
A prior version of this article ([6], DOI: 10.1007/s10207-022-00596-5) was published in the International Journal of Information Security. The
full version [7] is available as entry 2022/604 in the IACR eprint archive.

Algorithm Substitution Attacks against Receivers

Marcel Armour · Bertram Poettering

Abstract This work describes a class of Algorithm Substi-
tution Attack (ASA) generically targeting the receiver of a
communication between two parties. Our work provides a
unified framework that applies to any scheme where a secret
key is held by the receiver; in particular, message authenti-
cation schemes (MACs), authenticated encryption (AEAD)
and public key encryption (PKE). Our unified framework
brings together prior work targeting MAC schemes (FSE’19)
and AEAD schemes (IMACC’19) ; we extend prior work by
showing that public key encryption may also be targeted.

ASAs were initially introduced by Bellare, Paterson and
Rogaway in light of revelations concerning mass surveil-
lance, as a novel attack class against the confidentiality of
encryption schemes. Such an attack replaces one or more of
the regular scheme algorithms with a subverted version that
aims to reveal information to an adversary (engaged in mass
surveillance), while remaining undetected by users. Previ-
ous work looking at ASAs against encryption schemes can
be divided into two groups. ASAs against PKE schemes tar-
get key generation by creating subverted public keys that
allow an adversary to recover the secret key. ASAs against
symmetric encryption target the encryption algorithm and
leak information through a subliminal channel in the cipher-
texts. We present a new class of attack that targets the de-
cryption algorithm of an encryption scheme for symmetric
encryption and public key encryption, or the verification al-
gorithm for an authentication scheme. We present a generic
framework for subverting a cryptographic scheme between
a sender and receiver, and show how a decryption oracle al-

Marcel Armour
Royal Holloway University of London, Egham, UK
E-mail: marcel.armour.2017@rhul.ac.uk
ORCID: 0000-0002-1231-6120

Bertram Poettering
IBM Research Europe – Zurich, Rüschlikon, Switzerland
E-mail: poe@zurich.ibm.com
ORCID: 0000-0001-6525-5141

lows a subverter to create a subliminal channel which can
be used to leak secret keys. We then show that the generic
framework can be applied to authenticated encryption with
associated data, message authentication schemes, public key
encryption and KEM/DEM constructions.

We consider practical considerations and specific con-
ditions that apply for particular schemes, strengthening the
generic approach. Furthermore, we show how the hybrid
subversion of key generation and decryption algorithms can
be used to amplify the effectiveness of our decryption attack.
We argue that this attack represents an attractive opportunity
for a mass surveillance adversary. Our work serves to refine
the ASA model and contributes to a series of papers that
raises awareness and understanding about what is possible
with ASAs.

Keywords Algorithm Substitution Attacks · Privacy ·Mass
Surveillance · Cryptography

1 Introduction

Consider two parties communicating over an untrusted chan-
nel (in the presence of an adversary). Desired security prop-
erties for this scenario include confidentiality and integrity.
Confidentiality means that the adversary is unable to learn
anything about the messages sent between the parties. In-
tegrity means that the parties can be sure that the messages
have not been tampered with in transit. Both confidential-
ity and integrity are well studied problems and there are
many reliable and provably secure cryptographic solutions.
These solutions rely on the assumption that the software
or hardware in which they are implemented behaves as ex-
pected. However, we know that in the real world this as-
sumption does not necessarily hold. Powerful adversaries
have the means to insert unreliability into cryptography via
external (“real-world”) infrastructure: whether by influenc-
ing standards bodies to adopt “backdoored” parameters, in-

https://doi.org/10.1007/s10207-022-00596-5
https://www.springer.com/journal/10207/
https://eprint.iacr.org/2022/604

2 Marcel Armour, Bertram Poettering

serting exploitable errors into software implementations, or
compromising supply chains to interfere with hardware. The
Snowden revelations showed that this is indeed the case,
and that large and powerful adversaries (interested in mass
surveillance) have sought to circumvent cryptography. The
reader is referred to the survey by Schneier et al. [61], which
provides a broad overview of subversion of cryptography,
with some useful case studies detailing known subversion
attempts.

