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Abstract. A proactive secret sharing scheme (PSS), expressed in the dynamic-membership setting,
enables a committee of n holders of secret-shares, dubbed as “players” to securely hand-over new shares
of the same secret to a new committee. We dub such a sub-protocol as refresh. All existing PSS under
an honest majority, require the use of a broadcast (BC) in each refresh. BC is costly to implement,
and its security relies on timing assumptions on the network. So the privacy of the secret and/or its
guaranteed delivery, either depend on network assumptions, or, on the reliability of a public ledger. By
contrast, PSS over asynchronous channels do not have these constraints. However, all of them (but one,
with exponential complexity) use asynchronous verifiable secret sharing (AVSS) and consensus (MVBA
and/or ACS), which are impossible under asynchrony beyond t < n/3 corruptions whatever the setup.
We present a PSS, named “asynchronous-proactive secret sharing” (APSS), which is the first PSS
under honest majority with guaranteed output delivery in a completely asynchronous network. More
generally, APSS allows any flexible threshold t < n, such that privacy and correctness are guaranteed up
to t corruptions, and liveness as soon as t+1 players behave honestly. Correctness can be lifted to any
number of corruptions, provided a linearly homomorphic commitment scheme. Moreover, each refresh
completes at the record speed of 2δ, where δ is the actual message delivery delay. APSS demonstrates
that proactive refreshes are possible as long as players of the first committee only, have a common view
on a set of (publicly committed or encrypted) shares. Despite not providing consensus on a unique set
of shares, APSS surprisingly enables “Yoso”-MPC without broadcast, as demonstrated in a follow-up
work. In particular, it allows to open the evaluation of any linear map over secrets non-interactively,
without consensus. This holds in various algebraic structures. APSS can also be directly integrated into
the asynchronous Schnorr threshold signing scheme “Roast”(CCS’22). Of independent interest, we:
– provide the first UC formalization (and proof) of proactive AVSS, furthermore for arbitrary thresh-

olds;
– provide additional mechanisms enabling players of a committee to start a Refresh then erase their

old shares, synchronously up to δ from each other;
– improve by 50x the verification speed of the NIZKs of encrypted re-sharing of [Cascudo et al, Asi-

acrypt’22], by using novel optimizations of batch Schnorr proofs of knowledge.
We demonstrate efficiency of APSS with an implementation which uses this optimization as baseline.
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1 Introduction

The goal of threshold cryptography is to process information that should remain secret, and timely deliver
a correct result, despite an adversary corrupting up to a threshold number of participants. A mainstream
primitive is known as verifiable secret sharing (VSS). A dealer D engages in a protocol, denoted as Share,
with a committee P[n] of n machines called players. If it is honest, then all players output in Share. There
is a parameter t, such that, informally, t is the corruption threshold for privacy and correctness, whereas
n−t is the reconstruction threshold. Very roughly, standalone specifications of a VSS are: [Correctness, a.k.a.
verifiability:] as soon as one honest player outputs in Share, there exists a well defined value, s, which we say
is committed. It is furthermore equal to the secret input of D if it is honest. Consider a number of secrets
for which Share completed. Subsequently, for any (possibly external) entity L, dubbed as learner, there is
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a protocol between any P[n] and L, denoted as Open. It is parametrized by a public linear combination Λ
taking the secrets as inputs. It guaranteed that the only value that L can output, is the evaluation of Λ on
the committed secrets. [Secrecy:] if D is honest, then A cannot distinguish between two chosen secret inputs
of D. [Liveness (Completeness)] if Share terminated and if there exists at least t+1 players which follow
the protocol, nonwithstanding they could be passively corrupt [CDN15, §3], then L outputs in Open. In
flagship use-cases, Open is upgraded to reveal only the evaluation of a function on s (or on several secrets),
typically for the purpose of threshold randomness generation [GJM+21], decryption [KJY+20] or signature
[CGG+20]. Although this work is in the UC model, for completeness we detail in Appendix G the standalone
specification of AVSS achieved, and compare it with the many existing ones. For many use cases recalled
in Sections 7.1 and 7.2 and appendix F.2.2, D can be emulated by a distributed key generation (DKG)
algorithm. In this work we consider a dynamic set of participants [DJ97; SLL10; BGG+20; MZW+19;
GKM+22; Gro21; GHK+21; GHL22; VAFB22; CDGK22; YXXM23; HZC+22; HKMR22]. In this model
there is a counter, known as as epoch e = 1, 2, ... which very broadly models time. There is one separate set
of players per epoch: Pe[ne]

= (Pe1 , ...,Pene
), known as a committee. Starting from a VSS to P1

[n1]
, a (dynamic)

proactive secret sharing scheme (PSS) provides a protocol, denoted as Refresh, between any two consecutive
committees Pe[ne]

and Pe+1
[ne+1]

, dubbed old and new. They are parametrized by thresholds te and te+1. Refresh

enables to extend the properties of the initial VSS, throughout the lifetime of the system, despite changes
of participants and corruptions. Informally, the standalone specifications are:

[Secrecy ] still holds after an arbitrary number of Refreshes up to some eA, if at most te players in every Pe[ne]
,

e 6 eA, are corrupt by an adversary A;

[Liveness] if te+1 players in every Pe[ne]
up to some Peo[neo ]

are passively corrupt or honest, then all Refreshes up to

Peo[neo ]
complete and Peo[neo ]

are able to Open to L;

[Correctness] after an arbitrary number of Refreshes up to some eA, if at most te players in every Pe[ne]
, e 6 eA are

corrupt by an adversary A, then the only value which can be delivered to L is the s which was committed
in the initial Share to P1

[n1]
. //“robustness” sometimes refers to the combination of correctness and liveness.

As discussed at the end of Section 1.3 and in Appendix E, our results a fortiori apply to the model of
mobile-PSS, with a static committee and a mobile adversary [HJKY95; CKLS02; GDK22].

1.1 The so-far curse of broadcast (BC) and synchrony in proactive refresh

BC requires an idealized synchronous network. We consider existing PSS tolerating an honest ma-
jority, i.e., which allow to set the thresholds to at least te = dne/2e − 1, i.e., which can tolerate at least
fe < ne/2 malicious corruptions per committee. All them so far [HJKY95; BGG+20; GKM+22; Gro21;
GHK+21; HKMR22] rely on a primitive, known as (Byzantine) broadcast [FLL21, Definition 1]. We dub it
as BC. It involves a sender S and a set of receivers R. It requires that: (Termination) all receivers eventu-
ally output //even if S keeps silent; (Consistency): the same value; (Validity): which is furthermore equal to
the input of S if it is honest. It is trivial that BC cannot be implemented without a synchronous network,
whatever the setup. A synchronous network is the idealized model that there exists a public parameter ∆
such that, in the whole execution, all messages sent are delivered within ∆.

Loss of security if synchrony fails at any point in time. In an implementation of a BC, if one message
arrives after ∆, then the synchrony assumption fails so BC may lose consistency. In all aforementioned PSS
under honest majority, if consistency of the BC is violated, then players output inconsistent new shares,
which results in a complete loss of the shared secret. Worse, in some PSS, the secret is leaked if one single
message arrives after ∆. This concerns those based on the accusation-response mechanism of Pedersen’s VSS:
[MZW+19; GKM+22; HKMR22]. This mechanism is a convenient way to ensure that every player received
a correct private message, without paying the price of public-key encryption appended with NIZK proofs
of correctness of the plaintext. In [GKM+22, p8], when the expected private message (and/or the expected
BC) from some honest Pi is not received within ∆ by an honest Pj , then Pj publicly accuses Pi, which must
then publicly expose the content of this message, which provides substantial information to the adversary on
the stored secret. In Exp-CHURP-A [MZW+19, p. C.1.3], when the BC from an honest Pi is not received
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within a fixed delay ∆BC, then honest players are forced to publicly expose what they sent to Pi, which
provides enough information to the adversary to reconstruct the stored secret.

Cost and security issues with practical implementations of BC. To minimize such scenarios, prac-
tical implementations set a delay between each interaction, which we denote also ∆. It is set to a very high
conservative estimate of the worst-case message delivery delay (including the gaps between the local clocks
of players). In Table 1 we give a first sight of the substantial latencies and costs of implementations of BC,
complemented in Appendix I.4. The largest number n of players which we know to be used in practice is
n = 15, in [JS20]. Nevertheless, our work is also addressing larger values of n. All academic works on PSS
under honest majority targeting large values of n, such as [GKM+22; MZW+19], [Gro21] (Dfinity’s) or
[BGG+20; HKMR22] (Algorand’s), suggest to emulate BC by publishing on a public ledger. Instantiating
BC with Ethereum or Bitcoin brings about extra security, performance and cost issues, as illustrated in (3)
of Table 1, then in Appendix I.4.3.

When It’s All Just Too Much: can BC be downgraded in existing PSS ? The main use-case of
MPC in practice is the proactive refresh of shared keys and their use for threshold signing. The company
“Fireblocks” (of market capitalization 8Bn$) reports that Refreshes are performed every “minutes” [Fir22].
Hence, their main payload seems not to be the initial generation or sharing of keys, nor the punctual
cost of using them for threshold-signing, but instead the life-time long continuous Refresh of keys. This
work addresses the latter. A much used protocol for key-refresh (and threshold signature) is the one of
[CGG+20, Figure 6] (long version of their merged CCS’20 paper). It is known under the name “CMP”. It is
the one used by Fireblocks. It is also implemented by [Ami22] with a funding of Coinbase [Coi22] (of market
capitalization 13Bn$), and also by Taurus [Gro22]. At a high level, the Refresh of CMP proceeds as in the
classical PSS of [HJKY95]. Namely, each players shares 0, then players adds these shares to their old share,
to obtain their new share. Further rounds of accusation enable players to accuse the dealers which did not
send consistent shares to them. The specification of CMP is lighter than [HJKY95], since they guarantee an
output only if all players behave honestly. Thanks to this relaxed specification, they removed all the BC from
their Refresh, making it much lighter. They observe [CGG+20, §1.2.8] that their signing algorithm can be
generalized to lower thresholds t < n− 1, simply by switching to (n, t) Shamir sharing. However, we observe
that this change alone would not lift the restriction of their current key-refresh, which is that one single
deviating player can make the Refresh non-unanimously abort //simply by sending a rogue accusation in the
1. of Output. in [CGG+20, Figure 6]. The accusation message is denoted as < DecError >. A rogue accusation can
simply consist in claiming not to have received anything from the sender Pj , or, received a wrong ciphertext from
a colluding sender. As currently specified, it seems even feasible to send the rogue accusation to one isolated honest
player Pi, just before all other honest players believed that the Refresh went well and erase their old share. As a result,
Pi keeps its old share and does not store its new share. In such a scenario, honest players end up with both less
old and less new shares, than the threshold number needed for reconstruction of the secret. Such a scenario
was evidenced by the audit of Kudelski of the threshold wallet of ING [AS20, §3]. Their attack is called
“Forget-and-Forgive”. We estimate that upgrading the key refresh of CMP to guarantee an output, despite
a non-zero number t of misbehaving players, would require a total of three BC. The details of the estimation
are given below. They illustrate why BC is too costly for real life industrial implementations, so that they
remove it when possible. They also illustrate why removing BC, results in general in non-unanimous aborts.

- In Round 2, BC everything which is sent via P2P messages //otherwise, players could not reach a consistent view on
a subset of senders which behaved well, and of which the sharings of 0 should be taken into account. In particular,
this now makes Round 1 useless. In particular, one cannot use anymore their suggestion to downgrade the BC
into “echo”, also known as consistent broadcast ([Rei94], [CKPS01, p. 3.3]). Despite the terminology “consistent”,
echo allows that some players may output ⊥, while others output an actual value. This suggestion in inherited from
[GL02], and made its way into the aforementioned implementation of CMP [Ami22]. [One can further notice that this
downgrade from BC to echo is also suggested in [DPSZ12, p4&25], while the unanimous abort in their functionality
Fig. 15 holds only for an actual BC.]

- In (former) Round 3, BC the Paillier ciphertexts of shares of 0 //so that players can verify subsequent accusations
not to have received a correct ciphertext from a sender, and unanimously decide if it should be discarded.

- In Output 1. BC the accusations < DecError > //otherwise players may end up with an inconsistent view on the
players from which the sharings of 0 should be discarded.
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1.2 Main contributions

Our first contribution is the specification of an ideal functionality for (asynchronous proactive) VSS, denoted
as FP-AVSS. We outline it in Section 2.5, the formalism being in Fig. 5. It is parametrized by any thresholds
te < ne per committee. It captures guarantees on privacy, correctness and liveness, depending on any actual
number fe 6 ne of corruptions. Let us just mention very roughly that it guarantees privacy and correctness
up to fe ≤ te corruptions per committee; and liveness if at least te+ 1 parties per committee are passively
corrupt or honest, and if one collector per Ke[κe]

is passively corrupt or honest. We refer to Appendix G.3

for a survey on existing functionalities for (A)VSS. Besides those which do not guarantee ouptut delivery
[CMP20], or, which assume that dummy players make synchronously their requests [HKMR22; YXXM23],
there is the one of [AAPP22] which is not enough to enable guaranteed output delivery under honest majority,
since it outputs raw Shamir shares.

Our main contribution is a proactive secret sharing protocol, called APSS0, which is the first tolerating
both honest majority and asynchrony. More precisely, we consider a fully asynchronous communication
network, with a bare bulletin board of public keys. Also, since AVSS is impossible under asynchrony beyond

t < n/3, we make the extra assumption of a reliable broadcast (RB), denoted as RBD→P
1
[n1] , between the

dealer D and the first committee only and used only once. Then:

Theorem 1. Under the previous model, formalized in Section 2, there is a protocol, called APSS0 and
described in Section 4, which UC emulates FP-AVSS in the sense of universal composability (UC, [Can01]).
Any Refresh started synchronously is expedited in 2δ, where δ is the actual message delivery delay.

In particular, setting all thresholds to te = dne/2e − 1, then APSS0 has guaranteed output delivery (GOD)
under honest majority. In Section 7.4 we lift correctness to any number of corruptions, provided any com-
mitment scheme supporting unlimited homomorphic additions.

Unprecedented security and speed. Since APSS0 does not rely on BC nor synchrony assumptions, it
removes the aforementioned security and cost issues, which so far impacted all existing PSS under honest
majority. Comparing the performances of APSS0 with existing PSS, which all have a weaker security due
to these issues, is not apples-to-apples. Nevertheless in Table 1 we compare to previous PSS tolerating an
honest majority. Other PSS tolerating a lower number t < n/3 of malicious corruptions are discussed at the
end of Section 1.3.

Improved complexity APSS0 operates with intermediary committees for each epoch, called collectors and
denoted as Ke[κe]

. Liveness is guaranteed as soon as one collector per Ke[κe]
is passively corrupt or honest, the

other guarantees brought by FP-AVSS still hold if all collectors are fully corrupt. In the simplified FP-AVSS

above we considered that collectors Ke[κe]
consist of a κe = (te + 1)-subset of Pe[ne]

, in addition to their
role. Collectors can also be dynamically and non-interactively sampled at random among committees using
a threshold coin. For instance, as shown in Section 4.3, the ones of [CKS05; GJM+21] can be used and
refreshed inside APSS0. For instance the probability of failing to sample at least one collector honest among
κ = 12 sampled, out of a committee of n = 121 players of which t = 40 are corrupt, is 0.00004%. //By

comparison, in [GDK22, §8.2] (for t < n/3) they require that at least half of their collectors are honest. Considering

the same numerical example, the probability of failing to match their requirement of 7 honest out-of 12 collectors

sampled, is 16%. In Appendix B.1 we describe a division by O(n) of the communication for n secrets in parallel, but

with more latency.

Modularity & application to threshold signing and decryption APSS0 operates on any secret space
supporting Shamir sharing. It enables the threshold opening of any linear map evaluated over shared secrets,
without consensus on a set of vectors of shares. In Section 7.2 we examplify how APSS can be used with-
out interaction to generate a threshold BLS signature, Elgamal decryption, randomness generation and
threshold (R)LWE decryption; and in Section 7.6: integration without additional interaction in the state of
the art asynchronous interactive threshold Schnorr [RRJ+22].

Composability with any scheduling mechanism, YOSO. In APSS0, a player initiates a Refresh, or an
Open, upon receiving input (refresh-sig), or (open-sig). In APSS0, a player shuts-off, i.e., erases its memory
and quits the protocol, upon receiving the input (shutoff-sig). Since APSS0 is proven UC secure, it can be
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Scheme Network Latency (3) Communication (1) Setup

[HJKY95; HKMR22] Synch δPKI + 3∆
n
BC n

∣∣BC(nγ)
∣∣ PKI & URS (6)

[BGG+20],[Gro21],[GHL22] Synch δPKI + ∆
n
BC n

∣∣BC(nγ)
∣∣ PKI & NIZKs (5)

[MZW+19, §C.1] Synch δPKI + 5∆
n
BC n

∣∣BC(nγ)
∣∣ PKI & NIZKs

[GKM+22] Synch 5∆
n
BC

∣∣BC(nγ)
∣∣(4) SRS (6)

APSS Asynch δPKI + 2δ (2) κ
∣∣MC((nγ)2)

∣∣ PKI & NIZKs (5)

(1) The communication complexity of a Refresh in APSS0 is the total number of bits sent by the n honest players in the
exiting committee P[n] and by the κ collectors. We consider here n′=n players of a new committee P ′[n′], they do not

speak. γ denotes the security parameter. For a given BC algorithm,
∣∣BC(B)

∣∣ denotes the total number of bits sent by
honest players in an execution with input length Ω(B) and n receivers. Assuming honest majority t < n/2 and assuming
a trusted setup and a synchronous network and a static adversary, then the BC of [ADD+19] has communication
complexity BC(B) = Ω(B2). Under dishonest majority, t < n, which is common for threshold wallets, and assuming a

trusted VRF setup and a static adversary, the best-known constant-round BC [WXSD20] has BC(1) = Õ(n4). The
BC of [DS83] has BC(1) = O(γn2 + n3).

∣∣MC(B)
∣∣ denotes the communication complexity of a multicast of Ω(B)

bits to n receivers. A survey is given in Appendix I.4. A multicast is the authenticated sending of the same message
to n players. The straightforward implementation, of sending it to each of the n players, costs

∣∣MC(B)
∣∣=nB. It can

also be implemented by gossipping the signed message [CKMR22].
(2) δ is the actual largest message delay in an execution. A typical intercontinental delay is δ = 100ms, see Appendix I.6.

∆ is a parameter which is set high enough so that no message ever should take more than ∆ to be delivered. In the
implementation reported in [AMN+20], they set ∆ = 50ms, which is equal to 50 times their measured actual message
delay δ = 1ms. If we apply the same 50× conservative overhead to 100ms, we obtain ∆ = 5s. This is the order of
magnitude of the ∆ = 12s assumed by Ethereum.

(3) ∆
n
BC denotes the expected latency of n BC in parallel and δPKI is the publication delay on the PKI. The BC of [ADD+19]

has latency ∆BC = 10∆. Hence, n instances in parallel terminate after an expected ∆
n
BC = O(10∆ log(n)), see

Appendix I.7. Likewise, for the one of [WXSD20], we deduce an expected ∆
n
BC = O(( n

n−t)
2 log(n)). The BC of

[DS83] has a fixed latency: ∆BC = ∆
n
BC = t+1. A survey is given in Appendix I.4. When n is too large, then, e.g.,

Ethereum can be used as a BC, under the assumption that 2/3 of stakeholders are honest, with ∆BC = 7 minutes. This
costs transaction fees for n times n-sized broadcasts, of 15$ each. Details are given in Appendix I.4.3.

(4) The
∣∣BC(n)

∣∣ complexity displayed for [GKM+22] holds if amortized over >n secrets.
(5) In our implementation, as well as in [CMP20; BGG+20; Gro21; GHL22], NIZK-AoKs are instantiated from Fiat-Shamir

transforms of special sound public coin HVZK-AoKs. So they require a priori a programmable random oracle (RO).
URS stands for a public uniform random string, possibly known long before players publish their keys. Uniformity allows
generation by nothing-up-my-sleeve sampling or distributed beacons [CD20]. It is needed for the setup of the Pedersen
commitment scheme in [HJKY95, footnote 2][HKMR22]. A URS is also required in [Gro21; GHL22] as a common
parameter for the public keys (the scheme being CCA in the former), enabling to amortize the sizes of ciphertexts.
Since the last two assume the RO, they can simply set URS:=RO(1).

(6) SRS designates a structured random string, needed for the polynomial commitment KZG, it is also needed in [MZW+19,
§C.1]. SRS could be downgraded into URS in both [GKM+22; MZW+19], provided a polynomial commitment under
URS.

Table 1: Comparison of Refreshes of PSS tolerating an honest majority, for committees of size n.
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composed with any external scheduling mechanism sending these inputs. Some are surveyed in Appendix H.4.
A global clock is considered in [CKLS02, p18], which, phrased in our terminology, sends to all (refresh-sig),
then just after, (shutoff-sig). Liveness in [CKLS02, p18] is guaranteed under the synchronous assumption
that this clock waits for all messages of a Refresh to be delivered, before sending its next tick to all. //No

PSS can guarantee liveness with a clock which would urge players to speak-now-then-shut-off, before they received

enough messages. Our FP-AVSS coarsely captures this (see the very last comment in Fig. 5. Instantiating APSS0
with this model of synchronous clock, which waits for the messages to the next committee being delivered
before ticking, then participants speak only once. In that sense, this instantiation matches an even stronger
requirement than YOSO [GHK+21], called layered MPC in [DKI+23].

We also provide contributions of possible independent interest:
A new computation model. A Refresh in APSS0 proceeds as follows. It uses as baseline the well-known
method of resharing of Shamir shares. Consider an old and new committee: P[n] and P ′[n′], with thresholds

t and t′. Each player Pi of P[n] starts not with one, but a list of n-sized vectors of ciphertexts. Each vector
consists in n Shamir shares of s with threshold t, encrypted under the public keys of P[n]. For each vector
c[n] in its list, Pi multicasts to the collectors K′[κ′] a re-sharing of its share, encrypted under the public keys

of P ′[n′]. So this comes as an n′-sized vector of ciphertext shares: ci→[n]. It appends it with a NIZK argument

of knowledge (AoK) proving the correct decryption-then-resharing-then-reencryption. Each collector, upon
receiving a batch of t+1 consistent encrypted resharings, i.e., out of of the same vector c[n], computes
homomorphically their Lagrange linear combination, to obtain one vector of ciphertext new shares: c′[n′].

Then it multicasts c′[n′] to P ′[n′], appended with the received batch of resharings, and disappears. Each player

of P ′[n′] accepts at most one vector of encrypted new shares from each collector K′k′ . It includes it in its
list only if the NIZKs appended prove that it is made of correct resharings and that the Lagrange linear
combination is correct. Liveness is guaranteed by the fact that there exists at least one honest collector
which sends to P ′[n′] the same vector of ciphertext new shares.

Now, if Refreshes went on like this, since players do not have a public ledger, they would have to piggy-
back to their re-sharings the entire history of previous encrypted resharings and of the NIZKs vouching for
their correctness. To avoid this, we introduce a chain of correctness mechanism. Collectors collect signatures
attesting the validity of vector of ciphertext shares. Once a vector of ciphertext shares has reached a quorum
of t+1 signatures, it needs not anymore be appended with NIZKs. A novelty is that we “pipeline” this
mechanism within each resharing, and thus do not degrade the latency.

50× speedup over [CDGK22, Asiacrypt’22]. In Section 8 we report on our implementation of NIZK-
AoKs of encrypted resharing, instantiated with Elgamal encryption. We improve the ones of [CDGK22],
which are also for Elgamal. We achieve a 10x speedup in verifying (n = 1001)-sized resharings, issued by a
quorum of t+1 = 501 resharers-out-of-n, and a 50x speedup for W = 1000 secrets in parallel. A possibly new
trick is the batch verification of proofs of resharing. We furthermore enable the verifier to precompute offline
the scalar coefficients involved in the batch verification, thereby removing 2n.W.(t+1) online multiplications
in Fp, leaving only one online multi-scalar-multiplication of size t+1.

Simulatability of PVSS, without straight-line extraction. A by-product of our UC proof, is that it
positively answers the question raised by Shrestha-Bhat-Kate-Nayak in [SBKN21, p5] (the v1), whether PVSS
would be simulatable. Moreover, under honest majority we achieve it from any NIZK AoKs with simulation-
soundness after possibly rewinding, i.e., weak simulation extractability [FKMV12], i.e., not necessarily in
straight-line. This includes Bulletproofs and Spartan [BBB+18; Set20], as very recently shown under the
DLOG by [DG23]. We were later informed of other works doing simulation proofs for PVSS [CD20; GHK+21;
Div22], but all of them require NIZK-AoKs with straight-line, a.k.a. online, extractability. So this ruled-out
Bulletproofs and Spartan.

A practical and rigorous formalization of resharing-friendly PKE. Recall that in APSS0, players
homomorphically compactify a batch of t+1 resharings, into one vector of ciphertext new shares. We make the
simple but possibly new observation, that, since players subsequently decrypt-then-reshare their new share,
the public key encryption scheme (PKE) needs only supporting a limited number of linearly homomorphic
operations mod p. //This somehow relates to the interactive bootstrapping of threshold ciphertexts [CLO+13,
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Choudhury et al, Asiacrypt’13]. This brings about a new specification of public key linearly homomorphic
encryption (LHE) scheme PKE, modulo a fixed prime p, made in Section 3. After completion of this work,
some other works considered resharing with a LHE supporting an unlimited number of LH operations:
[Div22; CDGK22]. This is only matched by the LHE described in [CCL+20, §3.2], and by Elgamal for
plaintexts in DDH-hard groups. By contrast, our specification allows the use of much more existing LHE’s,
including the two considered in [ISO19, ISO/IEC 18033 Part 6], i.e., Paillier and “Elgamal in-the-exponent”
[CCN21]. It also specifies an encryptor-decryptor binding property, which is necessary for the robustness of
any encrypted resharing scheme without extra commitments to subshares. It was apparently forgotten in
existing such schemes [BGG+20; GHK+21] //and notified to them.

1.3 APSS: making APSS0 fully asynchronous

We now go beyond the composability of APSS0 with any scheduling mechanism, and introduce one, in Sec-
tion 6, which is tailored to APSS0. It is a sub-protocol, called the Refreshing squad //in honor of [CDDS85],
which delivers to players the inputs (refresh-sig) and (shutoff-sig). The former triggers a player Pei to wait
a delay ∆e

wait, which is a tunable parameter depending on e, then to initiate a Refresh. Optionally, we en-
able Refreshing squad to also deliver a new kind of output, called (keys-sig). When this option is activated,
players in the new committee Pe+1

[ne+1]
do not generate and publish their encryption key, until they have

received (keys-sig) and waited the further tunable delay ∆e
wait. We call APSS the whole protocol obtained.

Refreshing squad is designed so as to shrink to a minimum the critical timeframe during which an old com-
mittee is still online, i.e., not shut-off, while players have generated secret material related to the next epoch,
i.e.: their keys for new players, and their resharings for old players. Late generation of this secret material
is guaranteed by the two properties called last minute in Theorem 2. Minimizing this critical timeframe is
useful when APSS is compiled into the related mobile-PSS setting (see below and in Appendix E). Indeed,
corruptions during this timeframe count in both budgets of the old and the new epoch. Another practical
advantage is that, since future committees need only be created when they need to generate their keys, our
last-minute key generation is useful for security and cost reasons. This is discussed in [GHK+21] (“Future
Horizon”).

As stated in Theorem 2 this mechanism guarantees liveness, and openability of the secret during a
window of opening, of which the duration depends on the parameters ∆e

wait. In conclusion, APSS is a fully
asynchronous PSS under honest majority, of which the liveness does not depend on any timing
assumption //in particular in Theorem 2, if we set all ∆e

wait’s finite until some ∆eo
wait =∞, then Peo[neo ] is guaranteed

to Open the secret to L. As detailed in Appendix H.4, all existing termination mechanism, for PSS under
asynchrony, relied on t < n/3 malicious corruptions.

Theorem 2 (APSS). Protocol APSS implements functionality FP-AVSS, except that liveness is further condi-
tioned to all committees of collectors Ke[κe]

having an honest majority. Furthermore, consider an execution in

which both committees and collectors have an honest majority for all e> 1, and in which the RB (RBD→P
1
[n1])

to P1
[n1]

terminates, e.g., if D honest. For each e, consider the time T e at which the first player of Pe[ne]

receives (refresh-sig). Then the T e’s are all finite, monotonically increasing, and such that:

Last-minute key generation ∀e: no player of Pe+1
[ne+1]

generates its key pair before T e − δ +∆e
wait;

Fast shutoff all players of Pe[ne]
have shut-off before T e +∆e

wait + 4δ.

Window of opening for any e such that: ∆e
wait > δ and all honest players in Pe[ne]

have received (open-sig)

before T e+∆e
wait, then L outputs before T e+∆e

wait + δ //(open-sig) formalizes any external instruction to Open;

The most general (and correct) “mobile” corruption model in a static committee. In Appendix E
we describe a generic compilation from any PSS with dynamic committees, into a PSS for a fixed committee,
P[n], in which a mobile adversary A changes its corruptions over time. In the tradition of [OY91; HJKY95],
we call this model mobile-PSS. However, we found no model of mobile-PSS under asynchrony which would
capture all existing protocols. The one of [CKLS02] assumes a global clock which ticks epochs, (refresh-sig)
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and (shutoff-sig). Their liveness is conditioned to ticks happening after all messages of the previous Refresh
were delivered. The one of [ABKL22] was proven by themselves to be unimplementable. The one of [SLL10]
forgets to count in the corruption budget of both adjacent epochs, a player which would be corrupt during a
Refresh//this does not affect the correctness of their PSS, which is instead in the dynamic setting. The problem in
the model of [SLL10] impacted recent mobile-PSS which borrowed it: [GDK22], and the mobile-PSS model
considered in [YXXM23, §A]. //We notified to them a passive corruption attack on their mobile-PSS, which they

quickly acknowledged to have already identified, and fixed the model in their new version. In Appendix E we go
beyond this observation, and introduce a corruption model which captures all existing PSS in the static set-
ting, including [CKLS02]. It furthermore captures differences in the security levels of existing PSS schemes,
depending on fine-grained delays in their Refreshes.

Faster than all existing asynchronous PSS. For completeness we survey, in Appendix H, further PSS
which do not guarantee simultaneously liveness, correctness and privacy beyond t < n/3 malicious corrup-
tions [ZSV05; CKLS02; SLL10; DM15; YXD22; VAFB22; YXXM23; HZC+22; GDK22]. APSS guarantees
all three up to t < n/2. As APSS, most of them tolerate asynchrony. Nearly all of them use a primitive
known as consensus, in order to agree on a set of new shares. An exception is [ZSV05], but which has expo-
nential complexity. But it is trivial ([DLS88, Thm 4.4]) that consensus is not implementable above t < n/3
corruptions, even under partial synchrony and whatever the setup. Due to their use of consensus, the Refresh
of these PSS take at least 16δ (and O((t+1)∆) in the worst-case for [SLL10; VAFB22]), vs 2δ for APSS.

