
Honorific Security: Efficient Two-Party
Computation with Offloaded Arbitration and

Public Verifiability

Tianxiang Dai1, Yufan Jiang2,5, Yong Li3, Jörn Müller-Quade2,5, and
Andy Rupp4,5

1 Lancaster University Leipzig, Leipzig
t.dai@lancaster.ac.uk

2 Karlsruhe Institute of Technology, Germany
{yufan.jiang, joern.mueller-quade}@kit.edu
3 Huawei European Research Center, Germany

yong.li1@huawei.com
4 University of Luxembourg, Luxembourg

andy.rupp@uni.lu
5 KASTEL Security Research Labs, Germany

Abstract. Secure two-party computation (2PC) allows two distrustful
parties to jointly compute some functions while keeping their private se-
crets unrevealed. Adversaries are often categorized as semi-honest and
malicious, depending on whether they follow the protocol specifications
or not. While a semi-honest secure protocol is fast but strongly assumed
that all participants will follow the protocol, a malicious protocol often
requires heavy verification steps and preprocessing phase to prohibit any
cheat. Covert security [10] was first introduced by Aumann and Lindell,
which looks into the "middle ground" between semi-honest security and
malicious security, such that active adversaries who cheat will be caught
with a predefined probability. However, it is still an open question that
how to properly determine such a probability before protocol execution,
and the misbehavior detection must be made by other honest participants
with cut-and-choose in current constructions. To achieve public verifi-
ability and meanwhile outsource the verification steps, [12] presented
publicly auditable security to enable an external auditor to verify the
result correctness. Essentially, an additional existence assumption of a
bulletin board functionality is required to keep tracking the broadcasted
messages for the auditor. And moreover, the auditor cannot identify the
cheater, but only points out the incorrect result. The (robust) account-
ability family [40, 62, 76] achieves both output delivery guarantee and
public verifiability, which relies on heavy offline and online constructions
with zero knowledge proofs.
In this paper, we propose a new security notion called honorific security,
where an external arbiter can find the cheater with overwhelming proba-
bility under the malicious corruption. With honorific security, we do not
prohibit cheat of a corrupted party during the online stage, but enable
the honest party to detect and punish the cheater later on in public. We
show that a maliciously secure garbled circuit (GC) [83] protocol can

2 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

thus be constructed with only slightly more overhead than a passively
secure protocol. Our construction performs up to 2.37 times and 13.30
times as fast as the state-of-the-art protocols with covert and malicious
security, respectively.

Keywords: Two-party computation, Security notion, Efficient protocols, Multi-
party computation, Honorific security

1 Introduction

In secure two-party computation, two parties are willing to jointly compute a
function f without revealing their private input {x1, x2} to each other. 2PC pro-
tocols should guarantee that besides the output of the given function {y1, y2} =
f(x1, x2), nothing else can be learned (privacy), and the output {y1, y2} is dis-
tributed correctly (correctness).

In different settings, 2PC protocols can be designed against various types
of adversaries, making trade-offs between efficiency and security. Up to now,
two main categories of adversaries, i.e., semi-honest adversaries and malicious
adversaries, are considered. Semi-honest adversaries can be seen as protocol
participants who do not violate the protocols but attempt to learn more than
the predefined output of the functions, where malicious adversaries may devi-
ate arbitrarily from the protocol by taking actions to manipulate the result and
messages. Protocols secure against semi-honest adversaries offer quite limited
privacy, while the ones with malicious security [8, 27, 54, 56, 67, 81] are usu-
ally too inefficient for high-throughput applications in practice [32, 42]. Covert
security [9, 26, 31, 39, 57] has targeted the middle ground between semi-honest
and malicious security. These adversaries may actively cheat like malicious ad-
versaries, but they can be caught with a constant probability ϵ and they are
afraid of being caught. Protocols secure against such adversaries allow success-
ful cheating, but guarantee that honest parties can detect such behaviors with
the given probability ϵ. However, it is still an open question that how ϵ can be
properly determined before the protocol execution.

In the meantime, applications that have large economic or political conse-
quences such as auction [2, 21] and e-voting system [3, 61] all require that the
result must be correctly computed, and the correctness must be publicly verifi-
able. Publicly auditable security [12] was proposed to address this issue, where
an external auditor is introduced to take over all verifications and provides a
publicly verifiable audit result. A small subtlety in [12] is that the auditor is
not able to identify the cheater, even if it finds out that the protocol result is
incorrect. Thus, the deterrence provided in [12] may not be sufficient to prevent
a potential cheat, although it is publicly verifiable. Accountability [40, 62] and its
variant robust accountability [76] provides more security guarantee than [12]. [76]
guarantees that once the protocol terminates, parties output either the correct
result or a subset of cheaters6 (no honest party is falsely blamed), if the num-
6 If a party is corrupted, it may behave honestly during the protocol execution.

Title Suppressed Due to Excessive Length 3

ber of the corrupted parties is below a pre-defined threshold value. Additionally,
once any cheater is detected, it can be publicly verified. To achieve such a strong
notion, parties have to compute (verify) non-interactive zero knowledge proof s
(NIZKP) and commitments in the online stage.

1.1 Outsourced Verification and Public Verifiability without
Bulletin Board

In both maliciously and covert-secure protocols, we notice that functional com-
putation and misbehavior detection are always performed simultaneously by the
protocol participants. Such as in [40, 62, 76], the protocol terminates imme-
diately, if the cheating is found. The public verifiability is often regarded as a
by-product. For applications such as cloud services [4, 6, 17, 74], privacy pre-
serving machine learning (PPML) tasks [64, 69, 79] and blockchain platforms
[2, 23, 35, 68, 85], efficiency issue is always an important concern to be ad-
dressed beyond the security. In this paper, we use the existence of an external
party (like in [12]) and a potential arbitration as a deterrence to force parties
to behave honestly. While the deterrence provided in [12] is not sufficient, and
meanwhile the line of work [40, 62, 76] relies on a heavy online (and offline)
computation and verification, we propose a novel 2PC security notion honorific
security by introducing an arbiter PAr, which can identify the cheater (and is
thus powerful than [12]). Like any law or regulation, the notion honorific security
itself does not technically prohibit any cheat during execution, but provides the
honest party with the ability to detect and punish the cheater later on in public.

A corrupted ,
which has cheated

An honest

: Signature

: Evidence

public verifiable

: Certificate

Fig. 1. Workflow of a potential arbitration

Previous work [12, 40, 62, 76] simply assumes that an external auditor has
access to all transcripts published on a bulletin board ideal functionality FBulletin.

4 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

We point out that building protocols on top of FBulletin is tricky, since the imple-
mentation of FBulletin doubles the communication overhead (the same message
will be transmitted to the auditor once again!). In addition, [12, 40, 62, 76] em-
phasizes that the audit can be started at anytime after the protocol execution. In
reality, it means that protocol participants must keep the entire message tran-
scripts for a potential audit even after the protocol termination. In this paper,
we provide a more realistic implementation without relying on FBulletin.

As shown in Fig. 1, after a protocol Π is executed, both PA and PB have
already collected decisive evidences and signatures. Suppose a corrupted PA has
cheated during the protocol execution, if PB sends evidence ctA and signature
σA to PAr, a publicly verifiable certificate certA will be generated to identify the
cheater PA. Similar to accountability, we require that an honest party cannot be
falsely blamed. Note that such a condition is not trivial in honorific security, if
PAr is maliciously corrupted7. Since PAr can be activated only after the main
protocol is finished, we emphasize that protocols achieving honorific security are
different from the traditional three-party computation, where all three parties
should stay active during the whole protocol execution.

1.2 Application Scenarios

In this section, we introduce potential applications that could benefit from hon-
orific security.

Privacy-Preserving Machine Learning Google [59] proposed the federated
learning (FL) scenes where a (global) machine learning model is trained by
different data owners without leaking their database. Later some works [34, 36,
46, 51] pointed out that the intermediate leakage in FL can be used by adversaries
to infer sensitive information. Thus, frameworks such as [28, 47, 52, 71, 72, 75]
solve this issue by letting parties execute 2PC protocols following a mix protocol
approach. Regarding machine learning as a service (MLaaS) scenario, recent
works [22, 25, 30, 63] consider applying machine learning inference as a service
between a client holding the private data input and a server holding the model.
[63] introduces a model-extraction attack, where a malicious client tries to extract
the private model of a service provider (a server) by violating the passively
secure 2PC protocol. From another point of view, a malicious service provider
may also deviate from the protocol and thus cause the client to output some
incorrect results [30]. Both [30, 63] design protocols to prevent above misbehavior
in the online stage. Suppose there is another server acting as a validation service
provider, which stays offline during the online protocol execution above but can
be activated by any of the protocol participants for a validation service, either
the malicious client or the malicious server is thus forced to act honestly to
avoid a public accusation later on. For a PPML training application, previous
work such as [18, 60] already consider bringing extra validation nodes (parties) to
7 In [12, 40, 62, 76], the auditor is considered as an external party which can not be

corrupted.

Title Suppressed Due to Excessive Length 5

achieve a better security guarantee. In [18], two of the four parties are responsible
only for the functional computation, where another two parties are assigned to
check whether the computation is performed correctly. Remind that [18] achieves
exactly honorific security, if two validation parties are regarded as PAr and the
validation part is postponed to the latter phase.

Applications with Trusted Hardware In the meantime, trusted execution
environment (TEE) technologies, such as Intel SGX and ARM TrustZone are
widely used to accelerate MPC online computations or achieve additional secu-
rity guarantees. [50] uses trusted hardware to achieve malicious security for graph
neural networks training and inference. [33] enables a remote server equipped
with an SGX to securely evaluate garbled circuits for input data provider. MPC
constructions using hardware tokens such as [11, 38] also imply an independent
party for attestation and sealing. Besides modelling trusted hardware as tamper-
proof hardware tokens, [70] proposed a semi-trusted hardware model, where a
TEE (e.g. SGX) can be maliciously corrupted and thus deviates from the pro-
tocol. [70] designs three-party GC protocols, where an SGX is responsible for
the functional computation and activated during the entire online runtime. Ob-
viously, we observe that the arbiter in honorific security can be realized by a
TEE. Depending on how we model the TEE (e.g. tamper-proof, semi-honest or
malicious) and where the TEE is located (e.g. only at one party, at both par-
ties or at a remote server), 2PC protocols achieving honorific security can be
constructed differently.

1.3 Technical Overview

In this paper, we flesh out the GC [83] instantiation, and we benchmark our con-
struction against state-of-the-art GC protocols. We stress that honorific security
does not have to be realized by a GC-based protocol only.

In a GC protocol, the garbler has to send a garbled circuit to the evaluator
and meanwhile perform an OT protocol to hand over the wire labels. The garbler
could cheat by sending an incorrect GC, or handing over some incorrect wire
labels to the OT protocol, and then observing whether the evaluator aborts
(selective failure attack). However, if the evaluator holds the encrypted seedA as
an evidence, which is used by the garbler to derive randomness, it can forward
this evidence to PAr, enabling PAr to reconstruct the whole circuit and the
correct wire labels. Thus, the evidence held by their protocol partners can be
a strong incentive for parties to behave honestly to avoid punishment in public
after a potential arbitration. We refer the reader to Section 5 for more details.

