1 = BID∗ AND

15 Note that if t∗ = 0, this step is skipped.
16 Note that as A commits ID∗ as its target wallet, it will definitely makes OWKeyDelegate(·)-query on ID∗|i (i =

1, . . . , t∗) before the Output Phase. For simplicity of description, here we directly give wpkID∗|i
to A.

23

ê(input∗1, input
∗
2) = ê(P, input∗3) and imply H3(input∗1, input

∗
2, input

∗
3) = V ∗, and (2) in Output Phase A

will output a forged signature with respect to a derived verification key dvk∗ such that (dvk∗, ID∗, j∗) ∈ Ldvk.
Note that, as shown below, A may trigger a H3-query indirectly, by making a ODVKAdd-query. That’s

why B guesses j∗ in the scope {1, . . . , qH3
+ qvka}.

� Probing Phase. A can adaptively query the following oracles:

– H0(·): when H0 is queried on input an identifier ID ∈ SID:

• If there exists a corresponding tuple (ID,QID, bID) ∈ LH0 , QID is returned.
• Otherwise, B chooses a uniformly random bID ∈ Z∗p, sets QID = bIDP , adds (ID,QID, bID) to LH0

,
and returns QID.

Note that for a tuple (ID,QID, bID) ∈ LH0
, we have H0(ID) = QID = bIDB for ID ∈ {ID∗|i | 1 ≤ i ≤ t

∗}
and H0(ID) = QID = bIDP for ID /∈ {ID∗|i | 1 ≤ i ≤ t∗}.

– H1(·, ·): when H1 is queried on input a pair (input1, input2) ∈ G1 ×G1:

• If there exists a corresponding tuple (input1, input2, hval) ∈ LH1
, havl is returned.

• Otherwise,

∗ If input1 /∈ {QID∗|i | 1 ≤ i ≤ t∗}, then B chooses a uniformly random hval ∈ Z∗p, adds

(input1, input2, hval) to LH1
, and returns hval,

∗ Otherwise (i.e., input1 ∈ {QID∗|i | 1 ≤ i ≤ t∗}), let (QID∗|i , α
′
ID∗|(i−1)

, α′ID∗|i
) ∈ LH∗1 be the

corresponding tuple in LH∗1 ,
· If ê(P, input2) = ê(α′ID∗|(i−1)

A, input1) (Below we denote this event by E): note that

input1 = bID∗|iB so that this implies input2 = α′ID∗|(i−1)
a·bID∗|iB, B outputs 1

α′
ID∗|(i−1)

bID∗|i
input2

as its solution for the CDH problem and aborts the game.
· Otherwise, B chooses a uniformly random hval ∈ Z∗p, adds (input1, input2, hval) to LH1

,
and returns hval.

Note that for a tuple (input1, input2, hval) ∈ LH1 , we have that H1(input1, input2) = hval.
Note that for a tuple (input1, input2inf, hvalinf) ∈ LH∗1 , it implies that (input1, input2inf, hvalinf) =
(QID∗|i = bID∗|iB, α

′
ID∗|(i−1)

, α′ID∗|i
) for some 1 ≤ i ≤ t∗ and H1(bID∗|iB,α

′
ID∗|(i−1)

· a · bID∗|iB) = α′ID∗|i
· a.

Note that except that the event E happens, no one can provide the input 2 implied by input2inf to
query H1.

– H3(·, ·, ·): when H3 is queried on input a tuple (input1, input2, input3) ∈ G1 ×G1 ×G1:

• If there exists a corresponding tuple (input1, input2, input3, Vj , j, ηj) ∈ LH3 , Vj is returned.
• Otherwise, sets j = j + 1, i.e., suppose this is the j-th distinct inputs for H3-query,

∗ If j 6= j∗, then B chooses a uniformly random ηj ∈ Z∗p, sets Vj = ηjP , adds (input1, input2, input3,
Vj , j, ηj) to LH3

, and returns Vj .
∗ Otherwise (i.e. j = j∗),

· If input1 = BID∗ AND ê(input1, input2) = ê(P, input3), then
B chooses a uniformly random ηj ∈ Z∗p, sets Vj = ηjB, adds (input1, input2, input3, Vj , j, ηj)

to LH3
, and returns Vj .

· Otherwise, B aborts.

Note that for each tuple (input1, input2, input3, Vj , j, ηj) ∈ LH3
, we have thatH3(input1, input2, input3) =

Vj = ηjP for j 6= j∗ and H3(input1, input2, input3) = Vj = ηjB for j = j∗.
– H4(·, ·): when H4 is queried on input a tuple (input1, input2, input3) ∈ (G1 ×G2)×M×G2:

• If there exists a corresponding tuple (input1, input2, input3, hval) ∈ LH4
, hval is returned.

• Otherwise, B chooses a uniformly random hval ∈ Z∗p, adds (input1, input2, input3, hval) to LH4
, and

returns hval.

– OWKeyDelegate(·):
When A makes an OWKeyDelegate(·) query on an entity’s identifier ID ∈ SID at level t ≥ 1 such that
ID|(t−1) ∈ Lwk:

24

• If ID ∈ Lwk, i.e., the wallet key pair for ID has been previously generated (due to query on
OWKeyDelegate(·, ·) or the committed target wallet identifier ID∗), let (ID,wpkID, wskinfID) ∈
Lwk be the tuple corresponding to ID, B returns wpkID to A. (Note that WalletKeyDelegate() is a
deterministic algorithm.)

