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Abstract. SPEEDY is a family of ultra low latency block ciphers pro-
posed by Leander, Moos, Moradi and Rasoolzadeh at TCHES 2021. Al-
though the designers gave some differential/linear distinguishers for re-
duced rounds, a concrete cryptanalysis considering key recovery attacks
on SPEEDY was completely missing. The latter is crucial to understand
the security margin of designs like SPEEDY which typically use low num-
ber of rounds to have low latency. In this work, we present the first third-
party cryptanalysis of SPEEDY-r-192, where r ∈ {5, 6, 7} is the number
of rounds and 192 is block and key size in bits. We identify cube dis-
tinguishers for 2 rounds with data complexities 214 and 213, while the
differential/linear distinguishers provided by designers has a complexity
of 239. Notably, we show that there are several such cube distinguishers,
and thus, we then provide a generic description of them. We also inves-
tigate the structural properties of 13-dimensional cubes and give exper-
imental evidence that the partial algebraic normal form of certain state
bits after two rounds is always the same. Next, we utilize the 2 rounds
distinguishers to mount a key recovery attack on 3 rounds SPEEDY. Our
attack require 217.6 data, 225.5 bits of memory and 252.5 time. Our re-
sults show that the practical variant of SPEEDY, i.e., SPEEDY-5-192 has
a security margin of only 2 rounds. We believe our work will bring new
insights in understanding the security of SPEEDY.
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1 Introduction

Lightweight ciphers are designed with the aim of achieving implementation-
specific properties such as low gate count, low latency, and low power and en-
ergy consumption. It is often difficult to obtain all these properties in a single
design, and thus, the spectrum of lightweight ciphers (considering gate count,
latency, power and energy) is too wide and continuously evolving. Some of the
ciphers targeting low gate count are block ciphers, for example, PRESENT [10],
KATAN [13], LED [17], Piccolo [26], SIMON [7] and GIFT [6], and stream ci-
phers such as Grain [21], Mickey [3] and Trivium [14].

The second key property is the latency which is defined as the time taken
between the moment an input data is given to cipher and the corresponding
output is obtained. Low latency is highly desirable in applications like encryption
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of memory bus and storage systems where entire encryption and decryption
should take place within the shortest possible delay. Since for many stream
ciphers, the high number of clock cycles are required for the initialization phase,
these are not suitable for low latency.

The first lightweight block cipher in literature which was aimed for low la-
tency is PRINCE [11]. The design principles of PRINCE with slight variations
were later adopted in QARMA [2] and PRINCEv2 [12]. Mantis is another fam-
ily of low latency tweakable block ciphers [8]. Another block cipher, Midori [4],
whose primary aim was low energy, also has relatively small latency.

Very recently, Leander et al. proposed SPEEDY [25]. It is a family of ultra
low latency block ciphers that targets high-end CPUs and efficient hardware im-
plementations (in terms of latency). In particular, one instance SPEEDY-6-192
consists of 6 rounds with 192-bit block and 192-bit key. The authors showed
that its execution time is faster in hardware than any other known encryp-
tion primitives like Even-Mansour block cipher with Gimli as its core primitive
[16,9] and Orthros pseudorandom function [5]. From security perspective, the
authors claimed 128-bit security for SPEEDY-6-192. They also claimed that 7
rounds SPEEDY with 192-bit block and 192-bit key achieves full 192-bit secu-
rity. Moreover, they proposed a 5-round variant SPEEDY-5-192 and mentioned
that “SPEEDY-5-192 provides a decent security level that is sufficient for many
practical applications ( ≥ 2128 time complexity when data complexity is limited
to ≤ 264)”.

In this paper, we investigate the security of SPEEDY for reduced rounds
using cube attack. We unveil new distinguishers, their structural properties, and
key recovery attacks on SPEEDY which were not reported before. Table 1 gives
a summary of attacks on SPEEDY till date. In what follows, we summarize our
contributions.

Our Contributions. We report the first third-party security evaluation of the
SPEEDY family of block ciphers. In particular, we present practical distinguishers
for 2 rounds, and key recovery attacks that can reach up to 3 rounds for all three
instances of SPEEDY. We now list our contributions.