2 Preliminaries and Model for APSS0

In Sections 2.3 and 2.4 we define the participants, adversary and corruptions. In Section 2.5 we define the
ideal functionality which APSS0 aims at implementing. Then in Sections 2.6 to 2.9 we specify the resources
at hand: asynchronous communication channels, bulletin board of keys etc. In Appendix A we give the full
details of the formalization in the UC framework of [Can01]. In Appendices E and G we compare with other
related models and impossibilities.

2.1 General Notation and Parameters
General (arbitrary) parameters Let p be any prime number, denote as FpFpFp = Z/pZ the finite field of
order p. Let (SSS, 0,+) be any Fp-vector space, denoted as the space of secrets and shares. For instance,
the reader may consider S = Fp. Another useful example is S = Fp[Y ]/Q a finite polynomial ring. In our
Elgamal-based implementation, we will set S an abelian group of order p, in additive notation, in which
DDH is hard. The security parameter is denoted as γ.

General notation For F a finite set, we denote |F | its cardinality, and f $←− F the sampling of an element in
F uniformly at random. The empty string is denoted as ⊥. For m an integer, we denote [m] :={1, . . . ,m}. Vec-
tors with coordinates indexed by some set are denoted with this set as subscript, e.g., ci→[n′] :=(ci→j)j∈ [n′].
Their coordinates are mostly denoted as subscript, and also sometimes in brackets, e.g., Li[k] for the k-th
entry of Li. Unless specified otherwise, ||·|| denotes the sup norm ||·||∞.

Eventual Delivery When we say that an output v of an ideal functionality, typically a message sent over
an asynchronous channel, is eventually-delivered to P , we informally mean the following. The functionality
informs the adversary that an output is ready for P , and possibly leaks v, if it is public. The adversary can
delay the delivery of v up to a finite polynomial delay, which it adaptively adjusts, after which v is delivered
to P . We further formalize this in the UC framework in Appendix A.1.1, following existing works.

2.2 Polynomials, Shamir secret (re-)sharing, and interpolation We refer to [CDN15, §3.2]. Let
t < n be any integer such that n < p. S[X]6tS[X]6tS[X]6t denotes the (t+1-vector space of) polynomials of degree
at most t with coefficients in S. We abuse notation and denote them as degree-t polynomials. We denote

as Fp[X]
(0)
tFp[X]
(0)
tFp[X]
(0)
t ⊂Fp[X]≤t the t-vector subspace of degree t polynomials evaluating to 0 at 0, i.e., of the form∑t

`=1 a`X
`. To generate a Shamir secret sharing of a secret S∈ S: sample a random degree-t polynomial

h∈ S[X]6t such that h(0) = S, then output the shares: Si ← h(i), ∀i∈ [n].
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- Let us concretely describe the case where S is abelian of order p ([ACR21, §6]). Consider G any generator

of S, e.g., G = 1 if S = Fp. Sample
∑t
`=1 a`X

` $←− Fp[X]
(0)
t , set h ← S + (

∑t
`=1 a`X

`).G, then output

Si=h(i) = S + (
∑t
i=1 i

`.a`)G, ∀i∈ [n]. The same goes coordinate-per-coordinate for any S.

Conversely, we denote as a vector of (n, t)-shares of S any vector of the form (h(i))i∈ [n], for any degree-
t polynomial h s.t. h(0) = S. Any degree-t polynomial h is uniquely determined by its evaluations at
any distinct t+1 points, by a mere linear combination. Consider any (t+1)-sized subset U⊂Fp. Define the

Lagrange polynomials as λUi (X)←
∏

j∈U\{i}
X−j
i−j
∈ Fp[X]≤t, ∀i∈ U . Then, for any h ∈ S[X]6t we have the

Lagrange interpolation formula: h =
∑
i∈ U λ

U
i (X).Si. Hence, h is referred to as the sharing polynomial of the

(Si)i∈ [n]. In particular, denoting as λUi ← λUi (0) the “Lagrange coefficients”, we have linear reconstruction
of the secret from any t+1 shares: S = h(0) =

∑
i∈ U λ

U
i .h(i).

Finally, we have the t-privacy property that, for a fixed s, any t-sized subset I ⊂ [n] of coordinates,
then when h varies uniformly s.t. h(0) = s, we have that (Si = h(i))i∈ I vary uniformly independently in St.
//This follows from the invertibility of any t+1-sized minor of the (t+1)× n Vandermonde matrix.

We now recall the method of re-sharing of any vector of (old) shares (Si)i∈ [n] of some S, into a new
(n′, t′)-vector of shares, for any t′ < n′. Consider any t+1-sized subset U ⊂ [n] and, for each i∈ U , any
vector of shares Si→[n] = (Si→j)j∈ [n′] of Si, denoted as sub-shares. We dub the latter as a re-sharing of Si,
or also as sub-shares of Si. Define the new shares S′[n′] = (S′j)j∈ [n′] as:

(1) S′j ←
∑
i∈ U

λUi .Si→j , ∀j∈ [n′] . Fact: they form a vector of shares of S.

Let us recall the proof of the fact. For each vector of sub-shares Si→[n], denote as Hi the sharing polynomial,
i.e., Si→j = Hi(j) ∀j∈ [n′]. Define the new polynomial as H ′←

∑
i∈ U λ

U
i .Hi. Then, by construction, we have

that S′j = H ′(j) ∀j∈ [n′]. On the other hand, also by construction, we have that H ′(0) =
∑
i∈ U λ

U
i Si = s,

which concludes the proof. An illustration is provided in Fig. 15, and a historical account in Appendix I.1.

2.3 Participants: Dealer, Learner and (Dynamic) Committees of players We consider one PPT
machine called dealer and denoted as D and one called learner and denoted as L. D initially starts with an
input s∈ S, denoted as its secret //we will revert to the upper-case notation S in our Elgamal-based implementation.

L may output some value in S at some point. We then show in Section 4 how to open linear combinations of
several secrets form several D’s. We consider an arbitrarily long sequence of integers e=1, 2, . . . , referred to as
“epoch numbers”. For each e∈ N∗, we consider a set of ne < p distinct probabilistic polynomial time (PPT)
machines Pe[ne]

= (P e1 , . . . , P
e
ne

), called committee of share-holders, or simply committee. Their members are

denoted as players. When a player receives the input (shutoff-sig), then it shuts-off, i.e., erases all its memory
and quits the protocol. We say that a player is online if it is not shut-off. For each e∈ {2, 3, . . . }, we also
consider a set of κe distinct PPT machines Ke[κe]

, denoted as a committee of collectors. Their sizes ne < p,

κe are tunable parameters. For ease of notation we set K1
[0] :=∅ //notice that, if we had made the alternative

convention: K1
[1] :={D}, then this would have shortened our Proposition 5 and Section 6. We did not, for sake of

clarity. All players {Pei }i,e and collectors are disjunct threads. In the sampling method suggested in the
introduction, we provided probabilities under the specific model where a collector thread running on the
same computer as a corrupt player thread, would automatically be corrupt. Our results hold in general,
without imposing such correlations between corruptions. At any point, any player Pei , ∀e, i, may receive two
inputs: (refresh-sig) and (open-sig). Anticipating on APSS, and roughly speaking: the former instructs Pei to
start resharing its secret shares to Pe+1

[ne+1]
, and the latter to start sending its secret shares to L.

2.4 Adversary A, Static Corruptions We consider a PPT machine called the adversary and denoted
A. It can (maliciously) corrupt any participant, i.e., D, L and any member of committees Pe[ne]

, Ke[κe]
, ∀e,

before they start the protocol. This means the following. A corrupt entity reveals all its internal state to
A [which boils down to, for D: it input; for the others: nothing], then becomes forever a proxy of A. The
corrupt players in each committee Pe[ne]

are indexed as Ie⊂ [ne]. We denote their number as fe ← |Ie|. The
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non-corrupt participants as denoted as honest, and indexed as He = [ne] \ Ie. In Appendix B.2 we discuss
how early adaptive corruptions are supported with less than

(
n
t

)
loss.

2.5 Specification of the functionality to implement What we are aiming at, is a protocol, APSS0,
which UC-emulates the following dummy protocol. The meaning of to UC emulate is reminded in Section 5.1,
with further helpful diagrams in Figs. 10 and 11. The non-trivial actions of the dummy protocol are performed
by an ideal functionality which we introduce. We call it the functionality of proactive asynchronous verifiable
secret sharing, and denote it as FP-AVSS. Its full specification is given in Fig. 5, we now convey the main
ideas.

The dummy D gives its input s to FP-AVSS, which stores it. From this point, D is committed to s.
This means that, unless a number of corruptions above te in some committee, FP-AVSS cannot deliver to L
another value than s. FP-AVSS eventually notifies (committed) to all dummy players of the first committee
P1

[n1]
.When all honest dummy players of P1

[n1]
have received committed//[which will correspond, in APSS0,

to: terminated the initial AVSS], then FP-AVSS memorizes that P1
[n1]

can realize an opening. To this end, it

initiates the counter eo ← 1. Peo[neo ]
is the highest committee allowed to make an opening of the secret.

Upon receiving input (refresh-sig) or (open-sig), an honest dummy player forwards it to FP-AVSS in the form
of a request: (refresh-req) or opening: (open-req). The only not totally dummy rule, is that dummy players
of P1

[n1]
must wait to have been notified (committed), before they request (refresh-req) or (open-req). Upon

receiving (shutoff-sig), a dummy player notifies it to FP-AVSS then shuts-off. Upon receiving (refresh-req) from
teo+ 1 dummy players of committee Peo[neo ]

and if at least one collector in Keo+1
[κeo+1]

is honest, then FP-AVSS

eventually updates eo ← eo+ 1 //unless too much shut-offs happened in-between. Upon receiving (open-req)
from te + 1 dummy players of some committee Pe[ne]

, e 6 eo , FP-AVSS eventually delivers [unless too much

shut-offs happened in-between] the stored value to L. We denote this event as a collective opening. If more
than te + 1 players in some committee are corrupt, then FP-AVSS leaks the stored value, after letting A
change its value. This latter power will be thwarted in APSS2. We now stress some subtleties. Consider any
protocol implementing FP-AVSS as described above. Consider the scenario where one isolated honest player
would start to reveal its shares to L, i.e., starts the Open protocol. Since it is hard to prevent te corrupt
players from also sending compatible consistent shares to L, this results in the secret being opened to L.
We qualify such event as an early opening. //We did not find formalized elsewhere this unavoidable power, e.g.,

not in the related FCOM of [CDN15, p. 105]. We formalize this adversarial power by having FP-AVSS maintain
another counter, denoted as eA> eo. It updates it to eA+ 1 as soon as teA + 1− feA honest dummy players of
PeA[n] request (refresh-req) //roughly this translates in the protocol by: send their subshares to KeA+1

[κeA+1]. We denote

such event as an early refreshing. Then, we give to A the power to send an (open-order) to FP-AVSS, which

triggers an immediate delivery of the secret to L, as soon as te+1−fe honest dummy players of some Pe 6 eA
[n]

request (open-req).

2.6 Asynchronous Message Transmitting, (bare) Multicast, and Actual Network Delay δ All
players in some committee Pe[ne]

are connected with all collectors in Ke+1
[κe+1]

, themselves connected with the

next committee Pe+1
[ne+1]

, by public authenticated message transmitting with eventual delivery. It is captured

by the following functionality FAT, which is further formalized in Section 2.6. It is parametrized by a sender
S and a receiver R. On input (input, ssid, v) from S, then FS,RAT leaks v to A and eventually delivers (ssid, v)
to R. To multicast a message to a committee barely means to send it over FAT to all its members. All
players are furthermore connected to L by secure message transmitting. It is the same as FAT, excepted that
only the bitlength |v| is leaked. For a given execution, we define as δ the time taken by the longest message
delivery. //δ is measured a posteriori. A needs not commit on an upper bound on δ. In Appendix H.1 we discuss

weaker models which assume so.

2.7 Bulletin board PKI: FbPKI, and Signatures We consider the ideal functionality of a bulletin
board of public keys, denoted as FbPKI and presented in Appendix A.1.4. Upon receiving a key ekei from any
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player Pei ∈ Pe[ne]
, it stores (Pei , eki) and leaks this information to A. For each e it: -waits until it received

a public key from every honest player Pei ∈ Pe[ne]
-sets a timeout -then after it elapsed, sets to ⊥ the keys

of the (necessarily corrupt) players of Pe[ne]
which did not give a key. Then it sets as ek[ne] ← (eki)i∈ [ne]

the vector of all keys, [where those from some corrupt players may be ⊥], and eventually delivers it to all the
system. We also require any black box standard digital signature scheme satisfying unforgeability in the
sense of EUF-CMA.

2.8 Single-Shot Reliable Broadcast RBD→P
1
[n1] from D to P1

[n1]
. To share its input to P1

[n1]
, D will

perform only once a reliable broadcast (RB). RB is a weakening of BC, in which receivers R = P1
[n1]

do not

need to output if the sender S = D is corrupt. We abstract it out as the following functionality denoted

as RBD→P
1
[n1] , and formalized in Appendix A.1.7. Upon receiving a value, say s, for the first time from D,

then: it leaks s to A, and eventually-delivers s to each receiver P1
i ∈ P1

[n1]
. RBD→P

1
[n1] can be implemented

assuming any of the following assumptions. We refer to Appendix I.5 for a detailed survey.
- D is always honest. //It can be implemented by a mere insecure multicast.

- t1 < n1/3. //in 3δ and O(Bn2) bits, or 4δ and O(Bn+ γn2) bits

- t1 < n1/2 AND the network provides two initial rounds of synchrony then becomes asynchronous: [GPS19,
§5], see also Appendix I.2.

- t1 < n1 AND the network provides t+1 synchronous rounds.

2.9 NIZKs We will use non-interactive zero knowledge arguments of knowledge, which we dub NIZK
AoKs, or simply NIZKs. We capture them by the ideal functionality FNIZK, recalled in Appendix A.1.5.
Moreoever, under honest majority, i.e., if te < ne/2 ∀e, we relax FNIZK into any NIZK AoK with weak
simulation extractability [FKMV12], i.e., which possibly requires rewinding.

3 LHE with Limited Evaluations and Bilateral Binding

We introduce a new specification of linearly homomorphic public key encryption (LHE). It comes as the set
of algorithms PKE = (EKGen,Enc,Dec,�,�) described below. //Roughly speaking, we require that a ciphertext

c “correctly decrypts mod p”, even if it was produced by colluding encryptor(s) and decrypter, even as the result of

homomorphic operations, as long as the “sizes of the plaintext and noise of c” are below some fixed bounds M and

R. Aiming at using PKE in APSS0, we set the (front-end) plaintext space equal to our Fp-vector-space of
secrets: S. Now, for the (back-end) purpose of analyzing the properties of PKE, it is convenient to consider
a larger extended plaintext space. We consider (M, 0,+) a fixed abelian group containing S as a subset,

endowed with a norm ||·|| and a linear map denoted mod p, such that S ↪→ M
mod p−−−−→ S = idS. //Informally,

“Linear” means that {+ then mod p} = {mod p then +}. For instance, although Paillier has one distinct plaintext

space Z/NiZ for each public key eki, we set the extended plaintext space as M :=Z with ||·|| the absolute value. Then,

the common (front-end) plaintext space in APSS0 is S :=Fp⊂Z. Anticipating, the correctness bounds below impose

(t+1)p2 < (Ni − 1)/2 ∀i.

• To generate a key pair: sample a secret dk ∈ dK, output ek :=EKGen(dk) ∈ eK, where EKGen is a public
deterministic function. //Determinism does not restrict generality, up to incorporating in dk the randomness

necessary to generate (dk, ek) ([HPW15, §2.1]).

• There is a (back-end) deterministic function which takes any m∈ M, public key ek∈ eK, randomness ρ∈ Zd,
where d is a parameter, then returns Encek(m; ρ) in the ciphertext space C.

• There is a (front-end) deterministic decryption function which takes any ciphertext c∈ C and key dk, and
returns Dec(dk, c)∈ S t ⊥.

• There are deterministic (front-end) functions: the homomorphic addition � and the scalar multiplication
�, such that ∀ (ek,m,m′, ρ, ρ′), we have Encek(m; ρ)�ek Encek(m

′; ρ′) = Encek(m+m′; ρ+ ρ′), and, ∀λ∈ Z,
we have λ�ek Encek(m; ρ) = Encek(λm;λρ). //In particular, (−1)�ek cannot just be built from �.
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//By convention, any ek /∈ eK is denoted as ⊥. By convention, Enc⊥(m; ∗) :=m. For this reason, we consider that C

contains a copy of S, on which � and λ� simply operate as + and λ×.

We require IND-CPA over S⊂M, as follows. Define the (front-end) randomized encryption algorithm
under key ek as: on input s ∈ S, sample ρ $←− [−Renc, Renc]

d, where Renc is a public bound, then return
Encek(s; ρ) //imposing the sampling to be uniform in such a subset of Zd does not restrict generality. Then any
PPT machine A has negligible advantage in the following game: {b ← A(c) : ek = EKGen(dk $←− dK); S2 3
(s0, s1) ← A(ek); b $←− {0, 1}; c ← Encek(sb)}.

Definition 3 (LHE). We say that PKE supports linearly homomorphic operations mod p up to (M,R),
with bilateral binding, if any PPT machine A has negligible probability to produce a (dk∈ dK,m∈ M, ρ)
such that ||m|| 6M , ||ρ|| 6 R and Dec

(
dk,Encek(m, ρ)

)
6= m mod p, where ek := EKGen(dk).

For any 0 6 t < n < p, and keys (eki)i∈ [n] of which at least t+1 are correctly generated, we say that a n-uple

of ciphertexts:
(
Enceki(si; ρi)

)
i∈ [n]

is a vector of ciphertext shares if ||si|| 6 M and ||ρi|| 6 R, ∀i∈ [n] and

the (si mod p)i∈ [n] form a vector of (n, t)-Shamir shares. //Definition 3 guarantees that they do decrypt to

(si mod p)i∈ [n]. We specify any (M,R) s.t.: M > p2(t + 1) and R > p(t + 1)Renc. //Anticipating on APSS0

(Algorithm 2) the consequence is as follows. Consider any t + 1 n′-sized vectors of fresh encryptions of Shamir

(sub)shares, indexed by some set U of size t + 1 : {(Encekj(si→j ; ρj)j∈ [n′] : i∈ U}. Each of their n′ coordinates is

encrypted under the public key ek′j of some decrypter P ′j . We can even assume that each vector was generated by a

malicious encrypter Pi. The bottomline is that each (si→j)j∈ [n′] forms a vector of share and that the encryptions

are fresh, i.e., ||ρj || 6 Renc, ∀j∈ [n′], ∀i∈ U . Then consider the homomorphic evaluation of the Lagrange combination

(Eq.1) applied coordinate-by-coordinate to these t+1 vectors. Denote it as c′[n′]. This is described in Equation (2) and

illustrated in Figs. 15 & 12. Denote as (s′j)j∈ [n′] the linear combination of the vectors of plaintext (sub)shares. Then,

the specifications M > p2(t + 1) and R> p2(t + 1)Renc imply that c′[n′] is a vector of ciphertext shares of (s′j)j∈ [n′].

In particular any decrypter P ′j , even if colluding with the t+1 encrypters, cannot possibly exhibit a secret key dk′j
explaining ek′j , under which the decryption of its new share would be different from s′j .

//The case where both M = Renc = ∞ and the probability is zero, is known as LHE with perfect correctness

mod p. There exists only two such schemes. The one of [CCL+20, §3.2] is used in the PVSS of [Div22; KMM+23]. The

one of Elgamal [M :=S abelian of order p, ||·|| nil and mod p = idS] is used in the PVSS of [CDGK22]. Definition 3 is

also matched by Paillier, with (front end) plaintexts in S := Fp. The parameters are M 6 (N − 1)/2, for N a lower

bound on the eki = Ni, and R =∞: see [BDOZ11, §2.1]. We make the observation that it is also matched by Elgamal

with plaintext in-the-exponent, up to M a size for which solving DLP is efficient. It is also matched by lattice-based

schemes, e.g. Regev mod p ([BDOZ11, §2.1]), provided a cap on the noise in encryption (Renc) and key generation

(dK). Further details and efficiency discussions are in Appendix F.1.

//A major difference compared to the specification of “SHE” in [BDOZ11, §2] is that their probability is “taken

over the random choices” used to honestly sample dk (and, less clearly, ρ). So this allows the probability to be

non-negligible when the decrypter chooses its secret key, and, a possibly colluding encryptor chooses the encryption

noise. Another minor difference is that they specify Z as the fixed plaintext space. Our greater generality enables to

capture schemes such as [BFV/BGV21], for which λ� multiplies the plaintext by a polynomial λ. A last addition is

our introduction of a (front end) plaintext space, for easier usability in protocols. In Appendix I.3 we compare to the

related notions of committing/robust/undeniable encryption. We finally explain why some existing speficiations of

PKE’s used for encrypted resharing, actually do not prevent undetectable loss of the secret. The PKE in [GHK+21]

is specified so that EKGen is injective 6. This does not prevent corrupt encryptor(s) Pi, possibly colluding with

decrypter P ′j , to create a decryption different from the plaintext. The same attack is not either prevented by the

specification of the PKE in [BGG+20]. In fact, even if they suggest that their ciphertexts of sub-shares play the

role of “commitments” to subshares, this actually seems incompatible with their PKE being deniable. In more detail

they specify the use of the RIND-SO scheme of [HPW15], as discussed in Appendix B.2, which has some form of

deniability.

6p30: “so, given a ciphertext, an adversary should not be able to come up with an alternative decryption key
which can decrypt this ciphertext to an incorrect message.”.
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4 Protocol APSS0

For simplicity, the following description of APSS0, takes as public parameters: a list of public encryption
keys eke[ne] for every committee Pe[ne]

, as well as, implicitely, a list of public signature verification keys for

every committee Pe[ne]
and for D. It is staightforward to compile the description, into the actual APSS0 in

the FbPKI model: see Appendix B.2. Our model of Section 2 assumes that all committees are initialized since
the beginning of the execution. This limitation is straightforward to lift, see Appendix B.4. The description
is for one dealer D and one learner L, then in Section 7.1 we explain how to open linear combinations of
secrets from several dealers. APSS0 consists of the following subprotocols:

Share (Section 4.1) Is between D and the first committee P1
[n1]

. They start it as soon as they are initialized.

Refresh(Pe[ne]
,Pe+1

[ne+1]
) ∀e: (Section 4.2) takes place between committees Pe[ne]

and Pe+1
[ne+1]

, denoted as old and

new, it also involves the committeeKe+1
[κe+1]

of collectors. Any player Pei ∈ Pe[ne]
starts Refresh(Pe[ne]

,Pe+1
[ne+1]

)

upon receiving the input (refresh-sig). On the other hand, Pe+1
[ne+1]

start Refresh(Pe[ne]
,Pe+1

[ne+1]
) as soon as

they are initialized.
Open (Section 4.3) is between all committees and L. L starts Open since it is initialized. Any player Pei ,
∀i, e, starts Open upon receiving the input (open-sig). //Anticipating, players of P1

[n1]
do not take any action

in Open before they output (committed), since they did not receive their share.

4.1 Share The dealer D, on input a secret s, chooses a random polynomial h(·)∈ S[X]≤t1 of degree at
most t1, such that h(·) = s, and samples encryption randomnesses (ρj)i∈[n1] with norms 6 Renc. It then

generates the n1-sized vector of ciphertext shares c[n1] :=
(
Enceki

1(h(i); ρi)
)
i∈[n1]

under the encryption keys

P1
[n1]

, as well as a NIZK AoK, πsh, of: s, a degree-t1 polynomial h, and encryption randomnesses (ρi)i∈[n1]

s.t. c[n1][i] = Enceki
1(h(i); ρi) and ‖ρi‖ 6 Renc ∀i ∈ [n1] . //Such (c[n], πsh) is widely known as a publicly

verifiable secret sharing (PVSS) [Sta96]. It Reliably-broadcasts (RBD→P
1
[n1]) (c[n1], πsh) to P1

[n1]
//this is the

only RB
D→P1

[n1] in the whole protocol , then shuts-off itself. Upon receiving an output from RBD→P
1
[n1] , a player

P1
i ∈ P1

[n1]
:

- checks if it is of the form (c[n1], πsh) with πsh a NIZK AoK as above;
- if the check fails //which can happen if D is corrupt, then sets c[n1] equal to a pre-defined default vector of

ciphertext shares of 0, e.g., c[n1] ←
(
Enceki

1(0; 0)
)
i∈ [n1]

;

- wraps c[n1] it in a list of size one L1
i ← {c[n1]} and outputs (committed). //Let s be the secret of which the

plaintexts of c[n1] are the shares, we say that “the secret s was committed by D”. In particular, s must be the input

of D if it is honest.
In what follows, we dub the unique common c[n1] as “the vector of ciphertext shares received from D”. //This

terminology is a slight abuse, in the case above where c[n1] is set to the default vector.

4.2 Refresh (P[n],P ′[n′]) In Algorithm 2 we describe a Refresh between an old committee P[n] :=Pe[ne]
and

a new committee P ′[n′] :=P
e+1
[ne+1]

. Each player in P[n] has a list of inputs Li∈ {Cn,⊥}κ of fixed size κ. Some

entries may be initially ⊥, they may later receive an element of Cn, during the Refresh. The reason is that
the list Li keeps receiving values from the ongoing previous Refresh(Pe− 1

[ne− 1]
,Pe[ne]

). //This is a common point

with PSS/MPC based on “agreement on a common subset”, see Appendix H.3.3. There, the input of each player is

a n-sized binary list, of which it switches the i-th entry to 1 upon terminating the AVSS from the i-th dealer. The
first committee have their lists of size 1, which they fill with the vector of ciphertext shares received from
D. To be included in the list of an honest player, any vector c[ne]∈ Cn must furthermore come appended
with enough data proving that it has been correctly formed, as we are going to detail. In particular, the
vector of ciphertext shares c[ne−1] from which it was computed, must be endorsed by te−1 + 1 signatures

issued by players in Pe− 1
[ne− 1]

(or received from D, for P1
[n1]

). We call these signatures as a quorum verification

certificate, denoted as qvc. Existence of a qvc guarantees that at least one honest signer, in Pe− 1
[ne− 1]

, validated
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that c[ne−1] had been correctly formed. The goal of a Refresh is to achieve that, for each of the following
predicates, if it holds at some point for P[n], then it holds for P ′[n′] //Lemma 6 shows the first, provided 6 t

corruptions in P[n]; and Lemma 4 shows the second to hold eventually, if at least t+1 players of P[n] are honest and

one collector in K′[κ′] is honest.
- We say that the correctness invariant holds for P[n] if, if there exists a vector of ciphertext shares c[n]
included in the list of an honest player of P[n], then [A] there exists a secret, s, which was shared by D,
and [B] c[n] is a vector of ciphertext shares of s.

- We say that the common set of shares invariant holds for P[n], if there is an index k∈ [κ] and a c[n]∈ Cn,
such that all the k-th entries of the lists Li of honest players Pi of P[n], are all equal to c[n]. //players do

not reach consensus on k, this is how we break the t < n/3 bound.

Refresh(P[n],P ′[n′])

Participants: P[n], P ′[n′] and collectors K′[κ′].
Public parameters: any S and LHE as in Section 3,
public encryption keys ek[n] and ek[n′] of P[n] and P ′[n′].
Inputs of each Pi∈ P[n]: a private decryption key dki,
and a (non-private) κ-sized list Li∈ {Cn,⊥}κ. The ⊥
entries may possibly be filled later during the Refresh.
Outputs of each P ′j ∈ P ′[n′]: a (non-private) κ′-sized

list L′j , initialized empty: {⊥}κ
′

//P ′j keeps filling L′j ,
until possibly receiving input (shutoff).

Encrypted Resharing. For every c[n]∈ Cn which is
at some point in its list Li, each Pi∈ P[n] does:

1. Decrypt ci into si∈ S and generate a Shamir shar-
ing (si→j)j∈ [n′] of si, i.e. sample a random degree
t′ polynomial hi∈ S[X]6t s.t. hi(0) = si and set
si→j=hi(j) for all j ∈ [n′].

2. Sample encryption randomnesses (ρj)j∈[n′], and gen-
erate a ciphertext of each coordinate si→j under the
public key of P ′j ∈ P ′[n′]:
ci→j = Encek′j(si→j ; ρj), ∀j ∈ [n′]. Denote ci→[n′] =
(ci→j)j∈[n′], the n′-sized vector of ciphertext shares
obtained.

3. Generate a NIZK AoK, denoted πres,i, of: dki∈ dK,
a degree-t′ polynomial hi and (ρj)j∈[n′] s.t. si =
Dec(dki, ci), hi(0) = si, eki=EKGen(dki) and ci→j =
Encek′j(hi(j); ρj) and ||ρj || 6 Renc, ∀j ∈ [n′].

4. Generate a signature σi on c[n].

5. Multicast (c[n], ci→[n′], πres,i, σi) to K′[κ′].

Selection & Combination. Each K′k′ ∈ K′[κ′]:

1. Waits until it receives, for some (t+1)-sized subset
U⊂ [n] of P[n], tuples of the form:(

c[n], ci→[n′], πres,i, σi
)
, ∀i∈ U .

all with the same c[n], and such that: (a) all t+1 NIZK
proofs πres,i are verified and (b) all t+1 signatures σi
are valid.

2. Combines the t+1 signatures on c[n] into qvc =
{σi}i∈U , thereby obtaining a verified old sharing
(c[n], qvc).

3. Computes homomorphically the Lagrange linear com-
bination of Equation (1):

(2) c′j :=�
i∈U

(
λUi � ci→j

)
∀j∈ [n′] ,

set c′[n′] ← (c′j)j∈ [n′].//see also Figures 15 & 12.

4. Multicasts to P ′[n′] the proven new sharing :(
c′[n′], {ci→[n′], πres,i}i∈ U , (c[n], qvc)

)
then terminates.

Continuously growing outputs of P ′[n′]. Any
player P ′j ∈ P ′[n′], upon receiving a tuple(
c′[n′], {ci→[n′], πres,i}i∈ U ,

(c[n], qvc)
)

from a collector K′k′ , and if L′i[k] = ⊥,
then does the following:

1. Check (a’) all the proofs {πres,i}i∈U , (b’) all the sig-
natures qvc = {σi}i∈U and (c’) correctness of the com-
putation of Equation (2). If all checks pass, accept c′[n′]
and set L′j [k] ← c′[n′].

Algorithm 2: P[n] :=Pe[ne]
is the old committee, P ′[n′] :=P

e+1
[ne+1]

the new one.

4.3 Open We describe the instructions for any player Pei in any arbitrary committee Pe[ne]
. For every

non-⊥ entry (c[ne]) which is included at some point in one’s (κe-sized) list Lei //possibly included later than

reception of open-sig, do:
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- generate a decryption si of one’s encrypted share ci of c[ne], which we dub as an opening share. Generate a

NIZK of correct decryption, denoted πdec,i. Precisely, it is a NIZK AoK of dk
(e)
i such that: EKGen(dk

(e)
i ) =

ek
(e)
i and Dec(dk

(e)
i , ci) = si;

- send to L, over private channel, the triple (c[ne], si, πdec,i).
Upon receiving any te + 1 such triples for some same c[ne] from a te+1-subset of some Pe[ne]

, indexed by

U⊂ [ne], L outputs the Lagrange linear combination s = Σi∈Uλ
U
i si of the (si)i.