The idea that an adversary may embed a backdoor or
otherwise tamper with the implementation or specification
of a cryptographic scheme or primitive predates the Snow-
den revelations, and was initiated in a line of work by Young
and Yung that they named kleptography [64,65]. This area
of study can be traced back to Simmons’ work on subliminal
channels, e.g. [62], undertaken in the context of nuclear non-
proliferation during the Cold War. In the original concep-
tion [64], kleptography considered a saboteur who designs a
cryptographic algorithm whose outputs are computationally
indistinguishable from the outputs of an unmodified trusted
algorithm. The saboteur’s algorithm should leak private key
data through the output of the system, which was achieved
using the same principles as Simmons’ earlier subliminal
channels. Post-Snowden, work in this area was reignited by
Bellare, Paterson and Rogaway (BPR) [16], who formalised
the study of so-called algorithm substitution attacks (ASAs)
through the example of symmetric encryption schemes. In
abstract terms, the adversary’s goal in an ASA is to create a
subverted implementation of a scheme that breaks some as-
pect of security (such as IND-CPA in the case of encryption)
while remaining undetected by the user(s).

1.1 Contributions

We provide formal definitions for subversion attacks against
generic cryptographic primitives whose syntax allows for
both the sending and receiving party to be subverted. Pre-
vious work in this area considered only subversion of the
sender; our main contribution is to show that this assump-
tion misses an important class of attack that targets the re-
ceiver. In this work, we describe how such an ASA against
the receiver can be used to exfiltrate the (receiver’s) key,
which represents the most devastating attack from the point
of view of an attacker. We show that this class of ASA can
be applied to symmetric settings (authenticated encryption,
message authentication codes, and data encapsulation mech-
anisms), as well as asymmetric settings (public key encryp-
tion and key encapsulation mechanisms). Our work brings
together previous work targeting AEAD schemes [5] and
MAC schemes [4] in a common framework, expanded to
incorporate public key encryption.

Concretely, we alter the behaviour of the receiver’s al-
gorithm to leak information through (artificially induced)

decryption error events – the subverted algorithm either re-
jects (particular, “trigger”) valid ciphertexts or accepts (par-
ticular, “trigger”) bogus ciphertexts. An adversary observ-
ing the receiver who is able to determine whether a cipher-
text has been accepted or rejected learns some information;
this subliminal channel can be used to exfiltrate the user’s
key. The assumption that a surveillance adversary is able to
observe whether a receiver’s algorithm implementation ac-
cepts or rejects a ciphertext is a mild one in many practi-
cal scenarios; for example, a decryption error may result in
a network packet being dropped and automatically retrans-
mitted.1 A subverted algorithm could, furthermore, go be-
yond this by e.g. influencing timing information in future
messages sent to the network. We conclude that this attack
represents an attractive and easy to implement opportunity
for a mass surveillance adversary.

1.1.1 AEAD

We first examine authenticated encryption with associated
data (AEAD), a symmetric cryptographic primitive that of-
fers the combined properties of confidentiality and message
integrity. We show that our class of ASA applies to the de-
cryption component of AEAD schemes, leaking the sym-
metric key. Our results stand in opposition to previous work
[16,30,13] which proposed subversion resilience of a large
class of AEAD schemes to which many if not all real-world
constructions such as GCM, CCM and OCB belong, as long
as their nonces are generated deterministically via a shared
state maintained by both encryptor and decryptor. The cru-
cial observation to resolve this apparent contradiction is that
previous work has assumed, besides explicitly spelled out
requirements like uniqueness of ciphertexts and perfect de-
cryptability, implicit notions such as integrity of ciphertexts.
In the ASA setting for AEAD where undermining the con-
fidentiality of a scheme is the primary goal of an adversary,
it seems just as natural to assume that the adversary is also
willing to compromise the integrity guarantees as well.