1. Practial distinguishers for 2 rounds: We identify generic 14-dimensional

cubes whose cube-sum3 in rows 1, 2 and 3 of state (arranged in 6 rows and
32 columns) after two full rounds is always zero. We also find 13-dimensional
cubes for which cube-sum value of state bits after 2 rounds at indices i, 31+i
and 62 + i is always equal, for all 32 ≤ i ≤ 63. Moreover, we provide ex-
perimental evidence for the same and conjecture that the partial algebraic
normal form of these bits (i, 31 + i and 62 + i) is always the same. In total,
we find 32 such cubes for both cases.
The source codes of the distinguishers are available on request for verifica-
tion.

2. Key recovery attack on 3 rounds: We present a key recovery attack on

3-round SPEEDY with 217.6 data, 225.5 bits of memory and 252.5 time. To

3 XOR-ing the evaluation of a state bit at all possible 214 values of cube variables.
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Table 1: Summary of attacks on SPEEDY

Distinguishers

Method #Rounds Data Time Memory Source

(bits)

Differential and linear†
2 239 239 - [25]

3 269 269 - [25]

Cube 2 214 214 - Section 3.2

Cube 2 213 213 - Section 3.3

Key recovery

Method #Rounds Data Time Memory Source

(bits)

Integral 3 217.6 252.5 225.2 Section 4.1

†: No exact trails are provided in the paper. The data in col-
umn 3, for instance, 239 corresponds to the upper bound on the
probability (2−39 ) of a differential (linear) trail.

achieve this, we use the 2-round distinguisher (with cube size 14) and append
one round (from decryption side) for key recovery. It is worth noting that
a 2-round differential distinguisher (from designers) can be used to mount
a key-recovery attack on 3 rounds. However, the attack complexities will be
larger than our proposed 3-round cube attack.

Our key recovery attack is applicable to all three instances of SPEEDY, i.e.,
SPEEDY-5-192, SPEEDY-6-192 and SPEEDY-7-192, reduced to 3 rounds. In-
terestingly, after our attack, the security margin of SPEEDY-5-192 is reduced
to only 2 rounds.

Outline of the Paper. The rest of the paper is organized as follows. Section
2 gives the specification of SPEEDY and the basics of Boolean functions and
cube attacks. In Section 3, we present our low data complexity distinguishers
for 2 rounds of SPEEDY along with their structural properties. Section 4 gives
a detailed analysis of key recovery attacks on 3 rounds SPEEDY. Finally, we
conclude the paper with relevant research directions in Section 5.

2 Preliminaries

In this section, we first describe the specification of SPEEDY along with its
instances and their security claims. We then briefly recall basic theory of Boolean
functions and cube attacks which are required for our attacks on SPEEDY.
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2.1 Specification of SPEEDY

SPEEDY is a family of ultra low latency block ciphers proposed by Leander et
al. at TCHES 2021 [25]. SPEEDY-r-6` denotes one instance of this family with
block and key size 6` and r rounds. It takes as inputs a 6`-bit plaintext P and a
6`-bit secret key K and outputs the 6`-bit ciphertext C after applying the round
function Rj sequentially r times for j = 0, · · · , r − 1.

We consider the 6`-bit state as a 6× ` binary matrix. In the original design
specification, the authors considered the state as a ` × 6 matrix. However, for
the simplicity of analysis and efficient software implementation4, we choose to
view the state as a 6 × ` matrix. The round function Rj and key schedule are
then modified accordingly, and the test vectors are matched with the author’s
implementation to verify the correctness of our representation. 5 A high level
overview of SPEEDY is shown in Figure 1 where the round function is given by

Rj =

{
RKr−1 ◦ SB ◦ SR ◦ SB ◦ RKr for the last round,

RKj ◦ SB ◦ SR ◦ SB ◦ SR ◦MR ◦ AC otherwise.
(1)

Note that to keep consistency between Figure 1 and Equation 1, we perform the
operations from left to right for an input of 6`-bit state.