4.4 Latency and Correctness. In Lemma 4 we prove that the latency of a Refresh is 2δ, as claimed in
Theorem 1. From it we deduce Proposition 5, which states that every collective opening eventually delivers
an output to L. In Lemma 6 we prove the correctness invariant //which will enable the simulation of opening

shares in the UC proof. From it we deduce Proposition 7: L outputs the secret which was committed. Both
Propositions 5 and 7 will be useful in the UC proof //to guarantee that L outputs the same value, and within

the same finite delay, in both the real and ideal executions.

Lemma 4 (Refresh in 2δ). Consider two consecutive committees P[n] and P ′[n′], such that at least t+1

players in P[n] are honest and at least one collector K′k′∈ [κ′] is honest and, at some point in time, the

common set of shares invariant holds for P[n] //and they all received (refresh-sig) and none received shutoff-sig.
Then, the invariant holds for P ′[n′] at most 2δ later //unless some P ′i∈ [n′] received (shutoff-sig) in-between.

Proof. At the considered point in time, there exists at least one index k∈ [κ] and a common c[n]∈ Cn such
that all honest players of P[n] have their Li[k] = c[n] //without knowing which k(’s)! and have multicast a
resharing of c[n]. So, before δ, the honest K′k′ receives t+1 resharings of c[n] such that checks (a) and (b) pass.
Then it forms a proven new sharing, i.e., a tuple such that checks (a’), (b’) and (c’) pass; then multicasts it.
Every honest player P ′j ∈ P ′[n′] receives it before δ then immediately accepts and includes in its list the c′[n′]
enclosed: L′j [k

′] ← c′[n′]. ut

Proposition 5 (Liveness). Consider any execution in which D is honest and any epoch eo such that,
∀ 1 6 e 6 eo: there are at least te + 1 honest players in Pe[ne]

and at least one honest collector in Kek and

∀e < eo, all honest players of Pe[ne]
received (refresh-sig) and all honest players of Peo[neo ]

received (open-sig)

//and no player received (shutoff-sig) . Then L eventually outputs.

Proof. Since D is honest, RBD→P
1
[n1] guarantees that all honest players of P1

[n1]
will receive its vector of

ciphertext shares in finite time. So the common set of shares invariant holds for P1
[n1]

. By induction on
1 6 e 6 eo− 1, applying Lemma 4, the invariant holds for eo. So at some finite point in time, there exists an

index keo and a vector of ciphertext shares ceo[n] such that every honest P (eo)
i ∈ Peo[neo ]

has its Leoi = ceo[n] //and

received (open-sig). From there, within δ, L receives teo+1 proven decryption shares from honest players then
outputs. ut

Lemma 6 (Correctness invariant). Assume that, for some e, there are at most te′ corrupt players in
Pe′[ne′ ]

∀ 1 6 e′ 6 e. Consider any honest player Pei (if any) of which the list Lei has a non-empty entry.

Consider any such entry: c[ne]. Then:

[A ] There is a secret, s, which was committed by D;

[B ] Denote as s̃∈ Fp the value of which the plaintexts of c[ne] are the shares (mod p), then s̃ = s.

Proof. We prove the statement of the lemma by induction on e. It trivially holds for e=1. Let us assume
that it holds up to some committee Pe[ne]

= P[n], and let it show it for committee Pe+1
[ne+1]

= P ′[n′]. Either all

lists of honest players of P ′[n′] are empty, then nothing is to be proven. Or, consider any non-empty entry

c′[n′] in the list of some honest player P ′j ∈ P ′[n′]. Since it followed the protocol, it must have received a tuple:(
c′[n′], {ci→[n′], πres,i}i∈ U , (c[n], qvc)

)
such that all checks (a’,b’,c’) pass.
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From the t+1 signatures (b’), we deduce that c[n] was in the list of at least one honest player in P[n]. We
deduce, from the recursion assumption, that [A] D shared a secret, s, and that [B] c[n] is a vector of ciphertext
shares of s. Now, denote as (si)i∈ [n] the plaintext shares of c[n]. (a’) guarantees that, for all i ∈ U , there
exists resharings: si→[n] of si, of which ci→[n′] is the encryption. (c’) guarantees that c′[n′] is their correct
homomorphic Lagrange linear combination. Since all encryptions are proven with bounded randomnesses,
i.e., ||ρj || 6 Renc ∀i, j, we conclude that c′[n′] is a vector of ciphertext shares of the same secret, s as c[n].
//For this conclusion, we refer to Section 2.2, then below Definition 3. Figures 15 & 12 may further help. ut

Proposition 7. Assume that L outputs, and denote PeA[neA] the committee from which it receives the (teA+1)

triples triggering the output. Assume that there are at most te corrupt players in Pe[ne]
∀1 6 e 6 eA. Then

there is a secret s which was committed by D, and the output of L is equal to s.

Proof. Since L receives teA+ 1 triples (cneA , si, πdec,i) for the same cneA , then, since one of the senders is
honest, it must be that cneA was in its list. So the conclusions of Lemma 6 apply. ut

4.5 Communication Complexity We consider a Refresh(P[n],P ′[n′]). The worst-case complexity of the

Resharing step is at most n.κ′.O(κ.n′γ) [Each (Pi)i∈ [n] sends to each (K′k′)k∈ [κ′] at most κ encrypted
resharings, each of size O(n′γ)]. Let us take as starting point the moment (known to none) when all honest
players of P[n] received a common vector of ciphertext shares in their lists Li[with respect to their previous

resharing as entering], and all received refresh-sig. Assuming they are at least t+1, then it takes no more than
δ until each honest collector K′k′ ∈K′[κ′] receives t+1 resharing messages. It is then able to form its message

and multicast it to P ′[n′]. The size of this message is dominated by the batch of t+1 resharings attached.

Such a batch has size O(γ(t+1)n′), where, for simplicity we assumed that ciphertexts and signatures [and

commitments, in the generalizations of Sections 7.3 and 7.4] have size O(γ). Hence, we recover the dominating
term of the communication complexity: κ′.MCn′

(
O(γ(t+1)n′)

)
claimed below Theorem 1. As soon as an

honest collector multicasts its message, it takes no more than δ until honest players in P ′[n′] receive one
vector of ciphertext shares in common. In conclusion, we arrived at the starting point for the next Refresh.

5 Proof of Theorem 1

5.1 Roadmap Following [Can01], we say that a protocol APSS0 UC-emulates the dummy protocol of
Section 2.5, involving FP-AVSS, if there exists a PPT machine S denoted simulator, also known as “ideal
adversary”, as follows. Further helpful diagrams are provided in Figs. 10 and 11. It must be that for every
PPT environment Z , that fully controls a “dummy” adversary A [i.e. A is a proxy of Z ] and which may send
inputs to honest participants [to the dealer D: a secret s; to players: signals (refresh-sig), (open-sig) and (shut-off)]

and which is forwarded their outputs in real time by honest participants [for the learner L: s̃∈ S, for players:

(committed)] has negligible advantage in distinguishing between the following two executions:
- REALA: an actual execution of the protocol APSS, with dummy adversary A fully controlled by Z , and

functionalities FbPKI, RBD→P
1
[n1] , FST, FAT, FNIZK, as depicted in Fig. 10;

- IDEALFP-AVSS,S : an execution denoted as ideal, where S interacts with Z on behalf of A. On the other side,
S interacts with FP-AVSS (Section 2.5 then Fig. 5) on behalf of the corrupt participants, and also of A, as
depicted in Fig. 11. The honest dummy participants //i.e., the honest ones among: D, L and players Pei ∀i, e are
connected to Z as in a real execution. But on the other side, they only interact with FP-AVSS, with which
they perform the dummy protocol, as described in Section 2.5.

5.2 Simulators S for a corrupt D. The simulator S for a corrupt D and a corrupt L simply simulates
honest players following the protocol, and ideal functionalities behaving as specified. It instructs FP-AVSS to
deliver (committed) when simulated honest players output so. It makes them follow Refresh or Open when
being relayed from FP-AVSS the refresh-sig’s and open-sig’s. By definition the view generated is identical to
the one of a real execution.
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In the case of an honest L, the simulator S simulates in addition an honest L and takes the following
additional steps. First, it computes the plaintext secret s committed by D//under honest majority in P1

[n1]
:

S simply decrypts the shares of honest players then interpolates s. Else, S extracts in straight line the shares of

corrupt players out of the NIZK AoK’s of plaintext knowledge received from D. It gives s as input to FP-AVSS.
Later in the execution, suppose that there a committee Peo[neo ]

for which the conditions of Proposition 5 are

matched, in particular, in which a quorum of teo + 1 honest dummy player request open-req. Then, S sends
delay request to FP-AVSS, in order to delay the delivery of the output, until the simulated L outputs. //By

Proposition 5, S needs only sending a polynomial number of delay requests, so this strategy is tractable. When the
simulated L outputs, S instructs FP-AVSS to immediately release the secret to the dummy L//via (open-order).
In conclusion, both the dummy honest L and the simulated L output at the same time. //Notice that we will

use again this strategy in the case of an honest D, as described below then further in Appendix C.4.

Moreover, both output values are the same //if all committees so far had < te corruptions, then both are

equal to s by Proposition 7. Else, S uses its power to tamper with the value stored by FP-AVSS, in order to adjust it

with the one opened to the simulated L. In conclusion, the view of Z in the ideal execution is the same as in a
real one.

5.3 Simulators S for an honest D. We describe the simulator for an honest D and a corrupt L. It is
the hardest one, since it has to simulate decryption shares. Inline we sketch the adaptations for the easier
case of an honest L We describe the simulator S for one unique honest dealer D, and a unique L. It can be
easily generalized to the several openings of several linear combinations of several secrets [the technique, given

in [CDN15, p. 127], is that simulated decryption shares are picked uniformly at random in the subspace consistent

will all previous openings.]. To ease the notation, we focus on the difficult case of executions with fe = te
corruptions in each committee Pe[ne]

//From te+1 corruptions, FP-AVSS leaks the secret to S and authorizes S to

modify its value, so the simulation becomes easy.

The simulator S is formally described in Algorithm 13 in Appendix C.2. We now convey the main ideas
of S by describing it via a sequence of incremental changes, starting from a real execution. In the last hybrid
obtained, the view of Z is generated solely by interaction with FP-AVSS, hence what we are describing is a
simulator. The full details of the hybrids and the proofs of indistinguishability are in Appendix C.2. We first
make the change that FNIZK does not verify any witness from honest players.

//In the case of an honest L, we make the change that L does not anymore forwards to Z the actual output in

Open. Instead, we make D give to FP-AVSS its input. Then we delay the output from FP-AVSS to L as in Section 5.2.

Then, L notifies to Z the output received from FP-AVSS. So the same conclusion as in Section 5.2 applies: by

Propositions 5 and 7, both the value notified by L and the time at which it is notified, is the same as in the real

execution. These change and conclusion are further formalized in Appendix C.4.

We then simulate opening shares as follows, and further formalized in HybShSim. //These changes can be

skipped for an honest L, until the Hyb0Refresh[e′, i]’s below. For any vector of ciphertext shares c[ne] which is in
the list Lej of an honest player Pej which performs Open, we replace the decrypted share sj which it sends to
L, by the following value s̃j . s̃j is the evaluation at j of the degree te polynomial interpolated at:

- the te plaintext shares of corrupt players in c[ne] //They are computed as follows. c[ne] was formed as the

Lagrange linear combination of te−1 + 1 encrypted resharings: ci→[ne]. So it remains to compute the plaintext

shares, intended to corrupt players, in each ci→[ne]. For those generated by honests resharers (i∈ [ne− 1]\Ie− 1), we

already know the plaintext shares. For those generated by corrupt resharers (i∈ Ie− 1), we extract the plaintext

shares from the NIZKs of resharing (Algorithm 2 3). Under honest majority, i.e., if te− 1 < ne− 1/2, then we extract

them by rewinding the environment. We can do so because what we are describing is an intermediate distribution,

not a simulator. Else, we extract them in straight-line from FNIZK. ;

- and a last interpolation point, equal to the secret shared in c[ne]: sc[ne]
. //Concretely, we can interpolate sc[ne]

from the te previous points, plus one opening share of any honest player.

In conclusion, since the plaintexts of c[ne] all lie on a polynomial of degree t, the method which we have just
described returns the same honest opening shares as in the real execution.
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We then change the last interpolation point. Namely, we replace sc[ne]
by the actual secret s leaked by

FP-AVSS. Both values are equal, by correctness of APSS0 (Proposition 7). So the view is unchanged.
Then, in the (cascade of) Hyb0Refresh[e′, i] for each e′∈ [e− 1, ..., 1] (in this backwards order) then each

i∈ [0, ..., n] we replace the way resharings are carried out. As further formalized in Appendix C.5, for any e
and index i ∈ [1, . . . , n] for which Pei is honest, we replace the share si reshared by Pei , by s̃i ← 0. This is
indistinguishable from the real execution by IND-CPA of encrypted sharing, which is proven in Proposition 8.
The intuition of this proposition is simple: assume for a moment that ciphertexts perfectly hide the content
of plaintexts. Then, for any two chosen secrets: si and 0, any te shares of both vary uniformly at random,
so the view of Z has the same distribution. We then make the reduction to the (ne − te)-message-IND-CPA
security of the actual encryption scheme PKE. The reason for making these changes in backwards order on
e, is that decryption keys of Pe+1

[ne+1]
are not used anymore when we change the plaintext shared by a Pei , so

that we can apply IND-CPA.
Finally, in Hyb0Share formalized in Appendix C.6, we replace the input of a simulated honest dealer by

0. This is the core of the proof. Thanks to the modifications so far, honest players of P1
[n1]

do not use their
decryption keys anymore. So we can apply IND-CPA of encrypted sharing, with respect to their keys, exactly
like in the previous cascade of games. This enables to conclude that the distributions are indistinguishable.

In conclusion, we arrived at a view produced by a machine which interacts only with Z and FP-AVSS.

- If the extractions of NIZKs are done in straight-line, as described in HybShSim, then we can conclude that
we have now arrived at a simulator for APSS in the FNIZK hybrid model. So this concludes the proof

- Otherwise, we then make the following final change, called as HybShInfer
Open (inference of corrupt shares), aiming

at removing extraction by rewinding Z . Recall that, if we are in this case, then it must be that we are
under honest majority.

Referring to the notation of HybShSim, we do not anymore extract from NIZK AoKs the shares of corrupt
players, in each ci→[ne] issued by a corrupt Pe− 1

i . Instead, we decrypt the te + 1 the shares intended to
honest players ci→[ne], then interpolate from them the te ones intended to corrupt players. Since ci→[ne] is a
vector of ciphertext shares, as ensured by the NIZK AoKs (Algorithm 2 3), we conclude that both methods
to compute the te shares intended to corrupt players return the same values.

6 APSS = APSS0 + δ-synchronized start & termination

We now introduce a mechanism called Refreshing squad which delivers to players the instructions (refresh-sig)
and (shutoff-sig), that they can subsequently use as inputs in APSS0. Recall that (shutoff-sig) instructs a
player to shut-off, i.e., erase its memory and leave the protocol. Recall, from Section 1.3, that we introduce
an additional tuning in APSS0, which is a public parameter ∆e

wait> 0. Upon receiving (refresh-sig), a player
of some committee Pe[ne]

waits ∆e
wait, then starts a Refresh with the new committee Pe+1

[ne+1]
. The reason for

this waiting is that, upon receiving (refresh-sig) from Refreshing squad, a player has the guarantee that, if
the delay ∆e

wait − δ is positive, then within delay δ, all players of the same committee will not be shut-off
and will have at least one consistent set of shares in common. Therefore, they will be able to Open. This is
formally captured as the window of opening guarantee in Theorem 2.

Optionally, we enable Refreshing squad to also deliver a new kind of output, called (keys-sig). When this
option is activated, players in each new committee Pe+1

[ne+1]
in APSS wait for (keys-sig), then a further ∆e

wait,

before they generate their keys and publish their public key. This enables to postpone until the last minute
the moment when they generate sensitive information, i.e., their decryption key. //In this respect, Theorem 2

is stated assuming the following two simplifications. First, the publication delay of keys is 0. Second, we set to 0

the delay after which, if a corrupt player has not sent its key to FbPKI, then FbPKI publishes it as ⊥. In practice,

implementations may leverage as follows the guarantee that Refreshing squad delivers (keys-sig) to honest players at

most δ from each other. When an honest player of Pe[ne]
retrieves te+1+1 keys from the bulletin board, then it sets a

time-out estimated larger than δ, then sends its resharing without the shares of unpublished key indices. When new

keys show up, it releases the missing encrypted shares. Then, after some further conservative timeout, it considers as

⊥ the still-unpublished keys. Then, it releases in the clear the missing shares.

19



6.1 Description of Refreshing squad We now convey the main ideas of Refreshing squad. The details are
formalized in Algorithm 14 in Appendix D. Its guarantees are captured by Theorem 2. We give here the
intuition of them and why they hold, while the full details can be found in Appendix D.

As stated in Theorem 2, the liveness of Refreshing squad, hence of APSS, holds if all committees of
collectors have an honest majority, and, as in APSS0, if all committees Pe[ne]

of shareholders contain at least

te+1 honest players. So we now assume κe = 2`e+1 collectors for each e> 1. Once a collector in Ke[κe]
has

finished its task, it multicasts a signed message (done) to Pe− 1
[ne− 1]

. A quorum of collectors certificate (qkce),

consists of a set of signatures on (done) issued by a quorum of `e + 1 collectors in Ke[κe]
. Existence of an

honest collector in the quorum guarantees that, within δ, all players of Pe[ne]
will receive a consistent set of

encrypted new shares. //This is where we use the honest majority of collectors assumption. If `e+1 collectors were

corrupt, then they could form a rogue qkce, thereby triggering too early shut-offs, as we will see. Upon receiving or
forming a qkce for the first time, a player of Pe[ne]

: forwards it to all Pe[ne]
, and multicasts a signed message

(Ack-qkc) to Pe− 1
[ne− 1]

. Then it outputs (refresh-sig). We dub this as: the player receives (refresh-sig) (from

Refreshing squad). The forwarding guarantees that honest players of Pe[ne]
output refresh-sig at most δ from

each other, thereby guaranteeing the claimed window of opening.
A quorum of refreshers certificate (qrce), consists of a set of signatures on (Ack-qkc) issued by a quorum

of te + 1 players of Pe[ne]
. A qrce guarantees that, in no longer than δ: all honest players of Pe[ne]

will have

received (refresh-sig) and will have received a consistent set of encrypted new shares. Hence, a qrce guarantees
that the protocol can continue without the help of Pe− 1

[ne− 1]
. Hence, upon receiving or forming a qrce, a player

of Pe− 1
[ne− 1]

can safely shut-off, i.e., outputs (shutoff-sig) //we must actually refine this mechanism in two ways,

in Refreshing squad. First, any qrce
′> e−1 triggers (shutoff-sig), not only a qrce. Second, P e−1 must forward the qrce

′

to all Pe− 2
[ne− 2]

before it outputs shutoff-sig. Without both refinements there would be pathological executions, e.g.,

if e−1 = 2, in which all P2
[n2]

shut-off, while P1
[n1]

are never delivered any qrce
′>1, so never shut-off. Optionally, we

also specify that a player about to shut-off also forwards the qrc to all its committee. As explained in Case II] of the

proof of Fast shutoff, not doing so would increase by δ the delay to shut-off in some corner cases.
We finally address the optional last-minute-delivery of (keys-sig). Players of Pe[ne]

forward their qrce to

Pe+1
[ne+1]

, enabling them to receive it at most δ later. A player of Pe+1
[ne+1]

, upon forming or receiving a qrce,

forwards it to all Pe[ne]
and Pe+1

[ne+1]
then outputs (keys-sig).

7 Generalisations and Applications

7.1 Enabling to open linear maps non-interactively over several secrets. We consider any number
W of dealers: (Dw)w∈[W], w.l.o.g. with one secret each: (s(w))w∈[W] ∈ SW. We consider any Fp-linear map

Λ : SW → Γ , where (Γ,⊕) is any Fp-vector space. We now describe how to securely open the evaluation
of Λ over shared secrets, then give examples and use-cases in Section 7.2. The baseline method has been
well-known since [Ben86]. Namely, each player sends to L the evaluation of Λ on its shares, then L computes
the Lagrange interpolation of these evaluations, in the target space of Λ.

We now describe how to adapt this baseline to APSS0. The task is not completely trivial, since each
secret comes with several sets of consistent shares. Roughly, the main idea is that players treat as a batch all
shares of all secrets which they received from the same collector. Existence of at least one honest collector Kk
guarantees that all honest players in P[n] have at least, in common, one batch of vector of ciphertext shares
of all secrets. It is the batch which they received from Kk. In more details, dealers Share as in Section 4.1,
except that they use a BC instead of the RB. This is to prevent players of P1

[n1]
from waiting forever for

possibly inactive corrupt dealers. For each player Pei , the entry Lei [k] in its list contains all the W vectors of
ciphertext shares (one for each distributed secret s(w)) which it received from the collector Kek in the previous
Refresh. To open the image under Λ of shared values (s(w))w∈[W], each player Pei , for each entry Lei [k] of its

list (cw[ne]
)w∈W: decrypts its plaintext new shares into (swi )w∈W , computes their image: si ← Λ

(
(swi )w∈W

)
then sends

(
(cw[ne]

)w∈W, si,NIZK
)

to L [the NIZK proves decryption of the (cwi )w∈W-then-Λ.] Upon receiving
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any set of te+1 correct triples with the same (cw[ne]
)w∈W, from some te+1-subset of Pe[ne]

, then L outputs
the Lagrange linear combination of the si. //So it does not process more messages than in [BGG+20; GHL22],

when opening players behave honestly.

7.2 Integration in existing threshold schemes for signing, VRF, decryption. We give some linear
maps Λ : SW → Γ , and use cases using in black-box their non-interactive opening, enabled by Section 7.1.

Scalar multiplication s∈ FpFpFp 7→ s.G, for threshold coin tossing, decryption and signing. We con-
sider Γ :=G a group of order p, in additive notation, and G∈ G a public element. The first two applications
require DDH in G. The threshold opening of this map implements by itself: a threshold PRF ([CKS05]),
threshold Elgamal decryption ([DF90]) and threshold signing (BLS: [Bol03; TCZ+] and SPS [CKP+22]).
//For BLS, spelled out in detail in Appendix F.2.3, careful discussions on the CDH-like assumptions required

are provided in [BLS04; Dar10], depending on the type of the bilinear group of which G is one side.

Mixed addition / scalar multiplications (S∈ GGG, (α, β)∈ FpFpFp
2) 7→ S + α.H + βH ′ for VUF signing.

G, of order p and in additive notation, is one side of a type III bilinear group with SXDH. This map is
used in [GJM+21, Figure 4, VUF.Sign]. A threshold opening of it generates a signature which publicly
proves correctness of an evaluation of their threshold verifiable unpredictable function (VUF).

S∈ GGG 7→ pairing(Z, S) for VUF evaluation. Z is a public group element. Threshold opening is this map
([GJM+21, Figure 4, VUF.Eval]) implements threshold evaluation of a VUF.

Λ : (s, e)∈ (Fp[X]/(XN + 1))2 7→ c1.s+ c2 + e for RLWE decryption. c1 and c2 are public poly-
nomials in a RLWE ring Fp[X]/(XN + 1) //The multiplication s 7→ c1.s is a modular multiplication by a

constant polynomial c1, so is indeed Fp-linear. The threshold opening of this map (followed by a public
rescaling-then-rounding) implements threshold decryption of a RLWE-based ciphertext (c1, c2), such as
from [BFV/BGV21].We explain it in more detail in Appendix F.2.4 //Noticeably; we incorporated in Λ

a common secret-shared smudging noise e. This is an adaptation of the overlooked technique of [GLS15], which

enables to keep constant the size of the smudging noise, vs exponential in n when naively smudging the opening

shares.

Let us briefly conclude that the above black-box tool for threshold decryption, is essentially the only
ingredient needed for YOSO MPC [GHK+21; BDO22]. When the threshold encryption scheme is a FHE,
such as [BFV/BGV21], then the above black box tool enables practical constant round MPC [CLO+13;
GLS15; Coh16; HHPV21; KJY+20].

7.3 Resharing based on homomorphic commitments to shares, and relaxing PKE. A simple
variation enables APSS to also deliver commitments to shares, under a specified commitment scheme Com.
The most general case is when we maximally relax the requirement on PKE. Namely, we specify PKE to be
only committing ([TZ21]), i.e., if an encryptor proves knowledge of a plaintext m, then an honest decrypter
should obtain m. Now, what a player Pi has in its list are pairs of: a batch of commitments to subshares
(comv→[n])v∈ V , and the openings: (sv→i, ŝv→i)v∈ V of the (comv→i)v∈ V . The player Pi reconstructs its
share si by Lagrange interpolation from the subshares (sv→i)v∈ V . To reshare si into P ′[n′], Pi multicasts

to the collectors: the batch with its signature; a commitment to each subshare: comi→j = Com(si→j , ŝi→j)
for j∈ [n′]; and an encryption ci→j of the decommitment (si→j , ŝi→j) for each j∈ [n′]; appended with
the expected NIZK AoK, spelled-out in Appendix F.2.1. //As a side-benefit, removing the LHE condition

enables PKE’s with packed ciphertexts [GHL22], and removing bilateral binding enables PKE’s with selective-opening

resilience [HPW15], enabling resilience against early adaptive corruptions (Appendix B.2). The property needed to

have simulatability of decryption shares needed in our proof of APSS0, is that the previous commitment scheme:

(i) either is Feldman (then FP-AVSS should leak the commitments), or, (ii) is preimage-sampleable, as detailed in

Appendix F.2.5. Instantiated with a linearly-homomorphic commitment such as Feldman or Pedersen, then
Pi needs not appending the batch (comv→[n])v∈ V to its resharing, instead, it can append the short Lagrange-
combination of them comV→[n] (similarly to APSS).
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7.4 APSS2: unbounded correctness and no signatures Consider an instantiation, of the previous
variation, with a commitment scheme supporting an unlimited number of homomorphic additions, such
as Feldman’s or Pedersen’s. Then we have the invariant that, in every epoch, commitments to the shares
interpolate to the initial commitment S to the secret. Assume there is a public ledger on which D could
post this commitment before disappearing. Then upon receiving t+1 openings of a purported set comi∈ U
of commitments to shares, L can directly check whether the purported commitments lie on the same degree
t polynomial as S. Hence, this upgrade of APSS has correctness even if all players are corrupt. We denote
it as APSS2. By the same interpolation-of-commitments mechanism, we see that players need not anymore
generate signatures. Indeed, any purported set of commitments to shares can be directly checked against S.

7.5 Initial sharing from DKG. Protocols denoted as distributed key generation (DKG), somehow em-
ulate the initial sharing, from a single dealer to P1

[n1]
, of a random secret. We refer to Appendix F.2.2 for

a survey of the guarantees provided by DKGs, including with a biased secret. Each P1
i ∈ P1

[n1]
receives a

private share si of s, denoted as its key share. In addition the DKG publishes a commitment to this share,
which is denoted as Pi’s verification key. A verification key is what enables L to verify each decryption share.
Verification keys can either take the form of ciphertexts of (sub)-shares ([GHK+21]), in which case they can
be refreshed along with shares as in APSS0. Or, for concrete applications [HKMR22; CMP20; Gro21], they
take the form of Feldman commitments to (sub-)shares, in which case the variants of Sections 7.3 and 7.4
enable their refresh along with shares.

7.6 Integration in the asynchronous threshold Schnorr signing “ROAST” (CCS’22) The thresh-
old Schnorr signature of [RRJ+22, §4] is centralized by a semi-honest coordinator C. Its first task is to wait
until it receives empty messages from a quorum of t+1 (their “t”) volunteer signers. Then, it replies by
requesting to the volunteers to generate a pre-signature, using their key shares. We make the observation
that, in the situation where the signing key is shared within a committee of APSS, the first empty message
to C can be used to decide which common set of shares to use. Instead of an empty message, players send to
C their local lists Li’s. The coordinator C waits until it obtains messages from t+1 players with a common
c[n] in their lists (as granted by Lemma 4), then requests them to generate a pre-signature, using their key
shares of this c[n].

8 Faster NIZKs of Encrypted Resharing, Implementation

8.1 Basic proof of correct resharing Let us recall the PKE of Elgamal [Elg84]. Let G be any generator
of S. We consider a decryption key dk ∈ Fp, and the corresponding encryption key Ek :=dk.G. To encrypt a
message S ∈ S, sample ρ $←− Fp and return C = (C1, C2) = (S + ρ.Ek, ρ.G) ∈ C = S2. To decrypt (C1, C2)
under key Ek = dk.G, return C1 − dk.C2.

Now we consider a resharer issuing a NIZK AoK as specified in Algorithm 2. We subsequently dub it
as a prover. We also consider any entity verifying the proof, denoted as the verifier. For simplicity we set
as n′ = n the number of members in the new committee P ′[n′]. Our main concern is a verifier which is a

member P ′i of the new committee, since it must verify, in Item 1 (a’) of 2, potentially up to κ′ batches of
t+1 proofs of resharing. We consider the instantiation with the Elgamal PKE, which is well-known to be an
LHE as specified in Section 3. We use the notation of Section 2.2. The prover has input a ciphertext of its
share C = (C1, C2) under its public key Ek. Following steps Items 1 and 2, it decrypts this ciphertext, then
generates a vector of ciphertext shares {(C ′j,1, C ′j,2)}j∈[n] of it under the public keys {Ek′j}j∈[n] of the new

committee. Concretely, it samples q(·) $←− Fp[X]
(0)
t , i.e. a random polynomial s.t. q(0) = 0, and encryption

randomnesses ρ′1, . . . , ρ
′
n

$←− Fnp . It then returns

(3) (C ′j,1, C
′
j,2) = (C1 − dk.C2 + q(j).G+ ρ′j .Ek′j , ρ

′
j .G), ∀j ∈ [n] .

Then it generates the NIZK AoK specified in Item 3. Recall that its purpose is to prove that (C ′j,1, C
′
j,2)j∈ [n]

is formed as in Equation (3). Up to moving the constant C1 on the right-hand side, this is equivalent to
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proving knowledge of dk ∈ Fp, encryption randomnesses ρ′1, . . . , ρ
′
n ∈ Fp and polynomial q(·) ∈ Fp[X]

(0)
t , such

that, denoting as Y =
[
(Y1,j , Y2,j)∈ (S2)n, Y0 := Ek

]
∈ S2n+1 the public vector defined by:

(4) Y0 :=Ek and for j∈ [n], Y1,j := − C1 + C ′j,1 ; Y2,j :=C ′j,2.