1.1.2 MACs

We next show that our results apply equally in the setting
of message authentication schemes (MACs). MACs provide
a message authentication code or tag for a given message;
conversely, given a message and a tag, the MAC provides
verification that the tag was generated from the message
(that is, that the tag is genuine). The security of a MAC
is determined by the difficulty of forging tags. If no ad-
versary can forge a tag, then a message with a correct tag

1 Recent work on so-called partitioning oracles [49,2,3] relies on
the ability to observe whether or not decryption succeeds and demon-
strates that this is a realistic assumption in practice; for example, in
the context of proxy servers a “logical side-channel” is observable as a
port is opened when a ciphertext is accepted (and otherwise not).

Algorithm Substitution Attacks against Receivers 3

must have been generated by the sender. An ASA against
a MAC replaces either the tagging function (the generation
of message authentication codes) or the verification function
(checking that tags have been honestly generated) in such a
way as to leak information to an adversary. Applying our at-
tack to a MAC leaks the secret key to an adversary, allowing
them to forge any tag. This is an attractive goal for an adver-
sary in real world settings, as once integrity has been com-
promised this can often be leveraged to perform any num-
ber of other attacks, for example: enabling attacks against
(“encrypt-then-MAC”) confidentiality; getting users to ac-
cept compromised (authenticated) software updates; inject-
ing malicious packets into (secured) communication streams
to de-anonymise users.

1.1.3 PKE

Lastly, we show that public key encryption (PKE) is also
vulnerable to our class of ASA. A public key (or asymmet-
ric) encryption scheme allows secure communication be-
tween parties that have not shared a secret key with one
another. PKE works by having two keys: the public key is
used to encrypt messages and the private key is used to de-
crypt. The security of a PKE scheme is determined by the
difficulty of determining any information about underlying
messages for a given ciphertext.

Our ASA attacks on PKE require a fairly large number
of ciphertexts to be sent and observed to reject erroneously
in order for the private key to be exfiltrated. In practice, this
condition will be met: consider a server that hosts traffic
for a large number of clients. The server will have a pri-
vate/public key pair which is held static over long periods
of time. Observing the server receive ciphertexts from many
clients will allow an adversary to witness a large enough
amount of traffic to recover the server’s private key, render-
ing all communications between clients and server compro-
mised.

Due to the high overheads associated with PKE, sym-
metric encryption is better suited to bulk communication.
In most practical settings, PKE is used to establish a shared
secret between the sender and receiver, so that the shared se-
cret may be used as a key for communicating via symmetric
encryption. This notion of sending keys for symmetric en-
cryption via public key methods is formalised as a key en-
capsulation mechanism (KEM). We show how our notions
of subversion apply also to KEMs in Appendix A.1. KEMs
are typically used together with a data encapsulation mech-
anism (DEM) in a so-called hybrid encryption scheme to
PKE-encrypt messages. We give the definition of a DEM in
Appendix A.2 for completeness.

1.2 Structure of this Document

We first describe related work in Section 2, focussing on
ASAs that target symmetric encryption, PKE and MACs.
Section 3 describes the notation used in this article. We give
an abstract description of an ASA targeting generic crypto-
graphic schemes consisting of a sender and receiver in Sec-
tion 4, together with notions of undetectability (Section 4.1)
and key recovery (Section 4.2). We also discuss hybrid sub-
version (Section 4.3), the idea that multiple algorithms (e.g.,
key generation and encryption) are subverted in tandem. In
Section 5 we discuss authenticated encryption with associ-
ated data, giving syntax and security definitions: privacy in
Section 5.1 and integrity in Section 5.2. We show that our
notion of ASAs apply to AEAD schemes in Section 5.3.
Section 6 discusses MACs, including the definition of in-
tegrity; Section 6.1 shows that our notion of ASAs apply
to MAC schemes. Section 7 discusses PKE, giving syntax
and security definitions; Section 7.1 shows that our notion
of ASAs apply to PKE schemes. We describe our concrete
subversion attack, targeting the receiver algorithm, in Sec-
tion 8, together with an analysis of the undetectability and
key recovery properties of our attack. We give two versions,
a passive attack in Section 8.2 and an active attack in Sec-
tion 8.3.