SB SR SB SR MR SB SR SB

kj kr−1 krcj

· · ·

Rj with 0 ≤ j ≤ r − 2 Rr−1

Fig. 1: r rounds of SPEEDY block cipher

We now describe the core components of the round function following our rep-
resentation of SPEEDY. We use X = x0, · · · , x6`−1 and Y = y0, · · · , y6`−1 to rep-
resent intermediate states. We sometimes write X = X0‖X1‖X2‖X3‖X4‖X5 and
Y = Y0‖Y1‖Y2‖Y3‖Y4‖Y5 where Xi = (x`·i, · · · , x`·i+31) and Yi = (y`·i, · · · , y`·i+31)
denote the i-th row of X and Y , respectively. The operations SB, SR, MR, AC
and RK are explained in detail as follows.

SubBox (SB). A 6-bit Sbox is applied on each of the columns (see Figure 2).
Let (x0, x1, x2, x3, x4, x5) and (y0, y1, y2, y3, y4, y5) denote the input and output
of the Sbox, respectively. Then the Sbox is given in Table 2. Note that here xi

and yi are the bits of row Xi and Yi, respectively.

4 From point of cryptanalysis.
5 Test vectors are provided along with the codes.
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Y5

Y4

Y3

Y2

Y1

Y0

Fig. 2: SubBox SB

Table 2: SPEEDY SBox

x0x1 x2x3x4x5

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 08 00 09 03 38 10 29 13 0c 0d 04 07 30 01 20 23
1 1a 12 18 32 3e 16 2c 36 1c 1d 14 37 34 05 24 27
2 02 06 0b 0f 33 17 21 15 0a 1b 0e 1f 31 11 25 35
3 22 26 2a 2e 3a 1e 28 3c 2b 3b 2f 3f 39 19 2d 3d

ShiftRows (SR). As shown in Figure 3, the i-th row of state Y is rotated left
by i bits. We have, Yi ← Yi ≪ i for 0 ≤ i ≤ 5 where ≪ is a left cyclic shift
operation.

Y0
Y1 ≪ 1

Y2 ≪ 2

Y3 ≪ 3

Y4 ≪ 4

Y5 ≪ 5

Fig. 3: ShiftRows SR

MixRows (MR). A cyclic binary matrix is multiplied to each row of the state.
When ` = 32, we have the 192 version. For this version, given an input (x0, · · · , x31) ∈
F32

2 , MR computes the output (y0, · · · , y31) ∈ F32
2 as follows.

yi = xi ⊕ xi+1 ⊕ xi+5 ⊕ xi+9 ⊕ xi+15 ⊕ xi+21 ⊕ xi+26, for 0 ≤ i ≤ 31, (2)

where the subscripts are computed modulo 32.

Add Constant (AC). A 6`-bit round constant cj is XORed to the state, i.e.,
Y = X ⊕ cj . The round constants following our representation of state are given
in Appendix A.

Add Round Key (RK). A 6`-bit round key kj is XORed to the state, i.e., Y =
X ⊕ kj .
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Key Scheduling Algorithm. A 6`-bit master key K is used to generate round
keys kj . The first round key k0 is taken directly from K, i.e., k0 = K. Other
round keys kj for 1 ≤ j ≤ r are generated by applying the bit-wise permutation
P on kj . We omit the details of the permutation P as this is not necessary for
our attack. The reader may refer to [25] for more details on the key scheduling
algorithm.

In the following, we denote (xj
0, · · · , x

j
191) and (kj0, · · · , k

j
191) as the input state

to j-th round and j-th round key, respectively.

2.2 SPEEDY Instances and Security Claims

The authors chose ` = 32 and provided three instances of SPEEDY, namely
SPEEDY-5-192, SPEEDY-6-192 and SPEEDY-7-192. They expect that SPEEDY-
6-192 and SPEEDY-7-192 provide 128-bit security and 192-bit security, respec-
tively. For SPEEDY-5-128, the claimed time complexity is at least 2128 when
data is limited to 264.

2.3 Cube Attacks

It is well known that Fn
2 is a vector space of dimension n over the field F2 = {0, 1}.