• Otherwise, it implies that ID /∈ {ID∗|i | 1 ≤ i ≤ t∗}.
Let (ID|(t−1),wpkID|(t−1)

,wskinfID|(t−1)
) ∈ Lwk be the tuple corresponding to ID|(t−1), then

∗ If ID|(t−1) ∈ {ID∗|i | 0 ≤ i ≤ t∗}:
Note that this means ID|(t−1) = ID∗|(t−1) where 0 ≤ t − 1 ≤ t∗, and wskinfID|(t−1)

= (α′ID∗|(t−1)
,

βID∗|(t−1)
). Note that the wallet secret key for ID|(t−1) is wskID∗|(t−1)

= (αID∗|(t−1)
, βID∗|(t−1)

), where

αID∗|(t−1)
= α′ID∗|(t−1)

a is unknown to B.

B proceeds as below:
1. B makes H0 query on ID. As ID /∈ {ID∗|i | 1 ≤ i ≤ t∗}, B obtains QID = H0(ID) = bIDP

where the value of bID is known to B. Note that with overwhelming probability, it holds that
QID /∈ {QID∗|i | 1 ≤ i ≤ t∗}.

2. B makes H1 query on (QID, α
′
ID∗|(t−1)

bIDA). As QID /∈ {QID∗|i | 1 ≤ i ≤ t∗}, B obtains a

value hval ∈ Z∗p, which implies that H1(QID, α
′
ID∗|(t−1)

bIDA) = hval. B sets αID = hval.

Note that actually α′ID∗|(t−1)
bIDA = α′ID∗|(t−1)

a · bIDP = αID∗|(t−1)
· QID, this means αID is

generated as in the real scheme, although B does not know the wallet secret spend key αID∗t−1

for ID∗|(t−1) (i.e. ID|(t−1)).

3. B computes βID = H2(QID, βID∗|(t−1)
QID).

4. B sets AID = αIDP , BID = βIDP , and wpkID = (AID, BID), then gives wpkID to A
and adds

(
ID,wpkID, (αID, βID)

)
into Lwk. Note that the wallet secret key information

wskinfID = (αID, βID) is exactly the wallet secret key corresponding to wpkID.
∗ Otherwise, i.e., ID|(t−1) /∈ {ID∗|i | 0 ≤ i ≤ t∗}:

Note that for such an identifier ID|(t−1), the wallet secret key information wskinf|(t−1) is exactly
the wallet secret key of ID|(t−1), B runs (wpkID, wskID) ← WalletKeyDelegate(ID, wpkID|(t−1)

,

wskinfID|(t−1)
), then gives wpkID to A and adds

(
ID, wpkID,wskID

)
into Lwk.

Note that from above, for a tuple (ID,wpkID,wskinfID) ∈ Lwk such that ID /∈ {ID∗|i | 0 ≤ i ≤ t∗}, we
have that the wallet secret key of ID is exactly wskinfID, while for a tuple (ID,wpkID,wskinfID) ∈ Lwk
such that ID ∈ {ID∗|i | 0 ≤ i ≤ t∗}, supposing wskinfID = (α′ID, βID), we have that the wallet secret key

of ID is wskID = (αID, βID) with αID = α′ID · a.
– OWskCorrupt(·):

When A makes an OWskCorrupt(·) query on input an entity’s identifier ID ∈ SID at level t ≥ 0 such
that ID in Lwk:
Let (ID,wpkID,wskinfID) ∈ Lwk be the tuple corresponding to ID.
Note that A should not query OWskCorrupt(·) on ID∗|i for any i such that 0 ≤ i ≤ t∗ (as required by the

condition for wining the game), which implies ID /∈ {ID∗|0, ID
∗
|1, . . . , ID

∗
|t∗}, B directly returns wskinfID

to A, since as shown above, for such an identifier, wskinfID is exactly the wallet secret key.
– OWsvkCorrupt(·):

When A makes an OWsvkCorrupt(·) query on input an entity’s identifier ID ∈ SID at level t ≥ 0 such
that ID in Lwk:
Let (ID,wpkID,wskinfID) ∈ Lwk be the tuple corresponding to ID.
Note that as shown above, for both ID /∈ {ID∗|0, ID

∗
|1, . . . , ID

∗
|t∗} and ID ∈ {ID∗|0, ID

∗
|1, . . . , ID

∗
|t∗},

wskinfID gives the wallet secret view key wsvkID = βID, B directly returns wsvkID.
– ODVKAdd(·, ·):

When A makes an ODVKAdd(·, ·) query on input a derived verification key dvk = (Qr, Qvk) ∈ G1 ×G2

and an entity’s identifier ID ∈ SID at level t ≥ 0 such that ID ∈ Lwk:

• If there is a corresponding tuple (dvk, ID, j) ∈ Ldvk for some j, B returns 1 to A.