1.4 Our Contribution

In this work, we formalize a new security notion called honorific security and
then present an efficient GC protocol and an efficient oblivious transfer (OT)
protocol with honorific security in the universal composability (UC) framework
[19]. More specifically, we achieve the following goals:

6 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

– New Ideal Functionalities in UC. We require correctness and privacy
when there is at most one maliciously corrupted party (honest majority). This
is achieved by introducing an extra, maliciously corruptible third party (the
arbiter PAr) to the 2PC ideal functionality, which can check and verify the
misbehavior of protocol participants. We point out, that it is sometimes not
sufficient for PAr to only receive the arbitration result from the functionality
internally, if a participant is required to use a certain input to the functionality
or use the exact output received from the functionality for further computa-
tion. Thus, we define an ideal functionality of two-party computation in two
modes. In Lazy-Arbiter mode (F2pc

LA), the functionality sends only the arbitra-
tion result to PAr. And in Busy-Arbiter mode (F2pc

BA), the functionality also
forwards the input (and the output if needed) of the arbitrated party to PAr,
enabling PAr to check the input consistency beyond the ideal functionality.
We also present an OT ideal functionality in Lazy-Auditor mode (Fm×OT

LA).
– Practical Constructions. We construct protocols that realize F2pc

LA and
Fm×OT

LA based on symmetric key encryption, garbled circuits and digital sig-
natures, and we prove that all of our constructions are secure in the UC
framework. Specificallly, we do not rely on the bulletin board funcitonality
FBulletin. The general idea behind our constructions is that participants are
responsible for exchanging encrypted evidences including input-independent
randomness they have used with each other. To achieve public verifiability,
participants also have to sign the evidences and the transcript hash to be
compared with. Once a misbehavior is discovered during an arbitration, PAr

can simply publish the decrypted evidences along with the signed hash of the
transcripts, enabling the public to identify the cheater.

– High Efficiency. We provide a fair comparison of our protocol against state-
of-the-art GC-based protocols with covert and malicious security in Section
8. The intuition behind honorific security is that both parties should behave
honestly even if the arbiter does not interfere. 2PC protocols are then accel-
erated by offloading non-functional computations to an potential arbitration
section, which can be executed separately. To highlight the power of our no-
tion and practical constructions, we always let the arbitration take place and
count its cost in the experiments. We show, that even with the arbitration
cost added, our protocols are almost as efficient as those with semi-honest
security and up to 2.37 times and 13.30 times as fast as protocols with covert
and malicious security, respectively.

2 Related Work

Security Notions beyond Semi-honest. The formal definition of malicious secu-
rity can be found in Goldreich’s seminal two volume classics [37]. Protocols with
malicious security [8, 24, 27, 29, 43, 54, 56, 67, 81, 82] ensure that even if an ad-
versary A deviates from protocol definition arbitrarily, A cannot learn anything
about other parties’ inputs, except that A may cause other parties to abort
(security with abort) [66]. Typical constructions and analysis can be found in

Title Suppressed Due to Excessive Length 7

[54, 67, 81]. Covert security was first introduced by Aumann and Lindell [10]
in 2007 against rational adversaries, targeting the middle ground between semi-
honest and malicious security. In principle, in a covert-secure protocol, cheating
behavior can succeed with probability 1− ϵ, and will be detected by other par-
ties with the remaining probability ϵ, which is also called the deterrence factor.
Follow-up works [9, 26, 39, 65] confirmed that protocols with reasonable ϵ have
a clear advantage in efficiency over ones with malicious security. Among them,
authors of [9] highlight another critical feature that a covert-secure MPC pro-
tocol may need: the public verifiability (PVC). However, existing instantiations
in [9, 10, 14, 26, 31, 39, 45, 57, 78] are still much heavier than the semi-honest
ones in terms of computational resources and bandwidth consumption.

Distinction from Other Notions. Bringing in an arbiter has already made our
model distinct from pure two party computation, where each party takes care
of its own privacy all by itself after setting up. Compared to covert security
[10], we require the probability of catching cheaters to be overwhelming instead
of being a constant probability. A similar approach [12] introduces an external
auditor beyond protocol participants and achieves publicly auditable security.
However, the auditor is not able to identify the cheater. The notion identifiable
abort [13, 49, 73] allows all honest parties to identify at least one corrupted party
which causes the protocol to abort during execution. Accountability [40, 62] and
its variant robust accountability [76] achieves both output delivery guarantee
and public verifiability by performing NIZKPs and commitments in the online
stage. As mentioned in the previous section, all notions require either a broad-
cast channel, or a bulletin board functionality (or both) to achieve an additional
security guarantee. The most important aspect regarding these notions is that
the functional computation and the verification computation are performed si-
multaneously by protocol participants themselves.

Role of an Extra Party. The idea of delegating part of the MPC tasks to an in-
dependent party roots in Beaver’s Commodity-based Cryptography in 1997 [15].
Independently generated correlated randomness, such as Beaver’s multiplicative
triples [15], has been extremely helpful in performance improvement of sharing-
based MPC frameworks, such as [12, 40, 56, 62]. Another role of the extra party
is for security. MPC constructions using hardware tokens [11, 38] also imply an
independent party for attestation and sealing, which can persuade both Alice
and Bob to believe the correctness and non-malleability of logic in the hardware
[5]. Prior works such as [18, 60] also consider including extra parties as verifica-
tion nodes instead of participating in the functional part (in the honest majority
setting).

3 Preliminaries

We summarize notations used in this paper in Table 1. We use "a party uses
randomness derived from seed" as a convention for the action that a party uses

8 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

seed as the key of a pseudorandom function (PRF) to obtain a sufficiently long
series of pseudorandomness.

{(x0
j , x

1
j)}j∈[m] m pairs messages (x0, x1)

{B̂i,j,b} a set of correct evaluator’s input label extracted from ĜCi

{pki, ski} public key and private key of Pi for a signature scheme
{Ai,b} a set of garbler’s input label Ai,b for i-th wire, label b
{Bi,b} a set of evaluator’s input label Bi,b for i-th wire, label b
{Oi,b} a set of output label Oi,b for i-th wire, label b
oB output of PB

{y0
j , y

1
j }j∈[m] m pairs encrypted messages

GCS garbling scheme GCS = (Gb, En, Ev, De)
ĜC Garbled circuit computed by PAr using decrypted seedA

GC Garbled circuit computed by PA

κ the security parameter
key Symmetric encryption-decryption key
Pi Pi

r choice bit of PB

F2pc
LA ideal functionality 2pc with honorific security in Lazy-Arbiter mode
F2pc

BA ideal functionality 2pc with honorific security in Busy-Arbiter mode
Fm×OT

BA,S ideal functionality m× OT with honorific security in Busy-Arbiter
mode against sender

Fm×OT
BA,R ideal functionality m× OT with honorific security in Busy-Arbiter

mode against receiver
Fm×OT

LA ideal functionality m× OT with honorific security in Layz-Arbiter mode
cheatParty a flag documenting cheated party
cheated notification that the arbitrated party cheated
ctA,OT evidence computed by PA for an OT protocol
ctA,GC evidence computed by PA for a GC protocol
ΠGC GC Protocol
ΠOTE

BA,S OTE Protocol realizes Fm×OT
BA,S

ΠOTE
LA OTE Protocol realizes Fm×OT

LA

S the simulator
Z the environment machine
seedA seed used for garbling ith circuit by PA

sid session identifier
σA,OT signature computed by PA for an OT protocol
σA,GC signature computed by PA for a GC protocol
table decryption table of ith garbled circuit
a

$← V sampling an element from V uniformly at random
H hash function modeled as random oracle
H hash value of some messages
h commitment
xi Pi’s valid input

Table 1. Notations.

Title Suppressed Due to Excessive Length 9

Definition 1 (Garbling Scheme). A circuit garbling scheme GCS = (Gb, En,
Ev, De) consists of the following algorithms.

– Gb(1κ, C) denotes the garbling algorithm. It takes the security parameter 1κ

and the circuit C as input. It returns a garbled circuit GC, encoding informa-
tion e, and decoding information d.

– En(w, e) denotes the encoding algorithm. It takes the input w and encoding
information e as input. It returns the garbled input {Wi,b}.

– Ev(GC,W) denotes the evaluation algorithm. It takes the garbled circuit GC
and garbled input {Wi,b} as input. It returns a garbled output {Oi}.

– De(d, {Oi}) denotes the decoding algorithm. It takes the decoding information
d and garbled output {Oi} as input. It returns the output {o}.

Definition 2 (Correctness [16]). A garbling scheme GCS = (Gb,En, Ev,De)
is correct, if for all functions C and input w:

Pr

[
De(d,Ev(GC,En(e, w))) = C(w) :

(GC, e, d)← Gb(1κ, C)

]
= 1

Definition 3 (Simulatable Privacy [16, 70]). A garbling scheme GCS =
(Gb,En,Ev,De) is simulatable private, if for all functions C and input w, there
exists a probabilistic polynomial time (PPT) simulator Sim such that for all
PPT adversary A:

Pr

b = b⋆ :

(GC0, e0, d0)← Gb(1κ, C);W0 ← En(e, w);
(GC1,W1, d1)← Sim(1κ, C(w), Φ(C));

b← {0, 1}; b⋆ ← A(GCb,Wb, db);

 ≤ negl(κ),

where Φ denotes the side-information function.

Definition 4. (Signature scheme) A signature scheme SIG = (SIG.Gen, SIG.Sign,
SIG.Vfy) is described as below:

– SIG.Gen(1κ)
$→ (pk, sk). The non-deterministic key generation algorithm SIG.Gen()

takes the security parameter 1κ as the input and outputs the public key pk and
the private key sk.

– SIG.Sign(sk,m)
$→ σ. The (non-deterministic) message signing algorithm SIG.Sign()

takes the private key sk and a message m as the input and outputs the a sig-
nature σ.

– SIG.Vfy(pk,m, σ) = b. The deterministic signature verification algorithm SIG.Vfy()
takes the public key pk, a message m a signature σ as input and outputs a
boolean value b.

Definition 5 (Symmetric key encryption scheme). A symmetric key en-
cryption scheme Π = (KGen,ENC,DEC) is described as below.

– Π.KGen(1κ)
$→ key. The non-deterministic key generation algorithm KGen()

takes the security parameter 1κ as the input and outputs one encryption-
decryption key key.

10 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

– Π.ENC(key,m)
$→ c. The (non-deterministic) encryption algorithm ENC()

takes the key key and a message m as the input and outputs a ciphertext
c.

– Π.DEC(key, c) = m′. The deterministic decryption algorithm DEC() takes the
key key, a ciphertext c as input and outputs a plaintext m′.

Due to the page limitation, we refer the reader to cryptography texts such
as [53] for definitions of correctness and security of hash function, PRF and other
primitives.

4 Ideal Functionalities with Honorific Security in UC

In this section, we formally define the ideal functionality with honorific security,
see Fig. 2 and the Definition 6 for more details.

4.1 Ideal Functionalities F2pc
LA and F2pc

BA

Let PA, PB and PAr denote the participating parties P = {PA,PB,PAr},
Pc ⊆ {PA,PB,PAr} denote the corrupted parties controlled by an adversary.
We include the following basic queries in our new ideal functionality:

Inputs: Let xi denote party Pi’s input, z denote adversary S’s auxiliary input.
Sends input to ideal functionality: The honest party Pj sends its input to

the ideal functionality. The corrupted parties may either send their prede-
fined input, some other input of the same length, or abort (by replacing the
input with a special (abort,Pi, sid) to the ideal functionality.

Early Abort Option: If the ideal functionality receives the message (abort,
Pi, sid), it sends (abort,Pi, sid) to all parties and the ideal execution termi-
nates. Otherwise, the ideal execution proceeds.

Ideal functionality sends outputs to adversary: The ideal functionality com-
putes fi(x

′
A, x

′
B) and sends fi(x

′
A, x

′
B) to party Pi for all i ∈ Pc (i.e. to all

corrupted parties).
Adversary instructs ideal functionality to continue or halt: S sends ei-

ther (continue,Pi, sid) or (abort,Pi, sid) to the ideal functionality. If re-
ceived (continue,Pi, sid), the ideal functionality sends fj(x

′
A, x

′
B) to the

honest party Pj for all j /∈ Pc (i.e. to all honest parties). Otherwise, the
ideal functionality sends (abort,Pi, sid) to party Pj.