2 Related Work

2.1 Symmetric Encryption

BPR [16] demonstrate an attack against certain randomised
encryption schemes that relies on influencing the random-
ness consumed in the course of encryption. Their attack,
which they call the “biased-ciphertext attack”, is a generic
method that relies on rejection sampling. Randomness is re-
sampled until ciphertexts satisfy a particular format (for ex-
ample, implanting information in the least significant bits),
resulting in a subliminal channel.

There is a tension for “Big Brother” between mount-
ing a successful attack and being detected; clearly an at-
tack that simply replaces the encryption algorithm with one
that outputs the messages in plaintext would be devastating
yet trivially detectable. BPR stipulate that ciphertexts gen-
erated with a subverted encryption algorithm should at the
very least decrypt correctly with the unmodified decryption
routine, in order to have some measure of resistance to de-
tection. Furthermore, BPR define the success probability of
a mass surveillance adversary in carrying out a successful
attack, as well as the advantage of a user in detecting that a
surveillance attack is taking place. The attack of BPR was
later generalised by Bellare, Jaeger and Kane (BJK) [13]
whose attack applies to all randomised schemes. Further-
more, whereas the attack of BPR is stateful and so vulnera-

4 Marcel Armour, Bertram Poettering

ble to detection through state reset, the BJK attack is state-
less. BJK [13] later formalised the goal of key recovery as
the desired outcome of an ASA from the point of view of
a mass surveillance adversary. Lastly, BPR also establish a
positive result that shows that under certain assumptions, it
is possible for authenticated encryption schemes to provide
resistance against subversion attacks.

Degabriele, Farshim and Poettering (DFP) [30] critiqued
the definitions and underlying assumptions of BPR. Their
main insight is that the perfect decryptability —a condi-
tion mandated by BPR— is a very strong requirement and
artificially limits the adversary’s set of available strategies.
In practice, a subversion with negligible detection probabil-
ity, say 2−128, should be considered undetectable.2 As DFP
note, decryption failures may happen for reasons other than
a subverted encryption algorithm, and if they occur sporadi-
cally may easily go unnoticed. Thus a subverted encryption
scheme that exhibits decryption failure with a very low prob-
ability is a good candidate for a practical ASA that is hard to
detect. DFP demonstrate how this can be achieved with an
input-triggered subversion, where the trigger is some mes-
sage input that is difficult to guess, making detection prac-
tically impossible. Our work complements the trigger mes-
sage approach of DFP by limiting ciphertext integrity and
establishing a covert channel through decryption error events.

2.2 PKE

Yung and Young (YY) in [64] examine subverting asymmet-
ric protocols in so-called “SETUP” attacks. Their core idea
is to encode some information within the public key that
allows the private key to be reconstructed. As a simple ex-
ample, let the public key encode the encryption of the user’s
private key under the adversary’s key. Subverted keys should
be indistinguishable from real keys and only the adversary
should be able to recover a user’s private key from the sub-
verted public key. As well as showing how to subvert RSA
keys, YY also give examples of attacks against ElGamal,
DSA and Kerberos. Later, Crépeau and Slakmon [29] gave
an improved subversion attack against RSA which works by
hiding half of the bits of p in the representation of the RSA
modulus N = pq. Using Coppersmith’s partial information
attack [26], it is then possible to recover p and q.

