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Abstract. Authenticated Key Exchange (AKE) is a cryptographic pro-
tocol to share a common session key among multiple parties. Usually,
PKI-based AKE schemes are designed to guarantee secrecy of the ses-
sion key and mutual authentication. However, in practice, there are many
cases where mutual authentication is undesirable such as in anonymous
networks like Tor and Riffle, or difficult to achieve due to the certifi-
cate management at the user level such as the Internet. Goldberg et al.
formulated a model of anonymous one-sided AKE which guarantees the
anonymity of the client by allowing only the client to authenticate the
server, and proposed a concrete scheme. However, existing anonymous
one-sided AKE schemes are only known to be secure in the random
oracle model. In this paper, we propose generic constructions of anony-
mous one-sided AKE in the random oracle model and in the standard
model, respectively. Our constructions allow us to construct the first
post-quantum anonymous one-sided AKE scheme from isogenies in the
standard model.

Keywords: authenticated key exchange · one-sided secure · anonymity
· post-quantum · isogenies.

1 Introduction

Authenticated Key Exchange (AKE) is a cryptographic protocol to share a com-
mon session key among multiple parties through an unauthenticated channel
such as the Internet. In ordinary PKI-based AKE, each party locally keeps its
own static secret key (SSK) and issues a static public key (SPK) corresponding
to the SSK. The validity of the SPK is guaranteed by a certificate issued by
the certification authority. In a key exchange session, each party generates an
ephemeral secret key (ESK) and sends an ephemeral public key (EPK) corre-
sponding to the ESK to the other party. The session key is derived from these
keys and the key derivation function. Ordinary AKE is intended for session key
secrecy and mutual authentication, and provable security is formulated by secu-
rity models such as CK model [8] and eCK model [34].
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On the other hand, there are situations that the mutual authentication is
undesirable such as anonymous networks like Tor [14] and Riffle [33]. In ad-
dition, in HTTPS transactions, it is common for an unauthenticated client to
communicate with an authenticated server. In these cases, it is desirable for the
client to be anonymous, and mutual authentication is not necessary. The ordi-
nary security models of AKE cannot cover such one-sided authentication and
anonymity.

Anonymous one-sided AKE (OS-AKE) is a cryptographic protocol that guar-
antees the anonymity of the client with one-sided authentication. In OS-AKE,
there are a client and a server, and only the server locally keeps a SSK and pub-
lishes a certified SPK. In a key exchange session, both the client and the server
generate ESK and EPK to share a common session key. Since the client does not
have any static secret, OS-AKE is AKE without authentication to the client.
Also, in OS-AKE, it is required that the client and the server can generate
ESK/EPK offline (i.e., before starting a session). Goldberg et al. [24] formu-
lated a security model for OS-AKE (GSU model). The GSU model captures the
anonymity of clients and exposure resilience for non-trivial leakage patterns, and
they proposed a concrete scheme satisfying their model.

One of the main objectives of this paper is to construct post-quantum OS-
AKE because known OS-AKE schemes in the GSU model are not (fully) post-
quantum.

1.1 Related Work

One-sided AKE. The notion of one-sided AKE has been studied in many
kinds of literature. For example, to capture the security of SSL/TLS, various
flavors of security models [13, 23, 29, 32, 31, 12, 38, 15] are introduced. In these
models, the application to the setting of anonymous networks is not considered
and the anonymity is not focused.

Anonymous AKE. The notion of anonymous AKE has been studied in con-
texts of the symmetric key (including password) setting [3, 1, 35, 44] or the group
setting [42, 10]. These models cannot be simply applied to (asymmetric key-based
client-server) one-sided AKE.

OS-AKE. There are three existing OS-AKE schemes secure in the GSU model
or its variant: ntor [24] by Goldberg et al., Ace [6] by Backes et al., and Hybri-
dOR [22] by Ghosh and Kate. These schemes are based on Diffie-Hellman (DH)
problems, and HybridOR is also based on lattices. There are three problems in
these schemes. First, these schemes are proved in the random oracle model.
Random oracles do not exist, and cannot always be instantiated by real hash
functions. Indeed, Canetti et al. [7] show that there are primitives which are se-
cure in the random oracle model but insecure if random oracles are instantiated
by real hash functions. Second, Ace and HybridOR are not proved to be secure
in the original GSU model. The security of these schemes is guaranteed under a
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weaker freshness setting [6] than the original one. Finally, though these schemes
use MAC for explicit authentication, implicit authentication is enough to satisfy
the GSU model. Thus, removing such a MAC can make OS-AKE schemes more
simple and efficient. For more details on the security of existing schemes, please
see Section 4.

Isogeny-based AKE. Recently, many post-quantum AKE schemes are pro-
posed from isogenies. Isogeny-based AKE schemes are classified into two set-
tings: SIDH-based [26] and CSIDH-based [9]. There are several SIDH-based AKE
schemes [19, 21, 36] from specific SIDH-related assumptions. Also, some generic
constructions [17, 25, 43] of AKE can be instantiated from SIDH-based KEM.
On the other hand, CSIDH-based AKE schemes [20, 28, 27] are also proposed.
However, there is no known isogeny-based OS-AKE scheme.

1.2 Our Contribution

In this paper, we achieve the first post-quantum OS-AKE scheme without ran-
dom oracles. Specifically, we propose a generic construction (GC-Std) for OS-
AKE secure in the GSU model in the standard model from an IND-CCA secure
KEM and an IND-CPA secure KEM with public-key-independent-ciphertext
(PKIC-KEM) [45]. PKIC-KEM allows that a ciphertext can be generated in-
dependently from the public key, and a KEM session key can be generated with
the ciphertext, the public key, and randomness in generating the ciphertext. By
instantiating GC-Std with CSIDH-based KEM schemes, we can obtain CSIDH-
based anonymous OS-AKE in the standard model. Moreover, we also propose
a generic construction (GC-RO) for OS-AKE secure in the GSU model in the
random oracle model from an OW-CCA secure KEM and an OW-CPA secure
PKIC-KEM.

Compared with existing DH-based OS-AKE schemes [24, 6], an instantiation
of GC-Std with DH-based KEM is secure in the standard model though existing
schemes are secure in the random oracle model. For the DH-based instantiations,
please see Section 6.

Also, the existing (partially) post-quantum OS-AKE scheme [22] is secure in
the weaker model than the GSU model, and its post-quantum security is guar-
anteed only in a partial adversarial scenario. On the other hand, an instantiation
of our generic constructions with isogeny-based KEM schemes guarantees the se-
curity in the original GSU model and is fully post-quantum for any adversarial
scenario. For the isogeny-based instantiations, please see Section 7.

1.3 Key Technique

We start from the FSXY generic construction [18] of AKE (with the mutual
authentication) from KEM (see Fig.3). Since a difference between AKE and OS-
AKE is static keys for clients, it seems that the FSXY construction removing
static keys for clients works as OS-AKE. However, there are several problems in
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such a strategy. The eCK security model [34] and CK+ security model [30, 18]
for AKE allow leakage of the ESK of the test session, and the TPRF trick [18]
and the NAXOS trick [34] are known as techniques to guarantee security against
such leakage. However, since the client does not have the SSK in OS-AKE such
tricks cannot be used on the client-side. Hence, we need another solution to prove
the security.

We focus on the definition of session freshness in the GSU model. Since the
secrecy of the session key is trivially broken if all secret values of the client are
revealed, the adversary cannot reveal at least a secret value of the client. Thus,
if there is only one ESK used on the client-side, there is no need to consider
leakage on the client-side. However, the FSXY construction uses two types of
KEMs, and two randomnesses are necessary as ESKs. Our solution is to generate
two types of randomness from an ESK with a pseudo-random function (PRF),
and generate the ciphertext of each KEM from these output values of the PRF
as randomness. Then, by erasing the two randomnesses used to generate the
ciphertexts after sending the ciphertexts, the client only keeps a single ESK.
Therefore, the number of secret values used in our scheme is one on the client-
side (ESK) and two on the server-side (ESK, SSK), and thus we only need to
consider the case where (1) the SSK on the server-side is revealed and (2) the
ESK on the server-side is revealed.

There is another problem to be solved. In the GSU model, both the client
and the server need to be able to generate EPKs offline (i.e., before starting
a session). However, in the FSXY construction, the server cannot generate a
ciphertext of KEM in advance because it depends on the session-specifically
generated public key sent from the client. We solve this problem by using PKIC-
KEM. Since, in PKIC-KEM, the ciphertext can be generated independently from
the public key, the server can generate the ciphertext offline. Finally, for reducing
the computational cost of the client, we reverse the procedures of the client and
the server to generate such a ciphertext (i.e., the client generates the ciphertext
of PKIC-KEM). For more details, please see Section 5.1.

2 Security Model for OS-AKE

In this section, we introduce the GSU security model [24] by Goldberg et al. Their
model consists of the definitions of OS-AKE security and OS-anonymity, which
cover the secrecy of session keys in one-sided authentication and the anonymity
of clients, respectively.

As the notation, x ∈R X denotes that the element x is sampled uniformly
randomly from the set X.

2.1 System Model and Adversarial Capacity

Parties, key pairs, and certificates. Parties are modeled as probabilistic
polynomial-time Turing machines. Each party is activated by receiving an ini-
tialization message and returns a message defined by the protocol.
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A key pair that each party keeps is denoted in the form (x,X), where x is
the secret value and X is the public value. The key pair includes, for example,
the secret key and public key in public key cryptography, the ciphertext, and
the randomness used for encryption. There are two types of key pairs: ephemeral
key pairs that are used in a specific session and static key pairs that are used
through all sessions.

Each server owns a certificate certX = (IDS , X) that combines a public value
X and an identifier IDS as SPK, and uses it for the server authentication. When
a party owns the secret value x corresponding to the public value X, the party
is said to be the owner of the public value X.

Protocol and sessions. Each execution of the protocol is called a session,
and each session has a session identifier sid assigned to the party, where each
sid must be unique within the party. Each session is associated with a session
state containing intermediate values, and the session state of sid by party UP is
denoted by MP

state[sid]. If a session sid is executed within a party, the party is
called the owner of sid. Also, if the owner of a session completes the session by
computing the session key sk, the session is called a completed session.

Session execution. When the session sid in which party UP is the owner is
completed, the ephemeral key pair (x,X) used in the session is deleted, and UP

outputs ⊥ or (sk, pid, v⃗) as the output MP
out[sid] of the session, where sk is the

session key in the keyspace SK, pid is the peer’s identifier or anonymous symbol
“⊛”, Each vector v⃗i in v⃗ = (v⃗0, v⃗1, ...) is a vector of the public values of the
static and the ephemeral keys used in the session. For example, v⃗1 is a set of
values consisting of the public values sent by party U1. By including the public
values used as part of the output, each session can be uniquely determined. If
necessary, we use the notation MP

out[sid].sk to denote the session key of session
sid. Other output values are denoted in the same way.

Adversary. Let params be a public parameter. The adversaryA is modeled as a
probabilistic polynomial-time Turing machine, which takes params as input and
has oracle access to parties P1, . . . , Pn. A controls all communication between
users including session activation. A can interfere in party UP to execute a
specific action using the following adversary’s queries.

– Send(params, pid) → (sid,msg) : Let a party activate a session. The party
activates a new session and returns a message according to the protocol. The
input value params is defined by the protocol and includes the following.
(1) the protocol to be executed, (2) the certificate used by the party to
authenticate itself if the party is a server, (3) the certificate used by the peer
pid in the session. The pid is the identifier of the intended peer establishing
the session. When the session is intended to be with an unauthenticated
anonymous peer, the pid is a special symbol “⊛”.
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– Send(sid,msg) → msg′ : The party executes the session sid with msg and
returns the message msg′ according to the protocol.

– RevealNext→ X : A obtains a public value that is precomputed offline. The
party generates a new key pair (x,X), records it as unused, and returns the
public value X.

– Partner(X) → x : A obtains the secret value x corresponding to the public
value X used in the session. If the key pair (x,X) is recorded in the party’s
memory, it returns the secret value x.

– SessionKeyReveal(sid)→ sk : A obtains the session key of sid. It returns the
session key MP

out[sid].sk of sid if the session is completed.

In addition, A can generate public keys and certificates using the following
query.

– EstablishCertificate(IDi, X) : A registers a certificate containing the public
value X of an unused identifier IDi to all parties. A becomes the owner of
the certificate as IDi. If a party is registered by this query, we call the party
dishonest, otherwise we call it honest.

Where necessary to avoid ambiguity, we use the superscript to indicate the
party to whom the query is posed, such as SendPi(sid,msg).

Partnering. Unless a value X is the output of a Send query or the output
of a RevealNext query to some party Pi, and the adversary A has not issued
a Partner(X) query to Pi, then the adversary A is called a partner of X. If a
party generates a key pair (x,X) by a query from A or by executing a session,
we call the party a partner of X. Also, if different public values X and X ′ are
corresponding to the same secret value x, then if A is a partner of X, then A is
also regarded to be a partner of X ′.

Correctness. If a two-party key exchange protocol Π satisfies the following
conditions, Π is said to be correct.

– The adversary A relays all messages in the protocol running between the
two parties without any modification.

– If a party is activated with a Send query with pid ̸= ⊛, it will have the
correct certificate for pid.

– Both parties output the same session key sk and the same vector v⃗.
– The value pid in the output of each party matches the pid in the Send query

that was used to activate the party.

2.2 One-Sided AKE Security

For defining OS-AKE security, we need the notion of freshness.