A Boolean function f in n variables is a map from Fn
2 to F2. Let Bn be the set

of all n-variable Boolean functions, then we have |Bn|= 22n

. A Boolean function
f ∈ Bn can be expressed as a polynomial in n variables over F2 as

f(x0, · · · , xn−1) =
∑
a∈Vn

Cax
a0
0 · · ·x

an−1

n−1 , (3)

is called as algebraic normal form (ANF for short) of f , where Ca ∈ F2, a =
(a0, · · · , an−1) and Vn is the set consisting of all possible values of a. The number
of variables in the highest order monomial with non-zero coefficient is called the
algebraic degree, or simply the degree of f . In the ANF form of any random
element of Bn, each monomial (and in particular, the highest degree monomial
x0 · x1 · · ·xn−1 ) appears with probability 1

2 .
Let v = (v0, · · · , vm−1) be m public variables and k = (k0, · · · , kn−1) be n

secret variables. Then, in the context of symmetric ciphers, each output bit can
be regarded as a Boolean function f : Fm

2 × Fn
2 → F2 given by

f(v, k) =
∑

u∈Vm

∑
w∈Vn

Cu,wv
u0
0 · · · v

um−1

m−1 kw0
0 · · · k

wn−1

n−1 , (4)

where ui, wj ,∈ F2 for 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1 and Cu,w ∈ F2.
The cube attack proposed in [30,15] analyzes a keyed Boolean function as

a black-box polynomial which is tweakable in public variables. Given a set of
indices I = {i0, · · · , id−1} ⊆ {0, · · · ,m−1} and Ī = {0, · · · ,m−1}\I, Equation 4
can be viewed as

f(v, k) = vi0 · · · vid−1
· t( vi

i∈Ī
; k0, · · · , kn−1) + q(v0, · · · , vm−1, k0, · · · , kn−1), (5)
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where each monomial in the Boolean function q misses at least one variable from
v[I] = {vi | i ∈ I}. Following the terminology of cube attacks, we denote I, v[I]
and a Boolean function t(·) as the cube indices set, cube variables set, and the
superpoly of cube monomial

∏
i∈I vi, respectively.

One can see that XOR-ing the evaluation of f at all possible 2d values of
vi0 , · · · , vid−1

(called as cube sum and given by Cv[I]), we have⊕
Cv[I]

f(v, k) :=
∑

(vi0 ,...,vid−1
) ∈ Fd

2

f(v, k) = t( vi
i∈Ī

; k0, · · · , kn−1). (6)

Cube tester [1] is an algorithm which can distinguish a cipher from random
source. The presence of monomials, balancedness, constantness, presence of lin-
ear variables, presence of neutral variables are some testing properties which
can detect non-randomness in superpoly of a Boolean function. Recently, cube
attacks have gained attention due to the introduction of the division property
[27,29] based automated techniques which can provide information of a super-
poly [28,18,19,23,22,20].

3 Practical Distinguishers for Two Rounds SPEEDY

In this section, we present (experimental) practical distinguishers for two full
rounds of SPEEDY. We first explain our core observation behind the distin-
guishers. Next, we present two generic distinguishers with data complexities 214

and 213. We also unveil some unexpected properties of the second distinguisher
and show that for certain state bits, a part of the algebraic normal form of these
state bits is always the same. In the end, we discuss the possibility (with current
challenges) of their proof.

3.1 Core Idea of Distinguishers

Our main idea is to reduce the algebraic degree of the output bits after 1 full
round, i.e., SB◦SR◦SB◦SR◦MR. Note that the degree of the output bits in rows
0, 1, 2, 3, 4 and 5 after 1 round are 19, 15, 13, 13, 13 and 20, respectively. To
reduce these degrees, we look at the ShiftRows property of the round function,
i.e., row i is cyclically left shifted by i bits (for 0 ≤ i ≤ 5).