25

• Otherwise, let (ID,wpkID,wskinfID) ∈ Lwk be the tuple corresponding to ID with wpkID =
(AID, BID), note that B knows the values of βID (which is stored in wskinfID) for the wallet se-
cret key corresponding to wpkID, it proceeds as below: B simulates an H3-query on input (BID, Qr,
βIDQr) and let V be the returned hash value and j be the index of the corresponding H3 tuple. B
checks whether Qvk

?
= ê(V,−AID) holds. If it holds, B adds (dvk, ID, j) into Ldvk and returns 1 to

A, otherwise, returns 0 to A.
Note that for each tuple in Ldvk, say

(
dvk, ID, j

)
with dvk = (Qr, Qvk), ID ∈ SID at level t ≥

0, supposing the wallet public key of ID is wpkID = (AID, BID), the corresponding H3 tuple, say
(input1, input2, input3, Vj , j, ηj), satisfies input1 = BID AND input2 = Qr AND input3 = βIDQr AND
H3(input1, input2, input3) = Vj AND Qvk = ê(Vj ,−AID).
Also note that for any two different derived verification keys in Ldvk, say dvk = (Qr, Qvk) and dvk′ =

(Q′r, Q
′
vk) such that dvk 6= dvk′, supposing the corresponding tuples in Ldvk are

(
dvk, ID, j

)
and(

dvk′, ID′, j′
)

respectively, we have that j 6= j′, i.e., they corresponds to different inputs to H3. This
is because, supposing the wallet public keys of ID and ID′ are wpkID = (AID, BID) and wpkID′ =
(AID′ , BID′) respectively, j = j′ implies BID = BID′ (which equals the input1 of the H3 tuple), Qr = Q′r
(which equals the input2 of the H3 tuple), and V = V ′ (i.e. the H3 hash value used in Qvk computation).
As BID = BID′ further implies ID = ID′ (since a uniformly random βID is chosen for each ID) and
then AID = AID′ , it is implied that Qvk = Q′vk. This means that j = j′ implies (Qr, Qvk) = (Q′r, Q

′
vk),

which is contradictory to dvk 6= dvk′. In other words, each tuple in LH3 may correspond to at most
one derived verification key in Ldvk.

– ODSKCorrput(·):
When A makes an ODSKCorrput(·) query on input a derived verification key dvk = (Qr, Qvk) ∈ G1×G2

such that dvk ∈ Ldvk:
Let

(
dvk, ID, j

)
∈ Ldvk be the tuple corresponding to dvk and further let (ID,wpkID,wskinfID) ∈ Lwk

be the tuple corresponding to ID and (input1, input2, input3, Vj , j, ηj) ∈ LH3
be the corresponding H3

tuple, B proceeds as below:
• If j = j∗, B aborts, since it fails to guess the right dvk∗ for which the adversary will output a forged

signature in the Output Phase.
• Otherwise (i.e. j 6= j∗), note that H3(input1, input2, input3) = Vj = ηjP ,

∗ If ID /∈ {ID∗|i | 0 ≤ i ≤ t
∗}, it implies that wskinfID = (αID, βID) ∈ Z∗p×Z∗p is exactly the wallet

secret key of ID, then B computes dsk = αID · ηjP and returns dsk to A.
∗ If ID ∈ {ID∗|i | 0 ≤ i ≤ t

∗}, it implies that wskinfID = (α′ID, βID) ∈ Z∗p×Z∗p such that the wallet

secret key of ID is wskID = (αID = α′ID · a, βID), then B computes dsk = α′ID · ηjA and returns
dsk to A.
Note that actually dsk = (α′ID ·a) ·ηjP , which means that such a derived signing key is generated
as in the real game, although B does not know the wallet secret spend key αID.

– OSign(·, ·):
When A makes an OSign(·, ·) query on input a message m ∈ M and a derived verification key dvk =
(Qr, Qvk) ∈ G1 ×G2 such that dvk ∈ Ldvk:
Let

(
dvk, ID, j

)
∈ Ldvk be the tuple corresponding to dvk and further let (ID,wpkID,wskinfID) ∈ Lwk

be the tuple corresponding to ID and (input1, input2, input3, Vj , j, ηj) ∈ LH3
be the corresponding H3

tuple, B proceeds as below:
• If j 6= j∗: note that, as shown above in ODSKCorrput(·), B can compute the derived signing key dsk

corresponding to dvk, B proceeds as below:
1. B chooses a uniformly random x ∈ Z∗p, then compute X = ê(xP, P).
2. B chooses a uniformly random h ∈ Z∗p, and adds (dvk,m, X, h) into LH4 , implicitly setting
H4(dvk,m,X) = h.

3. B computes Qσ = h · dsk + xP ∈ G1, and returns (h,Qσ) to A.
• Otherwise (i.e., j = j∗): note that it implies that ID = ID∗, wpkID = (AID∗ = α′ID∗A,BID∗ =
βID∗P), wskinfID = (α′ID∗ , βID∗), and the wallet secret key corresponding to wpkID is actually
wskID = (α′ID∗a, βID∗), and it also implies that input1 = BID∗ , input2 = Qr, ê(input1, input2) =
ê(P, input3), and Qvk = ê(Vj ,−AID∗), B proceeds as below:

26

1. B chooses uniformly random x1, x2 ∈ Z∗p, then compute X = ê(x1A,B) · ê(x2P, P), implicitly
setting x = x1ab+ x2 such that X = ê(xP, P).

2. B sets h = − x1

α′
ID∗ηj∗

∈ Z∗p, and adds (dvk,m,X, h) into LH4
, implicitly setting H4(dvk,m,X) =

h.
3. B sets Qσ = x2P , and returns (h,Qσ) to A.

Note that actually Qσ = x2P = − x1

α′
ID∗ηj∗

(
(α′ID∗a) · (ηj∗B)

)
+ (x1ab+ x2)P

= h ·
(
αID∗ ·H3(BID∗ , Qr, βID∗Qr)

)
+ xP , which implies that the signature (h,Qσ) is generated as

in the real scheme, although B does not know the derived signing key corresponding to dvk.