Definition 1 (Freshness). If the following conditions are satisfied, the session
sid by party Pi is said to be OS-AKE fresh.
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1. For each vector v⃗j in MPi
out, there is at least one public value X in v⃗j such

that A is not a partner, where j ≥ 1.
2. A does not issue a SessionKeyReveal(sid) query to any party Pj, where Pj

is the owner of the certificate of MPi
out[sid].pid such that it is MPi

out[sid].v⃗ =

M
Pj

out[sid].v⃗.

The goal of the adversary A in the OS-AKE security game is to distinguish
between the true session key and a random key. Initially, A is given a set of
honest parties and makes any sequence of the queries described above. During
the experiment, A makes the following query.

– Test(i, sid∗)→ SK : Here, sid∗ must be OS-AKE fresh. If MPi
out[sid

∗].sk =⊥
or MPi

out[sid
∗].pid = ⊛, an error symbol is returned. Otherwise, it chooses

b ∈R {0, 1}. If b = 0, then it returns MPi
out[sid

∗].sk. Otherwise, it returns a
random element of SK. This query can be issued only once.

Since OS-AKE provides the one-sided authentication, the test session sid∗

is only for the session of the client-side that performs the authentication to
the server. The adversary A obtains either the session key of sid∗ or a random
key with probability 1/2 respectively. After issuing the Test query, the game
continues until A outputs b′ as a result of guessing whether the received key is
random or not. If sid∗ is OS-AKE fresh by the end and the guess of A is correct
(i.e., b = b′), then it defines A wins the game.

Definition 2 (One-sided AKE security). The advantage of the adversary A
in the above game with the OS-AKE protocol Π is defined as follows.

AdvOS−AKE
Π,κ (A) = Pr[b = b′]− 1/2

Let κ be a security parameter. For all probabilistic polynomial-time adver-
saries A, Π is one-sided AKE-secure if AdvOS−AKE

Π,κ is negligible in κ.

Remark 1. Due to the RevealNext query, this model requires the offline gen-
eration of ephemeral keys. Hence, the secret values may be stored in different
locations for each generation. For example, a static key is stored in the database,
an ephemeral key used for offline generation is stored in the storage, and another
ephemeral key used for online generation is stored in the cache. In order to cover
such a case, the leakage of each secret value is considered in OS-AKE fresh
(Definition 1).

Remark 2. As described in the second condition of the Definition 1, the test ses-
sion to be tested is the session in which sid matches between the two parties and
the server’s SSK can be revealed. Thus, the model captures weak forward se-
crecy which the adversary who does not modify the messages in the test session
cannot break the security even if SSK is revealed. It also captures the adver-
sarial arbitrary key registrant because of the EstablishCertificate query, which
allows the adversary to establish a new party with registering arbitrary certi-
fied keys. Furthermore, it also captures the known-key security because of the
SessionKeyReveal query, in which no information about the session key of the
test session is revealed if other session keys are revealed.
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2.3 One-sided Anonymity

The goal of the adversary A in the OS-anonymity game is to distinguish which
of the two clients is participating in the session. Here, instead of A querying
directly to the target party, the challenger C relays its communication. A gives
the indices i0 and i1 of the parties it is the target to identify to C. C chooses
i∗ ∈R {i0, i1} randomly and relays the message between A and Pi∗ . A guesses
i∗.

In the game, in addition to the normal queries, A can issue the following
special queries to C. The first two queries are for the activation and the commu-
nication of the test session.

– StartC(i0, i1, params, pid) → msg′ : If i0 = i1, an error symbol is returned.
Otherwise, it sets i∗ ∈R {i0, i1}, and it poses SendPi∗ (params, pid)→ (sid∗,
msg′). Then it returns msg′. This query can be issued only once.

– SendC(msg)→ msg′ : It poses SendPi∗ (sid∗,msg)→ msg′ and returnsmsg′.

The other queries that A can query to C are to leak information about the
test session sid∗.

– RevealNextC → X : It queries RevealNextPi∗ and returns the public value,
under restriction that the returned public value is not used in any session
other than the test session, and the public value generated by the adversary’s
direct queries to RevealNextPi∗ is not used in the test session.

– SessionKeyRevealC() → sk : It poses SessionKeyRevealPi∗ (sid∗) and returns
the session key sk.

– PartnerC → x : It poses PartnerPi∗ (X) and returns the secret value x, where
X is the value returned by the SendC query.

Definition 3 (One-sided anonymity). Let κ be a security parameter and
n ≥ 1. For all probabilistic polynomial-time adversaries A, the protocol Π is
one-sided anonymous if the advantage AdvOS−anon

Π,κ (A) = Pr[i∗ = i′]− 1/2 of A
wins the following game is negligible in κ.

– ExptOS−anon
Π,κ,n (A) :

• Initialize params and parties P1, . . . , Pn.
• Sets i′ ← AP1,...,Pn,C(params).
• Suppose that A poses a StartC(i0, i1, params, pid) query and the chal-
lenger C chooses i∗. If i∗ = i′ and the query of A satisfies the following
restrictions, then A wins the game.

∗ There is no SessionKeyReveal(sid∗) query to Pi0 nor Pi1 .
∗ There is no Partner(X) query to Pi0 nor Pi1 for any public value X
returned by C.

∗ There is no Send(sid∗, ·) query to Pi0 nor Pi1 .
∗ Both Pi0 and Pi1 had the same certificate for pid during the run of
the protocol for sid∗.
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The restrictions in definition 3 are to prevent A from knowing Pi∗ triv-
ially by obtaining information about the test session. For example, if i∗ = i0,
then the SessionKeyRevealPi0 (sid∗) query returns the true session key, and the
SessionKeyRevealPi1 (sid∗) query returns ⊥ because Pi1 is not participating in
sid∗. Therefore, A can determine i∗ = i0 trivially. Thus, the main restrictions in
the OS-anonymity game are that queries for Pi0 and Pi1 must be posed through
the challenger C, and the public values used in the test session must not be used
in any other session.

3 Building Blocks

3.1 Key Encapsulation Mechanism (KEM)

In this section, we show the definition of KEM.

Definition 4 (KEM). KEM consist of algorithms (KeyGen,EnCap,DeCap) as
follows.

– (ek, dk) ← KeyGen(1κ; rg) : The key generation algorithm takes 1κ and
rg ∈ RSG as input and outputs a key pair of public and secret key (ek, dk),
where κ is a security parameter and RSG is the randomness space of the key
generation algorithm.

– (K,C) ← EnCap(ek; re) : The encapsulation algorithm takes the public key
ek and re ∈ RSE as input and outputs the session key K ∈ KS and the
ciphertext C ∈ CS, where RSE is the randomness space of the encapsulation
algorithm, KS is the session key space, and CS is the ciphertext space.

– K ← DeCap(dk,C) : The decapsulation algorithm takes the secret key dk
and the ciphertext C ∈ CS as input and outputs the session key K ∈ KS.

Here, for any κ ∈ N, any public and secret key (ek, dk) ← KeyGen(1κ; rg),
and any session key and ciphertext (K,C) ← EnCap(ek; re), it is satisfied that
K ← DeCap(dk,C).

The definition of security for KEM is as follows.

Definition 5 (IND-CCA security for KEM). For any probabilistic polyno-
mial time adversary A = (A1,A2), the KEM scheme is IND-CCA secure if the
advantage Advind−cca

KEM,κ = |Pr[(ek, dk) ← KeyGen(1κ; rg); state ← AO
1 (ek); b ←R

{0, 1}; (K∗
0 , C

∗
0 )← EnCap(ek; re);K

∗
1 ∈R KS; b

′ ← AO
2 (ek, (K

∗
b , C

∗
0 ), state); b

′
=

b]− 1/2| is negligible in κ, where O is the decryption oracle.

Definition 6 (OW-CCA security for KEM). For any probabilistic polyno-
mial time adversary A = (A1,A2), the KEM scheme is OW-CCA secure if the
advantage Advow−cca

KEM,κ = |Pr[(ek, dk) ← KeyGen(1κ; rg); state ← AO
1 (ek); (K

∗,

C∗) ← EnCap(ek; re);K
′∗ ← AO

2 (ek, C
∗, state);K

′∗ = K∗]| is negligible in κ,
where O is the decryption oracle.

A KEM scheme is a κ-min-entropy KEM if for any secret key, the distribution
DKS for K defined by (K,C)← EnCap(ek; re), the distribution Dpub for public
information, and a randomness re ∈ RSE , it holds that H∞(DKS |Dpub) ≥ κ.
Here, H∞ denotes the min-entropy function.
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3.2 PKIC-KEM

In this section, we show the definition of PKIC-KEM [45] that can generate the
ciphertext independently of the public key.

Definition 7 (PKIC-KEM). PKIC-KEM consist of algorithms (wKeyGen,
wEnCapC,wEnCapK,wDeCap) as follows.

– (ek, dk) ← wKeyGen(1κ; rg) : The key generation algorithm takes 1κ and
rg ∈ RSG as input and outputs a key pair of public and secret key (ek, dk),
where κ is a security parameter and RSG is the randomness space of the key
generation algorithm.

– C ← wEnCapC(re) : The ciphertext generation algorithm takes re ∈ RSE as
input and outputs a ciphertext C ∈ CS, where RSE is the randomness space
of the encapsulation algorithm and CS is the ciphertext space.

– K ← wEnCapK(ek, C, re) : The encapsulation algorithm takes the public key
ek, the ciphertext C ∈ CS and a randomness re ∈ RSE as input, and outputs
the session key K ∈ KS, where KS is the session key space.

– K ← DeCap(dk,C): The decapsulation algorithm takes the secret key dk and
the ciphertext C ∈ CS as input and outputs the session key K ∈ KS.

For any κ ∈ N, any public and secret key (ek, dk) ← wKeyGen(1κ; rg), and
any ciphertext C ← wEnCapC(re), it is satisfied that K ← wEnCapK(ek, C, re)
and K ← wDeCap(dk,C).

The definition of security for PKIC-KEM is as follows.

Definition 8 (IND-CPA security for PKIC-KEM). For any probabilistic
polynomial time adversary A = (A1,A2), the PKIC-KEM scheme is IND-CPA

secure if the advantage Advind−cpa
PKIC−KEM,κ = |Pr[(ek, dk) ← wKeyGen(1κ; rg);

state ← A1(ek); b ←R {0, 1};C∗
0 ← wEnCapC(re);K

∗
0 ← wEnCapK(ek, C∗

0 , re);
K∗

1 ∈R KS; b
′ ← A2(ek, (K

∗
b , C

∗
0 ), state); b

′
= b]− 1/2| is negligible in κ.

Definition 9 (OW-CPA security for PKIC-KEM). For any probabilistic
polynomial time adversary A = (A1,A2), the PKIC-KEM scheme is OW-CPA
secure if the advantage Advow−cpa

PKIC−KEM,κ = |Pr[(ek, dk) ← wKeyGen(1κ; rg);

state← A1(ek);C
∗ ← wEnCapC(re);K

∗ ← wEnCapK(ek, C∗, re);K
′∗ ← A2(ek,

C∗, state);K
′∗ = K∗]| is negligible in κ.

Also, the κ-min-entropy of PKIC-KEM can be defined in the same way as
KEM.

3.3 Pseudo-Random Function

We show the definition of Pseudo-Random Function (PRF). Let κ be a security
parameter and F = {Fκ : Domκ × FSκ → Rngκ}κ be a function family with
a family of domains {Domκ}κ, a family of key spaces {FSκ}κ and a family of
ranges {Rngκ}κ.
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Public parameter : H, g,G
Static keys for US : SSKS := b, SPKS := gb

Party UC (Client) Party US (Server)

x1, x2 ←R G
gx1 , gx2

−−−−−−→ y ←R G
gy←−−−−−

SK ← H((gb)x1 · (gy)x2 , gx1 , gx2 , SK ← H((gx1)b · (gx2)y, gx1 , gx2 ,
gy, gb,Ace) gy, gb,Ace)

Fig. 1. Overview of Ace

Public parameter : H1,H2, g, p, t,X
Static keys for US : SSKS := s, SPKS := a, gs

Party UC (Client) Party US (Server)
(rC , eC)←R X ; x←R Z∗

p;

pC ← arC + teC
pC , g

x

−−−−−→ (rS , eS , e
′
S)←R X

pS ← arS + teS

k1C ← pSrC + teC
pS , α←−−−− k1S ← pCrS + te

′
S ; α← hR(k1S);

k1 = fR(k1C , α); k2 = (gs)x k1 = fR(k1S , α); k2 = (gx)s;
SK ← H1(k1, pC , pS)⊕ H2(k2, g

x, gs) SK ← H1(k1, pC , pS)⊕ H2(k2, g
x, gs)

Fig. 2. Overview of HybridOR

Definition 10 (Pseudo-Random Function). We say that function family
F = {Fκ}κ is a PRF family if for any probabilistic polynomial time distinguisher
D, AdvPRF = |Pr[1 ← DFκ(·,k)] − Pr[1 ← DRFκ(·)]| ≤ negl, where RFκ : Domκ

→ Rngκ is a truly random function.

3.4 Key-Derivation Function

Let κ be a security parameter and KDF : Salt × Dom → Rng be a function
with finite domain Dom, finite range Rng, and a space of non-secret random
salt Salt.

Definition 11 (Key-Derivation Function). We say that function KDF is a
KDF if the following condition holds for a security parameter κ. For any proba-
bilistic polynomial time adversary A and any distribution DDom over Dom with
H∞(DDom) ≥ κ, |Pr[y ∈R Rng, s ∈R Salt; 1 ← A(s, y)] − Pr[x ∈R Dom; s ∈R
Salt; y ← KDF(s, x); 1← A(s, y)]| ≤ negl.