The vector Y is the image of
(
dk, q(·), ρ′1, . . . , ρ′n

)
by the following linear map f : Fn+t+1

p → S2n+1:

(5) f(dk, q(·), ρ′1, . . . , ρ′n) :=({−dk.C2 + q(j).G+ ρ′j .Ek′j , ρ
′
j .G}j∈[n], dk.G).

So the resharer is brought back to proving knowledge of a preimage of Y by a public linear map. For this
task there is a generic Σ protocol, i.e., 3-moves and public coin, which is provided in Fig. 3. It dates back
to [Cra96; Iva98], in the context of opening one-way q homomorphisms. As observed in [ACR21, Theorem
1], it actually works for any linear map f . There, it is stated to be perfectly complete, special honest-verifier
zero-knowledge and unconditionally special-sound. Hence, as proven in [FKMV12, Th. 3], its transform under
Fiat Shamir is (not straight-line) simulation-sound extractable.

In Fig. 3 we also state two possible ways to transform the Σ-protocol by Fiat-Shamir into an NIZK AoK.
The left one is the one considered in [CDGK22]. It produces a proof which is, in our context, in S2n+1 × Fp.
This short format is the same as the one of a Schnorr signature (where the LHS space is instead just S).
However, it is incompatible with batch verification techniques. The right one is the one considered in this
work. It produces a proof which, in our context, is in S2n+1 × Fn+t+1

p .

Σ-protocol for ZK AoK of a preimage by a homomorphism

Non-interactive argument of knowledge of witness for Y for the relation R = {(Y ;w) ∈ Y ×W : Y = f(w)}
Public parameters: Finite field Fp, Fp-vector spaces W ,Y , linear map f :W → Y , vector Y ∈ Y .
Public Input: Vector Y , of which the prover claims knowledge of a preimage by f .
Prover’s private input: Witness w ∈W , s.t. Y = f(w).
Σ-protocol: Prover samples w∗ $←−W “the random witness” and sends Y ∗ = f(w∗) to the verifier. The verifier
samples c $←− Fp [the challenge] which it sends to the prover. The prover replies with z :=w∗ + cw. The verifier
accepts the proof if f(z) = Y ∗ + c.Y .
Two variants for its Fiat-Shamir transform : both use as public input a (programmable) random oracle
H : {0, 1}∗ → Fp. Denote pp :=(W ,Y , f, Y,H).

The FS transform considered in [CDGK22]:

NIZK.Proveyolo(w, pp, Y, f):

w∗ $←−W , Y ∗ ← f(w∗), c ← H(Y, Y ∗), z ← w∗ + c.w
return π ← (c, z)

NIZK.Verifyyolo(pp, Y, f, π)

Parse π = (c, z)
return accept if z ∈W and c ← H(Y, f(z)− c.Y ).

The FS transform considered in this work:

NIZK.Prove(w, pp, Y, f)

w∗ $←−W , X∗ ← f(w∗), c ← H(Y, Y ∗), z ← w∗ + c.w
return π ← (Y ∗, z)

NIZK.Verify(pp, Y, f, π)

Parse π = (Y ∗, z)
return accept if f(z) = Y ∗ + c.Y for c ← H(Y, Y ∗).

Figure 3: The Σ-protocol is the one considered in [ACR21, Theorem 1], and also in [CDGK22, Fig. 1]. We
also compare two variants of its Fiat-Shamir transform into an NIZK AoK. On the left is the version used
in [CDGK22, Figure 2] to derive their NIZK of resharing in [CDGK22, Figure 9]. On the right is the version
used in this work.

8.2 Optimization for faster verification

Many preimages of a fixed linear map. The proofs and verifications of a number W of resharings by
a single prover, are amortized using the following technique described in [ACF21, Thm. 4]. Instead of
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providing W proofs of the form w∗i + cwi, the resharer provides a single proof w∗ +
∑W
j=1 c

iwi with image

Y ∗ +
∑W
i=1 c

iYi, which allows to replace W verifications with a single one.
Adaptation of the technique of batch Schnorr signatures verification. Since each proof opens a lin-
ear map, the verification of one such proof consists in checking a set of 2n+ 1 linear combinations. Instead
of checking 2n+ 1 equalities, the verifier chooses a random element r ∈ Fp and checks at once whether:

(6) Σ2n+1
j=0 rj(Y ∗j + c.Yj) = Σ2n+1

j=0 rjfj(z)

where Yj and fj(z) denote the j-th coordinates of Y and f(z). Recall also that we constructed Y as Y =

[Y1,[n], Y2,[n], dk.G] ∈ Sn × Sn × S (Equation (4)), and that f is detailed in Equation (5). This strategy, first
described in [BGR98], allows to drastically reduce the complexity of operations in S: instead of n multi-
exponentiations of 4 elements, the only operation involving elements of S is one multi-exponentiation of
3(2n + 1) elements. The same strategy brings a further amortization factor, when applied to t+1 proofs
of resharing issued by a quorum of t+1 resharers, each of which having a specific challenge c. The verifier
still checks all the claims at once using one multi-exponentiation with powers of a chosen random element
r ∈ Fp. There is actually a larger amortization surface in APSS0, since a verifier in P ′[n′] is forwarded [κ]
proofs of resharing from each single resharer, each proof with a different challenge. We did not capture this
optimization in Table 4 //The reason is that, there, we prefered to display the most common use-case of verifying

a quorum of t+1 publicly verifiable resharings.
Verifier precomputation The checking made in Equation (6) involves the computation of the scalar∑

j r
jq(j) for a polynomial q ∈ Fp[X]≤t s.t. q(0) = 0. To further speed up the verification process, the

computation of this scalar in the latter multi-exponentiation is done in the following way. The verifier
precomputes the vector

∑
j r

j(j1, . . . , jt); during the verification process, it remains to compute the inner
product of this vector with the vector of coefficients of q. This allows to compute only t multiplications in
S during the verification process, instead of nt.

Our code7 uses version 0.9.1 of the gnark-crypto [BPH+22] library in Go, with operations in the 254-
bit “pairing-friendly” BN254 Barreto-Naehrig curve [BN05] over a 254-bit base field. We use SHA256 for
hashing. The timings below were measured on one AMD EPYC 7F72 CPU with 24 cores at 3.2GHz, and
724GB RAM.

In Table 4 the substantial speedup of the verification process using the improvements is shown (under
“amortized”), compared with the naive method consisting in using the protocol described in [CDGK22,
Figure 2] (under “naive”). Precisely, the latter uses the variant of Fiat-Shamir on the left of Fig. 3, without
any of the three amortization techniques of Section 8.2. The number n = 2t+1 still stands for the number of
players in the new committee, i.e. the number of public keys. W stands for the number of proofs per prover,
i.e., of reshared secrets in parallel. The timings in the table below are given for verification of batches of t+1
resharings.

n = 11 n = 51 n = 101 n = 1001
Amortized Naive Amortized Naive Amortized Naive Amortized Naive

W = 1 0.009 ms 0.05 ms 0.046 ms 0.462 ms 0.151 ms 1.79 ms 10.8 ms 178 ms
W = 50 0.079 ms 1.53 ms 0.718 ms 23.1 ms 2.64 ms 89.5 ms 179 ms 8.90 s
W = 1000 0.83 ms 24.3 ms 10.7 ms 464 ms 37.1 ms 1.79 s 3.35 s 178 s

Table 4: Verification time, given a new committee of n parties, for t + 1 proofs of W claims each, using
amortizations described above (compared to straightforward separate verification using [CDGK22])

We also implemented APSS0 using the alternative PKE and NIZK of resharing denoted “DHPVSS” in [CDGK22,

p. 5.2] (provided deg(m∗)≤n−t−1). DHPVSS has a proof of size of only 3 group elements and turned out to be 2.5

times faster. But we do not further report on it, since “DHPVSS” requires a one-time-pad-sized PKI.

7available at https://gitlab.com/levrat.christophe/apss_proof_verification
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[BLL+21] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, and M. Raykova. “On the (in)security of ROS”. In:
EUROCRYPT. 2021.

[BLS04] D. Boneh, B. Lynn, and H. Shacham. “Short Signatures from the Weil Pairing”. In: J. Cryptol. (2004).
[BN05] P. S. Barreto and M. Naehrig. “Pairing-friendly elliptic curves of prime order”. In: SAC. 2005.
[Bol03] A. Boldyreva. “Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-

Hellman-Group Signature Scheme”. In: PKC. 2003.
[BPH+22] G. Botrel, T. Piellard, Y. E. Housni, A. Tabaie, and I. Kubjas. ConsenSys/gnark-crypto: v0.6.1. 2022.
[BTA+19] S. Basu, A. Tomescu, I. Abraham, D. Malkhi, M. K. Reiter, and E. G. Sirer. “Efficient Verifiable Secret

Sharing with Share Recovery in BFT Protocols”. In: CCS. 2019.
[Can01] R. Canetti. “Universally composable security: A New Paradigm for Cryptographic Protocols”. In:

FOCS. 2001.
[CCL+20] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. “Bandwidth-efficient threshold

EC-DSA”. In: PKC. 2020.
[CD20] I. Cascudo and B. David. “ALBATROSS: publicly AttestabLe BATched Randomness based On Secret

Sharing”. In: ASIACRYPT. 2020.
[CDD+99] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. “Efficient Multiparty Computations

Secure Against an Adaptive Adversary”. In: EUROCRYPT. 1999.
[CDDS85] B. A. Coan, D. Dolev, C. Dwork, and L. J. Stockmeyer. “The Distributed Firing Squad Problem

(Preliminary Version)”. In: STOC. 1985.
[CDGK22] I. Cascudo, B. David, L. Garms, and A. Konring. “YOLO YOSO: Fast and Simple Encryption and

Secret Sharing”. In: ASIACRYPT. 2022.
[CDN15] R. Cramer, I. B. Damg̊ard, and J. B. Nielsen. Secure Multiparty Computation and Secret Sharing.

Cambridge University Press, 2015.
[CGG+20] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. “UC Non-Interactive, Proactive,

Threshold ECDSA with Identifiable Aborts”. In: CCS. 2020.
[CGM19] Y. Chen, N. Genise, and P. Mukherjee. “Approximate Trapdoors for Lattices and Smaller Hash-and-

Sign Signatures”. In: ASIACRYPT. 2019.

25

https://github.com/getamis/alice/tree/master/crypto/tss/ecdsa/cggmp
https://github.com/getamis/alice/tree/master/crypto/tss/ecdsa/cggmp
https://www.aumasson.jp/data/talks/tss_rwc21.pdf
https://www.aumasson.jp/data/talks/tss_rwc21.pdf
https://www.aumasson.jp/data/talks/BH20_mpctss.pdf
https://research.kudelskisecurity.com/2021/04/08/audit-of-ings-threshold-ecdsa-library-and-a-dangerous-vulnerability-in-existing-gennaro-goldfeder18-implementations/


[CH20] A. Choudhury and A. Hegde. “High Throughput Secure MPC over Small Population in Hybrid Net-
works (Extended Abstract)”. In: INDOCRYPT. 2020.

[Cho20] A. Choudhury. “Improving the Efficiency of Optimally-Resilient Statistically-Secure Asynchronous
Multi-party Computation”. In: INDOCRYPT. 2020.

[CKLS02] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl. “Asynchronous Verifiable Secret Sharing and
Proactive Cryptosystems”. In: ACM CCS. 2002.

[CKMR22] S. Coretti, A. Kiayias, C. Moore, and A. Russell. “The Generals’ Scuttlebutt: Byzantine-Resilient
Gossip Protocols”. In: CCS. 2022.

[CKP+22] E. Crites, M. Kohlweiss, B. Preneel, M. Sedaghat, and D. Slamanig. Threshold Structure-Preserving
Signatures. ePrint 2022/839. 2022.

[CKS05] C. Cachin, K. Kursawe, and V. Shoup. “Random Oracles in Constantinople: Practical Asynchronous
Byzantine Agreement Using Cryptography”. In: J. Cryptol. (2005).

[CMP20] R. Canetti, N. Makriyannis, and U. Peled. UC Non-Interactive, Proactive, Threshold ECDSA. ePrint
2020/492, merged into CCS’20. 2020.

[Coh16] R. Cohen. “Asynchronous Secure Multiparty Computation in Constant Time”. In: PKC. 2016.
[Coi22] Coinbase. announcing CMP MPC with echo broadcast. 2022.
[Cra96] R. Cramer. “Modular Design of Secure yet Practical Cryptographic Protocols”. PhD thesis. CWI and

University of Amsterdam, 1996.
[Dar10] S. C. and Darrel Hankerson and Edward Knapp and Alfred Menezes. “Comparing two pairing-based

aggregate signature schemes”. In: Des. Codes, Cryptogr. (2010).
[DF90] Y. Desmedt and Y. Frankel. “Threshold cryptosystems”. In: CRYPTO. 1990.
[DG23] Q. Dao and P. Grubbs. “Spartan and Bulletproofs are simulation-extractable (for free!)” In: EURO-

CRYPT. 2023.
[Div22] S. K. and Divya Ravi and Sophia Yakoubov. Towards Efficient YOSO MPC Without Setup. Eprint

2022/187. 2022.
[DKI+23] B. David, A. Konring, Y. Ishai, E. Kushilevitz, and V. Narayanan. Perfect MPC over Layered Graphs.

ePrint 2023/330. 2023.
[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer. “Consensus in the Presence of Partial Synchrony”. In: J.

ACM (1988).
[DPSZ12] I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias. “Multiparty Computation from Somewhat Homo-

morphic Encryption”. In: CRYPTO. 2012.
[Elg84] T. Elgamal. “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms”.

In: CRYPTO. 1984.
[Fir22] Fireblocks. ”MPC key shares are automatically refreshed in minutes-long intervals”. 2022.

[FKMV12] S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. “On the Non-malleability of the Fiat-Shamir
Transform”. In: INDOCRYPT. 2012.

[GDK22] C. U. Günther, S. Das, and L. Kokoris-Kogias. Practical Asynchronous Proactive Secret Sharing and
Key Refresh. Cryptology ePrint Archive, Paper 2022/1586. 2022.

[GGOR13] J. A. Garay, C. Givens, R. Ostrovsky, and P. Raykov. “Broadcast (and Round) Efficient Verifiable
Secret Sharing”. In: ICITS. 2013.

[GHK+21] C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, and S. Yakoubov. “YOSO: You
Only Speak Once: Secure MPC with Stateless Ephemeral Roles”. In: CRYPTO. 2021.

[GHL22] C. Gentry, S. Halevi, and V. Lyubashevsky. “Practical Non-interactive PVSS with Thousands of
Parties”. In: EUROCRYPT. 2022.

[GJKR07] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure Distributed Key Generation for Discrete-
Log Based Cryptosystems”. In: J. Cryptol. (2007).

[GKM+22] V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song. “Storing and Retrieving Secrets on a
Blockchain”. In: PKC. 2022.

[GL02] S. Goldwasser and Y. Lindell. “Secure Computation without Agreement”. In: DISC. 2002.
[GP21] C. Ganesh and A. Patra. “Optimal Extension Protocols for Byzantine Broadcast and Agreement”. In:

Distrib. Comput. (2021).

26

https://www.coinbase.com/blog/hierarchical-threshold-signature-scheme-an-approach-to-distinguish-singers-in-threshold?source=rss----c114225aeaf7---4
https://www.fireblocks.com/what-is-mpc/


[GPS19] Y. Guo, R. Pass, and E. Shi. “Synchronous, with a Chance of Partition Tolerance”. In: CRYPTO.
2019.

[Gro22] T. Group. Implementation of CMP. 2022.
[HJKY95] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. “Proactive Secret Sharing”. In: CRYPTO. 1995.

[HKMR22] S. Halevi, H. Krawczyk, A. Miao, and T. Rabin. “Threshold Cryptography as a Service (in the Mul-
tiserver and YOSO Models)”. In: CCS. 2022.

[HPW15] C. Hazay, A. Patra, and B. Warinschi. “Selective Opening Security for Receivers”. In: ASIACRYPT.
2015.

[HZC+22] B. Hu, Z. Zhang, H. Chen, Y. Zhou, H. Jiang, and J. Liu. “DyCAPS: Asynchronous Proactive Secret
Sharing for Dynamic Committees”. In: eprint (2022).

[ISO19] ISO/IEC. ISO/IEC 18033-6:2019 IT Security techniques — Encryption algorithms — Part 6: Homo-
morphic encryption. 2019. url: %5Curl%7Bhttps://www.iso.org/obp/ui/#iso:std:iso-iec:
18033:-6:ed-1:v1:en%7D.

[Iva98] R. C. and Ivan Damg̊ard. “Zero-Knowledge Proofs for Finite Field Arithmetic; or: Can Zero-Knowledge
be for Free?” In: CRYPTO. 1998.

[JS20] A. P. Jonas Nick and G. Sanders. Liquid: A Bitcoin Sidechain. https://blockstream.com/assets/
downloads/pdf/liquid-whitepaper.pdf. 2020.

[KG20] C. Komlo and I. Goldberg. “FROST: Flexible Round-Optimized Schnorr Threshold Signatures”. In:
SAC. 2020.

[KJY+20] E. Kim, J. Jeong, H. Yoon, Y. Kim, J. Cho, and J. H. Cheon. “How to Securely Collaborate on Data:
Decentralized Threshold HE and Secure Key Update”. In: IEEE Access (2020).

[KKK08] J. Katz, C. Koo, and R. Kumaresan. “Improving the Round Complexity of VSS in Point-to-Point
Networks”. In: ICALP. 2008.

[KMM+23] A. Kate, E. V. Mangipudi, P. Mukherjee, H. Saleem, and S. A. K. Thyagarajan. Non-interactive VSS
using Class Groups and Application to DKG. eprint 2023/451. 2023.

[KMS20] E. Kokoris Kogias, D. Malkhi, and A. Spiegelman. “Asynchronous Distributed Key Generation for
Computationally-Secure Randomness, Consensus, and Threshold Signatures.” In: CCS. 2020.

[LNR18] Y. Lindell, A. Nof, and S. Ranellucci. “Fast Secure Multiparty ECDSA with Practical Distributed Key
Generation”. In: CCS. 2018.

[MCK20] A. Momose, J. P. Cruz, and Y. Kaji. v3 2020/04/19 of Hybrid-BFT: Optimistically Responsive Syn-
chronous Consensus with Optimal Latency or Resilience. ePrint 2020/406. 2020.

[MZW+19] S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and D. Song. “Churp: Dynamic-
committee proactive secret sharing”. In: CCS. 2019.

[OY91] R. Ostrovsky and M. Yung. “How to Withstand Mobile Virus Attacks”. In: PODC. 1991.
[PCR13] A. Patra, A. Choudhury, and C. P. Rangan. “Efficient Asynchronous Verifiable Secret Sharing and

Multiparty Computation”. In: J Cryptol (2013).
[PCR14] A. Patra, A. Choudhury, and C. P. Rangan. “Asynchronous Byzantine Agreement with optimal re-

silience”. In: Distributed Computing (2014).
[PCRR09] A. Patra, A. Choudhary, T. Rabin, and C. P. Rangan. “The Round Complexity of Verifiable Secret

Sharing Revisited”. In: CRYPTO. 2009.
[Rei94] M. K. Reiter. “Secure Agreement Protocols: Reliable and Atomic Group Multicast in Rampart”. In:

CCS. 1994.
[RRJ+22] T. Ruffing, V. Ronge, E. Jin, J. Schneider-Bensch, and D. Schröder. “ROAST: Robust Asynchronous
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A Complements on the model

A.1 Ideal functionalities

A.1.1 Formalizing eventual delivery We now explain the high level idea of the mechanism which we
use to formalize eventual delivery, following [KMTZ11; CGHZ16]. Every ideal functionality F , when it needs
to eventually deliver (ssid, v) to some entity P , engages in the following interaction. It notifies A of the
output id (ssid), initializes a counter Dssid ← 1, which captures the delivery delay. Upon receiving (delay)
from A, it sets Dssid ← Dssid+ 1. Upon receiving (fetch) from P, it sets Dssid ← Dssid− 1, as well as for
all other counters related to pending outputs for P . In addition, we specify that it leaks (fetch) to A. This
precision is not present in previous works [KMTZ11; CGHZ16; LLM+20]. We added it, since otherwise we
did not see how A could accurately schedule the delivery of outputs. Precisely, it would not know how many
(fetch) where done so far, so would not know how many (delay) it must make to delay the output sufficiently
long, and would also not know when a message is delivered. It is left implicit that entities fetch as much
as they can all. Since A is PPT, at some point it gets exhausted of pressing the button “delay”. So, after
sufficiently many fetches more, the counter drops down to 0. Then F can deliver (ssid, v) to P .

In FP-AVSS, we formalized that it is instead the players requesting an opening which have the power to
request the decrease of the delivery delay D, 1 by 1 each time. We could have also, instead, followed the
formalism of all previous works, and have instead the learner L which would have made the delay to drop
by −1 upon requesting fetch. Likewise, we formalized that the players of an old committee Pe[ne]

, requesting
a Refresh, have the power to request the decrease of the refresh delay De, 1 by 1 each time. We could have
well have, instead, given this power to the players of the new committee Pe+1

[ne+1]
.

This mechanism was first introduced in [KMTZ11, §3.2] for secure channels. Then it was extended by
[CGHZ16] for secure function evaluation. We kept the more explicit formalism of [KMTZ11; LLM+20], in
which A is required to request delay each time it wants to augment by one the delay, instead of entering a
new delay in unary notation, as specified in [CGHZ16].

Finally, we made the following addition to these models. We specified that the functionality notifies A
each time an honest recipient calls (fetch). That way, the adversary knows at any moment in time when an
output will be delivered. In particular, it knows when an output is delivered. This addition is mere formalism,
since all previous works not in UC explicitely assume this power.

A.1.2 Bookkeeping of corruptions (and of shut-off) by ideal functionalities. Functionalities keep
track of the corrupt entities: D and/or L when the case, as well as both Ie and the corrupt Kek, for all e.
This is enabled by slight additions to the UC model made in [CDN15, §4] [KMTZ11, footnote 8]. In addition,
we assume that FP-AVSS is informed in real time when a dummy honest player receives (shut-off). This can
simply be implemented by specifying, in the dummy protocol, that a dummy honest player notifies to FP-AVSS

the reception of (shut-off), just before it does shuts-off.
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A.1.3 Ideal functionality of (asynchronous proactive) verifiable secret sharing. It is formalized
in Fig. 5. It maintains a counter, denoted as eo, which is roughly the highest committee such that in all
previous committees, there is a quorum of dummy honest players which queried a Refresh, in the form of a
(refresh-req) request. In more detail, the adversary has the power to delay the increment of the counter eo,
with the same kind of fetch-and-delay mechanism as described in Appendix A.1.1. More precisely, what plays
the role of fetch here are the (refresh-req). To this enable this role, we add the formal precision to the dummy
protocol, that upon receiving refresh-sig or open-sig, a dummy honest player sends refresh-sig or open-sig to
FP-AVSS as much as it can. This has for effect to decrease by one, each time, the delays of Refresh or of
delivery of the output.

FP-AVSS

Sharing On input (“share”, s∈ S) from D for the
first time, or possibly from A if D is corrupt: stores
s̃ ← s, and eventually-delivers (committed) to each
player P1

i ∈ P1
[n1]

. //“eventually-delivers” consists of
the same fetch-and-delay mechanism as explained in Ap-
pendix A.1.1.
Then, initialize two counters: eA← 1. //any te+1− fe
honest players of any Pe 6 eA

[n] can open s̃, if the adver-
sary allows it.
and eo ← 0. //any te+1 honest players of any Pe 6 eo

[n]

can open s̃. If eo = 0 then no committee has this power.

A Delaying eventual resharing and delivery
- Initialize D ← 1 //delivery delay

- Initialize De ← 1, ∀e. //resharing delay

- Upon receiving delay or delaye from A, set D← D+1
or De ← De+1

Bookkeeping requests from honest players
- Initialize HResharerse←{}, HOpenerse←{}, ∀e.
- For any e, upon receiving (open-req)
from any honest player Pei ∈ Pe[ne]

: set
HOpenerse ← HOpenerse ∪ {Pei }, set D ← D− 1 and
leak (open-req, Pei ) to A.

- For any e, upon receiving (refresh-req) from any hon-
est player Pei ∈ Pe[ne]

: set HResharerse← HResharerse∪
{Pei }, set De ← De− 1 and leak (refresh-req, Pei ) to
A.

- Upon being notified that a player Pei is shut-off, re-
move Pei from HOpenerse and HResharerse.

Opening

• [Early opening] For any e 6 eA, if
|HOpenerse| > te + 1 − fe and if some s is stored,
then:
(i) if L is corrupt, leak s̃ to A;

(ii) if L is honest, upon receiving (open-order) from A,
if no output was delivered yet to L, deliver s̃ to L.

• [Collective opening] If |HOpenerse| > te + 1 for some
e 6 eo and De 6 0 and no output was delivered yet to
L, then deliver s̃ to L.

Allowing new committees to open
• [Initial AVSS] When t1 + 1 honest players of P1

[n1]

have received (committed), set eo ← max(eo, 1).

• [Early refreshing] If |HResharerseA|> teA+1− feA and
if some s is stored , then, upon subsequently receiving
(refresh-order) from A: set eA ← eA+1.

• [Collective refreshing] If |HResharerseo |> teo+ 1 and
Deo ≤ 0, set eo ← eo+1.

Corruptions above thresholds
- [Privacy break-down] If there exists e 6 eA, such that
the number of corruptions in Pe[ne]

is fe> te+1, then
leak s̃ to A

- [Correctness break-down] If there exists e> 1, such
that the number of corruptions in Pe[ne]

is fe> te+1,
then allow A to modify the value of the stored s̃ and
to open it to L at any time. [Correctness break-down
is thwarted by APSS2.]

- [Liveness break-down] Let e the minimum epoch
number for which all collectors Ke[κe]

are corrupt, then
never allow eo to go above e−1. [Notice also that, for
some e 6 eo, if te>ne/2, then the specifications above
enable collective opening or re-sharing from Pe[ne]

only
if A {corrupted or shut-off} < te players in Pe[ne]

]

Figure 5: Ideal functionality of proactive AVSS.

A.1.4 Bulletin board of public keys: FbPKI We present in Fig. 6 the ideal functionality of a bulletin
board of public keys, denoted as FbPKI. Upon receiving a key ekei from any player Pei ∈ Pe[ne]

, it stores
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(Pei , eki) and leaks this information to A. For each e it: -waits until it received a public key from every honest
player Pei ∈ Pe[ne]

-sets a timeout -then after it elapsed, sets to ⊥ the keys of the (necessarily corrupt) players

of Pe[ne]
which did not give a key. Then it sets as ek[ne] ← (eki)i∈ [ne] the vector of all keys, [where those from

some corrupt players may be ⊥], and eventually delivers it to all the system.

FbPKI

Output format Initialize an empty vector ek[n] = {>}n.
When all eki 6= >, ∀i∈ [n], set output-available = true.

Formalizing eventual delivery For every R∈R, initialize a counter DR ← 0 //the delivery delay.
Initialize output-available ← false
Upon receiving fetch from any R∈R, DR ← DR− 1. When DR = 0 for the first time, if no output was delivered
yet to R, wait until output-available =true then deliver ek[n] to R.

Formalizing timeout for keys of corrupt players Initialize a counter TA ← 1 //the timeout.
Upon receiving delay-keys from A, TA ← TA + 1.
Upon receiving fetch from any R∈R, TA ← TA− 1.
If TA = 0, freeze forever TA = 0. Then, for all i∈ I : if eki = >, then set eki ← ⊥.

Honest keys registration Upon receiving the first message (Register, ẽki) from an honest key-holder Pi, send

(Registered, Pi, ẽki) to A and set eki ← ẽki.

Corrupt keys registration Upon receiving a message (Register, (ẽki 6= >)i∈ I) from A and if TA> 0, then: set

eki ← ẽki ∀i∈ I .

Figure 6: The bulletin board of public keys functionality FbPKI, parametrized by a set of n key-holders,
denoted as P[n], of which the corrupt ones are indexed by I ⊂ [n], and by a set of receivers R. It does
not perform any check on the keys received. In APSS, a published key which is not in eK is automatically
considered as ⊥ by honest players.

A.1.5 Non-interactive zero-knowledge arguments of knowledge (NIZK-AoK) We present in
Algorithm 7 the ideal functionality of non-interactive zero-knowledge arguments of knowledge (NIZK-AoK),
denoted as FNIZK. It is mainly borrowed from [GOS06], with differences which we highlight. It is parametrized
by a NP relation R. Upon request of a prover P exhibiting some public input x and knowledge of some
secret witness w, it verifies if (x,w) ∈ R then deletes w from its memory. If the verification passes, then
FNIZK eventually outputs to P a string π. We denote Π the space of such strings π. During the delay of
output, A has the power to set the value of π. If it does not use this power, then FNIZK sets π to a default
value π0. //This is a difference with [GOS06], in which A could delay forever the delivery of π. Sticking to this model

would have prevented us from specifying a functionality FP-AVSS with guaranteed output delivery (GOD) in case of

honest majority. Another way around this problem is proposed in [CEK+16], in which A must answer in priority to

requests from functionalities, such as FNIZK, which model purely local computations. However, it was not clear to

us to what extend their adversary could choose not to answer any further request at all, thereby preventing GOD in

APSS0 under honest majority. Notice that we neglect the delay of FNIZK in the latency bound of Lemma 4.
Upon subsequent input the same string π and x from any verifier V , FNIZK then confirms to the verifier

that P knows some witness for x. //Again, there is a potentially infinite delay in [GOS06], in the case where no

(x, π) is recorded, during which FNIZK expects to receive from A a possible witness for x. We again transformed this

into a time-out, based on the same fetch-and-delay mechanism.

Under honest majority, it is possible to instantiate FNIZK under standard assumptions, from the sole
setup of non-interactive publications on a bulletin board FbPKI, using so-called multi-string NIZKs [GO07].

A.1.6 Asynchronous message transmitting We formalize in Fig. 8 the ideal functionality of asyn-
chronous public authenticated message transmitting with eventual delivery delay, denoted as FAT. It is
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FNIZK

The functionality is parametrized with an NP relation R of an NP language L and a prover P .

Proof: On input (prove, sid, ssid, x, w) from P , ignore if (x,w) /∈ R. Request (proof, x) to A then go to the next
step.

Reception of the NIZK Initialize a counter TA ← 1 //the timeout.
Upon receiving delay from A, TA ← TA + 1.
Upon receiving fetch from P , TA ← TA− 1.
Upon receiving (π) from A and if TA>0, then: freeze forever store (x, π) and deliver (proof, sid, ssid, π) to P.
If TA = 0, then: freeze forever TA = 0, store (x, π) and deliver (proof, sid, ssid, π0) to P.

Verification: On input (verify, sid, ssid, x, π) from any verifier V , check whether (x, π) is stored. If not, then
do the following instructions:

– request (verify, x, π) to A;
– initiate a counter Dverif which A can increase by +1 steps, and V by −1 steps;
– upon receiving an answer (witness, w) from A and if Dverif > 0 and if (x,w) ∈ R, then: store (x, π);
– when Dverif = 0, halt those instructions and go to the next (and last) step.

If (x, π) is stored, return (verification, sid, ssid, 1) to V , else return (verification, sid, ssid, 0).