� Output Phase. A outputs a message m∗ ∈ M, a signature σ∗ = (h∗, Q∗σ), and a derived verifica-
tion key dvk∗ = (Q∗r , Q

∗
vk) such that (dvk∗, ID∗, j) ∈ Ldvk for some index j, Verify(m∗, σ∗, dvk∗) = 1,

ODSKCorrupt(dvk∗) is never queried, and OSign(m∗, dvk∗) is never queried (Denote this event by F).

If j 6= j∗, B aborts, since it implies that B did not guess the right dvk∗.
Otherwise (i.e. j = j∗), B rewinds A to the point where h∗ = H4(dvk∗,m∗, X∗) is queried and returns

a new uniformly random h̃∗ as the hash value for (dvk∗,m∗, X∗). Let frk denote the event that A returns

another valid signature σ̃∗ = (h̃∗, Q̃σ
∗
) with regards to the same (dvk∗,m∗, X∗). Then we have

X∗ = ê(Q∗σ, P) · (Q∗vk)h
∗

= ê(Q̃σ
∗
, P) · (Q∗vk)h̃

∗

which gives

Q∗vk = ê((h̃∗ − h∗)−1(Q∗σ − Q̃σ
∗
), P)

= ê(ηj∗B,−α′ID∗A).

Hence, B can extract the solution for the CDH problem with regards to (P,A,B) ∈ G3
1 as

−(ηj∗α
′
ID∗)

−1(h̃∗ − h∗)−1(Q∗σ − Q̃σ
∗
).

Probability Analysis. Let succ denote the event ¬E ∧ F ∧ (j = j∗). Then we have

Pr[succ] = Pr[¬E ∧ F ∧ (j = j∗)]

= Pr[F ∧ (j = j∗)|¬E] Pr[¬E]

= Pr[F ∧ (j = j∗)|¬E](1− Pr[E])

≥ Pr[F ∧ (j = j∗)|¬E]− Pr[E]

≥ εA/(qH3
+ qvka)− Pr[E]

It is easy to see that if event E happens, then we can construct an algorithm B that can directly solve
the CDH problem by using the H1 queries made by A. Hence we have that event E happens only with a
negligible probability negl. Based on the assumption that εA is non-negligible, we have

εsucc = Pr[succ] ≥ εA/(qH3
+ qvka)− negl

which is also non-negligible. Then based on the General Forking Lemma [2], we have

Pr[frk] ≥ εsucc(
εsucc
qH4

− 1

p− 1
)

which is non-negligible. B can extract the solution of CDH problem under the event frk and B’s running time
is bounded by 2t+O(t∗+ qH0

+ qH1
+ qH3

+ qD + qvka+ qC + qS)τmul+O(qH1
+ qD + qvka+ qS)τp where τmul

and τp denote the time of performing a scalar multiplication operation and a pairing operation, respectively.

27

B.2 Proof of Theorem 2

Now we give the details of Theorem 2 and its proof.

The HDWSA scheme is selective wallet unlinkable under the CDH assumption in the random oracle
model. Specifically, assume that there exists a t-time adversary A that makes qHi

queries to random oracles
Hi(i = 0, 2, 3), qD queries to the wallet key delegate oracle, qvka queries to the verification key adding
oracle, qS queries to the signing oracle, and has a non-negligible advantage in the GameswWUNL, then we can
construct another t′-time adversary B that solves the CDH problem with a non-negligible probability where
t′ = t+O(t(0) + t(1) + qH0 + qH2 + qD + qvka + qS)τmul +O(qH2 + qH3 + qD + qvka + qS)τp.

Proof. Below we show that, if there exists a PPT adversary A that can win GameswWUNL for our HDWSA
construction with non-negligible advantage εA, then we can construct a PPT algorithm B that can solve the
CDH problem with non-negligible probability.

� Setup. B is given an instance of CDH problem on bilinear map groups, i.e., bilinear groups (p,G1,G2, P, ê)
and a tuple (P,A = aP,B = bP) ∈ G3

1 for unknown a, b ∈ Z∗p, and the target of B is to compute an element
C ∈ G1 such that C = abP .

B gives PP := ((p,G1,G2, P, ê), H0, H1, H2, H3, H4) to A, where H0, H2, H3 are hash functions modeled
as random oracles and H1, H4 are collision-resistant hash functions.

To model the hash functions H0, H2, H3 as random oracles, B initializes the following empty lists

– LH0 = ∅, each element of which will be an (identifier, hash value, scalar value) tuple.

– LH2
= ∅, each element of which will be an (input 1, input 2, hash value) tuple.

– LH∗2 = ∅, each element of which will be an (input 1, input 2 information, hash value information) tuple.

– LH3 = ∅, each element of which will be an (input 1, input 2, input 3, hash value) tuple.

B initializes an empty set Lwk = ∅, each element of which will be an (identifier, wallet public key, wallet
secret key information) tuple (ID,wpkID,wskinfID).

B initializes an empty set Ldvk = ∅, each element of which will be a (derived verification key, identifier,
derived signing key) tuple (dvk, ID, dsk).

A submits two different Level-0 identifiers, say ID∗0
(0) and ID∗0

(1).

For k = 0, 1:

1. B chooses uniformly random αID∗0 (k) , β′
ID∗0

(k) ∈ Z∗p, sets AID∗0 (k) = αID∗0 (k)P , BID∗0 (k) = β′
ID∗0

(k)B, and

gives wpkID∗0 (k) = (AID∗0 (k) , BID∗0 (k)) to A.