4 Security of Ace and HybridOR in GSU Model

In this section, we revisit the security of existing OS-AKE schemes. While
ntor [24] is proved in the GSU model, other two schemes Ace [6] and Hybri-
dOR [22] are proved in an weaker model. Specifically, the security of Ace and
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HybridOR are proved under a weaker freshness setting [6] than the original one.
The weak freshness is called the double value freshness, and it requires that if
the client and the server have two secret values (I1, I2) and (J1, J2) respectively,
then the adversary cannot reveal (I1, J2) or (I2, J1). In the OS-AKE freshness
in the GSU model, the adversary is allowed to reveal such secret values. Hence,
the model that Ace and HybridOR are proved to be weaker than the GSU model.
Here, we show the definition of the double value freshness.

Definition 12 (Double value freshness [6]). We say that a session is double
value OS-AKE fresh if it is OS-AKE fresh and the following condition does not
hold.

If v⃗i is (I1, I2) and v⃗j is (J1, J2), A is not a partner of (I1, J2) nor (I2, J1).

We show that Ace is not secure in the GSU model. An overview of Ace is
shown in Fig. 1, where G is the exponent group and H is a random oracle. It uses
two ESKs x1 and x2 on the client-side, and a SSK b and an ESK y on the server-
side. By the OS-AKE freshness definition of the GSU model, the adversary can
reveal (x2, b) or (x1, y). For example, If (x2, b) is revealed, the adversary can
compute the session key as follows.

1. Obtain (x2, b) by Partner queries.
2. Obtain the EPKs (gx1 , gx2 , gy) from the communication channel.
3. Compute the session key SK ← H((gx1)b · (gy)x2 , gx1 , gx2 , gy, gb,Ace).

Next, we show that HybridOR is not secure in the GSU model. An overview
of HybridOR is shown in Fig. 2, where fR(·) is a robust extractor, hR(·) is a
randomized algorithm used to generate the signal value α, X is the error dis-
tribution of the ring-LWE problem, and H1 and H2 are random oracles. It uses
two ESKs (rC , eC) and x on the client side, and a SSK s and an ESK (eS , e

′
S)

on the server side. By the OS-AKE freshness definition of the GSU model, the
adversary can reveal ((rC , eC), s) or (x, (rS , e

′

S)). For example, If ((rC , eC), s) is
revealed, the adversary can compute the session key as follows.

1. Obtain ((rC , eC), s) by Partner queries..
2. Obtain the EPKs (gx, pC , pS , α) from the communication channel.
3. Compute the session key as follows.

(a) k1C ← pSrC + teC
(b) k1 = fR(k1C , α)
(c) k2 = (gx)s

(d) SK ← H1(k1, pC , pS)⊕ H2(k2, g
x, gs)

Therefore, Ace and HybridOR are insecure in the GSU model.

Remark 3. By applying our technique of using single randomness to produce
two randomnesses via PRFs to these schemes, we can obtain secure schemes in
the GSU model.
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Public parameter params : F,F′,PRF,KDF, s
Static keys for US : SSKS := (dkS , σS ∈ FS, σ′

S ∈ {0, 1}
κ), SPKS := ekS

Party UC (Client) Party US (Server)

rC ∈R RS; rTC ∈R RS
′

(CC ,KC)← EnCap(ekS ; rC)

(ekT , dkT )← wKeyGen(1κ; rTC)
CC , ekT−−−−−−→

rS ∈R {0, 1}κ; r′S ∈R FS
rST ← F(σS , rS)⊕ F′(r′S , σ

′
S)

CT←−−−−−− (CT ,KT )← wEnCap(ekT ; rST )

KT ← wDeCap(CT , dkT ) KC ← DeCap(dkS , CC)

K
′
C ← KDF(s,KC); K

′
T ← KDF(s,KT ) K

′
C ← KDF(s,KC); K

′
T ← KDF(s,KT )

sid := (IDS , (CC , ekT ), CT ) sid := (IDS , (CC , ekT ), CT )

SK = PRF(sid,K
′
C)⊕ PRF(sid,K

′
T ) SK = PRF(sid,K

′
C)⊕ PRF(sid,K

′
T )

MC
out[sid] MS

out[sid]
:= (SK, IDS , (CC , ekT ), (CT , ekS)) := (SK,⊛, (CC , ekT ), (CT , ekS))

Fig. 3. FSXY-based OS-AKE scheme

5 Our Generic Constructions

In this section, we propose two generic constructions of OS-AKE from KEM
in the standard model (GC-Std) and the random oracle model (GC-RO). GC-
Std is based on IND-CCA secure KEM and IND-CPA secure PKIC-KEM, and
GC-RO is based on OW-CCA secure KEM and OW-CPA secure PKIC-KEM.
Our constructions are secure in the GSU model. The protocols of GC-Std and
GC-RO are shown in Fig. 4 and 5, respectively.

5.1 Construction Idea

As discussed in Section 1.3, our generic construction are based on the FSXY
construction [18] which is CK+ secure AKE scheme. Since a client does not
have any static keys in OS-AKE, we show a naive FSXY-based OS-AKE pro-
tocol in Fig. 3 by simply removing static keys and related computations of
the client, where (KeyGen,EnCap,DeCap) is an IND-CCA secure KEM and
(wKeyGen,wEnCap,wDeCap) is an IND-CPA secure KEM. The CK+ security
model allows leakage of the ephemeral key of the test session, and the TPRF
trick is used to guarantee security against such a leakage such that rST ←
F(rS , σS) ⊕ F′(σ′

S , r
′
S). Naturally, OS-AKE provides one-sided authentication,

and clients that need to guarantee anonymity cannot have static key pairs, and
thus the TPRF trick is not available on the client-side. Furthermore, though
all ESKs (rC , rTC) are revealed at once by a query to the client in the CK+
model and the freshness definition prohibits leakage of ESKs if there is no SSK,
the Partner query in the GSU model reveals the secret value x for the public
value X and the OS-AKE freshness definition allows leakage of one of ESKs.
For example, the session key can be computed if the adversary reveals an ESK
rTC of the client and the SSK dkS of the server (such a leakage is allowed in the
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GSU model) because the adversary can compute dkT from rTC and then can
decrypt both CC and CT . Therefore, it is not trivial to construct an OS-AKE
secure scheme from the FSXY construction.

Also, in the GSU model, for RevealNext queries, the ephemeral keys used by
both parties in each session must be able to be generated offline in advance. On
the other hand, in the FSXY-based construction, the server needs to generate the
EPK after receiving the client’s message, and thus the IND-CPA secure KEM is
not sufficient for OS-AKE.

For the problem of leakage on the client-side, we propose a technique such
that two types of randomness are generated from a single ESK. According to the
definition of OS-AKE freshness, if there is only one ESK used on the client-side,
there is no need to consider leakage on the client-side. However, the FSXY-based
construction requires the generation of ciphertext of a session-specific public key
of IND-CCA KEM and IND-CPA KEM at the client-side, thus two types of
randomness are required. We generate two types of randomness from a single
ESK through a PRF, and generate the ciphertext of each KEM from these
randomnesses. Concretely, we construct the PRF F to obtain two outputs from
one randomness by using a PRF F′ and two PRFs F

′

0, F
′

1 having each range is
each randomness space of KEMs. Then, two randomness (r0||r1) ← F(IDS , r)
is computed as (r0||r1) = (F′

0(IDS ,F
′(0, r))||F′

1(IDS ,F
′(1, r))). In this way, two

types of randomness are generated from one randomness. Here, if only F′ is used
in this technique, the OS-AKE security cannot be reduced to the CCA security or
the CPA security. For example, in a game of the reduction to the CCA security,
r
′∗
1 is masked first, but the simulator needs to simultaneously input the correct
value of r∗C into F′ to generate r′0. This case cannot be simulated correctly because
the simulator does not have r∗C . Therefore, the output of F

′ is passed through F′
0

and F′
1 to be enabled for these reductions. We prove that our constructions are

still secure under such a randomness generation in Section 5.2. Then, by erasing
the two randomnesses used to generate the ciphertext and the session-specific
public key after sending the client’s message, the target of the Partner query can
be one ESK that was generated first. Therefore, the number of secret values can
be one on the client-side (ESK) and two on the server-side (ESK, SSK).

Next, for the problem of the offline generation of EPKs, we use an IND-CPA
secure PKIC-KEM instead of IND-CPA secure KEM. Since the PKIC-KEM can
generate ciphertexts independently of the public key, it is possible to generate
the EPK for each session before starting the session. Specifically, the server can
generate CT before starting the session by using wEnCapC algorithm of PKIC-
KEM.

Finally, we reverse the procedures of the client and the server to generate
the public key ekT and the ciphertext CT of PKIC-KEM. If the client generates
ekT and the server generates CT as the FSXY construction, the client must
compute wKeyGen again before decrypting CT because the client must erase
dkT after sending the client’s message. Since the computational cost for the
client is increased by wKeyGen, and it is not efficient, we reverse the procedures.



Title Suppressed Due to Excessive Length 15

Public parameter params : F′,F′
0,F

′
1,PRF,KDF, s

Static keys for US : SSKS := dkS , SPKS := ekS , certekS
= (IDS , ekS)

Party UC (Client) Party US (Server)

verify ekS using certekS

rC ∈R FS
r′0 ← F′(0, rC))
r′1 ← F′(1, rC))

r0 ← F′
0(IDS , r

′
0)

r1 ← F′
1(IDS , r

′
1)

(C1,K1)← EnCap(ekS ; r1) rS ∈R RScpaG
C0 ← wEnCapC(r0) (ekT , dkT )← wKeyGen(rS)
erase (r′0, r

′
1, r0, r1) erase rS

C0, C1, IDS−−−−−−−−−→
ekT←−−−−−−−−

r′0 ← F′(0, rC))
r0 ← F′

0(IDS , r
′
0) K1 ← DeCap(dkS , C1)

K0 ← wEnCapK(ekT , C0; r0) K0 ← wDeCap(dkT , C0)

K
′
1 ← KDF(s,K1); K

′
0 ← KDF(s,K0) K

′
1 ← KDF(s,K1); K

′
0 ← KDF(s,K0)

sid := (IDS , C0, C1, ekT ) sid := (IDS , C0, C1, ekT )

SK = PRF(sid,K
′
1)⊕ PRF(sid,K

′
0) SK = PRF(sid,K

′
1)⊕ PRF(sid,K

′
0)

erase (rC , r′0, r0) erase dkT
MC

out[sid] MS
out[sid]

:= (SK, IDS , (C0, C1), (ekT , ekS)) := (SK,⊛, (C0, C1), (ekT , ekS))

Fig. 4. Generic construction in the standard model (GC-Std)

If the client generates CT and the server generates ekT , then the client does not
need to compute wKeyGen again.

In the proof of the proposed construction, by the definition of freshness, the
ESK on the client-side is not revealed, and thus we need to consider the case
where (1) the SSK on the server-side is revealed and (2) the ESK on the server-
side is revealed. In (1), since the ESK at the server-side is not compromised,
the adversary cannot compute K0 which is the session key of the IND-CPA
secure PKIC-KEM. Similarly, in (2), since the SSK at the server-side is not
compromised, the adversary cannot compute K1 which is the session key of the
IND-CCA secure KEM. Thus, the proposed construction satisfies the OS-AKE
security. Moreover, since the ESK used by the client-side in each session is only
one randomness independent to the client’s ID, no information about the client
can be obtained from the ciphertext. Hence, the proposed construction satisfies
the OS-anonymity.

5.2 OS-AKE in Standard Model

The protocol in the standard model consists of an IND-CCA secure KEM
(KeyGen,EnCap,DeCap) and an IND-CPA secure PKIC-KEM (wKeyGen,
wEnCapC,wEnCapK,wDeCap) as follows.

Protocol.
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Public Parameters : Let κ be a security parameter, F
′
: {0, 1}κ × FS → FS,

F
′

0 : {0, 1}κ × FS → RScpaE , F
′

1 : {0, 1}κ × FS → RSccaE , and PRF : {0, 1}∗ ×
FS → {0, 1}κ be pseudo-random functions. Also, let KDF : Salt × KS → FS
be a key derivation function and it chooses s ∈R Salt, where RScpaE and RScpaG

are randomness spaces of the encapsulation algorithm and the key generation
algorithm of IND-CPA secure PKIC-KEM, RSccaE and RSccaG are randomness
spaces of the encapsulation algorithm and the key generation algorithm of IND-
CCA secure KEM, FS is a key space of the pseudo-random functions (|FS| = κ),
KS is a session key space of KEM, and Salt is a salt space of the key derivation
functions. These are provided as part of the public parameters.

Secret and Public Keys : Party US selects a randomness r ∈R RSccaG , computes
(ekS , dkS) ← KeyGen(1κ; r) and sets certekS

= (IDS , ekS) as a certificate for
US . The static key pair for party US is (ekS , dkS).

Key Exchange : Let US which has a static key pair (ekS , dkS) be a server, and
UC be a client. When UC is initialized as a client, it obtains the certificate
certekS

= (IDS , ekS) of US .