Algorithm 7: Non-interactive zero-knowledge functionality

parametrized by a sender S and a receiver R, hence the terminology “authenticated”. It delivers every mes-
sage sent within a finite delay D, hence the terminology eventual delivery, although D can be adaptively
increased by A. It leaks the content of every message to A, hence the terminology “public”. We also define
a stronger variant, denoted FST for secure transmitting, which leaks only the length of the messages. Only
messages intended to L will go through this stronger variant.

FAT/FST

• Upon receiving a message (send,m) from S, initialize Dmid ← 1, where mid is a unique message ID, store
(mid, Dmid,m) and leak (mid, Dmid,m) to A. FST leaks only (mid, Dmid, |m|).
• Upon receiving a message (fetch) from R:

1. Set Dmid ← Dmid − 1 for all mid stored, and leak (fetch) to A.

2. If Dmid = 0 for some stored (mid, Dmid,m), deliver the message m to R and delete (mid ,m) from the memory.

• Upon receiving a message (delay,mid) from A, for some stored mid , set Dmid ← Dmid + 1.

• (Adaptive message replacement) Upon receiving a message ((mid,m) → m′) from A, if S is corrupt and the
tuple (mid, Dmid > 0,m) is stored, then replace the stored tuple by (mid, Dmid,m

′).

Figure 8: Ideal functionality of asynchronous public authenticated message transmitting with eventual
delivery delay, parametrized by sender S and receiver R. The straightforward upgrade to obtain asynchronous

secure message transmitting FST is described inline.

Our baseline for FST is the functionality denoted Fed−smt [KMTZ11]. For FAT, we made the addition to
leak the contents of the messages to A. We also incorporated two other additions, borrowed from the FNET

in [LLM+20]. The first consists in attaching a unique identifier to each message and counter, in order to give
to A a control on the delay of each message individually. Notice that [CGHZ16] model this individual control
by, instead, given the power to A to re-order messages not delivered yet. The second addition consists in
forcing explicitely A to press (delay) to augment the delay by +1, instead of the (equivalent) formalization
in which A enters the additional delay in unary notation.
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A.1.7 Reliable broadcast (RB) ideal functionality The following functionality for RB, denoted as
RBS→R, proceeds simply as follows. On receiving a message s from the sender S, it sends s to each receiver
R∈R by using the same procedure as FAT. Notice that in protocol APSS0, the sender is D and will use

RBD→P
1
[n1] only once. There exists another functionality for RB in [CP22; AAPP22], which is denoted as

FACast. The difference is that for every given ∈R, FACast may never deliver s to R if the adversary does
not allow to, nonwithstanding other honest players could have been delivered s. The reason is that they use
the classical UC framework of delayed output of Canetti, in which the delivery of every single output from
a functionality needs to be allowed by the adversary.

RBS→R

• Upon receiving a message (send,m) from S, for each R∈R, do the following. Initialize Dmid ← 1, where mid is
a unique message ID, store (mid, Dmid,m,R) and leak (mid, Dmid, R,m) to A.

• Upon receiving a message (fetch) from R:

1. Set Dmid ← Dmid − 1 for all (mid, Dmid, R,m) stored, and leak (fetch,R, m) to A.

2. If Dmid = 0 for some stored (mid, Dmid, R,m), deliver the message m to R and delete (mid ,R, m) from the
memory.

• Upon receiving a message (delay,mid ,R) from A, for some stored (mid, Dmid, R,m), set Dmid ← Dmid + 1.

Figure 9: Ideal functionality of reliable broadcast. It is parametrized by a sender S and a set of receivers
R. The straightforward upgrade to obtain asynchronous secure message transmitting FST is described inline.

B Complements on APSS0: Q & A

B.1 Illustration of a resharing in APSS0 Fig. 12 illustrates Refresh(P[n],P ′[n′]) in APSS0 between an

old committee P[n] :=Pe[ne]
and a new one P ′[n′] :=P

e+1
[ne+1]

.

B.2 How to compile protocol APSS0 of Section 6 into the FbPKI model of Section 2, in which
public keys are not public parameters In the description of APSS0 made in Section 6, we considered as
public parameters encryption keys ek[n] and ek[n′] of P[n] and P ′[n′]. To compile APSS0 in the FbPKI model,

we let players of each committee P[n] generate key pairs (dki, eki) and publish eki to FbPKI. Then, each
player of an old committee waits to receive from FbPKI the list of all the keys of the new committee (or of
committee P1

[n1]
for D) before starting a Refresh with the new committee. Likewise, each player of a new

committee waits to receive from FbPKI the list of all the keys of the old committee before taking any action.
Recall that FbPKI always delivers a list of keys in finite time. Indeed, it is specified in Appendix A.1.4 to
assign a ⊥ key to a corrupt player if it did not receive any key from it before a timeout.

B.3 What happens if some honest player does not publish its keys “in time” ? By definition,
FbPKI does not return a vector of keys until it has received all those of honest players. This model of FbPKI is
implicit in the mainstream so-called “PKI model”, such as considered in [DMR+21]. The definition of FbPKI

which we make, is essentially the minimum one with which it is possible to instantiate MPC protocols in the
PKI model. //Notice that since our FbPKI does not deliver keys simultaneously, it does not even enable players to

start synchronously [CDN15, p89].

Let us illustrate on an example why this model of FbPKI is indeed minimal. Consider, the following
protocol, which is the simplest MPC protocol which actually uses the PKI model. A dealer reliably broadcasts
a publicly verifiably encrypted secret sharing (PVSS) of its input s, with threshold t out of n players. Any
t+1 out of n honest players can reconstruct s to any entitled L, by sending verifiable decryptions of their
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Fig. 10: REALA execution of APSS0 with dummy adversary A. The Environment Z interacts with the
system (the big rectangle in dotted blue) by: its full control on A, its power to give an input to honest
participants: (s to D if it is honest, and signals to players), and its power to learn the outputs (s̃ from L if
it is honest, and (committed) from honest players of P1

[n1]
).

Fig. 11: IDEALFP-AVSS,S execution: dummy honest participants perform the dummy protocol with FP-AVSS;
the simulator S interacts on the right with FP-AVSS with the same interface as A and corrupt entities in the
dummy protocol, and on the left, interacts with Z with the same interface as the dummy adversary in the
real protocol.
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P[n] P ′
[n′]

(
c[n], ci→[n], πres,i, σi

)
(c′[n′], {ci→[n], πres,i}i∈U , (c[n], {σ}i∈U ))

Party P1

. . .

Party Pi

si ← Dec(dki, ci)
h $←− Fp[X]≤t st. h(0) = si

and set si→j :=hi(j)
ci→j :=Enc(ekj

′, si→j)∀j∈ [n′]
Signature σi on c[n]

. . .

Party Pn

...
...

...

Collector K′k′ ∈ K′[κ′]

Verification a) all
t+1 NIZK πres,i

b) all t+1 signatures σi
c′[n′] := �

i∈ U
λUi � ci→[n′]

Party P ′1

. . .

Party P ′i

Verification a) all t+1 NIZK πres,i

b) all t+1 signatures σi
c) the linear combination

Set L′i[k] ← c′[n′]

. . .

Party P ′n

...
...

...

Fig. 12: Refresh(P[n],P ′[n′]) in APSS0. P[n] :=Pe[ne]
is the old committee, P ′[n′] :=Pe+1

[ne+1]
the new one. The illus-

tration shows one single collector K′k′ ∈ K′[κ′]. Each player Pi of P[n] has a list Li of vector of ciphertext shares
received at the end of the previous Refresh. For each such c[n] in its list (only one is depicted), Pi computes a
publicly verifiable resharing of its coordinate ci: (ci→[n], πres,i) which it sends to the collectors (only one is de-
picted) appended with c[n] and a signature σi on it. Each collector waits until it collects a batch of such encrypted
resharings, out of a subset U⊂ [n] of t+1 players, all verifiably generated out of the same c[n], such that all t+1
proofs πres,i and signatures σi are valid. Then, it form c′[n′] by Lagrange linear combination, and multicasts the batch
(c′[n′], (ci→[n], πres,i)i∈ U , (c[n], {σi}i∈ U ) to P ′[n′]. Every player P ′j ∈ P ′[n′], for every such batch which it receives (only
one is depicted), verifies that i) all t+1 NIZK πres,i and signatures σi are valid and ii) that c′[n′] has been correctly
formed. If it is the case, then it sets L′j [k] ← c′[n′].

shares to L. Now, assume that FbPKI does not follow our specifications, and that it published as ⊥ the key
of some honest player i which was too slow. Then the dealer has two options: either broadcast i’s share in
clear, in which case the privacy threshold is downgraded to t− 1. Or, do not broadcast it, in which case it is
not true anymore that any t+1 honest players can reconstruct s, since i could be in this (t+1)-set

B.4 When do committees start to exist ? For simplicity in the toy model Section 2 we assumed that
all committees exist since the beginning of the execution. But actually, the toy model can be extended to
allowing each player to be initialized at any time, or even never. The only modification to be made is in the
functionality FP-AVSS. It is the following: FP-AVSS refuses to advance eo ← eo+1 until all players of Peo+1

[n]
exist.

Then, in the model we would just have to give the power to the environment Z to initalize players at
any time, or even never. The UC proof holds unchanged, since the honest players of P[n], both in the real
and in the simulated execution, do not start Refresh (P[n],P ′[n′]) until all keys of P ′[n′] have been published,

in particular, until all honest players of P ′[n′] have been initialized. In conclusion, by universal composability,
APSS0 can be composed with any external mechanism which would initialize players.

B.5 Why are resharings not signed ? APSS0 is agnostic of “by whom”/“how”/“in which context” was
produced the vectors of ciphertexts and the attached NIZK πres,i, relative to the resharing of the share of any
player Pi. For instance, our proof captures the following scenario. Consider two vector of ciphertext shares:
c[n] and c̃[n], both in the list of some honest player Pi, which happen to have the same coordinate ci = c̃i.
Then Pi generates distinct resharings of both of them: ci→j c̃i→j , which it sends to a corrupt collector K′k′ .
Then K′k′ forwards the resharing of the former: ci→j in place of the re-sharing of the latter: c̃i→j .

Now, let us look at how this scenario is captured in the proof of correctness. Since Pi is honest, the
NIZK πres,i attached to ci→j is accepted by FNIZK. Then, by definition of FNIZK, it must be that FNIZK

was given as witness: the correct decryption si of c̃i = ci, and the plaintexts si→j of ci→j , such that they are
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evaluations of some degree t polynomial f evaluating to s at 0. The same conclusion holds in the relaxation
where FNIZK is replaced by simulation-sound extractable (Sim-Ext) NIZK AoKs. Precisely, if an honest P ′j
receives a resharing: (ci→[n], πres,i) included in the batch received from some corrupt collector K′k′ . Then, it
must be the case that

– either A received πres,i as such (from an honest player Pi, or from the simulator on behalf of Pi in
the UC proof). This case is a particular case of the Sim-Ext game where A queries proofs of arbitrary
statements (even false ones) to its oracle;

– or A can be extracted a witness.

Finally, let us look at how this scenario is captured by our simulator. In particular, in the case of both
an honest D and L, existence of a simulator for APSS roughly implies secrecy of the secret. The simulator
only modifies the fact that Pi does not use its secret decryption key when it generates its re-sharings. The
simulator does not modify how these re-sharings are used by collectors, nor how they are subsequently
forwarded by public asynchronous channels. Indeed, what guarantees secrecy, roughly speaking, is only the
fact that the simulated D generates a PVSS of 0, instead of, of its secret.

B.6 Can players open outside of the window of opening ? By construction of Open in Section 4.3,
a player in some Pe[ne]

receiving open-sig, continues forever to send to L a decryption of every new share

arriving in its list (up to the maximum number κe, by construction) , until it shuts-off. So these actions
potentially spread beyond and after the timeframe which we denoted as window of opening. On the other
hand, if a honest player of Pe[ne]

receives shutoff-sig before it received any new share, then players of Pe[ne]

may never be able to open, collectively, a secret. This can happen if ∆e
wait 6 δ: Theorem 2 does not guarantee

openability from Pe[ne]
in this regime. In any case, this does not prevent that Pe+1

[ne+1]
will have again a chance

to Open, from the finite time T e+1, as precisely guaranteed in Theorem 2.
Let us give an intuition why if ∆e

wait 6 δ then Pe[ne]
may never be able to Open. We refer to the description

of the refreshing squad mechanism described in Section 6. Suppose for simplicity that ∆e
wait = 0. Consider

a scenario in which there is a player of Pe[ne]
which forms first a qkc, so outputs refresh-sig. Then it quickly

engages into a Refresh with Pe+1
[ne+1]

, assisted by the t corrupt players of Pe[ne]
. Messages in this Refresh are

delivered much faster than δ. In the while, δ still did not elapse, and the other players of Pe[ne]
did not receive

yet any new share (technically: any proven new sharing) from the collectors Ke[κe]
. So they are unable to

send any opening shares to L. Then (still before δ elapses) they all receive very quickly a qrce+1 so they all
shut-off.

B.1 Optimizing for the good case, if not hurry in the worst case.

There exists an alternative approach to resharing, which is used in some PSS protocols [MZW+19; GKM+22;
YXD22; YXXM23]. It consists in generating a fresh sharing of a random mask r, which is both shared within
the exiting committee and the entering committee. Then, the exiting committee publicly opens the value
x ← r − s of the masked secret. Subtracting x to their shares of r, the entering committee obtains a fresh
sharing of s. This approach requires one more round-trip of interaction than resharing, so what using it ? Its
benefit is that the communication cost of generating shared randomness can be amortized with the following
generic tool [BH08]. Consider any n − t × n matrix M , of which all minors are invertible. It is denoted as
an hyperinvertible matrix. A Vandermonde matrix is hyperinvertible. //Such matrices are also known as MDS,

see [CDN15, §8]. Then for any n-sized input vector X, of which any n− t out of n coordinates vary uniformly
at random, we have that the output Y = M.X has its n − t out of n coordinates which vary uniformly at
random.

We now describe the variant of APSS0 using this randomness extraction. We consider the need to Refresh
W = n− t secrets in parallel. Broadly, the goal is for each collector is to obtain W double encrypted sharings

of random values. Each is of the form: (cw[n], c[n
′]
′w

), such that both sides are vector of ciphertext shares
of the same value rw∈ S, and such that rw varies uniformly conditionned on the view of A. //This is to be
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understood in a computational sense: upon being given either the plaintext rw or a uniformly random one, a PPT

adversary could not distinguish between them. More precisely, for each collector index k∈ [κ′], each player of
P[n]:

– waits until it accepts W double sharings;
– then, for each secret sw, it sends to P ′[n′] its decryption share of xw =← rw − sw.

Notice that a corrupt collector could manage so that two distinct players receive double sharings, for the
same index w, which are sharings of distinct randomnesses: rw 6= uw. But in this case, the generation which
we are going to describe shows that the adversary can be extracted the difference between the two conflicting
randomnesses: δrw,uw :=rw − uw. So the decryption shares sent by honests players associated to index w are
still simulatable.

We now describe the generation. For simplicity we consider a threshold n = 2t+1. Of course the extraction
would be far easier in the setting t < n/3, as in [YXD22; YXXM23].

– Each Pi∈ P[n] samples a random value ri∈ S then generates a double encrypted sharing of it : once under
the [n] keys of P[n] and once under the [n′] keys of P ′[n′]. It multicasts to the collectors the encrypted
sharings, appended with NIZK’s of r, plaintext shares and encryption randomnesses.

– Each collector K′[κ′], upon receiving t+1 double sharings, it sets a timeout. Then, it gathers the total

|U | ≥ t+1 double sharings received: ((ci→[n], c
′
i→[n′]))i∈ U .

– In the bad case where it received no more than |U | = t+1 double sharings, then it can extract only
one double sharing out of them, which is varies uniformly independently of the view of A. Namely, by
computing their sum. So it queries players of P[n] to generate and send to it the required M − 1 more
double sharings of random values.

– In the very good case where it received n resharings, it homomorphically applies M to them, to obtain
n− t encrypted sharings of uniformly random values.

– In intermediary case where it would have received n− f>t+1 double sharings, e.g., where n− f players
behaved honestly and their messages were delivered before the timeout, then it extracts n−f− t random
double sharings out of them. To this end, it applies a hyperinvertible matrix of smaller size n−f − t×n.
Then it queries players of P[n] to generate and send more double sharings of random values, until it can
extract a total number of M .

– Upon having extracted M uniform double sharings, it sends them to players of P[n] and P ′[n′], appended
with all the double sharings received including the NIZKs appended to them. A player accepts them if
the NIZKs pass verification.

B.2 Extending to various forms of adaptive security

We discuss nested models of adaptive corruptions. We start with the simplest model, where A can corrupt
a participant P only before any ciphertext under P ’s encryption key, i.e., resharing to the committe of P ,
was publicly sent by any other honest player. This includes adaptive corruption of D at any time, since it
does not have a public encryption key. Then, we extend to adaptive corruptions of players before they used
their decryption keys, i.e., before they started to reshare. We then extend to adaptive corruptions of players
at any time.

Recall that ([CDN15, p112]), upon adaptively corrupting a dummy entity P , the simulator S learns its
true input(s), and must show to Z an internal state of P . To prevent Z from distinguishing, the internal
state shown must be compatible both with the true input of P , and the view of Z during the simulated
execution.

B.1 Corrupting players before any honest player sent a resharing encrypted under their key
Dummy players have their only inputs equal to the signals (open-sig), (refresh-sig). They were timely relayed
to S by FP-AVSS, so S can reveal these corresponding inputs and reception timings. Moreover, simulated
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honest players followed the protocol so far, which boils down to: honestly sample a private key then publish
the public key. So the simulator needs only revealing the secret key of every P adaptively corrupt.

However, the latter creates the following problem that our statement of IND-CPA of encrypted sharing,
in Appendix C.1, requires that the challenger M gives the t corrupt indices I⊂ [n] before it can see the
keys. Indeed, in the proof, this is why the reduction APKE knows for which indices it samples the keys itself,
and for which indices it queries the keys to its oracle. We observe that there exists the following generic
reduction. The reduction APKE simply samples at random in its head a subset I of t indices, hoping that
these are the ones of which the challenger M will ask to see the secret decryption keys. Accordingly, APKE

samples the keys in I itself, while it assigns to the indices in [n]\I the keys that it received from its oracle.
In the bad event where M would ask to see other keys than the ones in I , APKE cannot satisfy this request,
so it simply outputs a bit at random to its oracle. In the good event where M asks to see only keys in I ,
then APKE proceeds as in the proof of Appendix C.1. The good event happens with probability 1/

(
n
t

)
, so

this loss is affordable for the values of n (up to 15) in most concrete use-cases.
For large values of n, one may switch to encryption schemes which are by nature are resilient to these

late adaptive requests of selective opening of keys. They are known as RIND-SO, and were proven practical
in [HPW15; YLH+20]. Since they are built from (a tweaked variant of) non-committing encryption, our
requirement of bilateral binding, in Definition 3, does not hold anymore. So encrypted subshares must be
appended with public commitments to them, as in [Gro21] and Section 7.3.

B.2 Extending to corruptions of players before they use their decryption keys We are now
adding scenarios of adaptive corruption of a player P after (re)sharings under P ’s key were publicized. Our
reduction in 1/

(
n
t

)
loss still applies, the loss does even not depend on the number of encrypted sharing

requests made by the challenger M (contrary to [YLH+20]).
On the other hand, it seems to us that applying RIND-SO schemes does not work anymore, contrary to

what is claimed in [BGG+20] (p21, Hybrid 4). Indeed, RIND-SO schemes guarantee only indistinguishability
of (non revealed) plaintexts following the same distribution. But in our case, consider the simplest scenario
of the publicly verifiable secret sharing (PVSS) from an honest dealer D under the keys of P1

[n1]
. Since the

simulator S does not know the secret s of D, it is hopeless for S to generate a PVSS of which the plaintexts
follow the same distribution as a PVSS of s. Indeed, in the real execution, the plaintext shares lie on a
degree t polynomial evaluating to s at 0. So if S were able to generate such plaintexts with overwhelming
probability (w.o.p.), then this would mean that S can guess s w.o.p. But it can guess s only with probability
1/|S|, a contradiction.

B.3 Corrupting players at any time We are now adding scenarios of adaptive corruption of a player
Pi after it decrypted-then-reshared its new share. This actually does not change anything to the simulator
and proof. One could fear that giving to A the key of Pi, may impact the proof in Appendix C.8, of
indistinguishability between the two hybrids Hyb0Refresh[e, i−1] and Hyb0Refresh[e, i]. Recall that, in the former,
Pi does an actual decryption-then-encrypted-resharing of its encrypted shares ci, whereas in the latter, it
generates a bogus vector of ciphertexts. But in the proof we made a reduction into a challenger M big enough
to be extracted the plaintext si of ci. So, the view of the adversary in both hybrids is independent from the
secret key of Pi. Indeed, the only impact of the secret key in the view is to generate the decryption si of ci,
which the challenger knows already.

C Complements on the proof of APSS0

C.1 IND-CPA of encrypted sharing

Proposition 8 states that any PPT machine M corrupting at most t key-holders, has negligible advantage in
distinguishing between the encrypted t-out-of-n Shamir sharings of any two chosen secrets (sL, sR)∈ S2.

Proposition 8 (IND-CPA of encrypted sharing). For any integers 0 ≤ t < n, we consider the following
game between a machine M and an oracle O. O is parametrized by a secret b∈ {L,R} (“left or right oracle”).
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Setup. M gives to O: a subset of t indices I ⊂ [n], and a list of t public keys (eki)i∈I ∈ (eKt⊥)t. For each
i ∈ [n]\I , O generates eki ← EKGen(dki $←− dK) and shows eki to M. M is allowed to query O an unlimited
number of times as follows.

Query. M gives to O a pair (sL, sR)∈ S2. Depending on b∈ {L,R}, O replies as either OL or OR:

OL : samples a degree t polynomial h at random such that h(0) = sL, sets si :=h(i), ∀i∈ [n], returns
(Enceki(si))i∈ [n];

OR: samples a degree t polynomial h at random such that h(0) = sR, sets si :=h(i), ∀i∈ [n], returns
(Enceki(si))i∈ [n].

At some point Mmay output a string, e.g., a bit. Then for any PPT machine M, the distinguishing advantage

AdvLR = |P(1 ← MOL

)− P(1 ← MOR

)| is negligible.

Proof. First, we consider the straightforward reduction into the slightly easier variant of the game, which we
denote as [IND-CPA of encrypted sharing with plaintext adversary shares]. There, the challenger M is given
shares of corrupt players in the clear. Notice that this variant is strictly easier when M badly generated some
of its keys, and thus is unable to decrypt the shares of corrupt players. //Formally, consider a challenger Menc

of Proposition 8. The reduction forwards to its oracle the requests of Menc. It receives the plaintext shares (si)i∈I
and the ciphertexts (ci)i∈[n]\I . It forwards to Menc: (Enceki(si)i∈I and the same ciphertexts (ci)i∈[n]\I .

We now consider the game of [IND-CPA of encrypted sharing with plaintext adversary shares]. We denote
again its oracles as OL and OR, although now they return in the clear the t corrupt shares. We first define
two apparent modifications of OL and OR, denoted as ÕL and ÕR, which only differ from the previous, in
that they first sample the corrupt shares (si)i∈ I

$←− St uniformly at random, then interpolate h through
them and sL or sR. Actually, by the secrecy of Shamir secret sharing recalled in Section 2.2, they produce
exactly the same distribution as OL and OR. We formalize them below, then formalize the previous claim in
Equation (7).

ÕL : samples (si)i∈ I
$←− St; interpolate the degree t polynomial h through (sL, (si)i∈ I); sets si :=h(i)

∀i∈ [n]\I ; returns
(
(si)i∈ I , (Enceki(si))i∈ [n]\I

)
;

ÕR: samples (si)i∈ I
$←− St; interpolate the degree t polynomial h through (sR, (si)i∈ I); sets si :=h(i)

∀i∈ [n]\I ; returns
(
(si)i∈ I , (Enceki(si))i∈ [n]\I

)
.

For any possibly unlimited machine M,

(7) |P(1 ← MÕL

)− P(1 ← MOL

)| = 0 and |P(1 ← MÕR

)− P(1 ← MOR

)| = 0

To conclude the proof, we introduce an intermediary oracle, defined as ÕZ below, and prove that the
distinguishing advantage between both ÕL and ÕR, with ÕZ , is negligible. ÕZ is the common modification of
ÕL and ÕR, which sets to 0 the n− t honest plaintext shares. In particular, it completely ignores the request
(sL, sR) given to it.

ÕZ : samples (si)i∈ I
$←− St; sets si :=0 ∀i∈ [n]\I ;

returns
(
(si)i∈ I , (Enceki(si))i∈ [n]\I

)
;

Claim: the maximum distinguishing advantage with ÕZ is less than the one for n− t-keys IND-CPA for
PKE. We recall the game defining it, from which the Claim should be clear enough. It is between a challenger
APKE, and an oracle OPKE parametrized by a secret b ∈ {E, 0}.
- OPKE samples (n− t) PKE public keys (ekh)h∈[n− t] which it gives to APKE;

- Upon receiving, from APKE, (n− t) chosen plaintexts (sh)h∈[n− t], then OPKE replies depending on b∈ {E, 0}.
In the former case it behaves as OEPKE (actual n− t-keys encryption), in the latter case as O0

PKE (encryptions
of 0).

OE
PKE returns (Encekh(sh))h∈[n− t];

O0
PKE returns (Encekh(0))h∈[n− t].
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Recall that the distinguishing advantage in this t+1-keys IND-CPA game, is upper-bounded by n− t times
the advantage for one-message indistinguishability, see e.g. [BS20, Thm 5.1].

We now fully formalize the proof of the Claim, as the following straightforward reduction from the game
(ÕL/ÕZ) (and likewise (ÕZ/ÕR)) into the n− t-keys IND-CPA game (OEPKE/O

0
PKE). We (still) denote as M a

challenger for the former game. The reduction sets to M the honest encryption keys: (ekh)h∈[n− t] as those
received from its oracle OPKE. Upon receiving from M the request (sL, sR) (we keep the same syntax, but
actually sR is never used here), the reduction samples (si)i∈ I

$←− St; interpolates the degree t polynomial
h through (sR, (si)i∈ I); sets si :=h(i) ∀i∈ [n]\I which it gives to its oracle OPKE as a request. Upon being
answered the challenge ciphertexts (ci)i∈ [n]\I , it replies to M:

(
(si)i∈ I , (ci)i∈ [n]\I

)
. The Claim now follows

from the fact that in the case OEPKE, then M is facing the same behavior as ÕL, while in the case O0
PKE, then

M is facing the same behavior as ÕZ . ut

C.2 Simulator with an honest dealer D, and proof of indistinguishability

We first describe, in Algorithm 13, the simulator for an honest dealer D and a corrupt learner L. Then we
give the full details of the hybrids outlined in Section 5.3. In addition, we describe inline the modifications
to be made to the hybrids for an honest L.

We start by considering a real execution REALA of APSS0, with adversary A fully controlled by the
environment Z . Z assigns its input to D and listens to the output (if any) of L. Then we go through a
series of hybrid games, which we show indistinguishable from one with the next, from the point of view of
Z . In the final game, denoted as Hyb0Share, the view of A is generated without any direct interaction with
the honest players. The only indirect interaction with honest players happens in the opening, via FP-AVSS,
which delivers the actual value of s, which helps us to simulate the opening shares of s. So what we are
describing in Hyb0Share is a simulator S , as described in Algorithm 13, which interacts only with FP-AVSS

and Z , which concludes the UC proof.
The purpose of the games HybShSim and HybsOpen, which are not needed if L is honest, is to make so

that the view of Z is generated without using the private keys of honest players which Open nor using the
plaintext shares of honest players which Open. This allows to apply IND-CPA of PKE in subsequent games.
In particular in Hyb0Refresh[1, n] we achieve that all re-sharings are actually mere PVSS of 0.

C.1 Game REALA This is the actual execution of the protocol APSS0 with environment Z , adversary

A and ideal functionalities RBD→P
1
[n1] , FbPKI, FNIZK, FAT.

We make the change (not formalized by a game) that FNIZK does not check validity of witnesses (if any)
received from honest players nor from D. This does not change its outputs, since honest participants always
provide correct witnesses when querying FNIZK in the actual protocol.

We also make formal changes. We initiate dummy players which receive the refresh-sig’s and open-sig’s
from Z , in place of the players. We initiate a FP-AVSS to which they send refresh-req’s and open-req’s. Finally,
FP-AVSS notifies to players when it receives refresh-req’s and open-req’s. Upon receiving these notifications,
players act as if receiving refresh-sig and open-sig.

C.3 Game Hybschedule (only for L honest.)

We initiate a dummy L. Now, the output notified to Z is the one of this dummy L. We make the dummy
L output as follows. We upgrade FP-AVSS to the full functionality specified in Fig. 5. From now on D, in
addition to playing the protocol, gives its actual input to FP-AVSS. We influence the internal counter eo of
FP-AVSS as follows. When a quorum of teo + 1 dummy honest players requested refresh-req, we delay the
increment Peo[neo ]

← Peo[neo ]
+1 (by sending delayeo to FP-AVSS) until the moment when all honest players of

Peo+1
[n] receive at least one proven new sharing in common. We also influence the time of the output delivery

as follows. When a quorum of teo +1 dummy honest players requested open-req, we delay the output to the
dummy L (by sending delay to FP-AVSS) until the moment when L outputs in the protocol.
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S
Setup. S initiates in its head simulated D, L and
committees Pe[ne]

of players, ∀e> 1. It initially receives
corruption requests from Z for te players per commi-
tee Pe[ne]

. Let Ie and He denote the set of indices of
fe corrupt players and of the ne− fe honest players in
each Pe[ne]

.

General behavior towards Z. S simulates function-
alities (RB

D→P1
[n1] , FbPKI, FNIZK, FAT, FST), which all

follow a correct behavior. The only exception is FNIZK,
which does not check validity of witnesses (if any) re-
ceived from simulated honest players nor from D. S be-
haves towards Z as the dummy A. Specifically, it relays
to Z every incoming message from simulated corrupt
players and simulated functionalities. Upon receiving
an instruction from Z to send some message to some
functionality, or to send some instruction to some cor-
rupt player, S internally sends the message or the in-
struction to the simulated functionality or the corrupt
player. Simulated corrupt players behave as instructed.
Simulated honest players have a different behavior, de-
scribed below.

General behavior towards FP-AVSS. S also inter-
acts with FP-AVSS on behalf of A (without notifying
it to Z). Following its specification, FP-AVSS relays to
S every message from the actual dummy honest players
((refresh-req), (open-req) and notifications of (shut-off)).
S has an exact control over the delays of early and of
collective refreshing, which is enabled by the instruc-
tions refresh-order and delaye which it sends to FP-AVSS.
This enables S to keep track in real time of the internal
counters eo and eA of FP-AVSS.

Share The simulated honest dealer D is initialized
with input s̃ :=0, it follows the protocol. S triggers the
notification of (committed) to dummy honest players
vie FP-AVSS once their simulated counterparts have re-

ceived the RB
D→P1

[n1] .