For instance, consider 6 cube variables in the 0-th Sbox as shown in Figure 4.
After the SB operation, the output bits 0, 32, 64, 96, 128 and 160 have algebraic
degrees of 5, 3, 3, 3, 4 and 5, respectively. Now, after the SR operation, these
monomials will shift to Sboxes 0, 31, 30, 29, 28 and 27. Applying SB on these
Sboxes will not change the algebraic degree as the monomials are in distinct
Sboxes. Now, since SR ◦MR ◦ AC is a linear operation, the algebraic degree of
the state bits after 1 round is at most 5. The diffusion of these cube variables is
shown in Figure 4.

To have further degrees of freedom, we select another 6 cube variables in the
6-th Sbox as the last shift offset is 5. Thus, after round 1, the algebraic degree
of state bits in 12 cube variables is at most 5 (compared to 12).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

0

SB

5

4

3

SR

SB

Fig. 4: Diffusion of cube variables for SB ◦ SR ◦ SB. SR ◦MR ◦ AC is omitted as
it is linear and will not affect the degree. The colors represent the degree value
as shown on the right side of the figure.

3.2 Distinguishers with 214 Data

Recall that x2
i denotes the i-th bit of state after 2 rounds. We find multiple cube

indices sets I with |I|= 14 such that⊕
Cv[I]

x2
i = 0, for all i ∈ {32, · · · , 127}. (7)

We start with an example of one such I in Example 1.

Example 1. Consider I = {0, 32, 64, 96, 128, 160, 6, 38, 70, 102, 134, 166, 12, 18}
as shown in Figure 5. Experimentally we checked the validity of I with 216

random keys and for each key we set random non-cube variables. In all 216 ex-
periments, the superpolies at positions {32, · · · , 127} (green squares in Figure 5)
after 2 rounds are always zero.

We now give a generic description of such I’s in Observation 1.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Cube variable

Non-cube variable

2× (SB ◦ SR ◦ SB ◦ SR ◦MR ◦ AC ◦ RK)

Superpoly: unknown

Superpoly: zero

Fig. 5: A 2-round cube distinguisher with 214 data

Observation 1 (Generic 14-dimensional cube) Let 0 ≤ n ≤ 31. Define

Sn := {n, 32 + n, 64 + n, 96 + n, 128 + n, 160 + n}
S6+n mod 32 := {i, 32 + i, 64 + i, 96 + i, 128 + i, 160 + i | i ≡ 6 + n mod 32}
S12+n mod 32 := {12 + n mod 32}
S18+n mod 32 := {18 + n mod 32}

In := Sn
⋃
S6+n mod 32

⋃
S12+n mod 32

⋃
S18+n mod 32.

(8)

Then ⊕
Cv[In]

x2
i = 0, for all i ∈ {32, · · · , 127}. (9)

Experimental Verification of Observation 1. For 0 ≤ n ≤ 31, and for each In,
we take 216 random keys and set non-cube variables as some random values. We
then check the value of superpolies at positions {32, · · · , 127} after 2 rounds. In
total, we have 216 · 25 · (32× 3) superpolies. We observed that all superpolies are
equal to zero.

Remark 1. The distinguisher presented in Observation 1 is very unique. For
instance, one may think of first choosing 4 Sboxes which are at a distance of
6, and then select 14 (out of 4× 6) variables in these Sboxes as cube variables.
But this approach does not give a similar distinguisher. A counter example is
I = {0, 32, 64, 96, 128, 160, 6, 38, 70, 102, 134, 166, 12, 30}.

3.3 Distinguishers with 213 Data

The 14 size cube in the previous section gives a distinguisher with probability 1.
Thus, it is normal to see if we decrease the cube dimension what is the impact on
probability. Accordingly, we remove 1 variable from the 14 size cube and observe
the behavior of superpolies. We start with an example of 13-dimensional cube
and then provide the general description of such cubes.
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Example 2. Consider J = {0, 32, 64, 96, 128, 160, 6, 38, 70, 102, 134, 166, 12} as
shown in Figure 6. We computed the cube sum for J with 216 random keys and
for each key we set non-cube variables as random values. In all 216 experiments,
we observe patterns6 similar to Figure 6. For instance, as shown in Figure 6, the
superpolies of state bits (35, 66, 97), (40, 71, 102) and (60, 91, 122) are equal to
(1, 1, 1). More precisely, for all 32 ≤ i ≤ 63, the superpolies (after 2 rounds) at
positions i, (i− 1) + 32, (i− 2) + 64 are always equal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Cube variable