1. UC verifies the server using certekS
= (IDS , ekS). UC chooses an unused

ephemeral key pair ((C0, C1), rC) or chooses a ephemeral secret key rC ∈R
FS and sets r′0 ← F′(0, rC)), r′1 ← F′(1, rC)), r0 ← F′

0(IDS , r
′
0), and

r1 ← F′
1(IDS , r

′
1). Also, UC computes (C1,K1) ← EnCap(ekS ; r1), C0 ←

wEnCapC(r0), and erases (r0, r1). Then, UC sends (C0, C1, IDS) to US .
2. Upon receiving (C0, C1, IDS), US chooses an unused ephemeral key pair

(ekT , dkT ) or chooses a randomness rS ∈R RScpaG and computes (ekT , dkT )←
wKeyGen(rS) to generate a key pair, and sends ekT to UC . Also, US com-
putes K1 ← DeCap(dkS , C1), K0 ← wDeCap(dkT , C0), K

′

1 ← KDF(s,K1),
and K

′

0 ← KDF(s,K0). US sets sid = (IDS , C0, C1, ekT ) and computes the
session key SK = PRF(sid,K

′

1) ⊕ PRF(sid,K
′

0). Then, US erases (rS , dkT )
and outputs (SK,⊛, (C0, C1), (ekT , ekS)).

3. Upon receiving ekT , UC sets r′0 ← F′(0, rC)), r0 ← F′
0(IDS , r

′
0), computes

K0 ← wEnCapK(ekT , C0, r0), K
′

1 ← KDF(s,K1), and K
′

0 ← KDF(s,K0).
UC sets sid = (IDS , C0, C1, ekT ) and computes the session key SK =
PRF(sid,K

′

1)⊕PRF(sid,K
′

0). Then, UC erases (rC , r0, r1) and outputs (SK,
IDS , (C0, C1), (ekT , ekS)).

Remark 4. Existing OS-AKE schemes contain the explicit authentication of the
server with the key confirmation by MAC. As discussed in Section 1.1, implicit
authentication is sufficient to satisfy the security in the GSU model. It is trivial
to be able to add the explicit authentication to our construction by the same
key confirmation step.

Security. We show the security of the proposed scheme in the standard model.
An intuition of the proof is shown in Section 5.1.
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Theorem 1. If (KeyGen,EnCap,DeCap) is an IND-CCA secure and κ-min-entropy
KEM, (wKeyGen,wEnCapC,wEnCapK,wDeCap) is an IND-CPA secure and κ-
min-entropy PKIC-KEM, F′, F′

0, F′
1, and PRF are pseudo-random functions,

and KDF is a key derivation function, GC-Std is OS-AKE secure.

Proof. Suc denotes the event that A wins. We consider the following events that
cover all cases of the behavior of A.
-E1: The ESK dk∗T of the server is revealed.
-E2: The SSK dk∗S of the server is revealed.

Let κ be a security parameter. In the OS-AKE security game, sid∗ is a session
ID of the test session, and the maximum number of parties is n and the maximum
ℓ sessions are activated. Let the adversary A be a probabilistic polynomial-time
adversary in κ, and construct the IND-CCA or IND-CPA adversary S and a
distinguisher D from A that performs the OS-AKE game.

To finish the proof, we investigate events Ei ∧ Suc (i = 1, 2) that cover
all cases of event Suc. Due to the page limitation, we give the proof of event
E1 ∧ Suc, and the proof of the other event is given in Appendix A.

Event E1 ∧ Suc : We change the interface of oracle queries and the computa-
tion of the session key. These instances are gradually changed over eight hybrid
experiments, depending on specific subcases. In the last hybrid experiment, the
session key in the test session does not contain information of the bit b. Thus, the
adversary clearly only outputs a random guess. We denote these hybrid experi-
ments by H0, . . . ,H7, and the advantage of the adversary A when participating
in experiment Hi by Adv(A,Hi).

Hybrid experiment H0: This experiment denotes the real experiment for OS-
AKE security and in this experiment, the environment for A is as defined in the
protocol. Thus, Adv(A,H0) is the same as the advantage of the real experiment.

Hybrid experiment H1: This experiment aborts when a session ID is matched
with multiple sessions.

Because of κ-min entropy KEM, the probability of outputting the same ci-
phertext from different randomness in each session is negligible. Thus, |Adv(A,
H1)−Adv(A,H0)| ≤ negl.

Hybrid experiment H2: This experiment chooses a party U∗
S and a party U∗

C ,
an integer i∗ ∈ [1, ℓ] in advance, and fixes parties and the session for the Test
query. If A queries a session other than the i∗-th of client U∗

C (partner is U∗
S) in

Test query, it aborts the experiment.
The probability that the guess of the test session is correct is 1/n2ℓ, thus

Adv(A,H2) ≥ 1/n2ℓ ·Adv(A,H1).

Hybrid experiment H3: This experiment changes the way of the computation
of r′∗0 and r′∗1 in the i∗-th session of U∗

C (partner is U∗
S). Instead of r′∗0 ← F′(0, r∗C)

and r′∗1 ← F′(1, r∗C), it is changed as r′∗0 ∈R FS and r′∗1 ∈R FS.
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We construct a distinguisher D0 that distinguishes if F∗ is either a pseudo-
random function F′ or a random function RF from A in H2 or H3. D0 performs
the following steps.

[setup]
D0 is given a pseudo-random function F

′
: {0, 1}κ × FS → FS. Then, D0

chooses pseudo-random functions F
′

0 : {0, 1}κ × FS → RScpaE , F
′

1 : {0, 1}κ ×
FS → RSccaE , PRF : {0, 1}∗ × FS → {0, 1}κ, a key derivation function KDF :
Salt×KS → FS, and s ∈R Salt.
D0 generates (eki, dki) for each server Ui including (ek

∗
S , dk

∗
S) of U

∗
S according

to the protocol, publishes eki, and sets certeki
= (IDi, eki) as a certificate for

each server Ui. D0 poses 0 and 1 to the oracle F∗, receives r′∗1 and r′∗0 as a
challenge, and computes r∗0 ← F′

0(IDS , r
′∗
0 ), r∗1 ← F′

1(IDS , r
′∗
1 ), (C∗

1 ,K
∗
1 ) ←

EnCap(ek∗S ; r
∗
1), and C∗

0 ← wEnCapC(r∗0) for the i∗-th session of U∗
C .

[simulation]
D0 keeps the list LSK that contains queries and answers of SessionKeyReveal.

D0 simulates oracle queries by A as follows.

1. Send(params, pid) : If the session is the i∗-th session of U∗
C , then D0 sets

K1 = K∗
1 , returns (C

∗
0 , C

∗
1 , ID

∗
S), and records (Π, ID = pid, (C∗

0 , C
∗
1 ), (∗, ∗), ∗,

K1) in LSK . Otherwise, D0 chooses ((C0, C1), rC) from the unused key pairs
and returns it, or computes ((C0, C1), rC) according to the protocol and
returns it, and records (Π, ID = pid, (C0, C1), (∗, ∗), ∗,K1) in LSK .

2. Send(sid,msg = (C0, C1, id)) : If msg = (C∗
0 , C

∗
1 , ID

∗
S), then D0 sets K1 =

K∗
1 , chooses (ek∗T , dk

∗
T ) from the unused key pairs and returns it, or gener-

ates (ek∗T , dk
∗
T ) according to the protocol and return it, computes SK, and

records (Π, ID = id, (C∗
0 , C

∗
1 ), (ek

∗
T , ek

∗
S),K0,K1) and SK as a completed

session in LSK . Otherwise, D0 chooses (ekT , dkT ) from the unused key pairs
and returns it, or generates ekT according to the protocol and returns it,
computes SK, and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and
SK as a completed session in LSK .

3. Send(sid,msg = ekT ) : If the session is the i∗-th session of U∗
C , D0 computes

K∗
0 ← wEnCapK(ekT , C

∗
0 , r

∗
0), sets K0 = K∗

0 , computes SK according to the
protocol, and records (Π, ID = id, (C∗

0 , C
∗
1 ), (ekT , ekS),K0,K1) and SK as

a completed session in LSK . Otherwise, D0 computes SK according to the
protocol and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and SK as a
completed session in LSK .

4. SessionKeyReveal(sid) :
(a) If sid is not completed, then D0 returns error.
(b) Otherwise, D0 returns SK as recorded in LSK .

5. Partner(X) : D0 returns the secret value x of the public value X as defined.
6. RevealNext() : D0 generates a key pair (ESK,EPK), keeps it as unused, and

returns the EPK to A as defined.
7. EstablishCertificate(IDi, X) : D0 registers the public key of IDi as X accord-

ing to the protocol, and marks Ui as a dishonest party.
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8. Test(sid) : D0 returns as defined.

9. A outputs a guess b
′ ∈ {0, 1}. If A outputs b

′
= 0, then D0 outputs that

F∗ = F′, otherwise D0 outputs that F∗ = RF.

[Analysis]

For A, the simulation by D0 is the same as the experiment H2 if F∗ = F′.
Otherwise, the simulation by D0 is the same as the experiment H3. Thus, since
the advantage of D0 is negligible due to the security of the PRF, |Adv(A,H3)−
Adv(A,H2)| ≤ negl.

Hybrid experiment H4: This experiment changes the way of the computation
of r∗1 in the i∗-th session of U∗

C (partner is U∗
S). Instead of r∗1 ← F′

1(ID
∗
S , r

′
1), it

is changed as r∗1 ∈R RS
cca
E .

We construct a distinguisher D1 that distinguishes if F∗ is either a pseudo-
random function F′

1 or a random function RF from A in H3 or H4. D1 performs
the following steps.

[setup]

D1 is given a pseudo-random function F
′

1 : {0, 1}κ×FS → RSccaE . Then, D1

chooses pseudo-random functions F
′
: {0, 1}κ ×FS → FS, F′

0 : {0, 1}κ ×FS →
RScpaE , PRF : {0, 1}∗ × FS → {0, 1}κ, a key derivation function KDF : Salt ×
KS → FS, and s ∈R Salt.

D1 generates (eki, dki) for each server Ui including (ek
∗
S , dk

∗
S) of U

∗
S according

to the protocol, publishes eki, and sets certeki
= (IDi, eki) as a certificate for

each server Ui. D1 poses IDS to the oracle F∗, receives r∗1 as a challenge, and
computes (C∗

1 ,K
∗
1 )← EnCap(ek∗S ; r

∗
1), and C∗

0 ← wEnCapC(r∗0) by using r′∗0 ∈R
FS according to the protocol for the i∗-th session of U∗

C .

[simulation]

D1 keeps the list LSK that contains queries and answers of SessionKeyReveal.
D1 simulates oracle queries by A as follows.

1. Send(params, pid) : If the session is the i∗-th session of U∗
C , then D1 sets

K1 = K∗
1 , returns (C

∗
0 , C

∗
1 , ID

∗
S), and records (Π, ID = pid, (C∗

0 , C
∗
1 ), (∗, ∗), ∗,

K1) in LSK . Otherwise, D1 chooses ((C0, C1), rC) from the unused key pairs
and returns it, or computes ((C0, C1), rC) according to the protocol and
returns it, and records (Π, ID = pid, (C0, C1), (∗, ∗), ∗,K1) in LSK .

2. Send(sid,msg = (C0, C1, id)) : If msg = (C∗
0 , C

∗
1 , ID

∗
S), then D1 sets K1 =

K∗
1 , chooses (ek∗T , dk

∗
T ) from the unused key pairs and returns it, or gener-

ates (ek∗T , dk
∗
T ) according to the protocol and return it, computes SK, and

records (Π, ID = id, (C∗
0 , C

∗
1 ), (ek

∗
T , ek

∗
S),K0,K1) and SK as a completed

session in LSK . Otherwise, D1 chooses (ekT , dkT ) from the unused key pairs
and returns it, or generates ekT according to the protocol and returns it,
computes SK, and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and
SK as a completed session in LSK .
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3. Send(sid,msg = ekT ) : If the session is the i∗-th session of U∗
C , D1 computes

K∗
0 ← wEnCapK(ek∗T , C

∗
0 , r

∗
0), sets K0 = K∗

0 , computes SK according to the
protocol, and records (Π, ID = id, (C∗

0 , C
∗
1 ), (ekT , ekS),K0,K1) and SK as

a completed session in LSK . Otherwise, D1 computes SK according to the
protocol and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and SK as a
completed session in LSK .

4. SessionKeyReveal(sid) :
(a) If sid is not completed, then D1 returns error.
(b) Otherwise, D1 returns SK as recorded in LSK .

5. Partner(X) : D1 returns the secret value x of the public value X as defined.
6. RevealNext() : D1 generates a key pair (ESK,EPK), keeps it as unused, and

returns the EPK to A as defined.
7. EstablishCertificate(IDi, X) : D1 registers the public key of IDi as X accord-

ing to the protocol, and marks Ui as a dishonest party.
8. Test(sid) : D1 returns as defined.
9. A outputs a guess b

′ ∈ {0, 1}. If A outputs b
′
= 0, then D1 outputs that

F∗ = F′
1, otherwise D1 outputs that F∗ = RF.

[Analysis]
For A, the simulation by D1 is the same as the experiment H3 if F∗ = F′

1.
Otherwise, the simulation by D1 is the same as the experiment H4. Thus, since
the advantage of D1 is negligible due to the security of the PRF, |Adv(A,H4)−
Adv(A,H3)| ≤ negl.

Hybrid experiment H5: This experiment changes the way of computation of
K∗

1 on the client side in the i∗-th session of U∗
C . Instead of computing (C∗,K∗

1 )←
EnCap(ek∗S , r

∗
1), it is changed as K∗

1 ∈R KScca.
We construct an IND-CCA adversary S from A in H4 or H5. The S performs

the following steps.

[init]
S receives ek∗S from the challenger as a challenge.