Refresh Upon being notified that a dummy honest
Pei ∈ Pe[ne]

sent (refresh-req) to FP-AVSS, then: for ev-
ery c[ne] in the list Lei of a simulated honest Pei , it fol-
lows the protocol except for step (Resharing).1 of Al-
gorithm 2, where its sets si ← 0. In addition, upon
being informed that a quorum of teo + 1 dummy hon-

est players requested refresh-req, S delays the increment
Peo[neo ]← P

eo
[neo ]+1 (via delayeo) until the moment when

all simulated honest players of Peo+1
[n] receive at least

one proven new sharing in common.

Open Upon being leaked by FP-AVSS that a
dummy honest player Pei , in some Pe[ne]

, sent open-req
//which means that Pei received open-sig, then do the
following. If the simulated Pei was already assigned
simulated decryption shares for all the vectors of ci-
phertext shares in its local list Lei , then, the simulated
Pei sends all these shares to L along with fake proofs
of correct decryption, i.e., without giving a witness to
FNIZK. Otherwise, do the following steps to assign sim-
ulated decryption shares to Pei , then proceed as above.

1. If FP-AVSS did not leak the stored s̃ yet //this hap-
pens if < te+1−fe dummy honest players requested
open-req so far, ∀e. So this does not happen in the
flagship setting where te = fe. Then for every vector
of ciphertext shares in the local list Lei of Pei , assign
an arbitrary deccryption share to Pei .

2. Else this means that S was just leaked the stored
secret s̃ from FP-AVSS. Then, do the following as-
signments from now on. For every vector of cipher-
text shares c[ne] accepted (now or in the future)
in the local list Lei of any simulated player Pei , in
any committee Pe[ne]

, do the following. Denote as
(c[ne−1], ci→[ne], πres,i)i∈U the set, indexed by U , of
the te−1 + 1 encrypted resharings out of which c[ne]

was formed by homomorphic Lagrange combination
//recall that each Pei checks in Item 1 (c’) that this
homomorphic linear combination is correctly com-
puted.

(α) Extract from FNIZK (in straight-line) the plain-
text coordinates (si→j)j∈Ie of corrupt players
from the NIZK proofs of resharing, and sets
s′j :=

∑
i∈ U λ

U
i si→j , ∀j∈ Ie. Under honest ma-

jority, S internally decrypts the te + 1 opening
shares (s′j)j∈[ne]\Ie of c[ne], then interpolates the
(si→j)j∈ Ie from them.

(β) Interpolate a degree te polynomial ĥ, such that
ĥ(0) = s and ĥ(j) = s′j ∀j ∈ Ie.

(γ) Assign the simulated decryption share ĥ(i) to
each honest Pei having c[ne] in its local list.

Algorithm 13: Description of S for APSS0, for an honest D and a corrupt L and fe = te corruptions in each
committee Pe[ne]

Claim. REALA ≡ Hybschedule. Moreoever, only a polynomial number of requests to FP-AVSS (delaye ad
delay) need to be sent.
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Proof. The two variables which potentially changed in the view of Z , compared to REALA, are the value
of the output of L and the time when it outputs. The value is unchanged, by Proposition 7. The timing is
unchanged, since we delayed it until the moment when L outputs in the protocol. In conclusion, the view is
unchanged. The last claim follows from Lemma 4 and Proposition 5, which state that a Refresh or an Open
from Peo[neo ]

always complete in polynomial time. ut

C.1 Game HybShSim (skipped if L honest.) For any Pe[ne]
in which honest players receive open-sig,

then for each c[ne] opened by Pe[ne]
to L, the opening shares of honest players in Pe[ne]

are now computed by

Lagrange interpolation from (sc[ne]
, (sj)j∈ Ie), where:

- sc[ne]
is the secret shared by the vector of ciphertext shares c[ne] //concretely: decrypt the ne − te shares of

c[ne] of honest players. If te < ne, then this is enough to reconstruct sc[ne]
, else, use in addition the shares of corrupt

players defined below;

- (sj)j∈ Ie are the opening shares of c[ne] of corrupt players, computed as follows. Each (ci→[n], πres,i), ∀i∈ U ,

must be of the form ci→[ne] =
(
Encekj ′(si→j ; ρj)

)
j∈ [ne]

, where (si→j)j∈ [ne] is a vector of shares of si. For

an honest player this is automatic since it follows the protocol. For a corrupt player this is guaranteed by
the NIZK πres,i //More precisely, we extract si→j by rewinding the environment. We can do so because what we

are describing is an intermediate distribution, not a simulator. We finally set sj :=
∑
i∈ U λ

U
i si→j , ∀j∈ Ie

Claim. REALA ≡ HybShSim.

Proof. For any given vector of (ne, te) shares of some secret sc[ne]
, the sharing polynomial is fully determined

by { sc[ne]
and any te shares }. In turn, the sharing polynomial fully determines the remaining ne− te shares.

So the ne − te shares output by the simulation are the same as the actual ne − te shares. So the view is
unchanged compared to the real execution. ut

C.4 Game HybsOpen (skipped if L honest.)

This game differs from HybShSim in that, in the interpolation of the ne − te honest decryption shares, we
replace the input sc[ne]

by the actual secret s of the dealer D leaked by FP-AVSS.

Claim. HybShSim ≡ HybsOpen.

Proof. By Proposition 7, for each (c[ne]) relatively to committee Pe[ne]
, we have that c[ne] is a vector of

ciphertext shares with threshold opening equal to s. So the output of the interpolation is identical, hence
the view is unchanged. ut

From this point, neither the secret keys of honest players in Pe[ne]
, nor their plaintext shares, are used

anymore to generate the view of Z .

C.5 Games Hyb0Refresh[e, i] for each e∈ [eA− 1, ..., 1] (in this backwards order) then each
i∈ [0, ..., ne]

We set Hyb0Refresh[eA− 1, 0] :=HybShSim. Then for each e∈ [eA− 1, ..., 1] and i∈ [0, ..., ne− 1]: if P
(e)
i+1 is cor-

rupt then we leave Hyb0Refresh[e, i+ 1] :=Hyb0Refresh[e, i] unchanged, otherwise if it is honest, then we modify
Hyb0Refresh[e, i] into Hyb0Refresh[e, i+ 1] as follows. For each(
ce[ne]

=(c
(e)
i )i∈ [ne]

)
in the local list of P

(e)
i+1, we substitute sei by 0. In particular, the secret decryption key of

P
(e)
i+1 is not used anymore. Notice that FNIZK still issues proofs of correct resharing, since it does not check any

witness from honest players. When reaching i = ne, if e ≥ 2, then we set Hyb0Refresh[e−1, 0] :=Hyb0Refresh[e, ne].

Claim. HybsOpen ≡ Hyb0Refresh[1, n1]
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Proof. It is enough to show that for each e∈ [eA− 1, . . . , 1], for i ≤ ne − 1 such that P
(e)
i+1 is honest, then

Hyb0Refresh[e, i] is indistinguishable from Hyb0Refresh[e, i + 1]. Let us consider one of the vector of ciphertext

shares: ce[ne]
= (c

(e)
i )i∈ [ne] in the list of P

(e)
i+1. The high level idea simply consists in showing indistinguisha-

bility between the two re-sharings ci→[ne+1] of c
(e)
i : the actual one, in Hyb0Refresh[e, i], and the bogus one, in

Hyb0Refresh[e, i+ 1]. Let us make the simplifying Assumption that PKE perfectly hides the plaintext of the
coordinates of ci→[ne+1] encrypted under the keys of honest players. Then, the view of Z is fully determined
by the plaintext coordinates (si→j)j∈ [ne+1], where Ie+1⊂ [ne+1] is the subset of indices of corrupt players.
But by t-privacy of Shamir sharing, they also vary uniformly at random also in the actual ci→[ne+1]. So
the two distributions of views are equal. It remains to substantiate this Assumption, which will conclude
this sketch proof. The reason is that we have that the view of Z is generated without using (i) the secret
decryption keys of players in Pe+1

[ne+1]
, (ii) nor the plaintext shares of ci→[ne+1] with indices of the honests

players in Pe+1
[ne+1]

. Indeed, if e = eA − 1 then (i) and (ii) are thanks to HybsOpen, while if e < eA − 1 then

(i) and (ii) are thanks to Hyb0Refresh[e+ 1, ne]. So by (i) and (ii) we are in the conditions of applicability of
IND-CPA of encrypted sharing, which is proven in Appendix C.1.

Actually, the “we are in the conditions of” is not completely straightfoward, so we fully formalize the
reduction in Appendix C.8. The subtlety is that the input of the re-sharing is a ciphertext ci, not a plaintext.
So in order to escape issues with IND-CCA, we consider a challenger of the reduction which is large enough,
i.e., which concatenates enough entities, so that a plaintext of ci can be extracted from it.

ut

C.6 Game Hyb0Share

We modify Hyb0Refresh[1, n1] in that the dealer D plays the protocol as if it had input 0, even though it still
sends its actual input s to FP-AVSS.

Claim. Hyb0Refresh ≡ Hyb0Share

Proof. Since Hyb0Refresh[1, n1], to generate the view of Z , we neither use the private decryption keys of honest
players of P1

[n1]
, nor the plaintext shares of the PVSS of the dealer. Thus we can apply IND-CPA of encrypted

sharing (Proposition 8) to the PVSS of D, which is encrypted under the public keys of P1
[n1]

. ut

The following game HybShInfer
Open is only used in the case of honest majority to avoid extraction from NIZK

proofs.

C.7 Game HybShInfer
Open

If L is honest, this game is identical to Hyb0Share. Else (is L is corrupt): for each vector of ciphertext shares:
c[ne] held by at least one honest player in Pe[ne]

, we now change the method to infer the opening shares
of c[ne] of corrupt players. Recall that the purpose of these opening shares is to be fed as input in the
interpolation of the simulated opening shares of honest players. The current method to compute them so far

is the method in HybShSim: for each (ci→[ne], πres,i)i∈ U (if any) generated by a corrupt player Pi in P (e−1)
[n] , the

plaintext coordinates (si→j)j∈ Ie of corrupt players were extracted from the NIZK AoK of resharing, before
setting sj :=

∑
i∈ U λ

U
i si→j , ∀j∈ Ie. Instead, we make the change that the subshares of corrupt players, in

each ci→[ne] reshared by a corrupt player, are computed as follows. We simply use the secret keys of the
te+ 1 honest players in Pe[ne]

to correctly decrypt their opening shares (si→j)j∈ [ne]\Ie of ci→[ne]. Then we

interpolate the desired te shares (si→j)j∈ Ie of corrupt players, of ci→[ne].
Claim: the (si→j)j∈ Ie obtained are unchanged. Indeed, ci→[ne] is a vector of ciphertext shares, so the te

plaintext coordinates, which were extracted from the NIZKs, lie on a polynomial of degree te which is fully
determined by any te+1 other coordinates.
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Claim. HybDecRefresh ≡ HybShInfer
Open

Proof. Since ci→[ne] is a vector of ciphertext shares, Definition 3 guarantees that each coordinate decrypts
to (si→j mod p)j∈ [ne]. Moreover, polynomial interpolation over any decryption shares of te+1 coordinates,
returns by evaluation the te remaining ones. ut

C.8 Reduction from indistinguishability between games Hyb0Refresh[e, i] and Hyb0Refresh[e, i+1],
into IND-CPA of encrypted sharing (Proposition 8)

We consider an environment Z which is a challenger in the game consisting in distinguishing between
Hyb0Refresh[e, i] and Hyb0Refresh[e, i+ 1]. It must output 1 in the former case and 0 in the latter. We construct
the following challenger M for the game of Proposition 8, with parameters te+1-out-of-ne+1 shares. It has
access to Z , which it can rewind. M initiates a big machine consisting in the concatenation of all the system
as in the game Hyb0Refresh[e, i]: dummy adversary A and all corrupt players, D, the ideal functionalities, and
all honest players in P1

[n1]
, . . . ,Pe[ne]

. Then it makes this big machine interact with Z . All participants in the

big machine follow the hybrid Hyb0Refresh[e, i] (in particular, corrupt players, follow the instructions of Z via
the dummy A), with two exceptions: players of Pe+1

[ne+1]
, and P ei+1. We first describe the modifications for the

former. M queries public key eke+1
[ne+1]\Ie+1 to its [encrypted sharing IND-CPA oracle], and publishes them on

behalf of the honest players of Pe+1
[ne+1]

. //So by construction, the secret keys are honestly sampled and not given

to M. Apart from this, players in Pe
′+1

[ne′+1]
behave as in the hybrid Hyb0Refresh[e, i] (which is the same for them

as in Hyb0Refresh[e, i+ 1]). Recall that they never use a secret key in these hybrids.
We now describe the modifications done by M to the behavior of P ei+1. We consider every event in

the execution where P ei+1 accepts a valid tuple of the form
(
ce[ne]

, {cv→[ne], πres,i}v∈ V , (c
e−1
[ne]

, qvc)
)

from a

collector in Ke[κe]
. This happens at most κe times. For each of these events:

– denote, as usual, the new share ci+1 as the homomorphic Lagrange linear combination of the
(
cv→[ne]

)
v∈ V

.
– M extracts, from the big machine, a plaintext new share si+1 of ci+1. Let us recall how. Since the πres,i

are at least weak-simulation-extractable NIZKs [FKMV12], it can be extracted from the big machine:
t+1 plaintexts (sv→i+1)v∈ V of the encrypted subshares cv→i+1. In particular, ci+1 is a ciphertext of the
plaintext new share si+1 :=

∑
v∈ V λ

V
v sv→i+1.

– Then, M queries O with the pair of challenge plaintexts (si+1, 0), and is returned a vector of ciphertexts,
denoted as ci→[ne+1].

– The modification for P ei+1 is now that M replaces the encrypted resharing of P e
′

i+1 by the challenge
ci→[ne+1].

The rest of the execution of Hyb0Refresh[e, i] goes unchanged. Then, M outputs b = 1 if Z outputs i, or outputs
b = 0 if Z outputs 0. But, if M is facing OL, then the view of Z is generated exactly as in Hyb0Refresh[e, i].
Likewise, M is facing OR, then the view of Z is generated exactly as in Hyb0Refresh[e, i + 1]. In conclusion,
we have that the distinguishing advantage of M is equal to the one of Z , so in particular: at least at large,
which concludes the proof.

D Details and proof of Refreshing squad

Refreshing squad is formalized in Algorithm 14.
We now make the assumptions of Theorem 2 and prove it.
We first prove the fact that all T e’s are monotonically increasing, under the following more precise form.

Lemma 9. Claim for all e > 1, at T e + ∆e
wait, no honest collector in any Ke′> e+1 has sent any (done)

message yet and no qkce
′> e+1 has been formed yet

In particular, no T e
′> e+1 has happened yet. In particular, no honest player of Pe[ne]

is shut-off yet.

43



Refreshing squad

Participants: collectors Ke[κe]
, e> 2, with

κe = 2`e+1. Players Pe[ne]
, e> 1.

Outputs: (keys-sig), (refresh-sig), (shutoff-sig)

Data structures: A quorum of collectors certificate for
epoch e> 2, denoted as qkce, is the concatenation //or
the succinct aggregation of signatures from `e + 1 col-
lectors in Ke[κe]

on the message (done). //In the special

case of e = 1: a player of P1
[n1]

, upon receiving an input

from RB
D→P1

[n1] , multicasts a signed (Ack-RB) to P1
[n1]

.

Then, a qrc1 consists of a set of signatures on (Ack-RB)
from t1 +1 distinct players of P1

[n1]
.(∗)

A quorum of refreshers certificate for epoch e > 2, de-
noted as qrce, is the concatenation //or the succinct
aggregation of signatures from te + 1 players in Ke[κe]

on the message (Ack-qkc).

Each collector Kek∈ Ke[κe]
, e ≥ 2: upon completing

its last step (4.) in APSS0 (Algorithm 2), does:

- generate a signature τk on the message (done),

- {[Rfr] multicast (done, τk) to Pe[ne]
},

- shut-off oneself.

Each player Pei ∈ Pe[ne]
, ∀e ≥ 1:

- upon obtaining for the first time a qkce [Either upon
receiving it from message, or by concatenating / ag-
gregating `e+1 signatures from Ke[κe]

on (done)] then:

{[Trm] multicast a signed (Ack-qkc) to Pe− 1
[ne− 1]

},
{[Rfr] multicast the qkce to Pe[ne]

{[Key] and to

Pe+1
[ne+1]

}, then output (refresh-sig)}.
- {[Trm] upon obtaining for the first time a qrce’ for

any e′>e then: multicast the qkce’ to Pe− 1
[ne− 1]

, and to

Pe[ne]
. Then output (shutoff-sig).}

- {[Key] upon obtaining for the first time a qkce−1 then:
multicast the qkce−1 to both Pe[ne]

and Pe− 1
[ne− 1]

, and

output (keys-sig)}

(∗) More specifically, if the RB used guarantees that honest players output at most δ from each other, e.g.,
as the one of [GPS19, §5], then we have the following optimization. The D appends its message with a signature
on it. A qkc1 directly consists of this signature.

Algorithm 14: We tag as follows the steps relative to: {[Rfr] starting Refresh }, {[Trm] termination} and
{[Key] publication of keys}. Recall that the outputs are to be used as inputs in APSS0. Namely, (keys-sig)
instructs to generate and publish a key pair, (refresh-sig) to start Refresh as old committee, after some fixed
delay ∆e

wait, and (shutoff-sig) to shut-off oneself immediately.

//Notice that the claim can be rephrased as “T e, eA = e”, following the formalism of Fig. 5 in Appendix A.1.3.

Notice that T e
′> e+1 not having happended yet, does not prevent that some players of Ke′> e+1 possibly received

6 te′ (done) signed by corrupt collectors, possibly forwarded to them by corrupt players

Proof. By definition of T e and of ∆e
wait, no player of Pe[ne]

has started Refresh before T e + ∆e
wait. So at

T e +∆e
wait, no honest collector in Ke+1 could have sent (done) yet. So by the honest majority of collectors

assumption, no player of Pe+1
[n] has received a quorum of (done) yet, so none has output (refresh-sig) yet, so

none has started to Refresh yet. The Claim follows from an easy induction on e′> e+ 1, which uses the same
argument as the previous one for e+ 1.

Finally, the two consequences stated as “in particular” directly follow from the fact that no qkce
′> e+1

was formed yet. ut

Proof of the guarantee called Window of opening. At T e, by definition, there exists a quorum of
`e+ 1 signed messages (done) from distinct collectors in Ke[κe]

. Since we assumed existence of `e+ 1 honest
collectors, one of the signers must be honest. So it must have completed the step in Item 4, i.e., multicast a
proven new sharing to all players of Ke[κe]

. So they will receive it before T e + δ < T e +∆e
wait. By Lemma 9,

none of them is shut-off when it receives it. In conclusion, at latest at T e + ∆e
wait, all players of Pe[ne]

have
accepted at least one vector of new shares, c[ne], in their local lists. Said otherwise, the common set of shares
holds at this point. Since by assumption they all received open-sig by then, they will have all sent their share
of c[ne] to the learner L. So L receives all these shares by T e+∆e

wait + δ. By the honest majority assumption
there exists at least te+1 honest players in Pe[ne]

, so L has then enough shares to output.
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Proof of the guarantee called Last-minute key generation. When the first honest player of Pe+1
[ne+1]

outputs (keys-sig), it must be the case that it received a qrce and forwarded it to Pe[ne]
. So T e happens no

later than δ from this point. The result follows since players of Pe+1
[ne+1]

generate and publish their keys ∆e
wait

after they output (keys-sig).

Proof of the guarantees called Last-minute key Refresh and Fast shutoff. We divide the set of
executions in three cases, and prove that the guarantee holds in each of these cases. Notice that cases I] and
II] possibly overlap, while case III] is disjunct from both cases I] and II].

Case I]: at T e +∆e
wait + 3δ, some honest players of Pe+1

[ne+1]
are already shut-off. By Lemma 9 this implies

that T e+1 already happened, proving Last-minute key Refresh. Furthermore, before it shuts-off, a honest
player of Pe+1

[ne+1]
multicasts a qrce

′> e+1 to Pe[ne]
. So all of them will have shut-off before T e + ∆e

wait + 4δ,

proving Fast shutoff. //The multicast to Pe[ne]
could be skipped, although this would increase by δ the guaranteed

delay in Fast shutoff.

Case II]: at T e+∆e
wait + 3δ, some honest players of Pe[ne]

are already shut-off. Then it must be that they

received a qrce
′> e+1, so it must be that some T e

′> e+1 already happened. By Lemma 9, these times being
monotonically increasing, it must be that T e+1 has happened, proving Last-minute key Refresh. Furthermore,
they have forwarded the qrce

′> e+1 to all Pe[ne]
before they shut-off. This enables all honest players of Pe[ne]

to shut-off before T e + ∆e
wait + 4δ //this is where we use the forwarding of the qrce

′> e+1 to all Pe[ne]
. Not doing

so would make some honest players of Pe[ne]
possibly wait δ longer before they receive a qrce

′> e+1 (generated in a

higher committee).
Case III]: at T e +∆e

wait + 3δ, no player of Pe[ne]
nor Pe+1

[ne+1]
is shut-off yet. Consider P e a first player of

Pe[ne]
which receives a qkce, at T e. At most at T e + δ, the following three events have happened:

– all players of Pe[ne]
received the qkce, and thus output (refresh-sig);

– all players of Pe[ne]
received a proven new sharing in common //this is because there exists a honest collector

in the quorum of the `e + 1 signers of qkce. Thus, they have a set of encrypted shares, c[ne], in common in
their local lists Lei ;

– all players of Pe+1
[ne+1]

have output (keys-sig).

From these three events, it follows that, at T e + δ +∆e
wait:

– all keys of honest players in Pe+1
[ne+1]

have been published;

– there exists a vector of ciphertext shares of the secret, c[ne], such that all honest players of Pe[ne]
have

generated an encrypted resharing of their share of c[ne] and sent it to all collectors Ke+1
[κe+1]

.

So at T e + 2δ + ∆e
wait, all `e+1 + 1 honest collectors of Ke+1

[κe+1]
will have sent (done) messages to Pe+1

[ne+1]
.

They are received at most at T e + 3δ +∆e
wait, which concludes the proof of the Last-minute key Refresh.

At this point, all honest players of Pe+1
[ne+1]

will have sent (Ack-qkc) to Pe[ne]
. So at most at T e+4δ+∆e

wait,

all players of Pe[ne]
will have received a quorum of te+1+ 1 signed (Ack-qkc) of Pe+1

[ne+1]
, when they are not

already shut-off. Such a quorum forms a qrce+1, which triggers a shut-off, concluding the proof of Fast shutoff.

E Fixing the related asynchronous mobile-PSS model: mobile corruptions, in
a static committee

E.1 The related mobile-PSS model

E.1.1 Broad definition Following [OY91], we denote the following model as mobile-PSS. It is consid-
ered in [AGY95; FGMY97; ADN06; BELO14; CMP20; GDK22; ABKL22]. It is also considered in [SLL10,
p12],although their main focus is dynamic-PSS. This model considers a fixed set of n players, in which the
set of corrupt players changes over time. Time is broadly measured with a counter, which is either local or
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global, denoted as epoch. Broadly speaking, players transition to the next epoch upon finishing a Refresh. The
meaning of “finishing” varies from works to others. This meaning impacts the model and its implementabil-
ity, as examplified in Appendix E.1.2 on the case of [ABKL22, p 27]. Broadly speaking, the adversary A
is allowed to corrupt at most t players per epoch, where t is a public parameter denoted threshold. The
precise meaning of “per epoch” varies from works to others. In turn, their stated corruption tolerance varies
depending on this meaning, as explained in Appendix E.1.2. Corrupt players have their memory erased. At
any point, A may de-corrupt a player. In some PSS [HJKY95; SLL10], there is a specific protocol, denoted
as Recover, which aims at somehow providing those players with a share of the secret, which is consistent
with the other shares owned by honest players in the current epoch. In some other PSS [BELO14], the job of
Recover is handled by an all-in-one Refresh. In these PSS, de-corrupt players are put in quarantine ([CMP20])
until they join the protocol again at the beginning of the next Refresh, from which they are guaranteed to
automatically obtain a new share for the next epoch. Notice that [SLL10; VAFB22] have both a Recover and
an all-in-one Refresh.

E.1.2 The problem in the existing asynchronous mobile-PSS model of [SLL10] It seems to
us that only two rigorous models for asynchronous mobile-PSS exist so far. The one of [CKLS02] defines
global epochs as ticks of an external global clock. As a result, their liveness is guaranteed only in executions
([CKLS02, p 18]) in which the global clock ticks after all messages of the current epoch were delivered. So
this is a form of synchrony assumption.

The one of [SLL10, §5.1], by contrast, defines epochs purely from the protocol. In short, the main problem
in the model of [SLL10], is that it allows potentially 2t players to be corrupt while they hold secret material
related to epoch e+ 1: those doing the (e−1)-to-e Refresh, counting in the corruption budget for e, and those
in epoch e+ 1, counting in the corruption budget for e+ 1. Let us now describe precisely what this means
and its implications in terms of corruption threshold. The model of [SLL10, §5.1] calls a player as “(locally)
in epoch e”: from the point where it finishes the (e−1)-to-e Refresh, until the point where it finishes the
e-to-(e+ 1) Refresh. Notice that finishing a Refresh typically involves, in particular, erasing some memory.
They allow that, for each e, a maximum of t players are corrupt while they are locally in epoch e //they

actually phrase this in an equivalent way, in terms of so-called global “system epochs”. Notice that [ABKL22, p
27] (their second attack scenario) specify a variant, in which a player is said to finish an epoch as soon as it
receives its new share //this event could happen before it terminates the Refresh. For instance, they point that, in

[YXXM23], the player continues the Refresh to help other players finish the consensus and deduce their new share.
However, they prove that this variant is actually unimplementable //the reason being that they allow such a

player to be corrupt using the corruption budget of the new epoch, even before it finished the Refresh. The corruption
model of [SLL10, §5.1] is currently borrowed in [GDK22] and has the following concrete implication. It allows
that t players are corrupt at the end of a Refresh, after they learned their new share. Furthermore it allows,
in addition, that t other players are corrupt after the end of a Refresh, when by definition they a fortiori
know their new share. As a result, since their sharing degree is 6 n/3, it follows that their corruption
threshold is actually such that 2t < n/3. The same problem happened in the v1 of [YXXM23], leading also
to a twice-lower-than advertized corruption threshold, of 2d < n− t−1. We notified in end-February 2023, to
both the authors of [YXXM23; GDK22], the problem with their model inherited from [SLL10]. We notified
to them a fix, which is well-known in the synchronous mobile-PSS setting ([FGMY97; ADN06; BELO14]).
It consists in counting in the corruption budget of both adjacent epochs, a player which is corrupt during a
Refresh. They acknowledged that they had already identified the problem and were planning to fix it. The
fix was quickly done in the March 2023 version of [YXXM23].

Finally, we observe that the problem with [SLL10, §5.1] can also be illustrated with the related model
of [ABKL22, p26] (their first attack scenario). This related model does not count either, in the corruption
budget of epoch e, in some corner-cases, a player still performing a e-to-(e+ 1) Refresh//their corner-case is a

player which receives a late private message related to the e-to-(e+ 1) Refresh, so this player somehow still uses its

old decryption key. As a result, they show that their model is not implementable.
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E.2 A repaired general asynchronous mobile-PSS model

We first state a model, denoted as asynchronous mobile-PSS and shortened as mobile-APSS. It is both
a repairing of the model of [SLL10, §5.1], and a generalization of it to higher corruption thresholds than
t < n/3. Then we briefly fix or cast existing models or protocols in it.

For simplicity we state informal standalone properties. Transforming them into an ideal functionality
would follow exactly the same formalism as FP-AVSS (Fig. 5). We consider n players, a parameter t de-
noted as threshold, and a protocol Π which consists of the following subprotocols. Share is between any
distinguished dealer(s) D, then for each e> 1 we have subprotocols Refreshe→e+1 between the players, and
finally Open is between the players and any distinguished learner(s) L. Moreover, Refreshe→e+1 contains a
special instruction, which we denote as shut-offe. Informally, it instructs the player to erase from its memory
all material related to epoch e //although it may still continue Refreshe→e+1, e.g., terminate the consensus, in

consensus-based APSS for t < n/3. We say that a player is in epoch e if it has started Refreshe−1→e, and
did not shut-offe yet in Refreshe→e+1 //but can possibly have terminated Refreshe−1→e. Hence, a player doing
Refreshe→e+1 and did not shut-offe yet, is simultaneously in epochs e and e+ 1. The model is orthogonal of
the various possible mechanisms triggering players to start a Refresh or Open, examplified below. For each e,
the adversary A can corrupt at most players which are in epoch e. In particular, if a player is corrupt while
simultaneously in epochs e−1, e and e+ 1, then it counts in the corruption budget of all those three epochs.
A can decorrupt players at any time, e.g., just before it starts a Refresh. We denote the model as static if
A cannot corrupt an honest player in the middle of a Refresh//the proof of APSS0, in Section 5, is in the static

corruptions model. Extensions to the adaptive corruptions model are discussed in Appendix B.2. We say that Π is
a PSS in the mobile-APSS model, if it satisfies the rough standalone specifications made in the beginning of
Section 1. They were called Secrecy, Liveness and Correctness, with the straightforward changes of notation
needed (te → t etc.). More precisely, Liveness implies the following. Consider an execution in which Share
(s) terminate(s), then, for all e up to some eo − 1, players are triggered to start Refreshe→e+1. Then it is
guaranteed that all these Refreshes terminate, and that subsequently, players are in a state in which they
can Open the (desired linear combination of) secrets to L.

A first example can be seen as [CKLS02, p18], when instantiated with a global clock which would wait
that all messages of a Refresh are delivered, before ticking the next Refresh. There, a mechanism instructing
players to shut-off is by definition the ticking of the next Refresh. More precisely, upon being notified a tick,
a players realises an AVSS of its new share, if it has one. In any case, it stops playing the ongoing previous
Refresh, if it did not terminate yet, and immediately erases its old share, if it has one.

A second example can be seen as [GDK22; YXXM23], provided, in the former, an adaptation of their
corruption model to the mobile-APSS one, in which corruptions during a Refresh count in both epochs
//the fix was done very recently in [YXXM23]. Their termination mechanism is simply that players terminate
a Refresh upon terminating in the consensus. On the face of it, it is left unspecified in [GDK22; YXXM23] if
players should shut-off immediately in the middle of an ongoing Refresh and start a new one when instructed
to do so, e.g., by the trusted coordinator of [YXXM23]. The answer seems to be implicitely no, that players
in [YXXM23] actually wait for terminating the previous Refresh the normal way, even if urged to start a
new one. So this differs from [CKLS02, p18]. Otherwise, their claimed liveness in [YXXM23, §B] would not
hold. In both [GDK22; YXXM23], the corruption threshold does not go beyond t < n/3. However, privacy
is still guaranteed in [YXXM23] even if up to a total number of d players are corrupt, where d < n− t is a
parameter.