Non-cube variable

2× (SB ◦ SR ◦ SB ◦ SR ◦MR ◦ AC ◦ RK)

Superpoly: unknown

Superpoly: zero

Superpoly: one

Fig. 6: A 2-round cube distinguisher with 213 data

Now, analogous to Observation 1, we give a generic description of 13-dimensional
cubes in Observation 2.

Observation 2 (Generic 13-dimensional cube) Let 0 ≤ n ≤ 31. Define

Sn := {n, 32 + n, 64 + n, 96 + n, 128 + n, 160 + n}
S6+n mod 32 := {i, 32 + i, 64 + i, 96 + i, 128 + i, 160 + i | i ≡ 6 + n mod 32}
S12+n mod 32 := {12 + n mod 32}

Jn := Sn
⋃
S6+n mod 32

⋃
S12+n mod 32.

(10)

Then ⊕
Cv[Jn]

x2
i =

⊕
Cv[Jn]

x2
i+31 =

⊕
Cv[Jn]

x2
i+62, for all i ∈ {32, · · · , 63}. (11)

Experimental Verification of Observation 2. For 0 ≤ n ≤ 31, and for each Jn,
we take 216 random keys and set non-cube variables as some random values. We
then check the value of superpolies (after 2 rounds) corresponding to the triplet
(i, i + 31, i + 62) for 32 ≤ i ≤ 63. In total, we have 216 · 25 triplets. We observed
that in each triplet, superpolies values are always equal.

6 This is one of the example of a pattern.
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Observations on the Distinguisher. It is somewhat unexpected that superpolies
in the triplet (i, i+31, i+62) are always equal. Our experimental results suggest
that this behavior happens for almost all keys (we further checked Observation
2 for another 220 keys). Since (i, i+ 31, i+ 62) can be (0, 0, 0) or (1, 1, 1), it can
be argued that the superpolies are not constant. We believe this happens only
if the partial algebraic normal (containing the cube monomial and superpoly)
of these state bits after 2 rounds is always same. Since we can not prove this
fact theoretically (albeit this holds experimentally), we present it as conjecture
below.

Conjecture 1. Let 0 ≤ n ≤ 31 and Jn as defined in Observation 2. Then for all
i = 32, · · · , 63, the ANF of state bits i, i + 31 and i + 62 is given by

x2
i = fi + (

∏
j∈Jn

vj) · ti

x2
i+31 = fi+31 + (

∏
j∈Jn

vj) · ti

x2
i+62 = fi+62 + (

∏
j∈Jn

vj) · ti

(12)

where ti is the superpoly corresponding to cube indices Jn and fi, fi+31, fi+62

are Boolean functions similar to the Boolean function q in Equation 5.

3.4 Discussion on the Proofs of Distinguishers

In all our experimental results related to Observation 1 and 2, we did not find a
counter example, i.e., a key for which these two observations do not hold. Thus,
we expected that they could be proved mathematically. As such, we tried the
following two approaches for the proofs.

SAGE based Proof. We set the cube variables and 192 key bits as symbolic vari-
ables. Then, we checked the maximum degree in cube variables after round 2.
Because of the high algebraic degree (including key variables), our SAGE code
always ran out of memory. Thus, we chose to find the degree by selecting a ran-
dom key and setting non-cube variables as zero. We find that for 14-dimensional
cube, the degree is at most 13 in rows 1, 2 and 3 of the state. For 13-dimensional
cube, we find that the algebraic degree is at most 12 in majority of the state
bits. This provides another evidence for our experimental distinguishers.

Division property based Proof. We modeled the three subset bit based division
property [31,19] propagation of one round SPEEDY using MILP. We find that
even for a single round, the superpolies of a 5-dimensional cube are too dense.
Since the algebraic degree of 1 round is at most 20, we expect that this tool may
become slow for two consecutive rounds.