[setup]
S chooses pseudo-random functions F

′
: {0, 1}κ × FS → FS, F′

0 : {0, 1}κ ×
FS → RScpaE , F

′

1 : {0, 1}κ × FS → RSccaE , PRF : {0, 1}∗ × FS → {0, 1}κ, a key
derivation function KDF : Salt×KS → FS, and s ∈R Salt.
S receives (K∗

b , C
∗
1 ) as a challenge and sets C1 = C∗

1 for the i∗-th session of
U∗
C . Also, S generates (eki, dki) for each server Ui other than US , publishes eki,

and sets certeki
= (IDi, eki) as a certificate for each server Ui.

[simulation]
S keeps the list LSK that contains queries and answers of SessionKeyReveal.

S simulates oracle queries by A as follows.

1. Send(params, pid) : If the session is the i∗-th session of U∗
C , then S computes

C∗
0 ← wEnCapC(r∗0) where r∗0 ∈R RS

cpa
E , sets K1 = K∗

b , C1 = C∗
1 , and C0 =
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C∗
0 , returns (C0, C1, ID

∗
S), and records (Π, ID = pid, (C0, C1), (∗, ∗), ∗,K1)

in LSK . Otherwise, S chooses ((C0, C1), rC) from the unused key pairs and
returns (C0, C1), or computes ((C0, C1), rC) according to the protocol and
returns (C0, C1), and records (Π, ID = pid, (C0, C1), (∗, ∗), ∗,K1) in LSK .

2. Send(sid,msg = (C0, C1, id)) : If id = ID∗
S and C1 ̸= C∗

1 , S poses C1 to the
decryption oracle to obtain K1, chooses (ekT , dkT ) from the unused key pairs
and returns ekT , or generates (ekT , dkT ) and returns ekT , computes SK,
and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and SK as a com-
pleted session in LSK . Also, else if id = ID∗

S and C1 = C∗
1 , S sets K1 = K∗

b ,
chooses (ek∗T , dk

∗
T ) from the unused key pairs and returns it, or generates

(ek∗T , dk
∗
T ) according to the protocol and returns it, computes SK, and

records (Π, ID = id, (C0, C1), (ek
∗
T , ek

∗
S),K0,K1) and SK as a completed

session in LSK . Otherwise, S chooses (ekT , dkT ) from the unused key pairs
and returns it, or generates (ekT , dkT ) according to the protocol and returns
it, computes SK, and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and
SK as a completed session in LSK .

3. Send(sid,msg = ekT ) : S computes SK according to the protocol and
records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and SK as a completed
session in LSK .

4. SessionKeyReveal(sid) :
(a) If sid is not completed, then S returns error.
(b) Otherwise, S returns SK as recorded in LSK .

5. Partner(X) : S returns the secret value x of the public value X as defined.
6. RevealNext() : S generates a key pair (ESK,EPK), keeps it as unused, and

returns the EPK to A as defined.
7. EstablishCertificate(IDi, X) : S registers the public key of IDi asX according

to the protocol, and marks Ui as a dishonest party.
8. Test(sid) : S returns as defined.
9. A outputs a guess b

′ ∈ {0, 1}. If A outputs b
′
, then S outputs b

′
.

[Analysis]
For A, the simulation by S is same the as the experiment H4 if the challenge

is (C∗
1 ,K

∗
0 ). Otherwise, the simulation by S is same the as the experiment H5.

Thus, since the advantage of S is negligible due to the security of the IND-CCA
secure KEM, |Adv(A,H5)−Adv(A,H4)| ≤ negl.

Hybrid experiment H6: This experiment changes the way of the computation
of the K

′∗
1 in the i∗-th session of U∗

C . Instead of computing K
′∗
1 ← KDF(s,K∗

1 ),

it is changed as choosing K
′∗
1 ∈R FS.

Since K∗
1 is randomly chosen in H5, it has sufficient min-entropy because the

KEM is κ-min-entropy KEM. Thus, by the definition of the KDF, |Adv(A,H6)−
Adv(A,H5)| ≤ negl.

Hybrid experiment H7: This experiment changes the way of the computation
of SK in the i∗-th session of U∗

C . Instead of computing SK = PRF(sid,K1) ⊕
PRF(sid,K0), it is changed as SK = x⊕ PRF(sid,K0), where x ∈R {0, 1}κ.
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We construct a distinguisher D2 that distinguishes if F∗ is either a pseudo-
random function PRF or a random function RF from A inH6 orH7. D2 performs
the following steps.

[setup]

D2 is given a pseudo-random function PRF : {0, 1}∗×FS → {0, 1}κ. Then,D2

chooses pseudo-random functions F
′
: {0, 1}κ ×FS → FS, F′

0 : {0, 1}κ ×FS →
RScpaE , F

′

1 : {0, 1}κ × FS → RSccaE , PRF : {0, 1}∗ × FS → {0, 1}κ, a key
derivation function KDF : Salt×KS → FS, and s ∈R Salt.

D2 generates (eki, dki) for each server Ui including (ek
∗
S , dk

∗
S) of U

∗
S according

to the protocol, publishes eki, and sets certeki
= (IDi, eki) as a certificate for

each server Ui.

[simulation]

D2 keeps the list LSK that contains queries and answers of SessionKeyReveal.
D2 simulates oracle queries by A as follows.

1. Send(params, pid) : If the session is the i∗-th session of U∗
C , then D2 com-

putes (C∗
1 ,K

∗
1 ) ← EnCap(ek∗S ; r

∗
1) and C∗

0 ← wEnCapC(r∗0), where r∗0 ←
F′
0(ID

∗
S , r

′∗
0 ) and r∗1 ∈R RS

cca
E , returns (C∗

0 , C
∗
1 , ID

∗
S), and records (Π, ID =

id, (C∗
0 , C

∗
1 ), (∗, ∗), ∗,K∗

1 ) in LSK . Otherwise, D2 chooses ((C0, C1), rC) from
the unused key pairs and returns (C0, C1), or computes ((C0, C1), rC) accord-
ing to the protocol and returns (C0, C1), and records (Π, ID = id, (C0, C1), (∗,
∗), ∗,K∗

1 ) in LSK .

2. Send(sid,msg = (C0, C1, id)) : If msg = (C∗
0 , C

∗
1 , ID

∗
S), then D2 chooses

(ek∗T , dk
∗
T ) from the unused key pairs and returns it, or generates (ek∗T , dk

∗
T )

according to the protocol and returns it. Also, D2 sets sid according to the
protocol, poses it to the oracle (PRF or RF), obtains x ∈ {0, 1}κ, computes
SK∗ = x⊕PRF(sid,K0), and records (Π, ID = id, (C∗

0 , C
∗
1 ), (ek

∗
T , ek

∗
S)) and

SK∗ as a completed session in LSK . Otherwise, D2 chooses (ekT , dkT ) from
the unused key pairs and returns ekT , or generates (ekT , dkT ) according to
the protocol and returns ekT . Also, D2 computes SK and records (Π, ID =
id, (C0, C1), (ekT , ekS)) and SK as a completed session in LSK .

3. Send(sid,msg = ekT ) : If the session is the i∗-th session of U∗
C , then D2

sets sid according to the protocol, poses it to the oracle (PRF or RF), ob-
tains x ∈ {0, 1}κ, computes SK∗ = x⊕ PRF(sid, k0), and records (Π, ID =
id, (C0, C1), (ekT , ekS)) and SK∗ as a completed session in LSK . Other-
wise, D2 computes SK according to the protocol and records (Π, ID =
id, (C0, C1), (ekT , ekS)) and SK as a completed session in LSK .

4. SessionKeyReveal(sid) :

(a) If sid is not completed, then D2 returns error.

(b) Otherwise, D2 returns SK as recorded in LSK .

5. Partner(X) : D2 returns the secret value x of the public value X as defined.

6. RevealNext() : D2 generates a key pair (ESK,EPK), keeps it as unused, and
returns the EPK to A as defined.
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7. EstablishCertificate(IDi, X) : D2 registers the public key of IDi as X accord-
ing to the protocol, and marks Ui as a dishonest party.

8. Test(sid) : D2 returns as defined.
9. A outputs a guess b

′ ∈ {0, 1}. If A outputs b
′
, then D2 outputs b

′
.

[Analysis]
For A, the simulation by D2 is the same as the experiment H6 if F∗ = PRF.

Otherwise, the simulation by D2 is the same as the experiment H7. Thus, since
the advantage of D2 is negligible due to the security of PRF, |Adv(A,H7) −
Adv(A,H6)| ≤ negl.

InH7, the session key in the test session is perfectly randomized. This givesA
no information from the Test query, therefore Adv(A,H7) = 0 and Pr[E1∧Sec] =
negl.

⊓⊔

Theorem 2. In the standard model, GC-Std is one-sided anonymous.

Proof. We proceed by introducing another experiment, in which cannot win more
than random guessing. In this new experiment, the choice of i∗ is independent
of the behavior of the rest of the system. Then, we show that no adversary can
distinguish this new experiment from the original experiment, thereby showing
the OS-anonymity of the protocol.

ExptOS−anon′

GC−Std (A) is the same experiment as ExptOS−anon
GC−Std (A) except for the

following oracle used by the challenger C.

– Start′(i0, i1, params, pid = ID∗
S)→ msg′:

1. If i0 = i1, then abort.
2. Set i∗ ←R {i0, i1}.
3. Set ID∗ ← ID∗

S .
4. Choose ((C∗

0 , C
∗
1 ), r

∗
C) from the unused key pairs and returns (C∗

0 , C
∗
1 , ID

∗).
– Send′(sid,msg = ek∗T ):

1. Compute r′∗0 ← F′(0, r∗C)) and r∗0 ← F′
0(IDS , r

′∗
0 )

2. Compute K∗
0 ← wEnCapK(ek∗T , C

∗
0 , r

∗
0).

3. Compute SK according to the protocol.
– SessionKeyReveal′()→ SK: If the test session is a completed session, return

SK.
– Partner′(C∗) → r∗C : Return the secret value r∗C corresponding to C∗.
– RevealNext′ → X: Return the future public value X and record it as unused.

Since all messages computed in ExptOS−anon′

GC−Std (A) are independent of the
choice of i∗, the adversary A has no advantage, thus the probability that A
wins the game is as follows.

Pr[ExptOS−anon′

GC−Std (A) = win] = 1/2 (1)

Also, the distribution of messages returned by the challenger in ExptOS−anon′

GC−Std (A)
is the same as that returned in ExptOS−anon

GC−Std (A). Furthermore, messages from
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Public parameter params : H0,H1,H
Static keys for US : SSKS := dkS , SPKS := ekS , certekS = (IDS , ekS)

Party UC (Client) Party US (Server)

verify ekS using certekS

rC ∈R {0, 1}κ
r0 ← H0(rC)
r1 ← H1(rC)

(C1,K1)← EnCap(ekS ; r1) rS ∈R RScpa
G

C0 ← wEnCapC(r0) (ekT , dkT )← wKeyGen(rS)
erase (r0, r1) erase rS

C0, C1, IDS−−−−−−−−−→
ekT←−−−−−−

r0 ← H0(rC) K1 ← DeCap(dkS , C1)
K0 ← wEnCapK(ekT , C0, r0) K0 ← wDeCap(dkT , C0)

sid := (IDS , C0, C1, ekT ) sid := (IDS , C0, C1, ekT )
SK = H(sid,K0,K1) SK = H(sid,K0,K1)

erase (rC , r0) erase dkT
MC

out[sid] MS
out[sid]

:= (SK, IDS , (C0, C1), (ekT , ekS)) := (SK,⊛, (C0, C1), (ekT , ekS))

Fig. 5. Generic construction in the random oracle model (GC-RO)

all parties except Pi0 and Pi1 are unchanged. For messages from Pi0 and Pi1

in ExptOS−anon′

GC−Std (A), all queries return messages of the same distribution as in

ExptOS−anon
GC−Std (A).
Here, queries that reveal information about whether Pi0 or Pi1 participated

in the test session are prohibited by the definition. For example, A is prohibited
from using a SessionKeyReveal(sid) query to Pi0 to find out if Pi0 has the session
key for the test session.

Thus, A cannot distinguish between the two games.

Pr[ExptOS−anon′

GC−Std (A) = win] = Pr[ExptOS−anon
GC−Std (A) = win] (2)

From equations (1) and (2), the scheme has one-sided anonymity. ⊓⊔

5.3 OS-AKE in Random Oracle Model

The protocol in the random oracle model consists of an OW-CCA secure KEM
(KeyGen,EnCap,DeCap) and an OW-CPA secure PKIC-KEM (wKeyGen,
wEnCapC,wEnCapK,wDeCap) as follows.

Protocol.
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Public Parameters : Let κ be a security parameter, and H0 : {0, 1}∗ → RScpaE ,
H1 : {0, 1}∗ → RSccaE , H : {0, 1}∗ → {0, 1}κ be hash functions, where RScpaE

and RScpaG are randomness spaces of the encapsulation algorithm and the key
generation algorithm of OW-CPA secure PKIC-KEM, RSccaE and RSccaG are ran-
domness spaces of the encapsulation algorithm and the key generation algorithm
of OW-CCA secure KEM. These are provided as part of the public parameters.

Secret and Public Keys : Party US selects a randomness r ∈R RSccaG , computes
(ekS , dkS) ← KeyGen(1κ; r) and sets certekS

= (IDS , ekS) as a certificate for
US . The static key pair for party US is (ekS , dkS).