2. B adds
(
ID∗0

(k),wpkID∗0 (k) , (αID∗0 (k) , β′
ID∗0

(k))
)

to Lwk. Note that the (root) wallet secret key for wpkID∗0 (k)

is wskID∗0 (k) = (αID∗0 (k) , βID∗0 (k)), where βID∗0 (k) = β′
ID∗0

(k)b is unknown to B.

A commits two challenge wallet identifiers, namely, ID(0) = (id
(0)
0 , id

(0)
1 , . . . , id

(0)

t(0)
) and ID(1) = (id

(1)
0 , id

(1)
1 ,

. . . , id
(1)

t(1)
) such that t(0) ≥ 0, t(1) ≥ 0, and ID

(0)
|0 , ID

(1)
|0 ∈ {ID

∗
0
(0), ID∗0

(1)}.

For i = 1, . . . , t(0), 17 consider the identifier ID
(0)
|i :

1. B chooses a uniformly random a
ID

(0)

|i
∈ Z∗p, sets Q

ID
(0)

|i
= a

ID
(0)

|i
A, and adds (ID

(0)
|i , QID(0)

|i
, a
ID

(0)

|i
) to

LH0
, implicitly setting H0(ID

(0)
|i) = Q

ID
(0)

|i
= a

ID
(0)

|i
A.

2. B computes α
ID

(0)

|i
= H1(Q

ID
(0)

|i
, α

ID
(0)

|(i−1)

Q
ID

(0)

|i
) and sets A

ID
(0)

|i
= α

ID
(0)

|i
P .

17 Note that if t(0) = 0, this step is skipped.

28

3. B chooses a uniformly random β′
ID

(0)

|i
∈ Z∗p and sets B

ID
(0)

|i
= β′

ID
(0)

|i
B.

Note that B is implicitly setting H2(Q
ID

(0)

|i
, β
ID

(0)

|(i−1)

Q
ID

(0)

|i
) = β

ID
(0)

|i
with β

ID
(0)

|i
= β′

ID
(0)

|i
b, where

actually β
ID

(0)

|(i−1)

= β′
ID

(0)

|(i−1)

b and β
ID

(0)

|(i−1)

Q
ID

(0)

|i
= β′

ID
(0)

|(i−1)

b · a
ID

(0)

|i
A are unknown to B.

B adds (Q
ID

(0)

|i
, β′
ID

(0)

|(i−1)

, β′
ID

(0)

|i
) to LH∗2 , since B is unable to compute the value of β

ID
(0)

|(i−1)

Q
ID

(0)

|i
or

β
ID

(0)

|i
.

4. B sets wpk
ID

(0)

|i
= (A

ID
(0)

|i
, B

ID
(0)

|i
), then gives wpk

ID
(0)

|i
to A.

5. B adds
(
ID

(0)
|i ,wpkID(0)

|i
, (α

ID
(0)

|i
, β′
ID

(0)

|i
)
)

to Lwk. Note that the wallet secret key for wpk
ID

(0)

|i
is wsk

ID
(0)

|i
=

(α
ID

(0)

|i
, β
ID

(0)

|i
), where β

ID
(0)

|i
= β′

ID
(0)

|i
b is unknown to B.

For i = 1, . . . , t(1), 18 consider the identifier ID
(1)
|i : if ID

(1)
|i /∈ Lwk, then B executes the above 5 steps on

identifier ID
(1)
|i (literally, replacing ‘(0)’ with ‘(1)’).

� Probing Phase 1. A can adaptively query the following oracles:

– H0(·): when H0 is queried on input an identifier ID ∈ SID:
• If there exists a corresponding tuple (ID,QID, aID) ∈ LH0

, QID is returned.
• Otherwise, B chooses a uniformly random aID ∈ Z∗p, sets QID = aIDP , adds (ID,QID, aID) to LH0 ,

and returns QID.

Note that for a tuple (ID,QID, aID) ∈ LH0
, we have H0(ID) = QID = aIDA for ID ∈ {ID(0)

|i | 1 ≤ i ≤
t(0)} ∪ {ID(1)

|i | 1 ≤ i ≤ t(1)} and H0(ID) = QID = aIDP for ID /∈ {ID(0)
|i | 1 ≤ i ≤ t(0)} ∪ {ID(1)

|i | 1 ≤
i ≤ t(1)}.

– H2(·, ·): when H2 is queried on input a pair (input1, input2) ∈ G1 ×G1:
• If there exists a corresponding tuple (input1, input2, hval) ∈ LH2

, havl is returned.
• Otherwise,

∗ If input1 /∈ {QID(0)

|i
| 1 ≤ i ≤ t(0)} ∪ {Q

ID
(1)

|i
| 1 ≤ i ≤ t(1)}, then B chooses a uniformly random

hval ∈ Z∗p, adds (input1, input2, hval) to LH2 , and returns hval,

∗ Otherwise (i.e., input1 ∈ {QID(0)

|i
| 1 ≤ i ≤ t(0)} ∪ {Q

ID
(1)

|i
| 1 ≤ i ≤ t(1)}), let (Q

ID
(k)

|i
, β′
ID

(k)

|(i−1)

,

β′
ID

(k)

|i
) ∈ LH∗2 (for some k ∈ {0, 1} and i ∈ {1, . . . , t(k)}) be the corresponding tuple in LH∗2 ,

· If ê(P, input2) = ê(β′
ID

(k)

|(i−1)

B, input1) (Below we denote this event by E2): note that

input1 = a
ID

(k)

|i
A so that this implies input2 = β′

ID
(k)

|(i−1)

b · a
ID

(k)

|i
A,

B outputs 1
β′
ID

(k)
|(i−1)

a
ID

(k)
|i

input2 as its solution for the CDH problem and aborts the game.