Outputs: An honest party always outputs what the ideal functionality sends
to it. The corrupted parties output nothing. The adversary S outputs any
(probabilistic polynomial time computable) function of the initial inputs
{xi}i∈Pc

, the auxiliary input z, and the messages {fi(x′
A, x

′
B)}i∈Pc

received
from the ideal functionality.

Cheat flag. Besides basic queries defined in [19, 20], the ideal functionality
now has an additional flag cheatParty internally, recording cheating parties
(or none) during the execution. Another internal state arbiterReady denotes
whether the flag cheatParty has been set properly.

Title Suppressed Due to Excessive Length 11

Functionality F2pc
LA interacts with players P := {PA,PB,PAr} and the adversary S.

It has three internal states: a set of corrupted parties Pc ⊆ {PA,PB,PAr}, a set of
cheated parties cheatParty ⊆ {PA,PB}, and a state arbiterReady ∈ {true, false}.
Initially, Pc = ∅, cheatParty = ∅, arbiterReady = false.

Corrupt: Upon receiving (corrupt,Pi, sid) from the adversary S:

– If Pi ∈ P and Pc = ∅, set Pc := {Pi}. Send (corrupt_success,Pi, sid) to S.
– Otherwise, send (corrupt_failed,Pi, sid) to S.

Compute: Upon receiving (compute, xA,PA, sid) from party PA and
(compute, xB,PB, sid) from party PB:

– Compute f(xA, xB) and send it to PB.
– Set arbiterReady = true.

Cheat: Upon receiving (cheat,Pi, sid) from party Pi, where Pi ∈ {PA,PB}:

– If Pi ∈ Pc, send a message (cheat_success, xj, sid) to S, wait to receive oj from
Pi and send oj to Pj. Set cheatParty = Pi ∪ cheatParty and arbiterReady =
true.

– Otherwise, send a message (cheat_failed,Pi, sid) to S.

Arbitrate: Upon receiving ((arbitrate,Pj),Pi, sid) from party Pi intended to arbi-
trate Pj:

– If arbiterReady = false, ignore this query.
– Lazy-Arbiter mode: If Pj ∈ cheatParty, send (cheated, Pj, sid) to PAr and

halt. Otherwise, send (honest,Pj, sid) to PAr.
– Busy-Arbiter mode: If Pj ∈ cheatParty, send (cheated, Pj, sid) to PAr and

halt. Otherwise, send info ⊆ {xj, o
j} to PAr.

Fig. 2. Two Party Functionality F2pc
LA and F2pc

BA .

Cheat query. We then extend the ideal functionality by adding a new instruction,
such that a simulator S can send to the ideal functionality. Similar to the ideal
functionalities with covert security, S is able to send a cheat query to the ideal
functionality, and this cheat decision "must be made before the adversary learns
anything" [10]. Remark that PAr can only cheat by framing a party up with an
incorrect arbitration result, since PAr will be activated only for the arbitration.
Although such a cheat will be prevented by our protocol construction, we still
provide the cheat option to PAr for further extensions.

Arbirate query. Generally, we allow any party to send an arbitrate query ((arbirate,
Pj), Pi, sid) to the ideal functionality, including PA, PB and PAr. From practi-
cal point of view, allowing PAr to request arbitration requires PAr to be aware
of every protocol execution, which might be unrealistic. In this paper, we focus
on the case that only PA and PB send this query to the ideal functionality.

12 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

Arbiter mode. On the other hand, sometimes PAr may also have to arbitrate
whether a protocol participant has handed in the correct input to the ideal
functionality, or used the correct output for the further execution received from
an ideal functionality, even if it behaved honestly during the protocol execution.
We thus split the ideal functionality into two modes:

– Lazy-Arbiter mode: PAr only receives the arbitration result from the ideal
functionality, whether the arbitrated party (say Pj in the following context)
cheated or not during the protocol execution.

– Busy-Arbiter mode: If Pj already cheated during the protocol execution,
PAr receives (cheated,Pj, sid) from the ideal functionality. Otherwise, in-
stead of receiving the notification, PAr obtains info ⊆ {xj, o

j}.

We point out that the input of a sub-protocol does not have to be the private
input of any party, and PAr only receives such information when it has to be
arbitrated.

Definition 6 (Honorific Security). Let F2pc be a two-party functionality and
F2pc

LA , F2pc
BA be the corresponding functionality with honorific security in Lazy-

Arbiter Mode and Busy-Arbiter Mode. We say that a protocol Π UC-realizes
F2pc with honorific security, if Π UC-realizes F2pc

LA , or F2pc
BA .

4.2 Ideal Functionalities Fm×OT
BA,S and Fm×ROT

BA,S

The OT ideal functionality m× OT and the random OT ideal functionality
m× ROT with honorific security shown in Fig. 3 are constructed in Busy-Arbiter
mode. And this is exactly the case when parties perform a GC protocol ΠGC

using Fm×OT
BA,S as a sub-protocol, where PA’s input to Fm×OT

BA,S is just randomness
generated during the intermediate steps within ΠGC. Similarly, if Fm×ROT

BA,S is cho-
sen as a sub-protocol, the output delivered to PA does not relate to any party’s
real input. Importantly, PB’s input to Fm×OT

BA,S and Fm×ROT
BA,S is the real private

input regarding ΠGC, and does not need to be arbitrated beyond the scope of an
OT protocol. For this reason, if PB is arbitrated, the ideal functionality should
only deliver the arbitration result to PAr.

5 Protocol UC-realizing F2pc
LA

In this section, we show how to realize F2pc
LA based on GC. We introduce a high-

level overview of the protocol ΠGC, and provide a formal definition in Fig. 4.
Using a signature scheme SIG, all three parties PA, PB and PAr run SIG.Gen

to obtain their public-private key pairs. We assume that all parties know the
public keys of each other as the common reference string (CRS) before running
the protocol. In the CRS model, this will allow the simulator S to simulate the
key pair for the signature scheme.

In the key setup phase, PAr calls Π.KGen of a symmetric key encryption
scheme to generate a symmetric key keyAr. PAr then computes a commitment

Title Suppressed Due to Excessive Length 13

Functionality Fm×OT
BA,S interacts with players P := {S,R,PAr} and the adversary S. It

has three internal states: a set of corrupted parties Pc ⊆ {S,R,PAr}, a set of cheated
parties cheatParty ⊆ {S,R}, and a state arbiterReady ∈ {true, false}.
Initially, Pc = ∅, cheatParty = ∅, arbiterReady = false.

Corrupt: same as F2pc
LA and F2pc

BA .
Compute (Fm×OT

BA,S and Fm×OT
LA): Upon receiving ({x0, x1}m, S, sid) from S and

(xB,R, sid) from R, send {xxB[i]}m to R, set arbiterReady = true.
Compute (Fm×ROT

BA,S): Upon receiving (xB,R, sid) from R:

– If S /∈ Pc, sample random {x0, x1}m, send {x0, x1}m to S and {xxB[i]}m to R.
– Otherwise, wait for S to input {x0, x1}m, then output as above using these values.
– Set arbiterReady = true.

Cheat: same as F2pc
LA and F2pc

BA .
Arbitrate(Fm×OT

BA,S and Fm×ROT
BA,S):

– If arbiterReady = false, ignore the following queries.
– Upon receiving ((arbitrate,S),R, sid) from party R intended to arbitrate S: If S ∈

cheatParty send (cheated, S, sid) to PAr and halt. Otherwise, send {x0, x1}m
to PAr.

– Upon receiving ((arbitrate,R),S, sid) from party S intended to arbitrate R:
If R ∈ cheatParty send (cheated, R, sid) to PAr and halt. Otherwise, send
(honest,R, sid) to PAr.

Arbitrate(Fm×OT
LA):

– If arbiterReady = false, ignore the following queries.
– Upon receiving ((arbitrate,Pj),Pi, sid) from party Pi intended to arbitrate Pj:

If Pj ∈ cheatParty send (cheated, Pj, sid) to PAr and halt. Otherwise, send
(honest,Pj, sid) to PAr.

Fig. 3. OT Functionality Fm×OT
BA,S , Fm×ROT

BA,S and Fm×OT
LA .

h on keyAr, sends keyAr, h and decom to PA along with a signature σAr on h.
Afterward, PB receives h and σAr from PA. This setup is mainly considered
for PA to prepare its encrypted evidences in the main part of the protocol.
Obviously, PB can obtain another symmetric key with the same setup steps
simultaneously if needed, having PA holding the signed commitment.

To achieve honorific security, both party PA and PB have to send evidence
and signature to each other. In GC-based 2PC, if PB wants to check whether
PA has cheated during the protocol execution, PB can send the commitment
h, the evidence ctA,GC, the signature σA,GC, and the corresponding hash value
H on GC to PAr, which can open the evidence and check all PA’s behaviors
during the protocol execution. Recall that PAr is allowed to hold seedA since
it does not leak any information about the private input of both PA and PB.
Meanwhile, the wire labels of both parties are required to be kept secret from
PAr (ensured by the honest majority setting). Note that PB has already proved

14 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

Private inputs: PA has input xA ∈ {0, 1}n1 and a key pair {pkA, skA} for the signature
scheme. PB has input xB ∈ {0, 1}n2 and a key pair {pkB, skB} for the signature scheme.
PAr has a key pair {pkAr, skAr} for the signature scheme.
Public inputs: PA and PB agree on a circuit C and a parameter κ. All three parties
know the public key pki of each other and a session ID sid.
CRS: (pkA, pkB, pkAr).

Key Setup:

1. PAr generates keyAr and computes a commitment h ← Com(keyAr), then signs it
with a signature σAr ← SIG.Sign(skAr,h).

2. PAr sends (keyAr,h, decom, σAr) to PA, which verifies whether h and σAr are both
valid, aborts with output ⊥ if not.

3. PA sends (h, σAr) to PB, which verifies whether σAr is valid, and aborts with
output ⊥ if not.

Protocol:

1. PA garbles the circuit C using randomness derived from seedA. The garbled circuit
is denoted as GC, as well as PA’s input wire labels {Ai,b}i∈[n1],b∈{0,1}, PB’s input
wire labels {Bi,b}i∈[n2],b∈{0,1}, and output wire labels {Oi,b}i∈[n3],b∈{0,1}. PA then
computes a decoding table table← {Label0i , Label1i }i∈[n3], where Label0i ← H(Oi,0)
and Label1i ← H(Oi,1).

2. PA and PB call Fm×OT
BA,S , where PA uses {Bi,b}i∈[n2],b∈{0,1} as input and PB uses

xB as input.
3. PA computes an evidence ctA,GC ← Π.ENC(keyAr, seedA). Then PA computes a

hash value H ← H(C||GC||table||sid) and a signature of this message σA,GC ←
SIG.Sign(skA,h||H||ctA,GC||sid). PA then sends (GC, table, ctA,GC, σA,GC, sid) to PB.

4. PB computes H and checks whether σA,GC is a valid signature for (h, H, ctA,GC,
sid), and aborts with output ⊥ if not.

5. PA sends {Ai,xA[i]}i∈[n1] to PB.
6. PB evaluates GC using {Ai,xA[i]}i∈[n1] and {Bi,xB[i]}i∈[n2], and obtains
{Oi,oB[i]}i∈[n3]. Then, PB computes {H(Oi,oB[i])}i∈[n3]. If any H(Oi,oB[i]) /∈
{Label0i , Label1i }, PB aborts with output ⊥, otherwise PB outputs oB.

* Arbitrate:
1. PB sends an arbitrate query (C,H, ctA,GC, σA,GC, sid) to PAr, which checks

whether σA,GC is valid, and aborts with output ⊥ if not.
2. PB sends an arbitrate query ((arbitrate,PA),PB, sid) to Fm×OT

BA,S . If PAr

receives (cheated,PA, sid), then the arbitration ends here. If PAr receives
{Bi,b}, the arbitration proceeds.