Key Exchange : Let US which has a static key pair (ekS , dkS) be a server, and
UC be a client. When UC is initialized as a client, it obtains the certificate
certekS

= (IDS , ekS) of US .

1. UC verifies the server using certekS
= (IDS , ekS). UC chooses an unused

key pair ((C0, C1), rC) or chooses a ehemeral secret key rC ∈R {0, 1}κ
and sets r0 ← H0(rC), and r1 ← H1(rC). Also, UC computes (C1,K1) ←
EnCap(ekS ; r1), and C0 ← wEnCapC(r0), and erases (r0, r1). Then, UC sends
(C0, C1, IDS) to US .

2. Upon receiving (C0, C1, IDS), US chooses an unused ephemeral key pair
(ekT , dkT ), or chooses a randomness rS ∈R RScpaG and computes (ekT , dkT )←
wKeyGen(rS), and sends ekT to UC . Then, US computes K1 ← DeCap(dkS ,
C1) and K0 ← wDeCap(dkT , C0), sets sid = (IDS , (C0, C1), ekT ), and com-
putes the session key SK = H(sid,K0,K1). US erases (rS , dkT ) and outputs
(SK,⊛, (C0, C1), (ekT , ekS)).

3. Upon receiving ekT , UC sets r0 ← H0(rC) and computesK0 ← wEnCapK(ekT ,
C0, r0). Also, UC sets sid = (IDS , (C0, C1), ekT ) and computes the session
key SK = H(sid,K0,K1). Then, UC erases (rC , r0), and outputs (SK, IDS ,
(C0, C1), (ekT , ekS)).

Security. We show the security of the proposed scheme in the random oracle
model. An intuition of the proof is shown in Section 5.1.

Theorem 3. If (KeyGen,EnCap,DeCap) is an OW-CCA secure KEM, (wKeyGen,
wEnCapC,wEnCapK,wDeCap) is an OW-CPA secure PKIC-KEM, and H0,H1,H
are random oracles, GC-RO is OS-AKE secure.

Theorem 4. In the random oracle model, GC-RO scheme is one-sided anony-
mous.

We show the proof of Theorem 3 and 4 in Appendix B and C.

6 Instantiations based on DH Problems

A comparison of the efficiency among our instantiations and existing schemes is
shown in Table 1.
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Table 1. Comparison among existing DH-based schemes and our instantiations

Protocol Model Resource Assumption Exp. (client) Exp. (server) Communication
Off-line On-line Off-line On-line complexity

ntor [24] GSU RO gap DH 1 2 1 1.33 |ID|+ 2|G|
Ace [6] weak GSU RO gap DH 2 1.08 1 1.08 |ID|+ 3|G|

Ours1[6.1] GSU RO CDH 3 1 1 3 |ID|+ 3|G|+ κ

Ours2[6.2] GSU Std DDH 5.08 1 1 3.16 |ID|+ 5|G|

For exponentiation costs, we apply the parallel computation technique [39] for two
exponentiations using the same base, which costs 1.33 exponentiations for κ, and
Avanzi’s algorithm [4] for multi-exponentiations in the elliptic curve setting, which
costs 1.08 exponentiations for κ. |ID| is the length of server’s ID and |G| is the size of
a group element.

6.1 Random Oracle Model

We can obtain an OS-AKE scheme in the random oracle model by instantiating
GC-RO using the PSEC-KEM [40] which is an OW-CCA secure KEM, and the
ElGamal KEM which is an OW-CPA secure PKIC-KEM. It is shown that the
ElGamal KEM can be PKIC-KEM [45], and the PSEC-KEM and the ElGamal
KEM are obviously κ-min-entropy KEM. Since these KEM schemes are based on
the computational DH (CDH) assumption, the instantiation is also secure under
the CDH assumption though ntor and Ace rely on the gap DH assumption. Also,
the online computational cost of a client is smaller than existing schemes.

6.2 Standard Model

We can obtain an OS-AKE scheme in the standard model by instantiating GC-
Std using CS3 [11] which is an IND-CCA secure KEM, and the ElGamal KEM
which is an IND-CPA secure PKIC-KEM. CS3 is obviously κ-min-entropy KEM.
Since these KEM schemes are based on the decisional DH (DDH) assumption,
the instantiation is also secure under the DDH assumption. This scheme is the
first DH-based anonymous OS-AKE scheme in the standard model. Moreover,
the online computational cost of a client is smaller than existing schemes even
in the standard model.

7 Instantiations based on Isogeny Problems

7.1 Random Oracle Model

SIDH-based. We can obtain a SIDH-based OS-AKE scheme in the random
oracle model by instantiating GC-RO using the SIKE-KEM [5] which is an IND-
CCA secure KEM, and an OW-CPA PKIC-KEM which is obtained by a trans-
formation of SIKE-PKE [5]. In order to transform the SIKE-PKE to PKIC-
KEM, we remove the generation of the ciphertext C1 = F (j)⊕m (i.e., masking
of plaintext m) in the encapsulation algorithm and the decryption procedure
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Public parameter : K3,K2, isogen3, isogen2, isoex2, isoex3
wKeyGen(1κ) wEnCapC wEnCapK(pk3, C0, sk2) wDeCap(sk3, C0)
sk3 ∈R K3 sk2 ∈R K2 j = isoex2(pk3, sk2) j = isoex3(C0, sk3)
pk3 = isogen3(sk3) C0 = isogen2(sk2) K = j K = j
return: (pk3, sk3) return: C0 return: K return: K

Fig. 6. PKIC-KEM scheme based on SIKE-PKE [5]

Public parameter : X,G,E0 ∈ G,H

wKeyGen(1κ) wEnCapC wEnCapK(pk, C, r) wDeCap(sk, C)

s ∈R G r ∈R G S = [r] ∗ pk S = [sk] ∗ C
sk = s C = [r] ∗ E0 K = H(S) K = H(S)
pk = [s] ∗ E0 return: C return: K return: K
return :(pk, sk)

Fig. 7. Hashed CSIDH-KEM scheme

m = F (j)⊕ C1 in the decryption algorithm, and use j = isoex2(pk3, sk2) as the
session key of PKIC-KEM. Such a PKIC-KEM based on SIKE-PKE is shown in
Fig. 6. SIKE-KEM and PKIC-KEM in Fig. 6 are obviously κ-min-entropy KEM.
Note that PKIC-KEM in Fig. 6 is regarded as a SIDH version of the ElGamal
KEM and it is pointed out that it is OW-CPA secure under the supersingular
decisional DH (SSDDH) assumption [37]. Since SIKE-KEM is based on the su-
persingular computational DH (SSCDH) assumption, the instantiation is secure
under the SSDDH assumption.

CSIDH-based. We can obtain a CSIDH-based OS-AKE scheme in the ran-
dom oracle model by instantiating GC-RO using the CSIDH-PSEC-KEM [46]
which is an IND-CCA secure KEM, and CSIDH-KEM [9] which is an OW-
CPA secure KEM. Note that CSIDH-KEM can be used as PKIC-KEM in the
same way as Fig. 6. CSIDH-PSEC-KEM and CSIDH-KEM are obviously κ-min-
entropy KEM. Note that CSIDH-KEM is pointed that it is OW-CPA secure un-
der the commutative supersingular decisional DH (CSSDDH) assumption [37].
Since CSIDH-PSEC-KEM is based on the commutative supersingular computa-
tional DH (CSSCDH) assumption, the instantiation is secure under the CSSDDH
assumption.

7.2 Standard Model

We can obtain a CSIDH-based OS-AKE scheme in the standard model by in-
stantiating GC-Std using the KEM from smooth projective hashing [2] which is
an IND-CCA secure KEM based on the hash proof system under the existence
of weak pseudorandom effective group action (wPR-EGA) (a generalization of
CSIDH assumptions), and a hashed CSIDH-KEM. The hashed CSIDH-KEM is
a variant of CSIDH-KEM such that the session key is computed as the out-
put of the entropy-smoothing hash function H on inputting the result of the
group action of the randomness and the public key (K = H([r] ∗ pk)) or the
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secret key and the ciphertext (K = H([s] ∗C)). We can use the hashed CSIDH-
KEM as PKIC-KEM as Fig. 6. The protocol of hashed CSIDH-KEM is shown in
Fig. 7. As the same as the hashed ElGamal KEM [41], it is pointed out that the
hashed CSIDH-KEM is IND-CPA secure under the CSSDDH assumption [37].
This instantiation is the first post-quantum anonymous OS-AKE scheme in the
standard model under the wPR-EGA and the CSSDDH assumption.

Also, very recently, a KEM scheme called SimS [16] was proposed as a
CSIDH-based IND-CCA secure KEM in the standard model. By using SimS
as the instantiation of IND-CCA secure KEM, we can also construct the OS-
AKE scheme from knowledge of exponent-type assumption and the CSSDDH
assumption.
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29. Kohlar, F., Schäge, S., Schwenk, J.: On the Security of TLS-DH and TLS-RSA in
the Standard Model. IACR Cryptology ePrint Archive, Report 2013/367 (2013)

30. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
CRYPTO 2005. pp. 546–566 (2005)

31. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. In: Crypto 2013. pp. 429–448 (2013)

32. Krawczyk, H., Wee, H.: The OPTLS Protocol and TLS 1.3. In: EuroS&P 2016.
pp. 81–96 (2016)

33. Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle: An Efficient Communication
System With Strong Anonymity. 16th PETS pp. 115–134 (2016)

34. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: ProvSec 2007. pp. 1–16 (2007)

35. Lee, M., Smart, N.P., Warinschi, B., Watson, G.J.: Anonymity guarantees of the
UMTS/LTE authentication and connection protocol. Int. J. Inf. Sec. pp. 513–527
(2013)

36. Longa, P.: A Note on Post-Quantum Authenticated Key Exchange from Supersin-
gular Isogenies. IACR Cryptology ePrint Archive, Report 2018/267 (2018)

37. Moriya, T., Onuki, H., Takagi, T.: Sigamal: A supersingular isogeny-based PKE
and its application to a PRF. In: ASIACRYPT 2020. pp. 551–580 (2020)



30 Ren Ishibashi and Kazuki Yoneyama

38. Morrissey, P., Smart, N., Warinschi, B.: A Modular Security Analysis of the TLS
Handshake Protocol. In: Asiacrypt 2008. pp. 55–73 (2008)
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A Proof of Event E2 ∧ Suc of Theorem 1

Proof. We change the interface of oracle queries and the computation of the ses-
sion key. These instances are gradually changed over eight hybrid experiments,
depending on specific subcases. In the last hybrid experiment, the session key
in the test session does not contain information of the bit b. Thus, the adver-
sary clearly only outputs a random guess. We denote these hybrid experiments
by H0, . . . ,H7, and the advantage of the adversary A when participating in
experiment Hi by Adv(A,Hi).

Hybrid experiment H0: This experiment denotes the real experiment for OS-
AKE security and in this experiment, the environment for A is as defined in the
protocol. Thus, Adv(A,H0) is the same as the advantage of the real experiment.

Hybrid experiment H1: This experiment aborts when a session ID is matched
with multiple sessions.

Because of κ-min entropy KEM, the probability of outputting the same ci-
phertext from different randomness in each session is negligible. Thus, |Adv(A,
H1)−Adv(A,H0)| ≤ negl.

Hybrid experiment H2: This experiment chooses a party U∗
S and a party U∗

C ,
an integer i∗ ∈ [1, ℓ] in advance, and fixes parties and the session for the Test
query. If A queries a session other than the i∗-th of client U∗

C (partner is U∗
S) in

Test query, it aborts the experiment.

The probability that the guess of the test session is correct is 1/n2ℓ, thus
Adv(A,H2) ≥ 1/n2ℓ ·Adv(A,H1).

Hybrid experiment H3: This experiment changes the way of the computation
of r′∗0 and r′∗1 in the i∗-th session of U∗

C (partner is U∗
S). Instead of r′∗0 ← F′(0, r∗C)

and r′∗1 ← F′(1, r∗C), it is changed as r′∗0 ∈R FS and r′∗1 ∈R FS.
We construct a distinguisher D0 that distinguishes if F∗ is either a pseudo-

random function F′ or a random function RF fromA inH3 orH2. The simulation
is the same as H3 in event E1 ∧ Suc.

Hybrid experiment H4: This experiment changes the way of the computation
of r∗0 in the i∗-th session of U∗

C (partner is U∗
S). Instead of r∗0 ← F′

0(ID
∗
S , r

′∗
0 ), it

is changed as r∗0 ∈R RS
cpa
E .

We construct a distinguisher D1 that distinguishes if F∗ is either a pseudo-
random function F′

0 or a random function RF from A in H3 or H4. D1 performs
the following steps.

[setup]

D1 is given a pseudo-random function F
′

0 : {0, 1}κ×FS → RScpaE . Then, D1

chooses pseudo-random functions F
′
: {0, 1}κ ×FS → FS, F′

1 : {0, 1}κ ×FS →
RSccaE , PRF : {0, 1}∗ × FS → {0, 1}κ, a key derivation function KDF : Salt ×
KS → FS, and s ∈R Salt.
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D1 generates (eki, dki) for each server Ui including (ek
∗
S , dk

∗
S) of U

∗
S according

to the protocol, publishes eki, gives dk∗S to A, and sets certeki
= (IDi, eki) as

a certificate for each server Ui. D1 poses ID∗
S to the oracle F∗, receives r∗0 as a

challenge, and computes (C∗
1 ,K

∗
1 ) ← EnCap(ek∗S ; r

∗
1) by using r′∗1 ∈R FS, and

C∗
0 ← wEnCapC(r∗0) according to the protocol for the i∗-th session of U∗

C .