· Otherwise, B chooses a uniformly random hval ∈ Z∗p, adds (input1, input2, hval) to LH2 ,
and returns hval.

Note that for a tuple (input1, input2, hval) ∈ LH2
, we have that H2(input1, input2) = hval.

Note that for a tuple (input1, input2inf, hvalinf) ∈ LH∗2 , it implies that (input1, input2inf, hvalinf) =

(Q
ID

(k)

|i
= a

ID
(k)

|i
A, β′

ID
(k)

|(i−1)

, β′
ID

(k)

|i
) for some k ∈ {0, 1} and 1 ≤ i ≤ t(k) and H2(a

ID
(k)

|i
A, β′

ID
(k)

|(i−1)

·

b · a
ID

(k)

|i
A) = β′

ID
(k)

|i
· b. Note that except that the event E2 happens, no one can provide the input 2

implied by input2inf to query H2.
– H3(·, ·, ·): when H3 is queried on input a tuple (input1, input2, input3) ∈ G1 ×G1 ×G1:
• If there exists a corresponding tuple (input1, input2, input3, V) ∈ LH3

, V is returned.
• Otherwise, B chooses a uniformly random V ∈ G∗1, adds (input1, input2, input3, V) to LH3 , and

returns V .

18 Note that if t(1) = 0, this step is skipped.

29

Note that for each tuple (input1, input2, input3, V) ∈ LH3 , we have that H3(input1, input2, input3) = V .
– OWKeyDelegate(·):

When A makes an OWKeyDelegate(·) query on an entity’s identifier ID ∈ SID at level t ≥ 1 such that
ID|(t−1) ∈ Lwk:

• If ID ∈ Lwk, i.e., the wallet key pair for ID has been previously generated (due to query on
OWKeyDelegate(·, ·) or the committed challenge wallet identifiers ID(0) and ID(1)), let (ID,wpkID,
wskinfID) ∈ Lwk be the tuple corresponding to ID, B return wpkID to A.
(Note that WalletKeyDelegate() is a deterministic algorithm.)

• Otherwise, it implies that ID /∈ {ID(0)
|i | 1 ≤ i ≤ t(0)} ∪ {ID(1)

|i | 1 ≤ i ≤ t(1)}.
Let (ID|(t−1),wpkID|(t−1)

,wskinfID|(t−1)
) ∈ Lwk be the tuple corresponding to ID|(t−1), then

∗ If ID|(t−1) ∈ {ID
(0)
|i | 0 ≤ i ≤ t(0)} ∪ {ID(1)

|i | 0 ≤ i ≤ t(1)}:
Note that this means ID|(t−1) = ID

(k)
|(t−1) with 0 ≤ t − 1 ≤ t(k) for some k ∈ {0, 1}, and

wskinfID|(t−1)
= (α

ID
(k)

|(t−1)

, β′
ID

(k)

|(t−1)

). Note that the wallet secret key for ID|(t−1) is wsk
ID

(k)

|(t−1)

=

(α
ID

(k)

|(t−1)

, β
ID

(k)

|(t−1)

), where

β
ID

(k)

|(t−1)

= β′
ID

(k)

|(t−1)

b is unknown to B.

B proceeds as below:
1. B makes H0-query on ID.

As ID /∈ {ID(0)
|i | 1 ≤ i ≤ t(0)} ∪ {ID(1)

|i | 1 ≤ i ≤ t(1)}, B obtains QID = H0(ID) = aIDP

where the value of aID is known to B.
Note that with overwhelming probability, it holds that QID /∈ {Q

ID
(0)

|i
| 1 ≤ i ≤ t(0)} ∪

{Q
ID

(1)

|i
| 1 ≤ i ≤ t(1)}.

2. B computes αID = H1(QID, αID(k)

|(t−1)

QID).

3. B makes H2 query on (QID, β
′
ID∗|(t−1)

aIDB).

As QID /∈ {Q
ID

(0)

|i
| 1 ≤ i ≤ t(0)} ∪ {Q

ID
(1)

|i
| 1 ≤ i ≤ t(1)}, B obtains a value hval ∈ Z∗p,

which implies H2(QID, β
′
ID

(k)

|(t−1)

aIDB) = hval.

B sets βID = hval.
Note that actually β′

ID
(k)

|(t−1)

aIDB = β′
ID

(k)

|(t−1)

b · aIDP = β
ID

(k)

|(t−1)

· QID, this means βID is

generated as in the real scheme, although B does not know the wallet secret view key β
ID

(k)

|(t−1)

for ID
(k)
|(t−1) (i.e. ID|(t−1)).

4. B sets AID = αIDP , BID = βIDP , and wpkID = (AID, BID), then gives wpkID to A
and adds

(
ID,wpkID, (αID, βID)

)
into Lwk. Note that the wallet secret key information

wskinfID = (αID, βID) is exactly the wallet secret key corresponding to wpkID.