3. PAr retrieves seedA ← Π.DEC(keyAr, ctA,GC), computes {B̂i,b}, ĜC and ˆtable
using the randomness derived from seedA.

4. PAr computes Ĥ ← H(C||ĜC|| ˆtable||sid). If Ĥ = H, and {B̂i,j,b} =
{Bi,b}, then PAr locally outputs (honest,PA, sid). Otherwise, PAr outputs
(cheated,PA, sid).

Fig. 4. Full description of GC based ΠGC that UC-realizes F2pc
LA .

Title Suppressed Due to Excessive Length 15

whether the signed commitment h is indeed provided by PAr by verifying the
signature of PAr in the key setup stage. It ensures that PA must encrypts the
correct seedA with the symmetric key keyAr provided by PAr (since PAr will
use the correct keyAr to decrypt), otherwise the arbitration will fail except for
negligible probability.

The above idea can prevent any PA from cheating during the GC generation
phase, since PB can verify PA’s behavior at any time by sending this evidence
to PAr. But during the OT protocol, where PB learns the receiver’s input wire
labels, PA can still perform the selective failure attack by providing a pair of
true and false labels, and then observing if PB aborts to obtain PB’s one-bit
input. In our model, if PA performs such an attack and PB prosecutes, PAr

should be able to detect such dishonest behavior. However, we notice that an
original OT functionality (or even Fm×OT

LA) does not provide PAr with such
an ability or other materials to perform the check. The reason is that when
parties call a functionality as a sub-protocol, the input requirement is "out of
scope" of this functionality description. As an example, we suppose that parties
execute Fm×OT

LA as the sub-protocol within ΠGC. The OT sender PA does not
cheat by sending the cheat option to Fm×OT

LA , but performs the selective failure
attack described as above. We observe that PAr will receive the notification of
PA’s honesty from Fm×OT

LA , since PA has not cheated internally during the OT
protocol execution, although PA does not input the correct labels to Fm×OT

LA

as expected. Interestingly, this cheat can be captured by the simulator during
simulation, since the simulator can decrypt seedA and thus be aware that the
labels sent from PA to the simulated OT ideal functionality are incorrect. In
reality, PAr is not given such an ability yet. To solve this problem, we require
an improved OT functionality shown in Fig. 3 to be used within our protocol:

– Fm×OT
BA,S outputs directly (cheated, PA, sid) to PAr if PA cheated internally

in Fm×OT
BA,S already, or it outputs PA’s input {Bi,b} after receiving the ar-

bitrate query from PB. This allows PAr to perform the consistency check,
by comparing the real input {Bi,b} with the claimed input computed by the
seedA.

– Fm×ROT
BA,S works similarly compared to Fm×OT

BA,S , it just outputs PA’s output
{Bi,b} to PAr instead of the input. In this case, only {Ai,b} are generated by
PA using randomness derived from the seedA. As for PB’s input wire labels,
PA is supposed to use the messages obtained from Fm×ROT

BA,S . To check whether
PA has cheated, PAr only has to compare the hashes of two circuits, where
one of them is computed by PAr itself using {Ai,b} generated by seedA and
{Bi,b} received from Fm×ROT

BA,S , and the another one is sent from PB along with
the signature of PA.

Finally, PA sends the garbler’s input {Ai,xA[i]} to PB, allowing PB to com-
pute the output oB. Although PA can send some invalid {Ai,xA[i]} and cause PB

to abort. But as already mentioned in [66, 81], any such abort occurs indepen-
dently of PB’s private input, and thus does not help PA to learn a single bit of
PB’s input.

16 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

Functionality Fm×OT
BA,R interacts with players P := {S,R,PAr} and the adversary S. It

has three internal states: a set of corrupted parties Pc ∈ {S,R,PAr}, a set of cheated
parties cheatParty ∈ {S,R}, and a state arbiterReady ∈ {true, false}.
Initially, Pc = ∅, cheatParty = ∅, arbiterReady = false.

Corrupt: same as Fm×OT
BA,S .

Compute:: same as Fm×OT
BA,S .

Cheat: same as Fm×OT
BA,S .

Arbitrate:

– If arbiterReady = false, ignore the following queries.
– Upon receiving ((arbitrate,S),R, sid) from party R intended to arbitrate S:

If S ∈ cheatParty send (cheated,S, sid) to PAr and halt. Otherwise, send
(honest,S, sid) to PAr.

– Upon receiving ((arbitrate,R),S, sid) from party S intended to arbitrate R:
If R ∈ cheatParty send (cheated, R, sid) to PAr and halt. Otherwise, send
(xB, {xxB[i]}) to PAr.

Fig. 5. m× OT ideal functionality Fm×OT
BA,R .

Specifically, the above protocol ensures that no one is framed up. Again, we
consider the case that PA is arbitrated by PAr. In order to successfully frame PA

up, either PB or PAr has to forge an incorrect evidence (or transcript hash),
which can be successfully verified with PA’s signature. If SIG is existentially
unforgeable under chosen-message attacks (see Section 7 for more details), this
can be achieved only with negligible probability.

Due to efficiency issues, we choose to discuss our ΠGC using Fm×OT
BA,S for further

proofs and implementation sections.

6 Oblivious Transfer with Honorific Security

6.1 Protocol UC-realizing Fm×OT
BA,S

In this section, we show how to convert an OT Extension protocol such as [55, 77]
to a protocol which UC-realizes Fm×OT

BA,S . We take the improved OT Extension
protocol [55] (which is now a simple instantiation of SoftSpokenOT [77]) as an
example, and we show that the modified protocol ΠOTE

BA,S shown in Appendix A
implements Fm×OT

BA,S in the F l×OT
BA,R -hybrid model.

Since the original protocol [55] is secure against both malicious PA and PB,
we focus on how to enable PAr to receive PA’s input as an additional output
(and nothing else), if PB sends the arbitrate query to PAr (and PA is honest).
Recall that a base OT protocol is executed as a sub-protocol in [55], where PA

uses s as its input and receives {ksi} as output. Since both s and {ksi} are just
randomness generated by PA and PB, allowing PAr to hold this information is
harmless. Note that holding both s and {ksi} along with the exact messages PA

Title Suppressed Due to Excessive Length 17

has received from PB enables PAr to reconstruct PA’s view, including PA’s real
input to the OT Extension protocol. Again, we are facing the same problem as
in ΠGC, since a traditional OT ideal functionality will not forward s and {ksi} to
PAr. Thus, PA and PB have to call F l×OT

BA,R shown in Fig. 5 (Fm×OT
BA,R with m = l),

enabling PAr to receive such information. If PB (the OT sender in F l×OT
BA,R) sends

the arbitrate query to F l×OT
BA,R , it then forwards PA’s input s and output {ksi} to

PAr (if PA is honest). In addition, we let PA sign the message transcripts and
send the signature σA,OT to PB in step ∗∗. This ensures that PB cannot frame
PA up by sending incorrect message transcripts to PAr.
F l×OT

BA,R can be easily implemented by running any modified maliciously secure
OT protocol l times, where PA (the OT receiver) additionally sends its input
encrypted by the symmetric key keyAr and a signature (on the encrypted input
and the message transcripts) to PB (the OT sender). We notice that such an
implementation requires an additional communication round for the last message
sent from PA, if F l×OT

BA,R is separately executed. However, if F l×OT
BA,R is called as a

sub-protocol (as in ΠOTE
BA,S), the additional communication round is omitted.

6.2 Protocol UC-realizing Fm×OT
LA

We further modify the OT Extension protocol [7] to a protocol ΠOTE
LA , which

UC-realizes Fm×OT
LA described in Fig. 3 in the F l×OT

BA,S -hybrid model (Fm×OT
BA,S with

m = l). More details can be found in Fig. 6.
Since [7] is already secure against a malicious PA, we focus on the security

against a malicious PB. In [7], a malicious PB may use inconsistent r to compute
{ui}l then extract PA’s secret input s. As long as we can prevent PB from
doing so, we are done. We notice that {k0, k1}l used by PB in base OT stage
are only randomness, which can thus be received by PAr as evidence for further
arbitration. It only remains the issue about how to provide PAr with the ability
to check the input consistency of r, without revealing it. Our solution is to let
PB compute a masked version of ui with a random string ∆, say vi, along with
a signature generated by PB. PA is supposed to receive all ui, it can simply
compute vi by XORing all ui with the received ∆, and then checks whether
the signature is valid. Remark that by completing the signature verification, PA

has already checked the consistency of ∆. In the arbitration part, PAr receives
all vi from PA along with {k0, k1}l received from F l×OT

BA,S , which allows PAr to
compute Ri, where each Ri is supposed to be r ⊕ ∆. Thus, PAr only have to
verify the consistency of Ri.

7 Security Analysis

Let vrfy() denote the arbitration algorithm that PAr performs. Let certAr,j

denote a certificate, which consists of the transcript PAr receives from Pi to
arbitrate Pj along with (keyAr, decom). We first define Public Verifiability .

18 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

Private inputs: PA has input {(x0
j , x

1
j)}j∈[m] and key pair {pkA, skA} for a signature

scheme. PB has input r = (r1, ..., rm) and key pair {pkB, skB} for a signature scheme.
PAr has a key pair {pkAr, skAr} for the signature scheme.
Public inputs: All three parties know the public key pki of each other.
CRS: (pkA, pkB, pkAr).

Protocol:

1. PA initializes a random vector s ∈ {0, 1}l and PB chooses random {k0, k1}l each
of size κ.

2. Parties proceed with a F l×OT
BA,S (Fm×OT

BA,S with m = l), where PA acts as the receiver
with input s and PB acts as the sender with input {k0, k1}l.

3. For i ∈ [l], let ti = G(ki
0). Let T = [t1|...|tl] denote the m × l matrix where ith

column is ti. Let tj denote the jth row of T . PB uses input choice bits r to compute
ti ← G(ki

0) and ui ← ti ⊕ G(ki
1)⊕ r.

4. PB sends {ui}l to PA.
** PB then chooses a random string ∆

$← Z2m , then computes {vi}i∈[l], where vi ←
ui ⊕∆. PB generates the signature σB,OT ← SIG.Sign(skB, {vi}l||sid)

** PB sends (∆, σB,OT, sid) to PA, which checks if the signature σB,OT is valid, and
aborts with output ⊥ if not.

5. For i ∈ [l], PA defines qi = (si ·ui)⊕G(ki
si). Let Q = [q1|...|ql] denote the m× l bit

matrix with qi represents its ith column. Let qj denote the jth row of the matrix
Q. Note that qi = (si · r)⊕ ti and qj = (rj · s)⊕ tj .

6. PA computes and sends {y0
j , y

1
j }j∈[m], where:

y0
j = x0

j ⊕ H(j,qj) and y1
j = x1

j ⊕ H(j,qj ⊕ s)

7. PB outputs (xr1
1 , ..., xrm

m) with x
rj
j = y

rj
j ⊕ H(j, tj).

* Arbitrate:
1. PA sends an arbitrate query ({vi}l, σB,OT, sid) to PAr, which checks whether

σB,OT is valid, and aborts with output ⊥ if not.
2. PA sends an arbitrate query ((arbitrate,PB),PA, sid) to F l×OT

BA,S . If PAr

receives (cheated,PB, sid), then the arbitration ends here. If PAr receives
{k0, k1}l, the arbitration proceeds.

3. PAr computes Ri ← vi ⊕ G(ki
0) ⊕ G(ki

1) for all i ∈ [l]. If all Ri are
consistent, PAr locally outputs (honest,PB, sid). Otherwise, PAr outputs
(cheated,PB, sid).

Fig. 6. A secure OT Extension protocol ΠOTE
LA that UC-realizes Fm×OT

LA .