The source codes of the SAGE implementation and the division property
models are also available to readers on request.
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4 Key Recovery Attacks

In this section, we present a 3-round key recovery attack that is applicable to
SPEEDY-5-192, SPEEDY-6-192 and SPEEDY-7-192. Our attack is based on the
principles of integral cryptanalysis [24] and utilize the 2-round distinguishers as
described before. Before proceeding to the attack, we first recall some notations
that will be used throughout this section.

The vectors (xj
0, . . . , x

j
191) and (kj0, . . . , k

j
191) denote the input state at j-th

round and j-th round key, respectively. Also, (x0
0, . . . , x

0
191) and (xr

0, . . . , x
r
191)

represent the plaintext and the ciphertext, respectively. Further, note that re-
covering a round key is equivalent to recovering the master key. In our attacks,
we aim to recover the last round key kr which is also the post-whitening key.

4.1 3-Round Key Recovery Attack

Figure 7 shows the high level overview of the 3-round key recovery attack on
SPEEDY. We use a 2-round cube distinguisher (cube size 14, Example 1) and
append 1-round for the key recovery. In our attack, we use the fact that each
state bit after SB−1 ◦ SR−1 ◦ SB−1 depends only on 36 bits of key and 36 bits
of the ciphertext. For instance, the bits in column 0 depends on the ciphertext
and last round key bits from columns 0, 31, 30, 29, 28 and 27. More precisely,
a column i after SB−1 ◦ SR−1 ◦ SB−1 depends on columns i, i − 1, · · · , i − 5 of
ciphertext and key k3. 7 Thus, in order to do partial decryption with mutually
disjoint subkey bits (see Equation 13), we choose columns 0, 6, 12, 18 and 24.
We match the decrypted value of a state bit with the cube sum value in bits 1,
2 and 3 for each of these columns (see green squares in Figure 7).

We now explain the detailed attack steps along with their respective com-
plexities. For i = 0, 6, 12, 18 and 24, we first define

SK[i] := { k3
i , k

3
32+i, k

3
64+i, k

3
96+i, k

3
128+i, k

3
160+i,

k3
i−1, k

3
31+i, k

3
63+i, k

3
95+i, k

3
127+i, k

3
159+i,

k3
i−2, k

3
30+i, k
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(13)

as partial bits of k3. While computing SK[i], the subscripts of key bits are taken
modulo 192. Note that SK[i]’s are mutually disjoint. Similarly, we define mutually
disjoint sets for the ciphertext bits as follows.

7 Column numbers taken modulo 32.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Cube variable

Non-cube variable

2× (SB ◦ SR ◦ SB ◦ SR ◦MR ◦ AC ◦ RK)

Superpoly: unknown

Superpoly: zero

SB−1 ◦ SR−1 ◦ SB−1

Fig. 7: An overview of the 3-round key recovery attack. After partial decryption,
a matching is done at positions as shown by green squares (after 2 rounds from
the encryption side).
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(14)

The attack steps proceed as follows.

Step 1: Setting cube and non-cube variables. For I = {0, 32, 64, 96, 128, 160, 6,
38, 70, 102, 134, 166, 12, 18}, set x0

i = vi for i ∈ I, and set x0
i as a random bit,

for i ∈ {0, · · · , 191} \ I.

Step 2. Querying SPEEDY oracle and storing ciphertexts. Let v = (v0, v32, · · · , v12, v18).
For v = 0 to 214− 1, query 3-round SPEEDY oracle and store the ciphertexts in
the set C. This step requires 214 encryption queries (1 query = 3-round SPEEDY)
and 214 · 192 bits of memory.
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Step 3. Key recovery phase. For i = 0, 6, 12, 18, 24, we recover key bits as follows.

3.1 For each guess ski of SK[i], we compute the values
⊕

x2
32+i,

⊕
x2

64+i and⊕
x2

96+i by partially decrypting all 214 ciphertexts in C. Note that while
doing the partial decryption, we only need the information of 36 bits of each
ciphertext. The latter is captured by the set CT[i] (see Equation 14).