∗ Otherwise, i.e., ID|(t−1) /∈ {ID
(0)
|i | 0 ≤ i ≤ t(0)} ∪ {ID(1)

|i | 0 ≤ i ≤ t(1)}:
Note that for such an identifier ID|(t−1), the wallet secret key information wskinf|(t−1) is exactly
the wallet secret key of ID|(t−1), B runs (wpkID, wskID) ← WalletKeyDelegate(ID, wpkID|(t−1)

,

wskinfID|(t−1)
), then gives wpkID to A and adds

(
ID, wpkID,wskID

)
into Lwk.

Note that from above, for a tuple (ID,wpkID,wskinfID) ∈ Lwk such that ID /∈ {ID(0)
|i | 0 ≤ i ≤

t(0)}∪ {ID(1)
|i | 0 ≤ i ≤ t

(1)}, we have that the wallet secret key of ID is exactly wskinfID, while for a tuple

(ID,wpkID,wskinfID) ∈ Lwk such that ID ∈ {ID(0)
|i | 0 ≤ i ≤ t(0)} ∪ {ID(1)

|i | 0 ≤ i ≤ t(1)}, supposing
wskinfID = (αID, β

′
ID), we have that the wallet secret key of ID is wskID = (αID, βID) with βID = β′ID · b

for the unknown b ∈ Z∗p.
– OWskCorrupt(·):

When A makes an OWskCorrupt(·) query on input an entity’s identifier ID ∈ SID at level t ≥ 0 such
that ID ∈ Lwk:

30

Let (ID,wpkID,wskinfID) ∈ Lwk be the tuple corresponding to ID.

Note that A shall only query OWskCorrupt(·) on ID such that ID /∈ {ID(0)
|i | 0 ≤ i ≤ t

(0)}∪{ID(1)
|i | 0 ≤

i ≤ t(1)}, B directly returns wskinfID to A, since as shown above, for such an identifier, wskinfID is
exactly the wallet secret key.

– OWsvkCorrupt(·):
When A makes an OWsvkCorrupt(·) query on input an entity’s identifier ID ∈ SID at level t ≥ 0 such
that ID ∈ Lwk:
Let (ID,wpkID,wskinfID) ∈ Lwk be the tuple corresponding to ID.

Note that A shall only query OWsvkCorrupt(·) on ID such that ID /∈ {ID(0)
|i | 0 ≤ i ≤ t

(0)}∪{ID(1)
|i | 0 ≤

i ≤ t(1)}, B directly returns the wallet secret view key βID in wskinfID to A, since as shown above, for
such an identifier, wskinfID is exactly the wallet secret key.

– ODVKAdd(·, ·):
When A makes an ODVKAdd(·, ·) query on input a derived verification key dvk = (Qr, Qvk) ∈ G1 ×G2

and an entity’s identifier ID ∈ SID at level t ≥ 0 such that ID ∈ Lwk:
• If there is a corresponding tuple (dvk, ID, dsk) ∈ Ldvk for some dsk, B returns 1 to A.
• Otherwise, let (ID,wpkID,wskinfID) ∈ Lwk be the tuple corresponding to ID with wpkID =

(AID, BID), note that B knows the values of αID (which is stored in wskinfID) for the wallet secret
key corresponding to wpkID, it proceeds as below:

∗ If there is a tuple (input1, input2, input3, V) ∈ LH3 such that the three inputs satisfy input1 =
BID, input2 = Qr and ê(input1, input2) = ê(P, input3),

B checks whether Qvk
?
= ê(V,−AID) holds.

· If it holds, B computes dsk = αID · V , adds (dvk, ID, dsk) into Ldvk, and returns 1 to A.
Note that dsk is exactly the derived signing key corresponding to dvk.

· Otherwise, B returns 0 to A.
∗ Otherwise (i.e. there does not exist such a tuple in LH3),
B returns 0 to A.
Note that when A makes a H3-query on these three inputs, a uniformly random value in G∗1 will be
chosen as the returned hash value. Thus, without making a H3-query that produces such a tuple,
the chance that dvk = (Qr, Qvk) satisfies Qvk = ê(H3(BID, Qr, input3),−AID) is negiligible.

– ODSKCorrput(·):
When A makes an ODSKCorrput(·) query on input a derived verification key dvk = (Qr, Qvk) ∈ G1×G2

such that dvk ∈ Ldvk:
Let

(
dvk, ID, dsk

)
∈ Ldvk be the tuple corresponding to dvk, B just returns dsk to A.

– OSign(·, ·):
When A makes an OSign(·, ·) query on input a message m ∈ M and a derived verification key dvk =
(Qr, Qvk) ∈ G1 ×G2 such that dvk ∈ Ldvk:
Let

(
dvk, ID, dsk

)
∈ Ldvk be the tuple corresponding to dvk, B just runs (h,Qσ)← Sign(m, dvk, dsk) and

returns (h,Qσ) to A.

� Challenge Phase. A random bit c ∈ {0, 1} is chosen.
Note that for identifier ID(c), the corresponding tuple in Lwk is (ID(c),wpkID(c) , wskinfID(c)) ∈ Lwk, where
wpkID(c) = (AID(c) , BID(c)), wskinfID(c) = (αID(c) , β′ID(c)), with BID(c) = β′

ID(c)B and the wallet secret key
being wskID(c) = (αID(c) , β′ID(c)b). B generates the challenge derived verification key dvk∗ = (Q∗r , Q

∗
vk) for

wallet ID(c) as below:

1. B sets Q∗r = A.
2. Note that A = aP and BID(c) = β′

ID(c)B,
we have that Q∗vk should be Q∗vk = ê(H3(BID(c) , A, β′ID(c)aB),−AID(c)) where a is unknown to B.
B chooses a uniformly random V ∗ ∈ G∗1, and adds (BID(c) , A, >, V ∗) into LH3 , implicitly setting
H3(BID(c) , A, β′ID(c)aB) = V ∗, where > denotes the value of β′

ID(c)aB that is unknown to B.
B sets Q∗vk = ê(V ∗,−AID(c)).