Definition 7 (Public Verifiability). If any protocol participant Pj cheats and
an honest participant Pi sends the arbitrate query, PAr always outputs an arbi-
tration result (cheated, Pj, sid) with a certAr,j, except with negligible probability.
If PAr sends certAr,j to any party Pk, then Pk always outputs (cheated,Pj, sid)
by executing vrfy(certAr,j), except with negligible probability.

Title Suppressed Due to Excessive Length 19

7.1 Security in ΠGC

Theorem 1. Assume GCS = (Gb,En,Ev,De) is a simulatably private and cor-
rect garbling scheme, H() is a correlation-robust cryptographic hash function, SIG
is existentially unforgeable under chosen-message attacks (EUF-CMA), and SKE
Π is secure under chosen-plaintext attacks (IND-CPA). Protocol ΠGC described
in Fig.4 UC-realizes F2pc

LA described in Fig.2 with public verifiablity in the FCRS,

Fm×OT
BA,S -hybrid model in the presence of a malicious adversary who can corrupt

either PA, PB or PAr, with static corruption.

Let A be a malicious, static adversary that interacts with parties performing
the protocol ΠGC shown in Fig. 4. We construct an adversary S for the ideal
process for F2pc

LA such that no environment Z can tell with non-negligible prob-
ability whether it is interacting with A and the protocol ΠGC or with S in the
ideal process for F2pc

LA .

Initialization step: The common reference string (CRS) is chosen by S in the
following way (recall that S chooses the CRS for the simulated A by itself):

– S runs SIG.Gen(1κ), obtaining three pair (pkA, skA), (pkB, skB) and (pkAr, skAr).

Then, S sets the CRS to equal (pkA, pkB, pkAr), and stores skA, skB and skAr.

Simulating the communication with Z: Every input value that S receives
from Z is written on A’s input tape (as if coming from A’s environment). Every
output value written by A on its output tape is copied to S’s own output tape
(to be read by S’s environment Z).

Simulating the case PB is corrupted. S simulates a real execution in which
the corrupted PB controlled by A delivers message to uncorrupted PA in the
internal (simulated) interaction. The S works as follows:

1. In the key setup stage, plays the role of an honest PA, receives (keyAr,h,
decom, σAr) from PAr. Then sends (h, σAr) to A.

2. Chooses a κ-bit seedA uniformly at random. Uses pseudorandomness derived
from the seedA to generate pseudorandom keys {Bi,b}i∈[n2],b∈{0,1}.

3. Plays the Fm×OT
BA,S with A playing PB:

• If the input is (cheat,PB, sid), sends (cheat, PB, sid) to F2pc
LA and receives

back PA’s input xA. Then uses the input xA of PA to perfectly emulate
PA in rest of the execution. Sends oA to F2pc

LA , which will be received by
PA as output. The simulation ends here for this case.

• If the input is xB, hands A the wire labels {Bi,j,xB[j]} that are chosen by
A, proceeds with the simulation below.

4. Sends the A’s input xB as PB’s input to F2pc
LA , receives back the output oB.

5. Uses the appropriate PB’s input wire labels from above, generates a garbled
GC and the corresponding table, which are always evaluated to oB.

20 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

6. Computes ctA,GC using the seedA, then the hash value H using the garbled
GC.

7. Computes the corresponding σA,GC, sends GC, table, ctA,GC, σA,GC, sid to A.
8. Hands A arbitrary PA’s input wire labels and halts.

Proof. We now prove that Z cannot distinguish an interaction of protocol ΠGC

with A (denoted by REAL
Fm×OT

BA,S

ΠGC,A,Z) from an interaction in the ideal process with

F2pc
LA and S (denoted by IDEAL

Fm×OT
BA,S

F2pc
LA ,S,Z

):

Case 1: A sends (cheat,PB, sid) to Fm×OT
BA,S . We point out that Z cannot dis-

tinguish REAL
Fm×OT

BA,S

ΠGC,A,Z with IDEAL
Fm×OT

BA,S

F2pc
LA ,S,Z

in this case. Note that the oblivious

transfer is the first step of the protocol. After sending the cheat option to F2pc
LA ,

S receives back the exact honest PA’s input xA and can thus perfectly emulate
the PA’s behavior during the simulated execution of the protocol. Besides, S can
easily simulate the messages sent from Fm×OT

BA,S to PAr and perform the exact
arbitration as an honest PAr by holding keyAr. Thus, the simulation of PAr for
A is also perfect.

Case 2: A sends (xB,PB, sid) to Fm×OT
BA,S . We examine several hybrid experi-

ments:

Hybrid H0: It is the real protocol execution REAL
Fm×OT

BA,S

ΠGC,A,Z .

Hybrid H1: We consider a simulator S0, which holds the real PA’s input xA

and the exact seedA, denoted by IDEAL
Fm×OT

BA,S

F2pc
LA ,S0(xA,seedA),Z

.
It is trivial to verify that H0 and H1 are indistinguishable. Since S0 holds xA

and seedA, it can perfectly emulate PA’s behavior.

Hybrid H2: We consider a simulator S1, that works exactly as S0, except that it

aborts if it receives a modified ciphertext ctA,GC, denoted by IDEAL
Fm×OT

BA,S

F2pc
LA ,S1(xA,seedA),Z

.
The indistinguishability of H2 and H1 is derived from the security of the

signature scheme SIG with the adversarial distinguishing advantage AdvSIG. An
environment Z, which can distinguishes between H2 and H1, can be turned into
an adversary B0 against the security of the signature scheme SIG scheme.

Hybrid H3: We consider a simulator S2 that works exactly as S1, except using
0 instead of using the correct seedA to compute the evidence ctA,GC, denoted

by IDEAL
Fm×OT

BA,S

F2pc
LA ,S2(xA,seedA),Z

. Note that S still computes GC exactly as in the real
execution.

The indistinguishability of H3 and H2 is derived from the security of the SKE
scheme Π with adversarial distinguishing advantage AdvSKE. An environment
Z, which can distinguishes between H3 and H2, can be turned into an adversary

Title Suppressed Due to Excessive Length 21

B1 against the security of the SKE Π scheme.

HybridH4: We consider a simulator S3 that works exactly as S2, except that S3
does not hold xA and seedA, but instead garbles the circuit C in such a way that
this circuit will always be evaluated to oB, using the appropriate input wire la-

bels. We denote such case as IDEAL
Fm×OT

BA,S

F2pc
LA ,S3,Z

, which is identical to IDEAL
Fm×OT

BA,S

F2pc
LA ,S,Z

.
The H4 and H3 are indistinguishable, if GCS is simulatable private with ad-

versarial distinguishing advantage AdvGCS. Again, an environment Z, which can
distinguishes between H4 and H3, can be turned into an adversary B2 against
the security of the GCS scheme.

Recall that the simulation of PAr by S is perfect in the CRS model. This
completes the proof.

Simulating the case PA is corrupted. S simulates a real execution in which
the corrupted PA controlled by A delivers message to uncorrupted PB in the
internal (simulated) interaction. The S works as follows:

1. In the key setup stage, plays the role of an honest PAr, sends (keyAr,h, decom, σAr)
to A. Then plays role of an honest PB, receives (h, σAr), checks whether σAr

is valid, aborts if not.
2. Plays the Fm×OT

BA,S with A playing PA:
• If the input is (cheat,PA, sid), sends (cheat, PA, sid) to F2pc

LA and receives
back PB’s input xB. Then uses the input xB of PB to perfectly emulate
PB in rest of the execution. Sends oB to F2pc

LA , which will be received by
PB as output. The simulation ends here for this case.

• If the input is {Bi,b}i∈[n2],b∈{0,1}, then proceeds with the simulation below.
3. Plays the role as an honest PB, receives GC, table, ctA,GC and σA,GC from A,

compute H.
4. Checks if the signature σA,GC is invalid, sends ⊥ to F2pc

LA and halts.
5. Extracts seedA with Π.DEC(keyAr, ctA,GC). Computes ĜC and ˆtable using the

pseudorandomness derived from seedA.
6. Computes the claimed hash value Ĥ.
7. For the following cases:
• If Ĥ ̸= H, sends (cheat, PA, sid) to F2pc

LA and receives back PB’s input
xB. Then uses the input xB of PB to perfectly emulate PB in rest of the
execution. Sends oB to F2pc

LA , which will be received by PB as output. The
simulation ends here for this case.

• If any of {Bi,b}i∈[n2],b∈{0,1} is not a consistent label corresponding to ĜC,
sends (cheat,PA, sid) to F2pc

LA and receives back PB’s input xB. Then
runs perfect emulation using PB’s input. Sends oB to F2pc

LA , which will be
received by PB as output. The simulation ends here for this case.

8. Upon receiving {Ai,j,xA[j]} from A, checks if any {Ai,j,xA[j]} are invalid, sends
ξ to F2pc

LA and halts (cause PB to receive ⊥). Otherwise, derives the exact A’s
input xA, sends to F2pc

LA and halts.

22 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

Proof. We now prove that Z cannot distinguish an interaction of protocol ΠGC

with A (denoted by REAL
Fm×OT

BA,S

ΠGC,A,Z) from an interaction in the ideal process with

F2pc
LA and S (denoted by IDEAL

Fm×OT
BA,S

F2pc
LA ,S,Z

):

Case 1: A sends (cheat,PB, sid) to Fm×OT
BA,S . It is the same to the previous proof

of Case 1, that Z cannot distinguish REAL
Fm×OT

BA,S

ΠGC,A,Z with IDEAL
Fm×OT

BA,S

F2pc
LA ,S,Z

, because
S receives back the exact honest PB’s input xB at the very beginning and can
thus perfectly emulate the PB’s behavior (PAr’s behavior as well).

Case 2: A sends an incorrect GC or hands any incorrect labels {Bi,b} to Fm×OT
BA,S .

In this case, both REAL
Fm×OT

BA,S

ΠGC,A,Z and IDEAL
Fm×OT

BA,S

F2pc
LA ,S,Z

are still indistinguishable to
Z. Recall that S can decrypt the evidence sent from A and can thus perfectly
emulate the arbitration performed by PAr and the messages sent from Fm×OT

BA,S to
PAr. Note that A does not have output during the interaction with Fm×OT

BA,S and
is not aware of PB’s input xB sent to Fm×OT

BA,S , neither does Z. After receiving
PB’s input xB from F2pc

LA , S can still perfectly emulate the PB’s behavior.

Case 3: A bahaves honestly. In this case, recall again that S can decrypt the
evidence sent by PA and thus extract the A’s input xA by comparing the wire
labels sent by A and the wire labels of garbled circuit using the decrypted seedA.

This completes the proof.

Simulating the case PAr is corrupted. For simplicity, we consider the case
that Fm×OT

BA,S is implemented by a protocol such that PB’s misbehavior can be
detected by PA within the ideal functionality Fm×OT

BA,S . So from PAr’s point of
view, we only focus on whether PA’s dishonest behavior takes place in the rest
of the proof. Besides, PAr only receives messages from PB and does not forward
any message to both PA and PB, so S only have to simulate the GC process
proceeded by both simulated PA and PB. The S works as follows:

1. In the key setup stage, S acts an honest PA and receives (keyAr, h, decom, σAr)
from A, checks whether σAr and h are both valid, aborts if not. Then S plays
the role of an honest PB and receives (h, σAr).

2. As PA, S chooses uniform distributed κ-bit seedA to compute {Bi,b}i∈[n2],b∈{0,1}.
3. S plays Fm×OT

BA,S between PA and PB, where PA uses {Bi,b} and PB uses a
uniformly distributed xB as input.