[simulation]
D1 keeps the list LSK that contains queries and answers of SessionKeyReveal.

D1 simulates oracle queries by A as follows.

1. Send(params, pid) : If the session is the i∗-th session of U∗
C , then D1 sets

K1 = K∗
1 , returns (C

∗
0 , C

∗
1 , ID

∗
S), and records (Π, ID = pid, (C∗

0 , C
∗
1 ), (∗, ∗), ∗,

K1) in LSK . Otherwise, D1 chooses ((C0, C1), rC) from the unused key pairs
and returns it, or computes ((C0, C1), rC) according to the protocol and
returns it, and records (Π, ID = pid, (C0, C1), (∗, ∗), ∗,K1) in LSK .

2. Send(sid,msg = (C0, C1, id)) : If msg = (C∗
0 , C

∗
1 , ID

∗
S), then D1 sets K1 =

K∗
1 , chooses (ek

∗
T , dk

∗
T ) from the unused key pairs and returns ek∗T , or gener-

ates (ek∗T , dk
∗
T ) according to the protocol and return ek∗T , computes SK, and

records (Π, ID = id, (C∗
0 , C

∗
1 ), (ek

∗
T , ek

∗
S),K0,K1) and SK as a completed

session in LSK . Otherwise, D1 chooses (ekT , dkT ) from the unused key pairs
and returns it, or generates ekT according to the protocol and returns it,
computes SK, and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and
SK as a completed session in LSK .

3. Send(sid,msg = ekT ) : If the session is the i∗-th session of U∗
C , D1 computes

K∗
0 ← wEnCapK(ekT , C

∗
0 , r

∗
0), sets K0 = K∗

0 , computes SK according to the
protocol, and records (Π, ID = id, (C∗

0 , C
∗
1 ), (ekT , ekS),K0,K1) and SK as

a completed session in LSK . Otherwise, D1 computes SK according to the
protocol and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,K1) and SK as a
completed session in LSK .

4. SessionKeyReveal(sid) :
(a) If sid is not completed, then D1 returns error.
(b) Otherwise, D1 returns SK as recorded in LSK .

5. Partner(X) : D1 returns the secret value x of the public value X as defined.
6. RevealNext() : D1 generates a key pair (ESK,EPK), keeps it as unused, and

returns the EPK to A as defined.
7. EstablishCertificate(IDi, X) : D1 registers the public key of IDi as X accord-

ing to the protocol, and marks Ui as a dishonest party.
8. Test(sid) : D1 returns as defined.
9. A outputs a guess b

′ ∈ {0, 1}. If A outputs b
′
= 0, then D1 outputs that

F∗ = F′
0, otherwise D1 outputs that F∗ = RF.

[Analysis]
For A, the simulation by D1 is the same as the experiment H3 if F∗ = F′

0.
Otherwise, the simulation by D1 is the same as the experiment H4. Thus, since
the advantage of D1 is negligible due to the security of the PRF, |Adv(A,H4)−
Adv(A,H3)| ≤ negl.
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Hybrid experiment H5: This experiment changes the way of the computing
K∗

0 on the client side in the i∗-th session of U∗
C . Instead of computing K∗

0 ←
wEnCapK(ek∗T , C

∗
0 ; r

∗
0), it is changed as K∗

0 ∈R KScpa.
We construct an IND-CPA adversary S from A in H4 or H5. The S performs

the following steps.

[init]

S receives ek∗T from the challenger as a challenge.

[setup]

S chooses pseudo-random functions F
′
: {0, 1}κ × FS → FS, F′

0 : {0, 1}κ ×
FS → RScpaE , F

′

1 : {0, 1}κ × FS → RSccaE , PRF : {0, 1}∗ × FS → {0, 1}κ, a key
derivation function KDF : Salt×KS → FS, and s ∈R Salt.

S generates (eki, dki) for each server Ui including (ek∗S , dk
∗
S) of U

∗
S according

to the protocol, publishes eki, gives dk
∗
S to A, and sets certeki

= (IDi, eki) as a
certificate for each server Ui. S receives (K∗

b , C
∗
0 ) as a challenge and sets C0 = C∗

0

for the i∗-th session of U∗
C .

[simulation]

S keeps the list LSK that contains queries and answers of SessionKeyReveal.
S simulates oracle queries by A as follows.

1. Send(params, pid) : If the session is the i∗-th session of U∗
C , then S sets

C0 = C∗
0 , computes (C1,K1) ← EnCap(ek∗S ; r

∗
1), where r∗1 ∈R RS

cca
E . Also

S returns (C0, C1, ID
∗
S) according to the protocol, and records (Π, ID =

id, (C0, C1), (∗, ∗), ∗,K1) in LSK . Otherwise, S chooses ((C0, C1), rC) from
the unused key pairs and returns (C0, C1), or computes ((C0, C1), rC) accord-
ing to the protocol and returns (C0, C1), and records (Π, ID = id, (C0, C1),
(∗, ∗), ∗, K1) in LSK .

2. Send(sid,msg = (C0, C1, id)) : If msg = (C∗
0 , C

∗
1 , ID

∗
S), then S returns ek∗T ,

sets K0 = K∗
b , computes SK, and records (Π, ID = id, (C∗

0 , C
∗
1 ), (ek

∗
T , ek

∗
S),

K0,K1) and SK as a completed session in LSK . Otherwise, S chooses
(ekT , dkT ) from the unused key pairs and returns ekT , or generates (ekT , dkT )
according to the protocol and returns ekT , computes SK, and records (Π, ID
= id, (C0, C1), (ekT , ekS),K0,K1) and SK as a completed session in LSK .

3. Send(sid,msg = ekT ) : If the session is the i∗-th session of U∗
C , S sets

K0 = K∗
b , computes SK according to the protocol, and records (Π, ID =

id, (C0, C1), (ekT , ekS),K0,K1) and SK as a completed session in LSK . Oth-
erwise, S computes SK according to the protocol and records (Π, ID =
id, (C0, C1), (ekT , ekS),K0,K1) and SK as a completed session in LSK .

4. SessionKeyReveal(sid) :
5. SessionKeyReveal(sid) :

(a) If sid is not completed, then S returns error.

(b) Otherwise, S returns SK as recorded in LSK .

6. Partner(X) : S returns the secret value x of the public value X as defined.
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7. RevealNext() : S generates a key pair (ESK,EPK), keeps it as unused, and
returns the EPK to A as defined.

8. EstablishCertificate(IDi, X) : S registers the public key of IDi asX according
to the protocol, and marks Ui as a dishonest party.

9. Test(sid) : S returns as defined.
10. A outputs a guess b

′ ∈ {0, 1}. If A outputs b
′
, then S outputs b

′
.

[Analysis]
For A, the simulation by S is same the as the experiment H4 if the challenge

is (C∗
0 ,K

∗
0 ). Otherwise, the simulation by S is same the as the experiment H5.

Thus, since the advantage of S is negligible due to the security of the IND-CPA
secure KEM, |Adv(A,H5)−Adv(A,H4)| ≤ negl.

Hybrid experiment H6: This experiment changes the way of the computation
of the K

′∗
0 in the i∗-th session. Instead of computing K

′∗
0 ← KDF(s,K∗

0 ), it is
changed as choosing K

′∗
0 ∈R FS.

Since K∗
0 is randomly chosen in H5, it has sufficient min-entropy because

the PKIC-KEM is κ-min-entropy KEM. Thus, by the definition of the KDF,
|Adv(A, H6)−Adv(A,H5)| ≤ negl.

Hybrid experiment H7: This experiment changes the way of the computation
of SK in the i∗-th session of U∗

C . Instead of computing SK = PRF(sid,K1) ⊕
PRF(sid,K0), it is changed as SK = PRF(sid,K1)⊕ x, where x ∈R {0, 1}κ.

We construct a distinguisher D2 that distinguishes if F∗ is either a pseudo-
random function PRF or a random function RF from A inH6 orH7. D2 performs
the following steps.

[setup]
D2 is given a pseudo-random function PRF : {0, 1}∗×FS → {0, 1}κ. Then,D2

chooses pseudo-random functions F
′
: {0, 1}κ ×FS → FS, F′

0 : {0, 1}κ ×FS →
RScpaE , F

′

1 : {0, 1}κ×FS → RSccaE , a key derivation function KDF : Salt×KS →
FS, and s ∈R Salt.
D2 generates (eki, dki) for each server Ui including (ek

∗
S , dk

∗
S) of U

∗
S according

to the protocol, publishes eki, gives dk
∗
S to A, and sets certeki = (IDi, eki) as a

certificate for each server U∗
i .

[simulation]
D2 keeps the list LSK that contains queries and answers of SessionKeyReveal.

D2 simulates oracle queries by A as follows.

1. Send(params, pid) : If the session is the i∗-th session of U∗
C , then D2 com-

putes (C∗
1 ,K

∗
1 ) ← EnCap(ek∗S ; r

∗
1) and C∗

0 ← wEnCapC(r∗0) where r∗1 ←
F′
1(ID

∗
S , r

′∗
1 ) and r∗0 ∈R RS

cpa
E , returns (C∗

0 , C
∗
1 , ID

∗
S), and records (Π, ID =

id, (C∗
0 , C

∗
1 ), (∗, ∗), ∗,K∗

1 ) in LSK . Otherwise, D2 chooses ((C0, C1), rC) from
the unused key pairs and returns (C0, C1), or computes ((C0, C1), rC) ac-
cording to the protocol and returns (C0, C1), and records (Π, ID = id, (C0,
C1), (∗, ∗), ∗,K1) in LSK .
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2. Send(sid,msg = (C0, C1, id)) : If msg = (C∗
0 , C

∗
1 , ID

∗
S), then D2 chooses

(ek∗T , dk
∗
T ) from the unused key pairs and returns ek∗T , or generates (ek

∗
T , dk

∗
T )

and return ek∗T , sets sid according to the protocol, poses it to the oracle (PRF
or RF), obtains x ∈ {0, 1}κ. Also, D2 sets SK∗ = PRF(sid,K1) ⊕ x and
records (Π, ID = id, (C∗

0 , C
∗
1 ), (ek

∗
T , ek

∗
S),K0,K1) and SK∗ as a completed

session in LSK . Otherwise, D2 chooses (ekT , dkT ) from the unused key pairs
and returns ekT , or generates (ekT , dkT ) according to the protocol and re-
turns ekT , computes SK, and records (Π, ID = id, (C0, C1), (ekT , ekS),K0,
K1) and SK as a completed session in LSK .

3. Send(sid,msg = ekT ) : If the session is the i∗-th session of U∗
C , D2 sets sid

according to the protocol, poses it to the oracle (PRF or RF), and obtains
x ∈ {0, 1} kappa. Also, D2 computes SK∗ = PRF(sid,K1) ⊕ x and records
(Π, ID = id, (C∗

0 , C
∗
1 ), (ekT , ekS)) and SK∗ as a completed session in LSK .

Otherwise, D2 computes SK according to the protocol and records (Π, ID =
id, (C0, C1), (ekT , ekS),K0,K1) and SK as a completed session in LSK .

4. SessionKeyReveal(sid) :
(a) If sid is not completed, then D2 returns error.
(b) Otherwise, D2 returns SK as recorded in LSK .

5. Partner(X) : D2 returns the secret value x of the public value X as defined.
6. RevealNext() : D2 generates a key pair (ESK,EPK), keeps it as unused, and

returns the EPK to A as defined.
7. EstablishCertificate(IDi, X) : D2 registers the public key of IDi as X accord-

ing to the protocol, and marks Ui as a dishonest party.
8. Test(sid) : D2 returns as defined.
9. A outputs a guess b

′ ∈ {0, 1}. If A outputs b
′
, then D2 outputs b

′
.

[Analysis]
For A, the simulation by D2 is the same as the experiment H6 if F∗ = PRF.

Otherwise, the simulation by D2 is the same as the experiment H7. Thus, since
the advantage of D2 is negligible due to the security of PRF, |Adv(A,H7) −
Adv(A,H6)| ≤ negl.

InH7, the session key in the test session is perfectly randomized. This givesA
no information from the Test query, therefore Adv(A,H7) = 0 and Pr[E2∧Sec] =
negl.

⊓⊔

B Proof of Theorem 3

Proof. Suc denotes the event that A wins. We consider the following events that
cover all cases of the behavior A.

-E1: The ephemeral secret key dk∗T of the server is revealed.
-E2: The static secret key dk∗S of the server is revealed.

Let κ be a security parameter. In the OS-AKE security game, sid∗ is a sid
of the test session, the maximum number of parties is n, and the maximum
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ℓ session is activated. Let the adversary A be a probabilistic polynomial-time
adversary in κ, and construct the OW-CCA or OW-CPA adversary S from A
that performs the OS-AKE security game. We construct S with a non-negligible
probability of a successful attack using the adversary A. Also, let ASKH be an
event in which A queries H for (sid∗,K∗

0 ,K
∗
1 ), and let ASKH be a complement

of ASKH.
Let sid be a completed session such as sid ̸= sid∗ owned by the honest party.

Since sid ̸= sid∗, the input to the key derivation function H is also different.
Since H is a random oracle, A cannot obtain any information from the session
key of sid∗ about the test session. Thus, Pr[Suc ∧ASKH] ≤ 1/2 and Pr[Suc] =
Pr[Suc ∧ASKH] + Pr[Suc ∧ASKH] ≤ Pr[Suc ∧ASKH] + 1/2. Henceforth, the
event Suc ∧ASKH is denoted by Suc∗.