31

3. B sets dvk∗ = (Q∗r , Q
∗
vk), dsk∗ = αID(c) · V ∗, adds (dvk∗, ID(c), dsk∗) into Ldvk, and returns dvk∗ to A.

Note that dsk∗ is exactly the derived signing key corresponding to dvk∗.

� Probing Phase 2.

– H0(·): when H0 is queried on input an identifier ID ∈ SID:
Same as that of Probing Phase 1.

– H2(·, ·): when H2 is queried on input a pair (input1, input2) ∈ G1×G1: Same as that of Probing Phase
1.

– H3(·, ·, ·): when H3 is queried on input a tuple (input1, input2, input3) ∈ G1 ×G1 ×G1:
• If input1 = BID(k) AND input2 = A AND

ê(input3, P) = ê(input1, input2) for k = 0 or 1 (Below we denote this event by E3), which im-

plies input3 = β′
ID(k)bA = β′

ID(k)abP , B outputs 1
β′
ID(k)

input3 as its solution for the CDH problem

and aborts the game.
• Otherwise, B acts as the same way as in that of Probing Phase 1.

– OWKeyDelegate(·):
Same as that of Probing Phase 1.

– OWskCorrupt(·):
Same as that of Probing Phase 1.

– OWsvkCorrupt(·):
Same as that of Probing Phase 1.

– ODVKAdd(·, ·):
When A makes an ODVKAdd(·, ·) query on input a derived verification key dvk = (Qr, Qvk) ∈ G1 ×G2

and an entity’s identifier ID ∈ SID at level t ≥ 0 such that ID ∈ Lwk:

• If ID /∈ {ID(0), ID(1)} OR Qr 6= Q∗r , B acts as the same way as in that of Probing Phase 1.
• Otherwise (i.e., ID ∈ {ID(0), ID(1)} AND Qr = Q∗r), note that A should not query ODVKAdd(·, ·) on

input (dvk∗, ID) such that ID ∈ {ID(0), ID(1)}, we only need to consider Qvk 6= Q∗vk. In particular,
if ID ∈ {ID(0), ID(1)} AND Qr = Q∗r AND Qvk 6= Q∗vk, B directly returns 0 to A, since

∗ If ID = ID(c), dvk is invalid for sure and hence should be rejected.
∗ If ID = ID(1−c), note that there has been no corresponding random oracle query made to H3

(due to the aborting event E3), B returns 0 to A as in Probing Phase 1.
– ODSKCorrput(·):

When A makes an ODSKCorrput(·) query on input a derived verification key dvk = (Qr, Qvk) ∈ G1×G2

such that dvk ∈ Ldvk:
B acts as the same way as in that of Probing Phase 1.
Note that even when A makes an ODSKCorrput(·) query on input the challenge derived verification key
dvk∗, B can return the corresponding derived signing key, say dsk∗ = αID(c) · V ∗.

– OSign(·, ·):
When A makes an OSign(·, ·) query on input a message m ∈ M and a derived verification key dvk =
(Qr, Qvk) ∈ G1 ×G2 such that dvk ∈ Ldvk:
B acts as the same way as in that of Probing Phase 1.
Note that even when A makes an OSign(·, ·) query on input the challenge derived verification key dvk∗,
B can answer the query by running the signing algorithm using the corresponding derived signing key,
say dsk∗ = αID(c) · V ∗.

� Guess. A outputs a bit c′ ∈ {0, 1} as its guess to c.
Note that it implies neither event E2 nor event E3 happens in this case, B outputs ⊥ and aborts the game
(i.e., B fails to solve the CDH problem).

Probability Analysis. Let GameB denote the above game simulated by B. If no Abort event (i.e., neither
event E2 nor event E3) happens, the GameB is the same as the original GameswWUNL except that B returns
0 for an ODVKAdd(·, ·) query if no corresponding H3 tuple is found whereas in a real game, the challenger

32

could return 1 with a probability 1/(p− 1) for each such query made by A. Denote E1 the event that B
answers one of the ODVKAdd(·, ·) queries wrongly and we have Pr[E1] ≤ qvka/(p− 1).
If neither Abort nor E1 happens, GameB is the same as GameswWUNL, so we have

(
1

2
+ εA)− Pr[A wins in GameB]

≤Pr[Abort ∨E1] ≤ Pr[Abort] + qvka/(p− 1)

Since in GameB, the hash value V ∗ = H3(BID(c) , A, β′ID(c)aB) is chosen uniformly at random and un-
known to A, dvk∗ and dsk∗ leak no information about c. Hence, we have Pr[A wins in GameB] = 1/2.
Therefore,

Pr[Abort] = Pr[E2 ∨E3] ≥ εA −
qvka
p− 1

and B solves the CDH problem with the same non-negligible probability. Also, B’s running time is bounded
by t+O(t(0) + t(1) + qH0

+ qH2
+ qD + qvka + qS)τmul +O(qH2

+ qH3
+ qD + qvka + qS)τp.

33