4. S uses seedA to garble circuit C and thus receives GC and table. Then S
computes ctA,GC and σA,GC.

5. S plays the role of PB and sends the arbitrate query (C,H, ctA,GC, σA,GC, sid)
to A.

Title Suppressed Due to Excessive Length 23

6. S simulates Fm×OT
BA,S by receiving PB’s arbitrate query, which sends PA’s input

{Bi,b} to A and halts.

Proof. We argue that REAL
Fm×OT

BA,S

ΠGC,A,Z is indistinguishable from IDEAL
Fm×OT

BA,S

F2pc
LA ,S,Z

. Al-
though PAr is corrupted by a malicious A, it however does not have any input
to F2pc

LA . In both ideal simulation and real protocol execution, S and PA use
a uniformly random κ-bit seedA to garble the circuit, and meanwhile generate
PB’s wire label {Bi,b} as input to Fm×OT

BA,S . The generated hash value on GC
is indistinguishable based on H(). In addition, S can simulate PA’s signature
under the CRS model, we conclude both ideal and real executions are indistin-
guishable.

7.2 Security in ΠOTE
BA,S

Theorem 2. Assume H() is a correlation-robust cryptographic hash function,
G is a pseudo random generator, SIG is existentially unforgeable under chosen-
message attacks (EUF-CMA). Protocol ΠOTE

BA,S described in Fig. 7 UC-realizes
Fm×OT

BA,S described in Fig. 3 in the FCRS, F l×OT
BA,R -hybrid model in the presence

of a malicious adversary who can corrupt either PA, PB or PAr, with static
corruption.

Due to space limitation, we provide a proof sketch in this section.

Malicious PA The original paper [55] already provides security against mali-
cious PA without the steps * and **. We observe that PA does not receive any
additional message during these two steps. It can only cause PB to abort by
sending an incorrect signature, which does not help PA to learn any single bit of
PB’s input. Thus, we do not provide further proof and directly derive security
against malicious PA from the original paper.

Malicious PB Same as above, the original proof shows that the protocol with-
out the steps * and ** is secure against malicious PB [55]. Since SIG is un-
forgeable under CMA, receiving σA,OT does not provide malicious PB with more
information or new ability. Specifically, malicious PB cannot cause PAr to out-
put an incorrect result, since PB cannot forge PA’s signature and force PAr to
accept some unmatched {ui}. Again, we conclude with the malicious security
from the original paper.

Malicious PAr In the CRS model, the simulator S can forge PB’s signature
by replacing the signing key pair of PB with its own key pair. Upon receiving
PA’s input {(x0

j , x
1
j)}j∈[m] from Fm×OT

BA,S , S can perfectly simulate the arbitrate
query sent from PB to A by choosing s, {k0, k1}l, and r uniformly at random,
then computing the corresponding {ui} and {y0j , y1j }j∈[m].

24 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

7.3 Security in ΠOTE
LA

Theorem 3. Assume H() is a correlation-robust cryptographic hash function,
G is a pseudo random generator, SIG is existentially unforgeable under chosen-
message attacks (EUF-CMA). Protocol ΠOTE

LA described in Fig.6 UC-realizes
Fm×OT

LA in the FCRS, F l×OT
BA,S -hybrid model in the presence of a malicious ad-

versary who can corrupt either PA, PB or PAr, with static corruption.

In this section, we prove that our protocol ΠOTE
LA is secure against malicious

PB. And we provide a proof sketch for both malicious PA and PAr in Ap-
pendix B.

Malicious PB We construct S simulating a real execution in which the cor-
rupted PB controlled by A delivers message to uncorrupted PA in the internal
(simulated) interaction. The S works as follows:

1. S plays the F l×OT
BA,S with A playing PB:

• If input is (cheat,PB, sid), S sends (cheat,PB, sid) to F l×OT
BA,S and receives

back PA’s input {x0
j , x

1
j}m. Then S uses the real PA’s input to perfectly

emulate PA in the rest of execution. S sends oA to Fm×OT
LA , which will be

received by PA as output. The simulation ends here for this case.
• If input is {k0, k1}l, S proceeds with the simulation below.

2. S plays the role as an honest PA, receives {ui}l, ∆, σB,OT, checks whether
σB,OT is invalid, sends ⊥ to Fm×OT

LA and halt.
3. For all i ∈ [l], S computes:

ri ← ui ⊕ G(ki0)⊕ G(ki1)

4. For the following case:
• If any ri is inconsistent with others, S sends (cheat,PB, sid) to Fm×OT

LA

and receives back PA’s input {x0
j , x

1
j}m. Then S uses the real PA’s input

to perfectly emulate PA in the rest of execution. S sends oA to Fm×OT
LA ,

which will be received by PA as output. The simulation ends here for this
case.

• If all ri are consistent, S proceeds with the simulation below.
5. S extracts A’s input r and sends to Fm×OT

LA . Upon receiving {xrj}m, S uses
{ui}l, s, {ksi}l and received {xrj}m to compute {yrj}m, sets {yrj}m uniformly
at random. S sends {yb}m to A and halts.

Proof. We now prove that Z cannot distinguish an interaction of ΠOTE
LA described

in 4 with A (denoted by REAL
F l×OT

BA,S

ΠOTE
LA ,A,Z) from an interaction in the ideal process

with Fm×OT
LA and S (denoted by IDEAL

F l×OT
BA,S

Fm×OT
LA ,S,Z

):

Case 1: Either when A sends (cheat,PB, sid) to F l×OT
BA,S , or S finds that A

cheats by using inconsistent ri, S receives back the exact honest PA’s input

Title Suppressed Due to Excessive Length 25

{(x0
j , x

1
j)}j∈[m]. For any of above cases, A hasn’t received any messages yet dur-

ing the protocol, thus S can perfectly emulate the PA’s behavior in the rest of
the protocol execution (PAr’s behavior as well). This yields the indistinguisha-

bility of REAL
F l×OT

BA,S

ΠOTE
LA ,A,Z and IDEAL

F l×OT
BA,S

Fm×OT
LA ,S,Z

to Z.

Case 2: For the second case when A behaves honestly, we consider the following
hybrid worlds:

Hybrid H0: It is the real protocol execution REAL
F l×OT

BA,S

ΠOTE
LA ,A,Z .

Hybrid H1: We consider a simulator S0, which holds the real PA’s private in-

put {(x0
j , x

1
j)}j∈[m], denoted by IDEAL

F l×OT
BA,S

Fm×OT
LA ,S0({(x0

j ,x
1
j)}),Z

.

Hybrid H2: We consider a simulator S1 that works exactly as S0, except using
the received {xrj} instead of using the real PA’s private input {(x0

j , x
1
j)}j∈[m],

denoted by IDEAL
F l×OT

BA,S

Fm×OT
LA ,S1,Z

, which is exactly the same as IDEAL
F l×OT

BA,S

Fm×OT
LA ,S,Z

.

It is trivial to verify that H0 and H1 are indistinguishable. Since S holds
{(x0

j , x
1
j)}j∈[m], it can perfectly emulate PA’s behavior.

Now we show that H2 and H1 are computationally indistinguishable to A.
Since A does not know the choice bit s, for each j ∈ [l], due to the functionality
of protocol, A can only compute either H(j, qj) or H(j, qj ⊕ s) depends on its
choice bit rj , and the remaining hash is uniform distributed to A. Since A does
not know xrj either, yrj ← xrj ⊕ Hrj is uniform distributed to A as well.

This completes the proof.

8 Evaluation

8.1 Evalution Setup

Testbed environment. All experiments are executed in a single server with
separate processes for PA and PB, with an additional process for PAr. The
server runs Ubuntu Server 22.04 LTS and has two Intel Xeon CPUs (8360Y
@ 2.40GHz). All programs run with a single thread. In the LAN setting, the
network bandwidth is 1 Gbps and the average latency is 0.2 ms. In the WAN
setting, the network bandwidth is 100 Mbps and the average latency is 40 ms.
Both are simulated with tc [44]. We have never met any issue with the memory
usage.

Baseline. To validate the efficiency of our protocols, we implement them in the
open source framework emp-toolkit [80], and compare them against baseline im-
plementations included in emp-toolkit. More specifically, emp-sh2pc (Semi-honest)
at commit 61589f5, emp-pvc (PV C) at commit 7c75a85 and a modified version
of emp-ag2pc (Malicious) at commit eddb6bf.

26 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

Experiment parameters. We set the security parameter κ = 128 in our imple-
mentation. We implement our protocol ΠGC and ΠOT with the state-of-the-art
techniques for garbling [58] [84]. We use SHA-256 for the hash function provided
by openssl [1] instead of Free Hash mentioned in PVC [45], as Guo et al. [41]
pointed out lately that this instantiation of the hash function was not collision
resistant. As for signature scheme, we choose the standard ECDSA implemen-
tation provided by openssl as well.

Benchmark. To benchmark the running time, we perform each protocol for
10 times. Each time, we use the longest time of all parties as the running time
of that run. The average running time among the experiments is presented in
Table 4 and Table 5. We also count the total communication volume of PB,
which includes both inbound and outbound traffic. In our case, it sums up PB’s
communication with PA, as well as with PAr. The statistics is shown in Table
6.

Experiment circuits. The circuits used for evaluation are listed in Table 2,
where n1 denotes the number of PA’s input wires, n2 the number of PB’s input
wires, n3 the number of output wires, and |C| the number of AND gates.

Table 2. Circuits for evaluation. Overall n2 OTs are required for each circuit.

Circuit n1 n2 n3 |C|
AES-128 128 128 128 6,800
SHA-256 512 256 256 22,573
SHA-512 1,024 512 512 57,947

Mult. 2,048 2,048 2,048 4,192K
Hamming dist. (Ham.) 1,048K 1,048K 22 10,223K

Table 3. Relative slowdown or speedup between our protocol and other protocols in
LAN setting and WAN setting.

Circuit
Slowdown Speedup Speedup

Se.-ho. PVC [45] Malicious [54]
LAN WAN LAN WAN LAN WAN

AES-128 41.17% 28.69% 1.53× 2.37× 2.62× 3.16×
SHA-256 27.64% 23.57% 1.88× 2.34× 5.63× 4.89×
SHA-512 18.88% 17.56% 1.52× 2.09× 9.56× 7.32×

Mult. 23.80% 4.42% 1.11× 1.04× 9.65× 13.30×
Ham. 73.43% 45.58% 1.09× 1.39× 4.55× 6.04×

Title Suppressed Due to Excessive Length 27

Table 4. Comparison of the running time (in milliseconds) of all protocols in LAN
setting.

Circuit Se.-ho. This paper PVC [45] Malicious [54]
AES-128 23.73 33.50 51.32 87.78
SHA-256 28.26 36.07 67.68 202.95
SHA-512 37.77 44.90 68.18 429.36

Mult. 1,513 1,874 2,078 18,089
Ham. 1,354 2349 2,550 10,682

Table 5. Comparison of the running time (in milliseconds) of all protocols in WAN
setting.

Circuit Se.-ho. This paper PVC [45] Malicious [54]
AES-128 309.17 397.87 942.93 1,257
SHA-256 347.45 429.35 1,006 2,097
SHA-512 447.26 525.81 1,098 3,849

Mult. 11,429 11,934 12,452 158,778
Ham. 10,169 14,804 20,573 89,464

Table 6. Communication complexity in MB.

Circuit Se.-ho. This paper PVC [45] Malicious [54]
AES-128 0.21 0.24 0.75 0.27
SHA-256 0.71 0.75 1.27 0.93
SHA-512 1.80 1.85 2.40 2.39

Mult. 128.04 128.16 128.67 170.03
Ham. 112.01 160.04 176.54 129.00

8.2 Comparisons

Compared to the semi-honest protocol. In Table 4 and Table 5, we show
the running time of our protocol for each circuit compared with that against
semi-honest adversaries in LAN and WAN settings. For the semi-honest protocol,
the results contain the running time of a base OT protocol and a passively secure
OT extension protocol [7]. For our protocol, we follow the constructions described
in Section 5 with an OT extension protocol ΠOTE

BA,S described in Section 6.1. As
shown in Table 3, the slowdown factor of our protocol comparing to the semi-
honest protocol never exceeds 2.