We consider the following events.

-ASKS: When U∗
C is the owner of sid∗, A queries H0 and H1 for r∗C .

-ASKS: Complement of ASKS.

To finish the proof, we investigate events ASKS ∧ Suc∗ and Ei ∧ ASKS ∧
Suc∗(i = 1, 2) that cover all cases of event Suc∗.

Event ASKS∧Suc∗ : S receives the challenge ciphertext (C∗
0 , C

∗
1 ) corresponding

to K∗
0 and K∗

1 . In this event, A queries H0 and H1 for the ephemeral secret key
r∗C . S obtains the corresponding K∗. Since A cannot reveal r∗C by the freshness
and the probability of A querying r∗C is 1/2κ, the probability of occurring this
event is 1/2κ.

Event E1 ∧ ASKS ∧ Suc∗ : In event E1, it gives A the ephemeral secret key
dk∗T of the test session. In event E1 ∧ ASKS ∧ Suc, we construct the OW-CCA
adversary S.

[init]
S receives ek∗S from the challenger as a challenge. Also, S receives C∗

1 as a
challenge.

[setup]
S chooses party U∗

S and party U∗
C randomly, integer i∗ ∈ [1, ℓ], and fixes the

session and the party of the client-server that is the target of the Test query.
The probability that the guess of this test session matches is 1/n2ℓ.
S sets ekS = ek∗S of US and C1 = C∗

1 for the i∗-th session of U∗
C (partner is

U∗
S). Also, S generates (eki, dki) for each server Ui other than U∗

S , and publishes
eki. Then, S sets certeki

= (IDi, eki) as the certificate for each server Ui.

[simulation]
S has lists LH0

, LH1
, LH that keep the queries and answers of each H0,H1,H

oracle, and a list LSK that holds the answers of SessionKeyReveal. For some
sid = (ID, (C0, C1), ekT ) and SK, it records (rC , r0) in LH0

, (rC , r1) in LH1
,

(sid,K0,K1, SK) in LH, and (Π, sid,K0,K1, SK) in LSK .
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S simulates oracle queries by A as follows.

1. H1(rC) : If (rC , ∗) is recorded in LH1
, then S returns the recorded value.

Otherwise, S chooses r1 ∈R RSccaE , returns it, and records it in LH1
.

2. H0(rC) : If (rC , ∗) is recorded in LH0 , then S returns the recorded value.
Otherwise, S chooses r0 ∈R RScpaE , returns it, and records it in LH0

.
3. H(sid,K0,K1) :

(a) If ID = ID∗
S , C1 = C∗

1 and it is the i∗-th session of U∗
C , then S outputs

K1 as an answer K∗ of the OW-CCA game.
(b) If (sid,K0,K1) is recorded in LH, then S returns the recorded value SK.
(c) If sid is recorded in LSK , then S returns the recorded value SK and

records (sid,K0,K1, SK) in LH.
(d) Otherwise, S returns a random value SK ∈R {0, 1}κ and records (sid,K0,

K1, SK) in LH.
4. Send(params, pid) : If the session is the i∗-th session of U∗

C , S computes C∗
0

according to the protocol, sets C1 = C∗
1 , C0 = C∗

0 , and returns (C0, C1, ID
∗
S).

Otherwise, S chooses ((C0, C1), rC) from the unused key pairs and returns
(C0, C1), or computes ((C0, C1), rC) according to the protocol and returns
(C0, C1), and records (Π, sid = (ID = pid, (C0, C1), ∗), ∗,K1, ∗) in LSK .

5. Send(sid,msg = (C0, C1, id)) : If msg = (C∗
0 , C

∗
1 , ID

∗
S), then S chooses

(ek∗T , dk
∗
T ) from the unused key pair and returns it, or generates (ek∗T , dk

∗
T )

according to the protocol and returns it. Otherwise, S chooses (ekT , dkT )
from the unused key pairs and returns ekT , or computes (ekT , dkT ) according
to the protocol and returns ekT . Also, the session key SK is computed as
follows.
(a) If id = ID∗

S , S decrypts C0 with dkT , computes K0, and poses C1 to the
decryption oracle to obtain K1. If (sid = (ID∗

S , (C0, C1), ekT ),K0,K1,
SK) is recorded in LH, S sets SK as the session key.

(b) S decrypts (C0, C1) with (dkT , dkS), computes (K0,K1) respectively. If
(sid = (id, (C0, C1), ekT ),K0,K1, SK) is recorded in LH, then S sets SK
as the session key. Otherwise, S chooses SK ∈R {0, 1}κ and sets it as
the session key.

Finally, S records (Π, sid = (ID = id, (C0, C1), ekT ),K0,K1, SK) as a com-
pleted session in LSK .

6. Send(sid,msg = ekT ) : S computes K0 according to the protocol. If (sid =
(pid, (C0, C1), ekT ),K0,K1, SK) is recorded in LH, then SK is set as the
session key. Otherwise, S chooses SK ∈R {0, 1}κ. Then, S records (Π, sid =
(ID = id, (C0, C1), ekT ),K0,K1, SK) as a completed session in LSK .

7. SessionKeyReveal(sid) :
(a) If sid is not completed, then S returns error.
(b) If sid is recorded, then S returns SK recorded in LSK .
(c) Otherwise, S chooses SK ∈R {0, 1}κ, returns it, and records it in LSK .

8. Partner(X) : S returns the secret value x of the public value X according to
the definition.

9. RevealNext() : S generates a key pair (ESK,EPK) as defined, keeps it as
unused, and returns the EPK to A.
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10. EstablishCertificate(IDi, X) : S registers the public key of IDi asX according
to the protocol, and marks Ui as a dishonest party.

11. Test(sid) : It aborts except for the i∗-th session of UC . Otherwise, S returns
as defined.

12. If A outputs the guess b
′ ∈ {0, 1}, then S aborts.

[Analysis]
The simulation for S is perfect except with negligible probability. The prob-

ability that A selects the session as the test session sid∗ at least 1/n2ℓ.
In event Suc∗, A queries H correctly for (sid∗,K∗

0 ,K
∗
1 ). Therefore, S is suc-

cesful and does not abort.
Thus, S is successful with non-negligible probability.

Event E2 ∧ ASKS ∧ Suc∗ : In the event E2, it gives A the static secret key
dk∗S of the test session. In event E2 ∧ASKS ∧ Suc∗, we construct the OW-CPA
adversary S.

[init]
S receives ek∗T from the challenger as a challenge. Also, S receives C∗

0 as a
challenge.

[setup]
S chooses party U∗

S and party U∗
C randomly, integer i∗ ∈ [1, ℓ], and fixes the

session and the party of the client-server that is the target of the Test query.
The probability that the guess of this test session matches is 1/n2ℓ.
S sets ekT = ek∗T and C0 = C∗

0 for the i∗-th session of U∗
C (partner is

U∗
S). Also, S generates (eki, dki) for all servers Ui and publishes eki. S sets

certeki
= (IDi, eki) as the certificate for each server Ui and gives dk∗S of U∗

S to
A.

[simulation]
S has lists LH0 , LH1 , LH that keep the queries and answers of each H0,H1,H

oracle, and a list LSK that holds the answers of SessionKeyReveal. For some
sid = (ID, (C0, C1), ekT ) and SK, it records (rC , r0) in LH0

, (rC , r1) in LH1
,

(sid,K0,K1, SK) in LH, and (Π, sid,K0,K1, SK) in LSK .
S simulates oracle queries by A as follows.

1. H1(rC) : If (rC , ∗) is recorded in LH1
, then S returns the recorded value.

Otherwise, S chooses r1 ∈R RSccaE , returns it, and records it in LH1
.

2. H0(rC) : If (rC , ∗) is recorded in LH0
, then S returns the recorded value.

Otherwise, S chooses r0 ∈R RScpaE , returns it, and records it in LH0 .
3. H(sid,K0,K1) :

(a) If ID = ID∗
S , C0 = C∗

0 and it is the i∗-th session of U∗
C , then S outputs

K0 as an answer K∗ of the OW-CPA game.
(b) If (sid,K0,K1) is recorded in LH, then S returns the recorded value SK.
(c) If sid is recorded in LSK , then S returns the recorded value SK and

records (sid,K0,K1, SK) in LH.
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(d) Otherwise, S returns a random value SK ∈R {0, 1}κ and records (sid,K0,
K1, SK) in LH.

4. Send(params, pid) : If the session is the i∗-th session of U∗
C , S computes

(C∗
1 ,K

∗
1 ) according to the protocol, sets C0 = C∗

0 and C1 = C∗
1 , returns

(C0, C1, ID
∗
S), and records (Π, sid = (ID = pid, (C0, C1), ∗), ∗,K∗

1 , ∗) in
LSK . Otherwise, S chooses ((C0, C1), rC) from the unused key pairs and
returns (C0, C1), or computes ((C0, C1), rC) according to the protocol and
returns (C0, C1), and records (Π, sid = (ID = pid, (C0, C1), ∗), ∗,K1, ∗) in
LSK .

5. Send(sid,msg = (C0, C1, id)) : If msg = (C∗
0 , C

∗
1 , ID

∗
S), then S returns ek∗T .

Otherwise, S chooses (ekT , dkT ) from the unused key pairs and returns ekT ,
or computes (ekT , dkT ) according to the protocol and returns ekT . Then, S
computes (K0,K1) according to the protocol. If (sid = (id, (C0, C1), ekT ),K0,
K1, SK) is recorded in LH, then S sets SK as the session key. Otherwise,
S chooses SK ∈R {0, 1}κ and sets it as the session key. Then, S records
(Π, sid = (ID = id, (C0, C1), ekT ),K0,K1, SK) as a completed session in
LSK .

6. Send(sid,msg = ekT ) : S computes K0 according to the protocol. If (sid =
(pid, (C0, C1), ekT ),K0,K1, SK) is recorded in LH, then S sets SK as the
session key. Otherwise, S chooses SK ∈R {0, 1}κ. Then, S records (Π, sid =
(ID = id, (C0, C1), ekT ),K0,K1, SK) as a completed session in LSK .

7. SessionKeyReveal(sid) :
(a) If sid is not completed, then S returns error.
(b) If sid is recorded, then S returns SK recorded in LSK .
(c) Otherwise, S chooses SK ∈R {0, 1}κ, returns it, and records it in LSK .

8. Partner(X) : S returns the secret value x of the public value X as defined.
9. RevealNext() : S generates a key pair (ESK,EPK) , keeps it as unused as

defined, and returns the EPK to A.
10. EstablishCertificate(IDi, X) : S registers the public key of IDi asX according

to the protocol, and marks Ui as a dishonest party.
11. Test(sid) : It aborts except for the i∗-th session of UC . Otherwise, S returns

as defined.
12. If A outputs the guess b

′ ∈ {0, 1}, then S aborts.

[Analysis]
The simulation for S is perfect except with negligible probability. The prob-

ability that A selects the session as the test session sid∗ at least 1/n2ℓ.
In event Suc∗, A queries H correctly for (sid∗,K∗

0 ,K
∗
1 ). Therefore, S is suc-

cesful and does not abort.
Thus, S is successful with non-negligible probability.

⊓⊔

C Proof of Theorem 4

Proof. We proceed by introducing another experiment, in which the adversary
cannot win more than random guessing. In this new experiment, the choice of
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i∗ is independent of the behavior of the rest of the system. Then, we show that
no adversary can distinguish this new experiment from the original experiment,
thereby showing the OS-anonymity of the protocol.

ExptOS−anon′

GC−ROM (A) is the same experiment as ExptOS−anon
GC−ROM (A) except for the

following oracle used by the challenger C.

– Start′(i0, i1, params, pid = ID∗
S)→ msg′:

1. If i0 = i1, then abort.
2. Set i∗ ←R {i0, i1}.
3. Set ID∗ ← ID∗

S .
4. Choose ((C∗

0 , C
∗
1 ), r

∗
C) from the unused key pairs and return (C∗

0 , C
∗
1 , ID

∗).
– Send′(sid,msg = ek∗T ):

1. Compute r∗0 ← H0(r
∗
C).

2. Compute K∗
0 ← wEnCapK(ek∗T , C

∗
0 , r

∗
0).

3. Compute SK according to the protocol.
– SessionKeyReveal′()→ SK: If the test session is a completed session, return

SK.
– Partner′(C∗)→ r∗C : Return the secret value r∗C corresponding to C∗.
– RevealNext′ → X: Return the future public value X and record it as unused.

Since all messages computed in the OS-anon’ game are independent of the
choice of i∗, the adversary A has no advantage, thus the probability that A wins
the game is as follows.

Pr[ExptOS−anon′

GC−ROM (A) = win] = 1/2 (3)

Also, the distribution of messages returned by the challenger in the OS-anon’
game is the same as that returned in the OS-anon game. Furthermore, messages
from all parties except Pi0 and Pi1 are unchanged. For messages from Pi0 and
Pi1 in the OS-anon’ game, all queries return messages of the same distribution
as in the OS-anon game.

Here, queries that reveal information about whether Pi0 or Pi1 participated
in the test session are prohibited by the definition. For example, A is prohibited
from using a SessionKeyReveal(sid) query to Pi0 to find out if Pi0 has the session
key for the test session.

Thus, A cannot distinguish between the two games.

Pr[ExptOS−anon′

GC−ROM (A) = win] = Pr[ExptOS−anon
GC−ROM (A) = win] (4)

From equations (3) and (4), the scheme has one-sided anonymity. ⊓⊔


