
A simple proof of ARX completeness

Adriano Koleci1

1Dipartimento di Scienze Matematiche, Politecnico di Torino
Corso Duca Degli Abruzzi 24, 10129, Torino, Italy

adriano.koleci.97@gmail.com

Abstract

In the recent years there has been a growing interest in ARX ciphers
thanks to their performance in low cost architectures. This work is a short
and simple proof that Add, Rotate and Exclusive-OR (ARX) operations
generate the permutation group S2n and it is made up by elementary
arguments with minimal use of group theory.

1 Introduction

ARX represents a class of cryptographic algorithms based only on three oper-
ations: Addition (ADD), Rotation(ROT) and Exclusive-OR(XOR) (hence the
name ARX). Those operations are basic CPU instructions which combined can
create fast and efficient algorithms. There is a wide variety of designs based
on those operations, starting from block ciphers like SPECK [Bea+15] and
stream ciphers like Salsa20 [Ber08] to hash functions such as MD4 [Riv92a] and
MD5[Riv92b]. The advantage of such designs is their efficiency and they have
gained popularity especially among lightweight ciphers whose application is cru-
cial in low cost architectures. Although ARX based ciphers gained popularity
in the recents years, it is important to note that those designs are not new since
there are ARX ciphers that date back to the 80s and the 90s: some examples
are block ciphers like FEAL[SM88] and RC5[Riv95].

ARX designs are often compared to S-Box based ciphers whose representa-
tives are the very famous AES[DR02] and the much older DES [BD05]. The
advantages of ARX ciphers over S-Box based ones come from the absence of
table look-ups. From a security standpoint, the absence of table look-ups im-
proves the resilience against cache-timing and side-channel attacks. From a
performance standpoint, the advantage over S-Box designs comes from both
their use of basic CPU instructions and the absence of tables since the latter
reduces the memory usage which, again, is important in low cost architectures,
making ARX designs good alternatives to S-Box based ciphers.

Cryptoanalysis of such systems, however, is not as mature as S-Box based
ones and proving the completeness of ARX shows that those systems do not

1



have any generic property that holds for ARX ciphers. The aim of this work is
to prove then that we can realize any permutation with ADD, ROT and XOR.
Although this is a well known result, its only proof of this dates back to 1997
[Zie97]. This work provides a shorter and simpler proof since there is little use
of group theory and it is made up only by elementary arguments.

2 ARX operations

In this section we define the ARX operations ADDc, ROT and XORc. To make
things easier it is useful to define the following bijection:

ϕ : (Z/2Z)n → Z/2nZ (1)

(x0, .., xn−1) 7→ x0 + 2x1 + 22x2 + ...+ 2n−1xn−1.

This bijection enables us to define ARX operations on either (Z/2Z)n or Z/2nZ,
whichever is more convenient.

ADDc

The operation ADDc is defined as a bijection on Z/2nZ:

ADDc : Z/2nZ → Z/2nZ (2)

x 7→ x+ c mod 2n (3)

ROTd

To better understand the bijection ROTd it is useful to see its effect on both
(Z/2Z)n and Z/2nZ.
Bitwise it moves the last n − 1 bits to the left putting the first bit in the last
place:

ROT1 : (Z/2Z)n → (Z/2Z)n (4)

(x0, · · · , xn−1) 7→ (x1, · · · , xn−1, x0) (5)

hence the name rotation or circular shift.
On the other hand we can see ROT as a piecewise function:

ROT : Z/2nZ → Z/2nZ (6)

ROT(x) =

{
2x mod 2n if 0 ≤ x < 2n−1 (7)

2x+ 1 mod 2n if 2n−1 ≤ x ≤ 2n − 1 (8)

We can apply multiple times the operation ROT and it will be denoted by ROTd.
Note that if the integer x ∈ Z/2nZ is even (i.e. bitwise the least significant bit
is 0) we have

ROTn−1(x) = x/2 mod 2n. (9)

2



If the integer x ∈ Z/2nZ is odd (i.e. bitwise the least significant bit is 1) we
have

ROTn−1(x) =
x− 1

2
+ 2n−1 mod 2n. (10)

XORc

The operation XORc is a bijection that can be defined as follows:

XORc : (Z/2Z)n → (Z/2Z)n (11)

(x0, · · · , xn−1) 7→ (x0 + xc,0, · · · , xc,d−1) (12)

which is, bitwise, modulo 2 addition.
Observe that if the integer x ∈ Z/2nZ is odd,

XOR1 = x− 1 mod 2n. (13)

To prove that {ADD1,ROT,XOR1} can create any permutation on Z/2nZ we
will first define a reference transposition.

Lemma 1. The bijection

ROT(ADD2n−1(ROTn−1(ADD2(x)))) (14)

is the transposition (2n − 2, 2n − 1) on Z/2nZ.

Proof. By recalling bijection (1) we have that (2n − 2, 2n − 1) can be expressed
in bits as (11 · · · 10, 11 · · · 11). Bitwise the operation (14) transposes 2n−2 with
2n−1 and viceversa thanks to the carry of modulo-2n addition. Since it is more
convenient here we will use the bit representation. Evaluating the function (14)
for x = 11 · · · 10 we get:

ADD2(11 · · · 10) = 00 · · · 00
ROTn−1(00 · · · 00) = 00 · · · 00
ADD2n−1(00 · · · 00) = 11 · · · 11

ROT(11 · · · 11) = 11 · · · 11.