3.2 If only
⊕

x2
32+i = 0,

⊕
x2

64+i = 0 and
⊕

x2
96+i = 0, then we add ski as a

possible 36-bit key candidate.

Step 3.1 and 3.2 require 5 ·236 ·214 1-round decryption. Since we are checking
the values of superpolies at 3 positions, this will reduce the key space of each
SK[i] by 3 bits.

Step 4: Further filtering. We repeat Steps 1-3 with the reduced key space 11
more times to obtain the correct (SK[0],SK[6],SK[12],SK[18],SK[24]). In total,
Steps 1-2 require 214 · 12 encryption queries and 214 · 192 · 12 bits of memory.
However, for each iteration j = 12, · · · , 1, the time complexity of Step 3 is given
by 5 · 23·j · 214 1-round decryption. This is because after each iteration, the key
space is reduced by 3 bits. Thus, the overall time complexity of Step 3 is given
by

∑12
j=1 5 · 23·j · 214 ≈ 252.52.

Step 5: Exhaustive search. Till now, we have recovered 180 bits of k3. The
remaining 12 bits can be obtained by performing an exhaustive search. This
requires 212 time.

Combining Steps 1-5, the entire 3-round attack has the following complexi-
ties.

Data = 214 · 12 ≈ 217.58

Memory = 214 · 192 · 12 ≈ 225.16 bits

Time = 252.52 + 212 ≈ 252.52

(15)

4.2 On Improving Number of Rounds for Key Recovery

It is natural to ask whether we can attack 4-round SPEEDY. Based on our current
analysis, we do not see a direct way to attack 4 rounds.

The reasons are as follows: (1) We are unaware of the existence of a 2.5 and
3 round distinguisher with a complexity at most 264, and (2) the exact ANF of
1 and 1.5 rounds in forward and backward directions is extremely complicated
and of high degree.

5 Conclusion

In this work, we have presented the first third-party cryptanalysis of SPEEDY
family of block ciphers. We identified multiple distinguishers (in total 32+32)
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for 2 rounds with data complexities 214 and 213. Our second distinguisher (13-
dimensional cubes) revealed an unexpected property that the partial algebraic
normal form of certain state bits after 2 rounds is always equal, for which we
also provided the experimental evidence. We then gave a key recovery attack on
3-round SPEEDY which requires 217.6 data, 225.5 bits of memory and 252.5 time.

Although our findings may not appear to be novel, they did cover 60% and
50% rounds of SPEEDY-5-192 and SPEEDY-6-192 for the first time in the lit-
erature. We expect many more unidentified distinguishers for 2 rounds. To find
them, it is important to investigate and understand the theoretical properties of
the current 2-round distinguishers. Furthermore, it would be interesting to see
if there are any 2.5 or 3-round cube distinguishers. Our initial analysis shows
that this may require a non-trivial effort because of the high growth in alge-
braic degree. Overall, we believe there are lot of unanswered questions and this
work (being the first one apart from designers) will provide new insights to the
community in further understanding the security of SPEEDY.
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A SPEEDY Round Constants

In Table 3, we list the first 6 round constants of SPEEDY.

Table 3: Round constants of SPEEDY

Round j cj

0 0x3903501c, 0x22145a05, 0xb46705b0, 0x2269408a, 0x5b9954ce, 0xe150791e
1 0x3a21067b, 0x32801fbe, 0x35c8cee9, 0x0d33c971, 0xfd8f9408, 0x22b25e82
2 0xbf3984a2, 0xa5b365cd, 0x5d54b65f, 0x0ff7e9ee, 0x4012012d, 0x1a5d9cd5
3 0x8eb8aff6, 0xc16d9463, 0x1ddb3cda, 0xa19c9865, 0x535f36d7, 0x5f9f7fac
4 0xe17adece, 0x3cc44c83, 0x85ccd8e4, 0xc7b3b8d5, 0xe481006d, 0x4cc7691c
5 0x7873963c, 0xc98a9bb3, 0x8006f8e7, 0x6f7cbba0, 0x4def0a1c, 0x0785d9ae
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