Compared to the PVC protocol. hen we compare the running time of our
protocol to the PVC protocol [45] with a deterrence factor ϵ = 1/2. We show in
both Table 4 and Table 5 that achieving honorific security costs much less than
achieving covert security. Our protocol performs up to 1.88 times faster in LAN
setting and 2.37 times faster in WAN setting than the PVC protocol. To run a
PVC protocol, both garbler and evaluator have to jointly perform 2∗λ−1 times
garbling scheme and λ ∗ n2 OTs (recall that ϵ = 1 − 1

λ), while only two times

28 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

garbling scheme and n2 OTs are needed in our protocol. We point out that if we
choose to execute the PVC protocol with some lager ϵ, the boost factor brought
by honorific security will be more effective.

Compared to the malicious protocol. In Table 4 and Table 5 we list the
performance of running a state-of-the-art malicious protocol [54] ([24] is pro-
posed without implementation). As shown in Table 3, our protocol beats the
malicious protocol with at least a 2.85 times acceleration in LAN setting and a
3.56 times acceleration in WAN setting. Remark that if we omit the computation
and communication overhead of an arbitration by letting the parties only hold
the received evidences as a deterrence, we can achieve a even better performance.

Communication overhead The communication overhead of this paper com-
pared against the PVC protocol [45] and the malicious protocol [54] is docu-
mented in Table 6. As we expected, the communication volume of our protocol
is much closer to the semi-honest protocol.

9 Conclusion and Future Work

In this paper, we propose a new security notion honorific security in the UC
framework. By constructing an efficient OT protocol and an efficient GC-based
2PC protocol with provable security, we show that this notion provides sufficient
security guarantee and implies high efficiency. We believe that it is extremely
meaningful to construct other 2PC protocols to achieve honorific security in the
future, such as sharing-based 2PC protocols.

Bibliography

[1] Openssl (2018), https://github.com/openssl/openssl/tree/OpenSSL_
1_1_1-stable

[2] Supporting private data on hyperledger fabric with secure multiparty com-
putation. IBM Journal of Research and Development 63(2/3), 3–1 (2019)

[3] Adida, B.: Helios: Web-based open-audit voting. In: USENIX security sym-
posium. vol. 17, pp. 335–348 (2008)

[4] Alexandru, A.B., Morari, M., Pappas, G.J.: Cloud-based mpc with en-
crypted data. In: 2018 IEEE conference on decision and control (CDC).
pp. 5014–5019. IEEE (2018)

[5] Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for
cpu based attestation and sealing. In: Proceedings of the 2nd international
workshop on hardware and architectural support for security and privacy.
vol. 13, p. 7. Citeseer (2013)

[6] Archer, D.W., Bogdanov, D., Lindell, Y., Kamm, L., Nielsen, K., Pagter,
J.I., Smart, N.P., Wright, R.N.: From keys to databases—real-world appli-
cations of secure multi-party computation. The Computer Journal 61(12),
1749–1771 (2018)

[7] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious
transfer and extensions for faster secure computation. In: Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security.
pp. 535–548 (2013)

[8] Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivi-
ous transfer extensions with security for malicious adversaries. In: Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 673–701. Springer (2015)

[9] Asharov, G., Orlandi, C.: Calling out cheaters: Covert security with public
verifiability. In: Wang, X., Sako, K. (eds.) Advances in Cryptology – ASI-
ACRYPT 2012. pp. 681–698. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

[10] Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient pro-
tocols for realistic adversaries. vol. 23, pp. 281–343. Springer (2010)

[11] Badrinarayanan, S., Jain, A., Ostrovsky, R., Visconti, I.: Uc-secure multi-
party computation from one-way functions using stateless tokens. In: In-
ternational Conference on the Theory and Application of Cryptology and
Information Security. pp. 577–605. Springer (2019)

[12] Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party
computation. In: International Conference on Security and Cryptography
for Networks. pp. 175–196. Springer (2014)

[13] Baum, C., Orsini, E., Scholl, P.: Efficient secure multiparty computation
with identifiable abort. In: Theory of Cryptography: 14th International
Conference, TCC 2016-B, Beijing, China, October 31-November 3, 2016,
Proceedings, Part I 14. pp. 461–490. Springer (2016)

https://github.com/openssl/openssl/tree/OpenSSL_1_1_1-stable
https://github.com/openssl/openssl/tree/OpenSSL_1_1_1-stable

30 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

[14] Baum, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient constant-
round mpc with identifiable abort and public verifiability. In: Advances
in Cryptology–CRYPTO 2020: 40th Annual International Cryptology Con-
ference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020,
Proceedings, Part II. pp. 562–592. Springer (2020)

[15] Beaver, D.: Commodity-based cryptography. In: Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing. pp. 446–455 (1997)

[16] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In:
Proceedings of the 2012 ACM conference on Computer and communications
security. pp. 784–796 (2012)

[17] Bestavros, A., Lapets, A., Varia, M.: User-centric distributed solutions for
privacy-preserving analytics. Communications of the ACM 60(2), 37–39
(2017)

[18] Byali, M., Chaudhari, H., Patra, A., Suresh, A.: Flash: fast and ro-
bust framework for privacy-preserving machine learning. Cryptology ePrint
Archive (2019)

[19] Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. In: Proceedings 42nd IEEE Symposium on Foundations
of Computer Science. pp. 136–145. IEEE (2001)

[20] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable
two-party and multi-party secure computation. In: Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing. pp. 494–503 (2002)

[21] Cartlidge, J., Smart, N.P., Talibi Alaoui, Y.: Mpc joins the dark side. In:
Proceedings of the 2019 ACM Asia Conference on Computer and Commu-
nications Security. pp. 148–159 (2019)

[22] Chandran, N., Gupta, D., Obbattu, S.L.B., Shah, A.: {SIMC}:{ML} in-
ference secure against malicious clients at {Semi-Honest} cost. In: 31st
USENIX Security Symposium (USENIX Security 22). pp. 1361–1378 (2022)

[23] Cordi, C., Frank, M.P., Gabert, K., Helinski, C., Kao, R.C., Kolesnikov,
V., Ladha, A., Pattengale, N.: Auditable, available and resilient private
computation on the blockchain via mpc. In: International Symposium on
Cyber Security, Cryptology, and Machine Learning. pp. 281–299. Springer
(2022)

[24] Cui, H., Wang, X., Yang, K., Yu, Y.: Actively secure half-gates with
minimum overhead under duplex networks. In: Advances in Cryptology–
EUROCRYPT 2023: 42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Lyon, France, April 23–27,
2023, Proceedings, Part II. pp. 35–67. Springer (2023)

[25] Dalskov, A., Escudero, D., Keller, M.: Secure evaluation of quantized neu-
ral networks. Proceedings on Privacy Enhancing Technologies 4, 355–375
(2020)

[26] Damgård, I., Geisler, M., Nielsen, J.B.: From passive to covert security at
low cost. In: Theory of Cryptography Conference. pp. 128–145. Springer
(2010)

[27] Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Annual Cryptology Confer-
ence. pp. 643–662. Springer (2012)

Title Suppressed Due to Excessive Length 31

[28] Demmler, D., Schneider, T., Zohner, M.: Aby-a framework for efficient
mixed-protocol secure two-party computation. In: NDSS (2015)

[29] Dittmer, S., Ishai, Y., Lu, S., Ostrovsky, R.: Authenticated garbling from
simple correlations. In: Advances in Cryptology–CRYPTO 2022: 42nd An-
nual International Cryptology Conference, CRYPTO 2022, Santa Barbara,
CA, USA, August 15–18, 2022, Proceedings, Part IV. pp. 57–87. Springer
(2022)

[30] Dong, C., Weng, J., Liu, J., Zhang, Y., Tong, Y., Yang, A., Cheng, Y., Hu,
S.: Fusion: Efficient and secure inference resilient to malicious servers. In:
30th Annual Network and Distributed System Security Symposium, NDSS
2023, San Diego, California, USA, February 27 - March 3, 2023. The Internet
Society (2023)

[31] Evans, D., Kolesnikov, V., Rosulek, M.: A pragmatic introduction to se-
cure multi-party computation. Foundations and Trends® in Privacy and
Security 2(2-3) (2017)

[32] Evans, D., Kolesnikov, V., Rosulek, M., et al.: A pragmatic introduction to
secure multi-party computation. Foundations and Trends® in Privacy and
Security 2(2-3), 70–246 (2018)

[33] Felsen, S., Kiss, Á., Schneider, T., Weinert, C.: Secure and private func-
tion evaluation with intel sgx. In: Proceedings of the 2019 ACM SIGSAC
Conference on Cloud Computing Security Workshop. pp. 165–181 (2019)

[34] Fu, C., Zhang, X., Ji, S., Chen, J., Wu, J., Guo, S., Zhou, J., Liu, A.X.,
Wang, T.: Label inference attacks against vertical federated learning. In:
31st USENIX Security Symposium (USENIX Security 22). pp. 1397–1414
(2022)

[35] Gao, H., Ma, Z., Luo, S., Wang, Z.: Bfr-mpc: a blockchain-based fair and
robust multi-party computation scheme. IEEE access 7, 110439–110450
(2019)

[36] Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients-
how easy is it to break privacy in federated learning? Advances in Neural
Information Processing Systems 33, 16937–16947 (2020)

[37] Goldreich, O.: Foundations of cryptography: volume 2, basic applications.
Cambridge university press (2009)

[38] Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryp-
tography on tamper-proof hardware tokens. In: Theory of Cryptography
Conference. pp. 308–326. Springer (2010)

[39] Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party com-
putation against covert adversaries. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 289–306.
Springer (2008)

[40] Graf, M., Küsters, R., Rausch, D.: Auc: Accountable universal composabil-
ity. In: 2023 IEEE Symposium on Security and Privacy (SP). pp. 1148–1167.
IEEE (2023)

[41] Guo, C., Katz, J., Wang, X., Yu, Y.: Efficient and secure multiparty compu-
tation from fixed-key block ciphers. In: 2020 IEEE Symposium on Security
and Privacy (SP). pp. 825–841. IEEE (2020)

32 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

[42] Hastings, M., Hemenway, B., Noble, D., Zdancewic, S.: Sok: General purpose
compilers for secure multi-party computation. In: 2019 IEEE symposium on
security and privacy (SP). pp. 1220–1237. IEEE (2019)

[43] Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round mpc com-
bining bmr and oblivious transfer. Journal of Cryptology 33(4), 1732–1786
(2020)

[44] Hemminger, S., et al.: Network emulation with netem. In: Linux conf au.
vol. 5, p. 2005. Citeseer (2005)

[45] Hong, C., Katz, J., Kolesnikov, V., Lu, W.j., Wang, X.: Covert security with
public verifiability: Faster, leaner, and simpler. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
pp. 97–121. Springer (2019)

[46] Huang, Y., Gupta, S., Song, Z., Li, K., Arora, S.: Evaluating gradient in-
version attacks and defenses in federated learning. Advances in Neural In-
formation Processing Systems 34, 7232–7241 (2021)

[47] Huang, Z., Lu, W.j., Hong, C., Ding, J.: Cheetah: Lean and fast secure two-
party deep neural network inference. In: 31st USENIX Security Symposium
(USENIX Security 22). pp. 809–826 (2022)

[48] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers
efficiently. In: Annual International Cryptology Conference. pp. 145–161.
Springer (2003)

[49] Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with
identifiable abort. In: Annual Cryptology Conference. pp. 369–386. Springer
(2014)