The third example is APSS, when compiled into the mobile-APSS model, as explained Appendix E.3.
For simplicity we assume that collectors Kek are equal to all players. Liveness is guaranteed as long as there
is at least one collector in each epoch which plays the protocol, i.e., is no more than passively corrupt.
The model straightforward extends to any mechanism which would sample collectors for each epoch as a
subset of the players. Players are instructed to start a Refresh in two ways. Upon receiving (refresh-sig) from
Refreshing squad (Section 6), their wait ∆e

wait, then wait until all keys of epoch e+ 1 are published, then start
playing Refreshe→e+1 as exiting committee Pe[ne]

. Upon receiving (keys-sig) from Refreshing squad (Section 6),

their wait ∆e
wait, then start playing Refreshe→e+1 as entering committee Pe+1

[ne+1]
. Finally, the instruction to

shut-off simply comes as the (shutoff-sig) delivered by Refreshing squad.
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E.3 Compilation from dynamic-asynchronous PSS, into mobile-APSS

We consider any dynamic-PSS, which we define as following the rough standalone specifications made in the
beginning of Section 1. We will consider later more detailed specifications, which vary in the literature. We
consider committees of fixed size n and with all corruption thresholds at (n, t). Each player Pi initiates in
its head all (Pei )e> 1 in parallel. By definition Pi starts Refreshe−1→e when the first of the two simulated
(Pe−1

i ,Pei ) starts Refresh//in practice in APSS the latter Pei is always the one which starts first, since Pe−1
i does

not start before all keys of Pe[ne]
are published. By definition Pi shuts-off in Refreshe−1→e when Pe−1

i shuts-off.
Hence, Pi may be in multiple epochs in parallel.

dynamic-PSS −→ mobile-PSS

(Pei )e> 1 ∀i∈ [n] −→ each Pi runs all (Pei )e> 1 in parallel.

Pe−1
i or Pei started Refreshe−1→e and Pe−1

i not shut-off −→ Pi is in epoch e

The main property achieved by the compiler is that, if the dynamic-PSS protocol on the left has corruption
threshold t, then also does the resulting mobile-APSS protocol.

F More on generalizations and applications

F.1 More on LHE with Limited evaluation mod p

We survey some schemes satisfying our Definition 3, of LHE supporting a limited number of linearly homo-
morphic evaluations and with bilateral binding. In Appendix F.1.1 we start by a general remark to greatly
improve efficiency in APSS0. Throughout we use the notation of Section 3.

F.1.1 Allowing slack in the NIZKs of smallness For simplicity and clarity, below Definition 3 we
allowed to pick any plaintext bound and randomness bound, (M,R), such that

(8) M> p2(t+ 1) and R> p2(t+ 1)Renc .

Precisely, we recall that Renc is a public parameter such that, when encrypting, encryptors are meant to
choose encryption randomness below Renc. As a result, in APSS0 we specified that resharers prove in NIZK
that the norms of the plaintexts subshares and encryption randomnesses, are below p and Renc. If they
did not, then correctness would be broken. Now, we would like to increase efficiency by using NIZKs “of
smallness”, i.e., allowing that a malicious prover can pass verification with input size larger, by some slack,
than the maximum size that an honest prover is able to input. To this end, we narrow the choices of (M,R),
roughly as follows:

(9) M> (p+ slack)p(t+ 1) and R> p(t+ 1)(Renc + slack); .

The idea is that the slack in the LHS enables to tolerate that malicious prover could pass the NIZK verifica-
tion, despite using plaintexts which are up to slack larger than the p allowed, and encryption noises which
are slack larger than the Rencallowed.

Turning to Paillier, one can observe that NIZKs of re-sharing are eased by publicizing Pedersen (or
Feldman) commitments to the Paillier plaintext subshares (precisely, as in Section 7.3), which come appended
to the encrypted resharing. Then, one is left with proving equality of the plaintexts with the openings of the
commitment, then proving smallness of the committed values. State of the art implementations of such NIZKs
are in [LNR18, §6.2] and [CGG+20], applied to threshold ECDSA. This same observation is made, in GHL
[GHL22], for lattice-based schemes. They bring optimized NIZK relations (instantiated with Bulletproofs)
for resharing, on the example of the Peikert-Vaikuntanathan-Waters PKE. They were recently improved in
[LNP22].
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F.1.2 Exponential Elgamal Encoding the secret in the exponent of Elgamal, in order to use additively
homomorphic properties, was leveraged in [Sch99, p11] in the context of electronic voting. Concretely, con-
sider (G, 0,+) a cyclic group with hard DDH and H any public generator. We set R = ∞, and M < |G|/2
an arbitrarily chosen bound such that, for any x 6 M , computing x given x.H is deemed efficient. The
(front-end) plaintext space is S := Fp, for any prime p 6M . Given a plaintext m∈ S = Fp⊂M = Z, encrypt
m.H with Elgamal in G. Decryption proceeds by: (i) Elgamal decryption, into a plaintext X∈ G, (ii) followed
by computing the discrete logarithm, i.e., extracting x such that X = x.H, (iii) then outputting x mod p.
In [TLC+22], following [CMTA20; CCN21], they consider G an elliptic curve group with security 128 bits,
and report on a decryption of Exponential Elgamal ciphertexts in 0.35ms on one thread, for plaintext sizes
of 40bits (“about 30 times faster than Paillier”), then in 1s on 16 threads for 54bits sizes. The terminology
“exponential Elgamal” is from the proposition [ISO19].

F.1.3 Paillier-mod-p Paillier encryption does not support unlimited homomorphic additions modulo
a fixed prime p, since the plaintext space is a Z/NiZ for a composite modulus Ni. This modulus Ni is
furthermore unavoidably different for each player Pi since it depends on its private decryption key. One
observation which we put forth in this paper is that it is enough for players to use a common (front-end)
plaintext space Fp, which concretely is a common interval [0, . . . , p − 1]⊂ [0, . . . , Ni]⊂Z, as long as the few
linearly homomorphic linear combinations applied in APSS0, do not take plaintexts outside of the interval
[−(Ni − 1)/2, (Ni − 1)/2]⊂Z. This observation can be formalized into the following instantiation of the
Definition 3 of LHE, which one may denote as “Paillier-mod p ”. Set the parameters of key generation of
Paillier, such that the modulus is of minimal size N , to be specified later. Define the (front-end) and (back-
end) plaintext spaces as S := Fp = [0, . . . , p − 1] ⊂ M := Z. To encrypt an element m∈ Fp, encrypt it with
Paillier. To decrypt a ciphertext under key Ni: decrypt it with Paillier into some x, take the representative
x̃ := x mod Ni in the interval [−(Ni − 1)/2, (Ni − 1)/2] //concretely: subtract Ni is the decryption is in ](Ni −
1)/2, Ni − 1, otherwise do nothing, then output x̃ mod p. It satisfies Definition 3 of LHE, with respect to
parameters M := (N − 1)/2 and R =∞. For usage in APSS0, given targets t and p, we choose N such that
M> (p+ slack)2(t+ 1) (where the meaning of slack is given in Appendix F.1.1). We refer to Appendix F.1.1
for efficient NIZKs.

F.1.4 Lattice-based schemes The goal of this paragraph is to examplify that, since lattice-based schemes
allow in principle unbounded encryption noises, it is necessary for our purpose to cut-off the queues of their
distribution, so as to force malicious encryptors and decryptors to use noises which are small enough to
ensure correctness. This cut-off is more or less implicit in existing works on maliciously secure MPC from
FHE [GLS15; Coh16].A variant of Regev over Z/pZ is provided in [BDOZ11, §2.1]. They sketch bounds on
the plaintext and noise, denoted M and R, for correct decryption mod p for any encryptors and decryptor
which honestly sample their randomnesses. However this analysis is not enough for our purpose, since nothing
prevents a malicious colluding pair of encryptor-decryptor to choose their key randomness, and encryption
randomness, outside of these statistical bounds. So, in order to enforce correctness mod p even if they
are malicious and colluding, as in Definition 3, one must furthermore specify the randomness of the key
generation, as belonging to a finite interval Rkey. Concretely, one must cut-off the queues of the Gaussian.
Recall that in our formalism we also incorporated to dk all the noise necessary to produce ek. So when we
specify, in APSS0, that the NIZK should prove that “dk∈ dK”, what we are implying is that this noise is
proven to be below a cap (up to some slack).

The same necessary cut-off also applies to instantiations of LHE from other lattice-based schemes such
as BFV/BGV [BFV/BGV21]. We refer to Appendix F.1.1 for efficient NIZKs.

F.2 DKG and Applications to threshold signatures / randomness generation / decryption

F.2.1 More on the commitments-to-subshares variant of APSS in Section 7.3 The resharer Pi
appends an argument of knowledge of: decommitments of the (comv→i)v∈ V , such that they are equal to
plaintexts of ci→j , and such that they form a resharing of si, such that si is a Lagrange reconstruction of
openings of the (comv→i)v∈ V .
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F.2.2 Biaised DKGs The goal of this paragraph is merely to formalize a weaker form of DKG, which is
thus simpler to implement, in which the shared secret (key) has some bias controlled by A. Then we recall
the state of the art applications which allow such biaised DKG. As pointed out by [GJKR07], a number
of DKG protocols implement a biased dealer. This is formalized by [BDO22, Fig. 2] as follows. The dealer
samples s uniformly at random and leaks a Feldman commitment s.H to s. Then the adversary can decide
to offset s by the value δ of its choice: s ← s+ δ.

We quote [GJM+21] for a recent account of the impacts of such bias: “[GJKR07] previously observed
that the Pedersen DKG suffices to construct threshold Schnorr signatures. Recently, Benhamouda et al.
[BLL+21] found an attack on this approach when the adversary is concurrent. (Gennaro et al. had not
considered concurrent adversaries.) Komlo and Goldberg [KG20] show that it is possible to avoid the attack
but, in doing so, they lose robustness (e.g., if a single party goes offline a signature will not be produced).
This raises questions as to whether it is still okay to use the Pedersen DKG with respect to other signature
schemes such as BLS. In this paper, we provide a positive answer in the form of a security proof that holds
concurrently and does not rely on rewinding the adversary. Specifically, we show that the Pedersen DKG
is security-preserving with respect to any rekeyable encryption scheme //including BLS, signature scheme,
or VUF scheme //the one considered in Section 7.2 where the sharing algorithm is the same as encryption or
signing (see Definition 5)”

We quote [BDO22] for an update: “In Section 3.1 we showed that the bias can also be tolerated in
ElGamal-style encryption schemes i.e., we showed that the [[CCL+20, §3.2]] encryption scheme does still
provide IND-CPA security even when the adversary is allowed to bias the distribution of the key. ”

F.2.3 Step-by-step APSS0-Open of a BLS signature on a message m Consider a committee Pe[ne]
,

holding a secret-shared signing key s∈ Fp, which is instructed to open a BLS signature on some message

m, i.e., H(m)s. Concretely, each P (eo)
i , for each element Li[k] in its list, denoting as c[n] the vector of

ciphertext shares and si.G the i-th public key share, sends to L: si.H(m), with a proof of equalities of
discrete logs between this and si.G. Upon receiving teo+ 1 such proven signature shares, generated from the
same (c[n], (vki)i∈ neo

), vouched by a quorum of signatures, L does the further check of APSS2. Namely,
it checks if the (vki)i∈ neo

do interpolate in the exponent into s.G (this guarantees correctness even if all
signatures in the quorum are from corrupt players). Then, it interpolates in the exponent the signature:
s.H(m).

F.2.4 Threshold opening of a (R)LWE ciphertext In [KJY+20, §B] the threshold decryption of
RLWE-based ciphertext (c1, c2), is roughly the opening of the linear map

(10) s 7→ c1s+ c2

followed by a local rounding of the value opened. The multiplication s.c1 should be understood between
polynomials. To achieve this, they consider in [KJY+20, §A] an extension of the Shamir scheme, with secrets
and shares in polynomial rings, defined by evaluation of a degree t polynomial with polynomial coefficients.
This scheme has the property that multiplication of the shares by a polynomial c1 commutes with polynomial
multiplication of the secret s by c1. However, opening of the plain value Equation (10) is unsafe. Informally,
it leaks information on the secret key s. Formally, the value opened is not simulatable from the final rounded
value. To restore simulatability, a common trick consists in adding noise to the opening. This traditionally
comes in the form of noise added locally by the players to their decryption shares. A trick is introduced in
[GLS15], which consists instead in generated a unique secret-shared noise e. Then, Equation (10) becomes
the opening of the linear map: (s, e) 7→ c1s+ c2 + e.

F.2.5 Oblivious Preimage-sampleable commitments In the proof of APSS0, the simulator produces
openings which are not correct decryptions of encrypted shares. This is possible since the simulator generates
NIZK proofs of false statements, and since we specified that extraction should work even after Z saw such
proofs. Now in the variant described in Section 7.3, the simulator must exhibit openings to commitments of
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opening shares, which are equal to the target opening shares. To this end, we must assume that there is a
local setup of the commitment scheme, so that the simulator can generate a trapdoor of it. This trapdoor
enables to generate an opening of any commitment Com, into any target value x. As stressed in [GPV08;
CGM19], revealing to Z such openings may leak information about the trapdoor. So we are aiming at
commitment schemes satisfying a property, denoted as uniform preimage sampleable. In [GPV08] it is shown
that Ajtai’s commitment satisfies this property, which comes as follows. Consider the uniform distribution
over the space of (values, randomness): SampleDom, in particular, which is public independent from the
trapdoor. There is a function SamplePre which, given a commitment com, uses the trapdoor to output an
opening (x, r). It has the property that the distribution of pairs (opening (r, r) output by SamplePre,input
commitment com) is indistinguishable from the distribution of pairs

(
(x, r) ← SampleDom , commitment

Com(x, r)
)
. In conclusion, the simulator just needs to sample every commitment in the simulation using

SampleDom-then-Com, then it can safely open them later, using SamplePre, without leaking any information
about the trapdoor. They even achieve that SampleDom can be allowed to be the uniform distribution. Their
result applies to SIS-based commitments such as BDLOP [NS22, §2.4] or Ajtai’s or a combination of both
[LNP22, §3.1].

Pedersen commitment trivially satisfies the property of uniform preimage sampleability, since the trapdoor
enables to sample uniformly in the set of openings of a given value.

G Related specifications of (asynchronous and/or proactive) VSS

The terminology verifiable secret sharing (VSS) is a legacy one [CGMA85; Ped92; CR93; BCG93; Can95;
BKR94; PCR13; PCR14; BKP11; BDK13; BTA+19; KMS20; AVZ21; YLF+22; CCP21]. It is given as
many different specifications as different works on the topic. Verifiability is the guarantee that, after the
Share algorithm “completed” (this word having many different meanings), then the dealer is committed to
a well-defined value s, such that only this value can subsequently be reconstructed in the subsequent Open
protocol.

G.1 Standalone definitions of (asynchronous) Verifiable secret sharing (A)VSS

We start by stating a standalone definition of asynchronous verifiable secret sharing (AVSS), which is matched
by APSS even after an unlimited number of Refreshes. Then we compare to the many specifications of AVSS
in the literature. AVSS is a pair of algorithms (Share,Open), parametrized by t < n, with the following
syntax and requirements.
- Share is between a dealer D with an input in S, and n players//in our dynamic setting they are P1

[n1]
. We

consider here n1 = n for simplicity. Players may output (committed).
- Open takes place between n players//[P1

[n1]
or a subsequent committee, if Refreshes took place in-between] and

a learner L. In the general case of several instances of Share to the same players, possibly from several
dealers, then, (each instance of) Open is parametrized by a public linear map Λ : S∗ → ∗. L may output
a value.

1. [Correctness, a.k.a., verifiability (VSS); with strong linearity (SL):] as soon as one player outputs in Share,
there exists a well defined value, s∈ S, which we say is committed, such that the following properties hold:

– if D is honest then s is its input;
– consider an execution where all input variables of Λ were committed. Denoting as (sw)w∈W the values

committed, we have that Λ((sw)w∈W) is the only value that L can possibly output in Open.

2. [Termination of Share:] if one honest player outputs in Share, then all honest players ultimately output in
Share.

3. [Secrecy:] if D is honest, then A cannot distinguish between two chosen secret inputs of D from their Share.
4. [Liveness (Completeness) (ACSS):] after all honest players output in the Share of each secret involved in

the linear combination Λ, consider any subset of t+1 players which are passively corrupt or honest and
which start Open. Then, even if the others are completely offline forever, L ultimately outputs in Open.
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(ACSS) The first works on AVSS [BCG93; CR93; Can95], and also [PCR14], specify a guarantee which is weaker
than ACSS. We may call it non-complete. In a non-complete AVSS, even after all players terminated
share, it is guaranteed only that n−2t honest players received shares of s. So, considering secrets shared
from several dealers, it could be the case that the intersection of players having shares of all of them is
not large enough to enable reconstruction of a linear combination of the secrets //a thinner analysis, in

[CP22, §1.2], shows that non-complete prevents linear combinations of even only two secrets. On the other hand,
the non-complete specification is perfectly fine for the purpose of reconstructing one secret. A method is
clearly exposed in [Can95, p. 5.7] how to build a 1/4-common coin from this sole specification.
For this reason, [BKR94] introduced and implemented a stronger guarantee called ultimate secret sharing.
Roughly and informally, it specifies that all honest players outputs a share in Share. It is then renamed
as asynchronous complete secret sharing (ACSS) in [Cho20b; CP22; YLF+22] It is then re-named as
recoverable verifiable secret sharing in [BTA+19] (which are under partial synchrony). Completeness is
matched by [CKLS02; PCR13], even if they do not use this word. Thanks to replicated secret sharing,
the share recovery protocol of [ZSV05, Figure 5] is non-interactive, although at the cost of an exponential
complexity. Completeness is also matched by [CKLS02; PCR13], even if they just use the plain termi-
nology of “AVSS”. From a remote perspective, completeness is incorporated in the property denoted as
strong commitment (SC) in [BKP11, §2.2 2.]. But actually, as specified, the SC of [BKP11, §2.2 2.] is
surprisingly weaker than the plain “commitment” specification of [BKP11, §2.2], at least when t>n/3.
The reason is that, their “commitment” specifies that the opened value is equal to the committed one.
Whereas, their “strong commitment” only requires that Share delivers shares of the committed value to
honest players. However, raw Shamir shares are not enough to guarantee robust reconstruction of the
shared secret if t>n/3. We refer to [CDN15] (p121: “Minimal Distance Decoding”) and to [Can95] (4.4.4
“on-line error correcting”) for this well-known result. This is a mere definitional problem since the VSS
protocols of [BKP11] do have robust reconstruction, thanks to a common view on public commitments
to shares. Also, their definitions under asynchrony, in [BKP11, §4.1], do not capture either completeness.
The reason is that they do not guarantee that a secret will be opened, unless all honest players start
Open.
To avoid the above definitional problems linked to shares, we instead phrased the completeness property
above (ACSS) in terms of openability of secrets from any subset of t + 1 passively corrupt or honest
players. This somehow implies the aforementioned rough and informal definition of ACSS, which is that
every player outputs a share in Share. Said in another way, our specification of (ACSS) can be seen as
an upgrade of the “strong commitment” (SC) of [BDK13]. Namely, instead of just guaranteeing that all
n− t honest players get a share, we guarantee openability of secrets from any n− t players.
Finally, we can observe that [PCRR09; PCR14] denote as “strong commitment” a property which we
denoted above as correctness, a.k.a., verifiability.

(SL) The terminology strong linearity property is introduced in [GGOR13]. They observe that there exists
alternative possible specifications of linearity. They make such an alternative specification, which they
call proper + improper. This alternative specification is that a committed value can possibly be in ⊥, and
that a linear combination involving a bot committed value returns ⊥.
We now make the observation that this alternative specification is strictly weaker than strong linearity.
The reason is that it gives to the adversary the power to force the output of a linear combination to be
equal to a value of its choice, i.e., ⊥. By contrast, strong linearity gives only the power to the adversary
to add an offset to the output, which it must choose before learning any information on the values
committed by honest players. Notice that, in the case of DKG, then the adversary may also learn a
Feldman commitment to values committed by players, before it decides the offset to be added to the
sum of these values (Appendix F.2.2). Notice that in these observations, we do not consider that the
adversary can equivocate in the opening, i.e., if it is committed to some v∈ S, then we did not consider
that it can change it later for ⊥. So these observations are orthogonal to the distinction between VSS
and WSS, in which such equivocation is possible.
In [PCRR09; PCR14], they also consider the weaker specification of VSS where the committed secret can
be in S∪ {⊥}. Furthermore they do not specify any openability of linear combinations. So they observe,
[PCRR09, §2.1], that their specification is “not suitable for use in MPC”. It is however sufficient for the
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use-case of implementing a common coin, as in [PCR14] and discussed above. They also observe that,
while they are at requiring only the opening of one secret, then, allowing the committed value to be in
S ∪ {⊥} actually emulates the case where the committed value is in S only //if the output of Open is ⊥,

then output 0. In [BDK13], the requirement that the committed value is in S, not only S∪ {⊥}, is one of
the two specifications which are included in their “strong commitment” definition but not in their plain
“commitment” definition (the other one being described above in (ACSS)). The same non-commitment-
to-⊥ shows-up in the stronger definition of “commitment with 2-level sharing” of [KKK08, Definition 3],
but not in their plain “commitment” specification. All works on VSS-based MPC protocols consider the
committed value to be non-⊥, i.e., in S: [BGW88; GRR98; CDD+99].

(VSS) Let us illustrate what could happen if it was not required that the values shared by corrupt dealers
were well-defined before reconstruction //Notice that this requirement is not explicit in [HZC+22, p. 4].
Consider the scenario where some linear combination of secrets is opened to a corrupt learner, but to no
honest learner yet. The adversary observes the output y. Then it manages to change the value shared
by some corrupt dealers (verifiability prevents this); resulting in a modified output y′ when the same
linear combination is subsequently opened to a correct learner. Notice that the relaxed definition of
AVSS, in [CCP21, Def 5.1], does not exclude such attack since it requires that a secret is committed
only when all honest players have terminated Share. We observe that this relaxed definition nevertheless
implies verifiability if those three additional conditions hold: (i) we require that players output Shamir
shares in Share, (ii) t < n/3 players are corrupt (iii) reconstruction is done with the “on-line error
correcting” algorithm of [Can95, p. 4.4.4]. On the other hand, for t>n/3, it is not excluded by their
definition that only a subset of honest players output in Share, and that this subset is enough to perform
reconstruction with the t dishonest players. We notified to them a pathological example allowing the
adversary to manipulate the value reconstructed. It seems that such scenario cannot happen in any
reasonable protocol where Share delivers a common view on commitments to subshares. There is also a
relaxation of verifiability made in [CKLS02], named as dual threshold, and of which a state of the art
implementation is [AVZ21]. One the one hand, it is needed that k honest players terminate the sharing,
where k is a parameter, in order for a value to be committed. On the other hand, it is specified that if
< k − t honest players started reconstruction, then the adversary learns nothing on the secret. So it is
again not excluded that the adversary manages so that only k − t honest players output, be leaked the
secret during the reconstruction, then manages to manipulate the value which will be reconstructed to
honest players.

Finally, let us mention another use of the terminology (A)VSS. In [ZSV05, p. 4.2][BTA+19, p. 3.2][VAFB22,
p. V], (A)VSS is not a (class of) message-passing protocols, but instead a mere list of local algorithms. So
their specifications do not capture how or when a dealer becomes committed to a value towards players, nor
how or when players are collectively able to Open this value.

G.2 Dual-threshold and high threshold AVSS

It was observed, since [CKLS02, §3.1], that AVSS can be customized to still guarantee some form of se-
crecy, beyond the correctness bound t. The notion introduced in [CKLS02, §3.1] is called dual-threshold,
while a stronger notion appeared later, which we name as high-threshold (following [YXXM23]). The two
terminologies are sometimes interchanged, so we first define them then list some conflicts.

Dual-threshold AVSS We follow the [AVZ21, definition 7]. Compared to AVSS, it brings in addition
another threshold, named as t 6 p < n − t, which we may call the “priv-rec” threshold. Privacy is still
guaranteed as long as at most p− t honest players started to Open. Openability now requires p+1 honest
players. The definition of [CKLS02; KMS20, §3.1] is equivalent, up to a change in the numerology of the
priv-rec threshold p. A limitation of dual-threshold, is that t+ 1 corrupt players can nevertheless recover
the secret. This apparent contradiction between t and p is nicely explained in [AVZ21, p3] //when queried

to Open, the implementations of [CKLS02; KMS20; AVZ21] make players redistribute the secret from degree t

into higher degree d, before revealing their share.
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High-threshold AVSS is formalized in [YXXM23, §2.1]. A high threshold AVSS, with secrecy threshold
d, guarantees secrecy against d corruptions //concretely, existing implementations are like our Share. They

consist in doing a reliable broadcast of a degree d verifiably encrypted secret sharing, i.e., a PVSS. It is matched
by [DXR21, Definition 5.3], and our FP-AVSS//Concretely, our Share in APSS guarantees secrecy up to d = t

corruptions. The correctness and liveness threshold of Share is equal to the threshold of the reliable broadcast

(RB) used.

We now observe some conflicts of terminology. The [DXR21, Definition 5.3] is advertized weaker than it is,
since they call it only “dual threshold”. The special-purpose AVSS for zero sharing of [GDK22] is named
as high-threshold (page 2), while, to the best of our understanding, its secrecy is guaranteed up to t < n/3
corruptions, by [GDK22, Definition 4 & Lemma 3].

G.3 Related ideal functionalities for (possibly proactive and/or asynchronous) VSS

The AVSS ideal functionality of [AAPP22; CP22]. It delivers plain Shamir shares of the stored secret,
upon being allowed by the adversary, player by player. It does not deliver any other output, in particular,
no commitment to shares, nor reconstruction of the secret. Plain Shamir shares do not enable robust recon-
struction of the secret for t>n/3 corruptions. We refer to [CDN15] (p121: “Minimal Distance Decoding”)
and to [Can95] (4.4.4 “on-line error correcting”) for this well-known result. So the AVSS specification of
[AAPP22; CP22] is incompatible with t>n/3.

Notice that they consider an adversary A which has the power to block forever the delivery of any output
to any player. This power is actually standard in the classical UC model of [Can95]. This power is known as
“delayed output”. In particular, a player may well never receive its share. In particular, the trivial protocol
where players do nothing implements their functionality (the simulator just has to never allow the delivery of
the output). For this reason, any non-trivial protocol implementing their functionality must come in addition
with a proof of liveness.

The asynchronous dynamic PSS functionality of [YXXM23, B] It is specified to return a unique
system of new shares, and a unique public set of Pedersen commitments to them. Their protocol implements
it up to t < n/3 malicious corruptions plus d− t extra passive corruptions, where d 6 n− t− 1. By contrast,
our FP-AVSS functionality does not return a unique public output, since APSS0 bypasses consensus. The
return for this relaxation is that FP-AVSS is implementable above t < n/3 malicious corruptions.

Another difference with the functionality of [YXXM23, B], is that the latter guarantees simultaneously:
an output, correctness, and secrecy. So it is impossible to implement it above t < n/2. By contrast, FP-AVSS

separates liveness guarantees from correctness and privacy. As a result, it is implementable under dishonest
majority, as the one of [CGG+20].

A last extra-generality of FP-AVSS compared to [YXXM23, B], is that the latter does not handle scenarios
where players would not start synchronously Refresh or Open (see also Appendix H.4 below). The reason
is that in their model, both the players and FP-AVSS receive the instructions to Refresh and Open from a
trusted coordinator. This coordinator is assumed to always send these instructions simultaneously to all.

The synchronous distributed commitment functionality FCOM of [CDN15, p. 105] This func-
tionality differs from VSS, in that an action of the dealer is necessary to open the secret. Excepted this
difference, it is the closest to ours. Another difference is that FCOM is not specified to leak the secret to A,
in the scenario where the dealer and one isolated honest player (both being possibly equal) would start the
Open. So a dummy protocol with FCOM can be UC emulated only if all dummy honest players are supposed
to query simultaneously FCOM to Open. This restriction is made clear in a preliminary version 8. The reason
for this restriction is that the simulator is not able to simulate opening shares without this leakage.

The other difference is that, since FCOM is assumed to always deliver an output of Open if the committer
is honest (and not leak the commitment until then), then it cannot be implemented under dishonest majority.

8In Contemporary Cryptology by D. Catalano et al, p62 “We require that all honest players agree to the fact that
a commitment should be made because an implementation will require the active participation of all honest players”
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The synchronous dynamic PSS functionality of [GKM+22, p5] they define an ideal functionality
which delivers an output to an entity, denoted as “client”, which is assumed always honest. Hence, their
definitions do not require simulatability of decryption shares. Nevertheless, it seems that they are able to
simulate the opening shares of their protocol, as described in their Hybrid 11 p59.

The other difference is that their functionality does not capture refreshes between committees, nor does
it capture which committee does the opening. The reason being that in their synchronous model, players are
notified simultaneously when they have to Refresh or Open, and that Refreshes always terminates (within a
fixed delay) thanks to honest majority

The synchronous dynamic PSS functionality of [HKMR22] The specification of their functionality
involves a simulator, which moreover interacts simultaneously with an environment and an adversary. So it
seems not to be in the UC model of [Can01].

H Existing PSS with t < n/3 resilience

We now survey PSS which do not guarantee simultaneously liveness, correctness and privacy beyond t < n/3
corruptions [ZSV05; CKLS02; SLL10; DM15; YXD22; VAFB22; YXXM23; HZC+22; GDK22]. Most of
the PSS in this list are under asynchrony, some of them [SLL10; VAFB22] are under partial synchrony
(Appendices H.1 and H.3.1). We also count as not resilient beyond t < n/3 the synchronous PSS “Opt-
CHURP” [MZW+19; ADEO21]. The reason is that, when specialized to n = 2t+1, as soon as one player
deviates, it must transition to Exp-CHURP-A [MZW+19] (Table 1) //notice that Exp-CHURP-A also serves

as fallback for [YXD22], which has resilience to t < n/4 passive corruptions. Another exception is [DM15], which
is synchronous but has information-theoretic security. In Appendix H.1 we remind partial synchrony, in
Appendix H.2 we give an overview of the three main families of asynchronous PSS, in Appendix H.3 we
analyze their complexities in more detail, and in Appendix H.4 we survey their termination mechanisms.

H.1 The Model with a hidden a priori upper bound ∆ on δ (“Partial Synchrony”)

The model of [SLL10; VAFB22] assumes existence of an unknown finite time, denoted as GST, after which
every message sent is delivered within a fixed public delay ∆. This is the classical model of partial synchrony
[DLS88, 2.3 (3)]. In [DLS88, 2.3 (2)] they consider an alternative model of partial synchrony. There, the
adversary commits on a finite upper bound∆ on δ at the beginning of every execution. Contrary to synchrony,
∆ is hidden to the players. They show in [DLS88, p. 4.2] that this model has at least power as the classical
one [DLS88, 2.3 (3)] in which GST is unknown. Concretely, the compilation is as follows. Start from a round-
by-round protocol designed for the GST model. Increase regularly the duration of a round, by a public fixed
parameter (see also [BCG22]). For instance, in [ACD+19], they double the duration of rounds at regular
intervals. In conclusion, when the duration of rounds becomes at least as high as the hidden ∆, everything
is as if GST had happened.