Conversely, by evaluating it for x = 11 · · · 11:

ADD2(11 · · · 10) = 00 · · · 01
ROTn−1(00 · · · 00) = 10 · · · 00
ADD2n−1(00 · · · 00) = 01 · · · 11

ROT(01 · · · 11) = 11 · · · 10.

Then we have to prove that the bijection (14) acts as identity if applied to any
other number. Here the representation in Z/2nZ is easier to understand. Let

3



us say that x is an even integer such that 0 ≤ x < 2n − 2.

ADD2(x) = x+ 2 mod 2n (15)

ROTn−1(x+ 2) = x/2 + 1 mod 2n (16)

ADD2n−1(x/2 + 1) = x/2 mod 2n (17)

ROT(x/2) = x mod 2n. (18)

If the integer 0 ≤ x < 2n − 2 is odd we get

ADD2(x) = x+ 2 mod 2n (19)

ROTn−1(x+ 2) =
x− 1

2
+ 2n−1 mod 2n (20)

ADD2n−1(x/2 + 1) =
x− 1

2
+ 2n−1 − 1 mod 2n (21)

ROT(
x− 1

2
+ 2n−1 − 1) = x mod 2n. (22)

By doing this we have proven that the function (14) is the transposition
(2n − 2, 2n − 1).

Theorem 1. The set {ADD1,ROT,XOR1} generates the permutation group
S2n .

Proof. An idea of this theroem has already been given in a competition called
Capture the Flag for the set (Z/2Z)8 [Ano18]. Since any permutation can be
seen as a product of transpositions, in order to prove that {ADD1,ROT,XOR1}
generates the permutation group S2n it is sufficient to prove that it generates
any transposition (a, b).
The first step is to apply the bijection

ADD2n−a(x). (23)

Applying such an operation on a we get

ADD2n−a(a) = 0 mod 2n (24)

whereas applying it to b leads to

ADD2n−a(b) = b− a mod 2n. (25)

The next step is to reduce the result in equation (25) to 1 and we can do this
by iterating a combination of ROT and XOR:

1. apply ROTn−1 until the result is odd;

2. if the result is not 1 perform XOR1 then ADD2n−1.

4



Iterate the above until the result is 1 and thanks to the observations in (10) and
(13) we are sure that the result in (25) is reducing.
Those operations do not change the result (24) since at each iteration we have

ROTn−1(0) = 0 (26)

ADD2n−1(XOR1(0)) = 0. (27)

By applying ADD2n−2 we have built a bijection such that

a ⇐⇒ 2n − 2 (28)

b ⇐⇒ 2n − 1.

which can be easily transposed by recalling Lemma 1.
The final step is to apply the bijection (28) in reverse in order to get (b, a).
Since (2n − 2, 2n − 1) is a transposition, if we apply the bijection (28) to any
other number different from a or b we get two numbers different from 2n − 2
and 2n − 1 hence (a, b) is a transposition.

References

[SM88] Akihiro Shimizu and Shoji Miyaguchi. “Fast Data Encipherment Al-
gorithm FEAL”. In: Advances in Cryptology — EUROCRYPT’ 87.
Ed. by David Chaum and Wyn L. Price. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1988, pp. 267–278. isbn: 978-3-540-39118-0.

[Riv92a] Ronald L. Rivest. The MD4 Message-Digest Algorithm. RFC 1320.
Apr. 1992. doi: 10 . 17487 / RFC1320. url: https : / / www . rfc -
editor.org/info/rfc1320.

[Riv92b] Ronald L. Rivest. The MD5 Message-Digest Algorithm. RFC 1321.
Apr. 1992. doi: 10 . 17487 / RFC1321. url: https : / / www . rfc -
editor.org/info/rfc1321.

[Riv95] Ronald L. Rivest. “The RC5 encryption algorithm”. In: Fast Soft-
ware Encryption. Ed. by Bart Preneel. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1995, pp. 86–96. isbn: 978-3-540-47809-6.

[Zie97] Thilo Zieschang. “Combinatorial Properties of Basic Encryption Op-
erations”. In: Advances in Cryptology — EUROCRYPT ’97. Ed. by
Walter Fumy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997,
pp. 14–26. isbn: 978-3-540-69053-5.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Berlin,
Heidelberg: Springer-Verlag, 2002. isbn: 3540425802.

5



[BD05] Alex Biryukov and Christophe De Cannière. “Data encryption stan-
dard (DES)”. In: Encyclopedia of Cryptography and Security. Ed. by
Henk C. A. van Tilborg. Boston, MA: Springer US, 2005, pp. 129–
135. isbn: 978-0-387-23483-0. doi: 10.1007/0-387-23483-7_94.
url: https://doi.org/10.1007/0-387-23483-7_94.

[Ber08] Daniel J. Bernstein. “The Salsa20 Family of Stream Ciphers”. In:
New Stream Cipher Designs: The eSTREAM Finalists. Ed. by Matthew
Robshaw and Olivier Billet. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2008, pp. 84–97. isbn: 978-3-540-68351-3. doi: 10.1007/
978-3-540-68351-3_8. url: https://doi.org/10.1007/978-3-
540-68351-3_8.

[Bea+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
BryanWeeks, and Louis Wingers. “The SIMON and SPECK Lightweight
Block Ciphers”. In: Proceedings of the 52nd Annual Design Automa-
tion Conference. DAC ’15. San Francisco, California: Association for
Computing Machinery, 2015. isbn: 9781450335201. doi: 10.1145/
2744769.2747946. url: https://doi.org/10.1145/2744769.
2747946.

[Ano18] Anonymous. Capture The Flag. 2018. url: https://ctf- wiki.
org/crypto/blockcipher/arx-operations/.

6