[50] Jie, Y., Ren, Y., Wang, Q., Xie, Y., Zhang, C., Wei, L., Liu, J.: Multi-
party secure computation with intel sgx for graph neural networks. In:
ICC 2022-IEEE International Conference on Communications. pp. 528–533.
IEEE (2022)

[51] Jin, X., Chen, P.Y., Hsu, C.Y., Yu, C.M., Chen, T.: Cafe: Catastrophic
data leakage in vertical federated learning. Advances in Neural Information
Processing Systems 34, 994–1006 (2021)

[52] Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: Gazelle: A low latency
framework for secure neural network inference. In: 27th USENIX Security
Symposium (USENIX Security 18). pp. 1651–1669 (2018)

[53] Katz, J., Lindell, Y.: Introduction to modern cryptography. CRC press
(2014)

[54] Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenticated
garbling for faster secure two-party computation. In: Annual International
Cryptology Conference. pp. 365–391. Springer (2018)

[55] Keller, M., Orsini, E., Scholl, P.: Actively secure ot extension with optimal
overhead. In: Annual Cryptology Conference. pp. 724–741. Springer (2015)

[56] Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making spdz great again.
In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 158–189. Springer (2018)

[57] Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model
(almost) for free. In: Iwata, T., Cheon, J.H. (eds.) Advances in Cryptol-

Title Suppressed Due to Excessive Length 33

ogy – ASIACRYPT 2015. pp. 210–235. Springer Berlin Heidelberg, Berlin,
Heidelberg (2015)

[58] Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free xor gates and
applications. In: International Colloquium on Automata, Languages, and
Programming. pp. 486–498. Springer (2008)

[59] Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon,
D.: Federated learning: Strategies for improving communication efficiency.
arXiv preprint arXiv:1610.05492 (2016)

[60] Koti, N., Kukkala, V.B., Patra, A., Raj Gopal, B.: Pentagod: Stepping
beyond traditional god with five parties. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1843–
1856 (2022)

[61] Küsters, R., Liedtke, J., Müller, J., Rausch, D., Vogt, A.: Ordinos: a verifi-
able tally-hiding e-voting system. In: 2020 IEEE European Symposium on
Security and Privacy (EuroS&P). pp. 216–235. IEEE (2020)

[62] Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and rela-
tionship to verifiability. In: Proceedings of the 17th ACM conference on
Computer and communications security. pp. 526–535 (2010)

[63] Lehmkuhl, R., Mishra, P., Srinivasan, A., Popa, R.A.: Muse: Secure infer-
ence resilient to malicious clients. In: 30th USENIX Security Symposium
(USENIX Security 21). pp. 2201–2218 (2021)

[64] Li, P., Li, J., Huang, Z., Li, T., Gao, C.Z., Yiu, S.M., Chen, K.: Multi-key
privacy-preserving deep learning in cloud computing. Future Generation
Computer Systems 74, 76–85 (2017)

[65] Lindell, Y.: Fast cut-and-choose-based protocols for malicious and covert
adversaries. Journal of Cryptology 29(2), 456–490 (2016)

[66] Lindell, Y.: How to simulate it–a tutorial on the simulation proof technique.
Tutorials on the Foundations of Cryptography pp. 277–346 (2017)

[67] Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. Journal of Cryptology 28(2),
312–350 (2015)

[68] Liu, J., He, X., Sun, R., Du, X., Guizani, M.: Privacy-preserving data shar-
ing scheme with fl via mpc in financial permissioned blockchain. In: ICC
2021-IEEE International Conference on Communications. pp. 1–6. IEEE
(2021)

[69] Liu, X., Deng, R.H., Yang, Y., Tran, H.N., Zhong, S.: Hybrid privacy-
preserving clinical decision support system in fog–cloud computing. Future
Generation Computer Systems 78, 825–837 (2018)

[70] Lu, Y., Zhang, B., Zhou, H.S., Liu, W., Zhang, L., Ren, K.: Correlated
randomness teleportation via semi-trusted hardware—enabling silent multi-
party computation. In: European Symposium on Research in Computer
Security. pp. 699–720. Springer (2021)

[71] Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: Delphi:
A cryptographic inference service for neural networks. In: 29th USENIX
Security Symposium (USENIX Security 20). pp. 2505–2522 (2020)

34 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

[72] Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving
machine learning. In: 2017 IEEE symposium on security and privacy (SP).
pp. 19–38. IEEE (2017)

[73] Nie, L., Yao, S., Liu, J.: Secure multiparty computation with identifiable
abort and fairness. In: 2023 7th International Conference on Cryptography,
Security and Privacy (CSP). pp. 99–106. IEEE (2023)

[74] Nordholt, P.S., Toft, T.: Confidential benchmarking based on multiparty
computation. In: Financial Cryptography and Data Security: 20th Inter-
national Conference, FC 2016, Christ Church, Barbados, February 22–26,
2016, Revised Selected Papers. vol. 9603, p. 169. Springer (2017)

[75] Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta, D., Rastogi, A.,
Sharma, R.: Cryptflow2: Practical 2-party secure inference. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. pp. 325–342 (2020)

[76] Rivinius, M., Reisert, P., Rausch, D., Küsters, R.: Publicly accountable
robust multi-party computation. In: 2022 IEEE Symposium on Security
and Privacy (SP). pp. 2430–2449. IEEE (2022)

[77] Roy, L.: Softspokenot: Quieter ot extension from small-field silent vole in
the minicrypt model. Springer-Verlag (2022)

[78] Scholl, P., Simkin, M., Siniscalchi, L.: Multiparty computation with covert
security and public verifiability. Cryptology ePrint Archive (2021)

[79] So, J., Güler, B., Avestimehr, A.S.: Codedprivateml: A fast and privacy-
preserving framework for distributed machine learning. IEEE Journal on
Selected Areas in Information Theory 2(1), 441–451 (2021)

[80] Wang, X., Malozemoff, A.J., Katz, J.: Emp-toolkit: Efficient multiparty
computation toolkit (2022), https://github.com/emp-toolkit/

[81] Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient
maliciously secure two-party computation. In: Proceedings of the 2017 ACM
SIGSAC conference on computer and communications security. pp. 21–37
(2017)

[82] Yang, K., Wang, X., Zhang, J.: More efficient mpc from improved triple
generation and authenticated garbling. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1627–
1646 (2020)

[83] Yao, A.C.C.: How to generate and exchange secrets. In: 27th annual sym-
posium on foundations of computer science (Sfcs 1986). pp. 162–167. IEEE
(1986)

[84] Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 220–250. Springer (2015)

[85] Zhou, J., Feng, Y., Wang, Z., Guo, D.: Using secure multi-party computa-
tion to protect privacy on a permissioned blockchain. Sensors 21(4), 1540
(2021)

https://github.com/emp-toolkit/

Title Suppressed Due to Excessive Length 35

A Protocol ΠOTE
BA,S

See Fig. 7.

B Security in ΠOTE
LA

B.1 Malicious PA

The original paper [48] already provides security against a malicious PA. Since
SIG is unforgeable under CMA, receiving two additional messages ∆ and σB,OT

does not provide a malicious PA with more information or new ability. Besides,
in the honest majority setting, a malicious PA cannot cause PAr to output
an incorrect result, since this only depends on the messages and σB,OT sent by
PB. Thus we do not further prove security but directly derive security against
a malicious PA from the original paper.

B.2 Malicious PAr

In the CRS model, remark that the simulator S can forge PB’s signature by
replacing the signing key pair of PB with its own key pair. While S does not hold
the choice bit r of PB, we have to prove that {vi} generated S is indistinguishable
with those generated by an honest PB in the real protocol execution. Note
that the original ui is distributed uniformly at random to A. Since ∆ is chosen
uniformly at random as well, so the randomly chosen vi by S in the ideal world
is indistinguishable with the computed vi ← ui ⊕ ∆ by PB in the real world.
The indistinguishability of both ideal world and real protocol execution is thus
proved.

36 Tianxiang Dai, Yufan Jiang, Yong Li, Jörn Müller-Quade, and Andy Rupp

Private inputs: PA has input {(x0
j , x

1
j)}j∈[m] and key pair {pkA, skA} for the signature

scheme. PB has input r = (r1, ..., rm) and key pair {pkB, skB} for the signature scheme.
PAr has a key pair {pkAr, skAr} for the signature scheme.
Public inputs: All three parties know the public key pki of each other and a session
ID sid.
CRS: (pkA, pkB, pkAr).

Protocol:

1. PA initializes a random vector s ∈ {0, 1}l and PB chooses random {k0, k1}l each
of size κ.

2. Parties proceed with a F l×OT
BA,R (Fm×OT

BA,R with m = l), where PA acts as the receiver
with input s and PB acts as the sender with input {k0, k1}l.

3. PB samples random w choice bits and extends r to r′ = (r1, ..., rm+w). Assume
m|w, let m′ = m + w. Let T = [t1|...|tl] denote the m′ × l matrix where ith
column is ti. Let tj denote the jth row of T . PB uses the extended choice bits r′

to compute ti ← G(ki
0) ∈ Zm′

2 and ui ← ti ⊕ G(ki
1)⊕ r′ ∈ Zm′

2 .
4. PB sends {ui}l.
- Consistency check:

1. Let o = m/w, we divide the m′ OTs into o + 1 blocks of w bits. Denote
r̂ = (r̂1, ..., r̂o+1) ∈ Zo+1

2w , t̂i = (t̂i1, ..., t̂
i
o+1) ∈ Zo+1

2w , q̂i = (q̂i
1, ..., q̂

i
o+1) ∈ Zo+1

2w .
2. PA samples Y = (Y1, ...Yo) ∈ Zo

2w , then sends Y to PB.
3. PB computes and sends (x, {ti}), where:

x =

o∑
j=1

r̂j · Yj ⊕ r̂o+1 and ti =

o∑
j=1

t̂i · Yj ⊕ t̂io+1 for i = 1, ..., κ

4. PA computes:

qi =

o∑
j=1

q̂i · Yj ⊕ q̂i
o+1 for i = 1, ..., κ

then checks whether qi = ti ⊕ si · x for all i = 1, ..., κ, and aborts with output
⊥ if not.

5. For i ∈ [l], PA defines qi = (si · ui)⊕ G(ki
si). Let Q = [q1|...|ql] denote the m× l

bit matrix with qi representing its ith column. Let qj denote the jth row of the
matrix Q. Note that qi = (si · r)⊕ ti and qj = (rj · s)⊕ tj .

6. PA computes and sends {y0
j , y

1
j }j∈[m], where:

y0
j = x0

j ⊕ H(j,qj) and y1
j = x1

j ⊕ H(j,qj ⊕ s)

** PA computes a corresponding signature σA,OT ← SIG.Sign(skA, {ui}||{y0
j , y

1
j }||sid),

then sends to PB, which checks whether σA,OT is valid, and aborts with output ⊥
if not.

7. PB outputs (xr1
1 , ..., xrm

m) with x
rj
j = y

rj
j ⊕ H(j, ti).

* Arbitrate:
1. PB sends an arbitrate query ({ui}l, {y0

j , y
1
j }, σA,OT, sid) to PAr, which checks

whether σA,OT is valid, and aborts with output ⊥ if not.
2. PB sends an arbitrate query ((arbitrate,PA),PB, sid) to F l×OT

BA,R . If PAr

receives (cheated,PA, sid), then the arbitration ends here. If PAr receives
(honest,PA, sid) and (s, {ki

si}), the arbitration proceeds.
3. PAr computes qi = (si · ui)⊕ G(ki

si) and derives qj as PA. It then computes
x0
j = y0

j ⊕ H(j, qj) and x1
j = y1

j ⊕ H(j, qj ⊕ s).

Fig. 7. A secure OT Extension protocol ΠOTE
BA,S that UC-realizes Fm×OT

BA,S .

	Honorific Security: Efficient Two-Party Computation with Offloaded Arbitration and Public Verifiability