H.2 Overview of existing PSS with t < n/3 resilience

All existing PSS operating over an asynchronous network (a-PSS) or even partial synchrony, have threshold
t < n/3. The reason is that their common blueprint is that players perform n AVSS in parallel, either
to reshare their share or some randomness. Then they reach consensus on a subset of t+1 AVSS which
terminated. Then they deduce their new shares from them. But, even under partial synchrony, it is trivial
([DLS88, Thm 4.4]) that consensus is impossible to implement beyond t < n/3 corruptions, whatever the
setup. As a result, if such PSS protocols using consensus where executed with f >n/3 corruptions, then
honest players could possibly output inconsistent new shares then erase their old ones, so the secret would
be completely lost. A recent a-PSS, [YXXM23], guarantees privacy even up to a number d of corruptions,
where d < n is a parameter. On the other hand, its corruption bound for correctness is t < n/3, and its
liveness requires at least max(d + 1, b2n/3c) passively corrupt or honest players, the 2n/3 being due to its
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use of consensus. By comparison in APSS, setting the privacy threshold to t yields a higher corruption bound
for correctness: t, and a liveness bound of: t+1. So in our flagship setting of honest majority t < n/2, the
latter is lower than the minimum 2n/3 required by [YXXM23]. of an extra n − 2t − 1 passive corruptions
in addition to the t < n/3 tolerated malicious corruptions. But this does not solve this consistency issue for
f>n/3 corruptions.

The fastest possible AVSS consists in the reliable broadcast (RB) of a PVSS (of B = O(nγ) bits). The
state of the art RB takes 4δ and has RB(B) = O(n|B|+γn2) communication complexity, see Appendix I.5.1.
Then to reach consensus, a state of the art MVBA is [Guo et al, NDSS’22] [GLL+22], which takes 12δ in
expectation and has O(Bn2) complexity. Summing-up, existing approaches for a-PSS cannot go much beyond
a latency of 16δ, compared to 2δ only for APSS.

From a bird’s eye, Refreshes in these works have the same high level structure: n AVSS in parallel, followed
by consensus on a set of n− t which terminated. At a high level point of view, they comes as the following
three families, detailed in Appendices H.2.1 to H.2.3. There is one interesting exception [ZSV05], which we
survey separately in Appendix H.3.4.

H.2.1 Masking shares with a 0-sharing. This technique is from [HJKY95], it is usable as such only
in the static committee setting P[n] = P ′[n′] with a mobile adversary. It is instantiated in [GDK22], which
we now follow for the example. Each player deals an AVSS of a random sharing of 0 //it is instantiated in

[GDK22] with the dual threshold AVSS of [AVZ21] (Appendix G.2). This is the reason why [GDK22, Definition 4

& Lemma 3] guarantee secrecy up to t < n/3 corruptions. Then, players reach consensus on a subset of AVSS
which terminated //they suggest to instantiate the consensus either with MVBA (Appendix H.3.2 below) or ACS

(Appendix H.3.3 below). Finally, players add their old share with the sum of the shares of 0 in the subset, in
order to obtain their new share.

Notice that the technique of [HJKY95] is adapted to the dynamic committee setting in [SLL10], at the
cost of more communication complexity.

Notice that the technique of [HJKY95] is adapted to the dynamic committee setting in the synchronous
PSS [MZW+19], with yet another variation. There, old shares with threshold t+1 themselves come as degree-
2t polynomials: B(i, y). Instead of directly handing their old shares to their counterpart in the new committee,
as in [HJKY95; GDK22], old players give only to them an evaluation of them. So each player j in the new
committee end up with a share of threshold only 2t, which itself consists in a degree t polynomial: B(x, j).
Then players in the new committee generate a secret shared random degree (t, 2t) bivariate polynomial Q
such that Q(0, 0) = 0. Each new player j blinds its share by Q(x, j). Then new players finally redistribute
shares to each other to obtain shares with threshold t + 1 //so each share is equal to B(j, y) + Q(j, y). Notice
that this final degree-reduction step requires the participation of all n = 2t + 1 players, just as in MPC
with passive security [CDN15, §3]. This is why [MZW+19] transitions to a costlier fallback protocol, Exp-
CHURP-A [MZW+19], as soon as one corrupted player deviates. On the other hand, assuming t < n/3
corruptions, then the method of [MZW+19] terminates since 2t+ 1 players are assumed honest and so can
carry-out the degree reduction. This is why its adaptation: [HZC+22] under asynchrony in the t < n/3
regime, does terminate.

H.2.2 Directly resharing one’s share to new players in [CKLS02; YXXM23] players re-share their
share with (asynchronous) verifiable secret sharing. This technique dates back from [DJ97] in the context of
proactivity. Then players reach consensus on a subset of AVSS which terminated. Then they compute their
new share by Lagrange linear combination of the received subshares in the subset. We refer to Section 2.2
for the background on the method of resharing, and to Appendix I.1 for a historical account.

H.2.3 Sharing a random mask to new players, then opening to them the masked secret
in [VAFB22; YXXM23] they consider an equally classic method, in which both the entering and exiting
committees P[n] and P ′[n′] generate a secret-shared random value r which is equal in both committees. Then,

players of P[n] open to P ′[n′] the secret masked by the shared randomness: s − r. From this public value,
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players of P ′[n′] deduce their new shares of s by locally adding their share of r. This technique dates back

from at least [GKM+22] in the context of proactivity.

H.3 More detailed analysis of their consensus and complexities

We now focus on the complexities of the various mechanisms by which the PSS of Appendix H.2 reach
consensus on a common set of n − t sharings. On can identify three families of mechanisms, which we now
detail in Appendices H.3.1 to H.3.3.

H.3.1 Leader-based partially synchronous consensus As explained in Appendix H.1, partially syn-
chronous protocols [SLL10; VAFB22] have latencies equal to multiples of a public fixed ∆. The parameter ∆
is set in practice as an estimate of the eventual upper-bound on the network delay, it can possibly be publicly
re-adjusted over time. In some fault-free executions, partially synchronous protocols may terminate within
O(δ). But, unless branded as “asynchronous protocols”, in general executions they do not have liveness under
full asynchrony.

The PSS [SLL10] uses the well-known leader-based consensus called “PBFT” [CL99] in order to reach
consensus on a common set of terminated AVSS. In PBFT, the time-line of the execution is divided into
intervals, denoted as “views”. Each is assigned to a player denoted as the leader, or the primary, of the
view. In a view in which the leader is honest AND in which the actual delivery delay δ is small enough, in a
sense to be precised, then players output within 4δ. There is a mechanism enabling players to go to the next
view synchronously enough. A first line of mechanisms, which originate from [CL99], is triggered by players
if they suspect the leader to be corrupt, e.g., if they do not receive messages from it after a fixed public
timeout ∆. A recent implementation is [BCG22]. Another line of mechanisms [LA23] addresses the more
particular specification to make players change view every fixed interval of time, say, 4∆, without adaptivity
to the good or bad behavior of the leader. In conclusion, PBFT terminates if the public parameter ∆ was
chosen such that, after an unknown time denoted as “GST”, the actual message delivery delay is δ < ∆.
This assumption is known as partial synchrony [DLS88].

This idea of instantiating consensus in PSS by PBFT, was popularized again by the partially synchronous
PSS [VAFB22] (S&P’22). Let us provide a quick overview of their Refresh protocol, denoted as “(dynamic)
Reshare” (E, page 9), which enables to handle refreshed shares to a new committee. Our main conclusion
is that their termination is more constrained than the one of PBFT. Even if a view has an honest leader
and the network is fast enough, a single dishonest player may force to go to the next view. In more detail,
“(dynamic) Reshare” makes a number of calls to a subroutine which is denoted as GeneratePolynomial. The
latter goes through the following delays:

- Election of a leader (δ delay, assuming a threshold coin)
- Sending an encrypted sharing to it (δ delay)
- Performing PBFT-style consensus on a set of t+1 sharings. This takes 3δ delay in executions where all

players are honest AND the network fast enough. It takes 4∆ more if the first leader is corrupt, etc.
Furthermore, one single dishonest player which deviates from the protocol may prevent the consensus from
terminating in this view. We dub such a deviation as a failure. They write: “Notice that if a malicious
server rj sends a valid share to the leader rl and invalid shares to other servers, [...] the consensus might
not terminate with this proposal since S [the commitment to rj ’s shares] will not be accepted by enough
servers.”. In such scenario, the leader is replaced after 3∆ in the first view, then 4∆ in subsequent views.
So up to t + 1 instances of GeneratePolynomial can abort, or more if GST did not happen yet (because
then an honest-but-slow leader may be replaced after 3∆).

- Requesting by peer to peer the missing encrypted sharings (2δ delay)

Now, the high level structure of “(dynamic) Reshare” is:

- GeneratePolynomial
- then, a subprotocol denoted as “Recover”, one instance in parallel for every party which detected a failure.

The latency of a Recover is at least equal to 2δ + a GeneratePolynomial
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All in all, assuming that in all instances of PBFT the second leader elected after GST is honest, and
assuming that the instances of GeneratePolynomial launched in Recover go through a total of t+ 1 failures
(after which all corrupt players are ignored), then the latency of “dynamic reshare” after GST is of, roughly:
one GeneratePolynomial (11∆) then (t+1) times Recover, each equal to 2δ + 11∆.

H.3.2 Consensus with external validity, a.k.a. VBA/VABA/MVBA [CKLS02; YXXM23; HZC+22;
GDK22] propose to use consensus with external validity, a.k.a., VBA/VABA/MVBA [CKS05; AMS19;
GLL+22] to reach consensus on a common set of terminated AVSS. In an MVBA, players start with inputs
which can be tested as valid by a public efficiently computable predicate. An MVBA guarantees that all
players output the same value, and that it is valid. In the ingredient, the inputs are a list of t+1 senders of
AVSS. The predicate which is tested by each player is if it output in each of these AVSS. So this predicate is
not publicly verifiable, contrary to the requirement of an MVBA. So it is not obvious how to use MVBA to
implement the ingredient. The trick is elegantly explained by [YXXM23]. Players input their t+1 list Li as
input to the MVBA. When a player Pi receives a message from a player Pj , in the execution of MVBA, and
that this message contains a list Lj which Pi does not recognize as valid, Pi puts the message in quarantine.
The message remains in quarantine until Pi recognizes the list Lj as valid, i.e., until Pi output in all AVSS
in the list Lj . By definition of AVSS, the list of an honest player will be ultimately recognized as valid by
all honests players, so the MVBA can terminate.

H.3.3 Agreement on a common subset (ACS) A primitive which is tailored to provide consensus on
a n − t sized subset of instances of AVSS which terminated, was discovered in the context of asynchronous
MPC in [BCG93, p. 3.1], under the name “agreement on a core set”. They propose an implementation
tolerating t < n/3 malicious corruptions. The broad idea is that players run n instances of binary consensus
(BBA) in parallel. Each player j inputs 1 in every instance i for which it received an output of the AVSS
from i. However it is unclear if their implementation terminates. Namely, it is not specified what value, nor
when, do players input in instances of consensus corresponding to indices i for which they did not output in
the AVSS from i.

Then, the paper [BKR94, §4] put forth a definition which is the same the one of [BCG93], under the
different name of “agreement on a common subset” (ACS). Then, they propose an implementation of ACS
tolerating t < n/3. It has the same structure as the one [BCG93, p. 3.1]. The difference is that they make a
precision, which makes the implementation rigorous. It consists the simple but clever trick that, as soon as
it receives an output 1 in n− t binary consensus instances, a player inputs 0 to all the t remaining instances.
This trick was popularized later by [MXC+16].

The use of ACS as a means of consensus in PSS was initiated by [YXD22]. Precisely, they propose to use
the ACS of [BKR94, §4] instantiated with the binary consensus (BBA) of [MMR15]. This same proposition
is made in [GDK22, A].

H.3.4 The n-concurrent-leader-based-executions paradigm Interestingly, the PSS [ZSV05] runs n
instances of a leader-based refresh in parallel. The common point with APSS is that, in instances lead by a
corrupt leader, players can obtain incompatible shares. It uses (n, t)-replicated secret sharing (RSS), instead
of Shamir sharing, so each player has

(
n
t

)
additive shares. Since shares are sub-shared, it has communica-

tion complexity in O(exp(2n)). RSS allows a slightly simpler baseline mechanism than the resharing-then-
Lagrange linear combination (Appendix I.1) which we use. Their simpler mechanism (their Figure 6) is:
consider any set of

(
n
t

)
resharings, one for each RSS share, each being issued by any arbitrary player. Then,

each player p constructs it new RSS shares as follows. For each Q a t-subset of players such that p /∈ Q, the
new share of p corresponding to Q is the sum of the sub-shares received corresponding to Q. This mechanism
is slightly simpler than Shamir with Lagrange linear combination, since it involves only additions. Their main
motivation for using RSS, which they stress at the bottom of page 266, is that it enables a “straightforward”
non-interactive share recovery protocol (their Figure 5). They observe in 6.4.2 that they could have instead
used, instead of RSS, any Shamir-based AVSS satisfying the completeness property (ACSS), recalled in Ap-
pendix G.1. [Recall that it is the guarantee that, as soon as one player outputs, then every player eventually outputs.]
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But they motivate their choice by the fact that ACSS would have cost more consecutive interactions. As
they explain in their section 7, their main focus are small values of n, for which the complexity gain brought
by ACSS (from O(exp(2n)) to polynomial) would not have counterbalanced the prive of more interactions.

The protocol of [ZSV05] does not withstand more than t < n/3 malicious corruptions. The reason is that
players consider the resharing of a share as completed, and ignore other resharings of this share, upon upon
hearing from 2t + 1 players which claim having received consistent subshares of this share (in the form of
messages denoted as verified). In them, there are at least t+1 which are honest. The number t+1 is the
minimum one to be able to reconstruct their missing shares to other isolated honest players (their Figure 4).

From a high level perspective, the MPC protocol [BHN10] operates with the same structure as [ZSV05]
and ours, with parallel instances of MPC each driven by a leader. However they assume that a threshold
decryption key is secret-shared between the players without addressing how to proactively refresh it, which is
the purpose of the present work. Moreover, their liveness and correctness are conditionned to existence of an
unknown fixed set of t+1 honest out of n players. Players in this set are assumed to remain honest until the
end of the execution. This assumption does not hold in the context of proactivity, where corruptions change
over time (in the mobile-PSS model) or across committees. Concretely, if their protocol were to be emulated
in our setting of dynamic committees with honest majority, its liveness and correctness would require that,
for the subset of the P 1

i ∈ P1
[n1]

which are honest, then all P ei , ∀e must also be honest. Thanks to the chain
of correctness mechanism in APSS0, i.e., the quorums of signatures replacing the NIKZ’s and so on, APSS0
needs only existence of one single honest leader per epoch. Notice that the n-leaders-in-parallel paradigm is
also used in the recent asynchronous consensus of [AMS19].

H.4 Existing specific scheduling mechanisms for PSS

In [CKLS02], the inputs refresh-sig and shutoff-sig are sent by a global clock. In their fixed committee setting,
by shutoff-sig we mean the instruction to erase the memory related to the old epoch (but keep participating
in the new epoch). Both ticks are sent at the same time. Upon receiving these inputs together, a player
must immediately send a batch of resharing messages (concretely: perform the first step of an AVSS of its
share), then erase all its memory related to the old epoch just after. Nothing prevents this global clock from
ticking its inputs faster than the pace of refreshes. This is why in [CKLS02, p18], they condition liveness to
executions in which the global clock waits that all messages of an epoch have been delivered, before ticking
the next refresh-sig and shutoff-sig. In APSS0, if we consider the collectors as separate from committees, then
we would also have liveness with such a global clock, under the same condition. The reason is that, if an old
committee Pe[ne]

is in the state of the common set of shares, as considered in Lemma 4, then players of Pe[ne]

need to speak only once before erasing their memories. In that sense, we say that such an instantiation of
APSS0 is YOSO (borrowing the terminology from [GHK+21]).

A similar same assumption of a global clock is made in [YXXM23], under the name of a “coordinator”.
It is assumed to sends instructions to refresh to all players simultaneously, and also to the functionality
in the ideal execution. However the timing in their implementation is different from [CKLS02, p18], since
they implicitely instruct players to terminate the (MVBA in) the previous Refresh, before they start the
new Refresh and erase their old shares. This is the reason why their functionality (as ours) can be delayed
by the adversary before it returns new shares. This implicit scheduling mechanism of [YXXM23], i.e., all
players wait for the consensus to terminate before launching a new Refresh, is then one considered in nearly
all asynchronous PSS so far. //By contrast, in the second model under attack in [ABKL22], players erase their

memory and transition to the next epochs as soon as they output a new share in the consensus, but not necessarily

wait to terminate the Refresh, i.e., the consensus. They point that [YXXM23] escapes their attack because there,

players wait for the Refresh, i.e., the consensus, to finish. The exceptions are the aforementioned [CKLS02, p18],
[ZSV05] detailed in Appendix H.3.4, and APSS.

Interestingly, we realized after completion of this work that [ZSV05] also had a termination mechanism,
which is closer to ours. In [ZSV05], players cease to execute a Refresh, upon having been notified that: there
exists a consistent set of

(
n
t

)
resharings, such that for each of them, at least t+1 honest players have received

correct sub-shares. //Such notification comes in the form of messages of the type denoted “certified ”, one for each

resharing. Each of them consisting of a batch of 2t+1 messages, of the type denoted “verified ”, in which their issuers
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declare that they have received a correct subshare. So this guarantee that a quorum of t+1 honests players have
new shares, which is enough to make the remaining honest players recover their new shares . This mechanism
is not adaptable as such to honest majority, since in a quorum of t+1 players declaring that they received
new shares, only 1 tells the truth. Plugging naively our baseline of publicly verifiable encrypted resharings
into the termination mechanism of [ZSV05], would blow up the complexity. Indeed, every player, upon being
queried by a purpored isolated player complaining not to have received its subshares, would have to send
to the complainer all the encrypted batches of resharings which it received. Since all corrupt players could
falsely complain, this would blow up the complexity. Our Refreshing squad takes a different approach, based
on declarations of a quorum of collectors, in which they testify to have correctly forwarded a single batch
of resharings each. A quorum of declarations of collectors, i.e., a qkc, proves existence of at least one proven
new sharing on its way to be delivered to all the new committee.

Finally, from a more high level point of view, one can notice that it is possible to remove the clock or
coordinator assumptions in [CKLS02; YXXM23] and replace them by a mechanism such as the one described
in Section 1.3. Namely, we could consider that, as in APSS, a player outputs refresh-sig (and gives it as input
to itself) as soon as it receives the notification that all players will receive a new share. Upon receiving
refresh-sig, players possibly wait a fixed cool-down delay ∆e

wait before they start the next Refresh. Notice
that the delay could be instead dynamically and collectively decided [BCG22]. In all existing PSS under
asynchrony except [ZSV05], the aforementioned notification is the action to ouptut in the consensus deciding
which terminated (re)sharing instances should be used to form the new shares.

I Further related works

I.1 Historical account on the method of re-sharing of secret shares

The baseline method, of resharing secret shares, is recalled in Section 2.2. In Fig. 15 we illustrate it when
applied homomorphically.

Old sharing: h a degree t poly. s.t. s = h(0) ⇒ s =
∑
i∈ U

λUi si ∀ U⊂ [n] , |U | = t+1

1. Resharing: with degree-t′ polys. (hi)i∈ [n]

h1(X)|h1(0) = s1︸︷︷︸
=h(1)

. . . hi(X)|hi(0) = si︸︷︷︸
=h(i)

. . . hn(X)|hn(0) = sn︸︷︷︸
=h(n)

2. Combination:

c′[n′]


Encek′

n′
( s′n′︸︷︷︸
:=h′(n′)

) = �
i∈ U

λUi � Encek′
n′

(si→n′︸ ︷︷ ︸
hi(n′)

)

...

Encek′1( s′1︸︷︷︸
:=h′(1)

) = �
i∈ U

λUi � Encek′1(si→1︸︷︷︸
hi(1)

)

New sharing: h′(X) :=
∑
i∈ U

λUi hi(X)⇒ h′(0) = s ⇒
∑
j∈ V λ

V
j s
′
j = s , ∀|V | = t′+1

Figure 15: LHE-encrypted resharing of some secret s: from a vector (si)i∈ [n] of old (n, t)-shares, into a
vector (s′j)j∈ [n′] of new (n′, t′)-shares.

Although this method is often credited to [BGW88], in [CDN15, §5.6] it is credited to Michael Rabin
circa 1988 shortly after BGW was published. It was then applied for the purpose of reducing the degree after
multiplication of secrets, within the same group of participants. It surfaced in a written form in [GRR98].
Meanwhile, it was rediscovered by [DJ97] in the context of proactive resharing, then used in [WWW02;
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CKLS02; GG06; DM15; BGG+20; Gro21; GHK+21; GHL22; YXXM23; HZC+22; CDGK22; HKMR22].
They ([DJ97]) state it for secrets in any space equipped with a linear secret sharing scheme. This generality
is what enables the number of applications considered in Section 7, and also the implementation from
Elgamal in Section 8. It turns out that the construction of publicly verifiable vectors of encrypted secret
shares was first suggested in [GMW91, §3.2]. In the context of proactivity, it turns out that [BGG+20; Gro21]
also considered the same baseline approach as APSS, namely, of encrypted resharing of secret shares. They
require that every old committee publishes its O(n2) subshares on a public ledger. This is the limitation that
APSS overcomes.

I.2 Hybrid communication networks offering initial rounds of synchrony

[FN09] show that, for any number t < n of corruptions, Byzantine broadcast (BC) can be achieved in a
network offering (3t− n+ 1)/2 + 5 initial rounds of synchrony. So this is in general better than the latency-
optimal deterministic BC protocol of [DS83], which requires t+1 rounds of synchrony. In [BHN10] it was
evidenced for the first time that honest majority MPC with guaranteed output delivery (GOD) is feasible, in
the threshold PKI model, in an asynchronous network offering one initial BC. Combined with any DKG in one
synchronous BC ([FS01; Gro21]), this was the first MPC protocol from two rounds of BC-then-asynchrony
in the PKI model. In [RU21] (8 Nov 221 version, p10, then §4.4.1) it is further observed that honest majority
MPC with GOD is feasible in 2 synchronous rounds-then-one asynchronous round. It holds in the PKI model
without any random string setup, thanks to a simple compilation of [BJMS20] (moving their first round in
the PKI, and making their last round asynchronous). The information-theoretic setting is studied in [PR18].
They show that perfectly secure AVSS under t < n/3 corruptions is feasible in a network offering only one
synchronous round, not even a BC. They show that perfectly secure MPC, without input deprivation, is
feasible in a network offering 3 initial synchronous rounds, not even a BC. By contrast they show that, it
is unimplementable in a network offering only 2 initial synchronous rounds, surprisingly even if these two
rounds provide BC. In [Cho20a], it is announced that one initial round of synchrony is enough to achieve
the first almost-surely terminating asynchronous binary consensus with strong validity, such that it has both
t < n/3 resilience and constant-round expected latency. In [CH20] it shown that for n = 4 and t = 1, then
perfectly secure AMPC, i.e., with input deprivation, is feasible provided only 2 initial synchronous rounds
of BC-then-asynchrony (which is not enough for MPC [PR18]). They also provide a computationally secure
MPC,without input deprivation, from symmetric primitives only. So this improves over the PKI tools in
[BHN10], at the price of a lower threshold. In [UR22] it is proven that, even in the computational setting,
GOD MPC under honest majority is impossible in a network offering only 1 initial round of synchronous
BC, without further setup.

I.3 Notions related to bilateral-binding: committing, robust, undeniable

The notion of undeniable encryption, of Takahashi and Zaverucha [TZ21, Definition 10], specifies like Defini-
tion 3 that the sender cannot explain the ciphertext by a different plaintext than the one decrypted by the
receiver. But their definition holds only if the receiver generates its private key honestly and away from the
sender. If not in this scenario, then the probability of mismatch between the plaintext and the decryption,
as considered in Definition 3, is potentially high.

The Complete Robustness “CROB” notion introduced in [Farshim et al, PKC’13] [FLPQ13] is orthogonal
to Definition 3. They rule out decryptions (possibly equal) under two distincts secret keys.

[BH22] consider symmetric-key analogues of CROB, denoted as committing encryption. They strenghten
it, by also ruling-out different decryptions of a given ciphertext under the same key (denoted as scenario D).
They strenghten it in another direction, by also ruling-out different plaintexts explaining the same ciphertext
under the same key (denoted as scenario E). However, they do not define explicitely the analogue of the
bilateral binding guarantee of Definition 3. In their symmetric context, this bilateral binding guarantee would
translate into: for a given ciphertext, exhibiting a plaintext different from a decryption, under the same key.
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I.4 Complexities of Broadcast (BC)

BC [FLL21, Definition 1] involves a sender S and a set of receivers R, typically a committee. It requires that:
(Termination) all receivers eventually output; (Consistency): the same value; (Validity): which is furthermore
equal to the input of S if it is honest. It is trivial that BC cannot be implemented without a synchronous
network, whatever the setup. [Otherwise, players can never tell apart a corrupt and silent sender, from a honest

sender of which the message has been delayed so far].

I.4.1 Under t < n/2 In [GP21] they build a compiler which takes as input a BC under t < n/2, for
small inputs of size γ. It outputs a BC for inputs of large size B, with communication complexity amortized
over n They achieve a complexity of O(nB+n|BC(γ)|+ γn3), for B at least as large as Ω(n3 + γn2), which
is the case in our context. But actually, the techniques of [NRS+20] seem to enable better, even for any
t < (1− ε)n (see Appendix I.4.2).

The BC of [ANRX21, Fig. 6] has an optimal honest-sender latency of δ+∆. However in the worst-case, it
may take 4∆ plus a black box consensus (called “MVBA”). They also provide, in Fig. 9, an adaptation under
the more conservative model where players are not anymore assumed to start synchronously. It takes δ+1.5∆
in the honest-sender case, whereas in the worst-case it takes 8.5∆ plus a black box MVBA. We now turn to the
instantiation of the required MVBA. The MVBA of [ADD+19, §4] has O(n2) communication complexity and
an expected latency of 10∆ (for a static adversary, vs 16∆ for a strongly rushing one), provided a threshold
setup (both for leader sortition and for short threshold signatures). Somehow concurrently, [SBKN21, §8]9,
present a constant-round MVBA under t < n/2 with O(Bn2 + γn3) communication complexity, for inputs
of size B.

I.4.2 Under t < n The Dolev-Strong BC [DS83, Thm. 3] has communication BC(1) = O(n3 + n2γ) bits,
according to [MR20, Table 1]. The Dolev-Strong BC [DS83, Thm. 3] terminates in (t+ 1)∆.

The BC of [FN09] requires (3t− n+ 1)/2 + 5 initial rounds of synchrony.

[WXSD20] terminates in the worst-case in an expected O(
(

n
n−f

)2
) rounds (and, in the honest-sender

case, in O(d n
n−f e+ b n

n−f c), as credited to [ANRX21] by [AFRT22]).

[WXDS20] is both constant round and resilient against an adaptive adversary. The protocols [DS83;
AFRT22] are deterministic, so they inherently tolerate an adaptive adversary, but determinism makes them
hit by the (t+1)∆ latency lower bound of [DS83, Thm. 2].

In [GP21] they build a compiler, with 5∆ latency overhead, which takes as input a BC under any t < n,
for small inputs of size γ. It outputs an amortized BC for inputs of large size B. They achieve a complexity
of O(nB + n|BC(nγ)| + n2BC(n log n)), for B at least as large as Ω(n5 log n + kn4 log n). But actually
the technique of [NRS+20] enables much better if t < (1 − ε)n. The achive an amortized communication
complexity of O(nB + |BC(k)|+ γn2 + n3), which shows-up as soon as B = Ω(n2 + γn).

I.4.3 Instantiating BC from Ethereum The security of the proof of stake protocol for Ethereum is
conditioned on honesty of two-thirds of the stakeholders [PAT22]. The security of Bitcoin is conditionned to
honesty of a large majority of miners [GRR22]. The current publication delay on Ethereum is the sum of
the first confirmation time, which is 2 minutes in average periods, plus the extra delay to obtain sufficiently
many confirmations, i.e., of typically 20 additional blocks, which is 5 minutes in average periods.

I.5 Complexities of Reliable Broadcast (RB)

The definition of reliable broadcast (RB) was introduced by [Bra87]. It is a protocol between a sender S and
a set of receivers R, which guarantees that

9they write “In addition, to the best of our knowledge, no MVBA protocol have been proposed in the synchronous
communication model for t < n/2 case”
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Liveness if S is honest, then all R eventually output;
Validity if S is honest and has input s, then only s can be output;
Consensus no two honest receivers output different values;
Totality if one honest receiver outputs, then all honest receivers eventually output.

The difference with BC is that is relaxes the unconditional requirement to have (eventual) termination, even
if the sender is corrupt, by the conditions of liveness and totality. The terminology totality was coined by
[CKPS01]. Totality is equivalent to: all honest players eventually output, or, no honest player ever outputs.
Notice that, compared to the presentation of [CKPS01], we separated their “validity” in two parts: our
liveness, and our validity. We consider algorithms for RB allowing digital signatures. They are traditionally
dubbed as authenticated algorithms. We survey only RB protocols up to t < n/2, since beyond we are not
aware of any RB which would not be a BC.

I.5.1 Under t < n/3 We consider here algorithms for RB in a fully asynchronous network. Notice
that BC is trivially impossible even under partial synchrony, whatever the setup. The fastest known fully
asynchronous RB is the one of [ANRX21, Figure 1]. It terminates in 2δ rounds when the sender is honest, it
has complexity O(Bn+γn2) for a B bits message. If the sender is not honest, and if some player terminates,
then all other players terminate after at most δ. Notice that the RB of Bracha takes longer but does not use
signed messages. The state of the art complexity of fully asynchronous RB is O(Bn+ γn2), for messages of
B bits. It is matched in [DXR21; ADD+22] in 4δ, the latter having furthermore a balanced communication
load.

I.5.2 Under t < n/2 The RB of [GPS19, §5] operates on a network providing only two initial rounds of
synchrony, then becomes fully asynchronous. It has communication complexity O(γn2). In [MR20, v2, Table
1] they also credit the unpublished [MCK20] for a RB under t < n/2 with the same complexity.

I.6 Network delays

The 100ms intercontinental message delay is reported in [AWS21; Sys21][AAPP22, p5].

I.7 Parallel executions of protocols with probabilistic termination

It was observed by Ben Or and el Yaniv [BE03] that if n protocols are run in parallel and that each of them
terminates before k rounds up to probability p−k, for some 0 < p < 1, then the expected time at which
the last of them terminates is O(log(n)). In [CCGZ21, A] they show that the expectation is greater then

1
− log(1−p) (log(n)+γ), where γ is the Euler constant. The ACS protocol described in Appendix H.3.3 requires

n parallel instances of ABA to terminate, hence, terminates in an expected O(log(n) steps.
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