For the prior work on symmetric encryption discussed
above, the techniques can be translated naturally into a PKE
setting. Attacks against the encryption algorithm of a PKE
scheme however do not present an attractive attack to a mass
surveillance adversary, as there is limited scope to under-
mine confidentiality. The covert channel usually has a band-
width of a small number of bits per (subverted) ciphertext:

2 This is analogous to the fundamental notion in cryptography that
a symmetric encryption scheme be considered secure even in the pres-
ence of adversaries with negligible advantage.

not enough to leak the underlying messages. Leaking the
private key would allow confidentiality to be broken com-
pletely, but the encryption algorithm does not have access to
the private key. Chen, Huang and Yung [25] overcome these
limitations by considering hybrid PKE constructions con-
sisting of a KEM to send encapsulated session keys which
are used for symmetric encryption with a DEM. Their non-
generic attack applies to a particular class of practical KEM
constructions and leaks session keys, that in turn break the
security of the DEM. In contrast, for a PKE primitive not
consisting of a hybrid KEM/DEM construction, targeting
the decryption algorithm remains the only way to subvert
the encryption/ decryption facility of a PKE scheme.

2.3 MACs

The only prior work on MAC subversion that we are aware
of is by Al Mansoori, Baek, and Salah [1] who explore how
a MAC component in the EAP-PSK wireless protocol could
be subverted. After first arguing [1, §II.D] that randomised
MAC schemes offer better protection against a kind of birth-
day attack, they restrict attention to precisely one correspond-
ing construction (two-key CBC-MAC with a random trans-
lation of the second key, a scheme that already turned out
to be broken in [47]) and show that the rejection-sampling
based key-extraction techniques from [16] are applicable in
this setting as well. We emphasise that our results reach far
beyond this: our subversion attacks are generic (rather than
being focused on one specific MAC) and we don’t require
exotic technical conditions like randomised tag generation.3

2.4 Further Work

Cryptographic reverse firewalls [51,35,50,63,23] represent
an architecture to counter ASAs against asymmetric cryp-
tography via trusted code in network perimeter filters. At
a high level, the approach is for a trusted third party to re-
randomise ciphertexts before transmission over a public net-
work to destroy any subliminal messages. Fischlin and Maza-
heri show how to construct ASA-resistant (asymmetric) en-
cryption and signature algorithms given initial access to a
trusted base scheme [40]. Their approach uses trusted sam-
ples to essentially perform re-randomisation of ciphertexts.

In a series of work, Russell, Tang, Yung and Zhou [57,
58,59,60] study ASAs on one-way functions, trapdoor one-
way functions and key generation as well as defending ran-
domised algorithms against ASAs using so-called watch-
dogs. The watchdog model allows a trusted party to test the
implementation of a primitive for subversion, in a variety of

3 We are not aware of any randomised MAC of practical relevance.

Algorithm Substitution Attacks against Receivers 5

different assumptions (e.g. on- or offline, black- or white-
box access). Combiners are often used to provide subver-
sion resilience, particularly in the watchdog model. A com-
biner [41,53] essentially combines the output from different
algorithms (or runs of the same algorithm) in such a way
as to produce secure (in this case, unsubverted) combined
output as long as any one of the underlying outputs is se-
cure. Aviram et al. [9] consider combining (potentially ma-
liciously chosen) keys for Post-Quantum protocols such as
TLS. Bemman, Chen and Jager [18] show how to construct
a subversion-resilient KEM, using a variant of a combiner
and a subversion resilient randomness generator. Their con-
struction considers Russell et al.’s watchdog from a practical
perspective, meaning an offline watchdog that runs in lin-
ear time. Another line of work, [39,11,33], examined back-
doored hash functions, showing how to immunise hash func-
tions against subversion.

Bellare, Kane and Rogaway [14] explore how large keys
can prevent key exfiltration in the symmetric encryption set-
ting. Bellare and Hoang [12] give PKE schemes that defend
against the subversion of random number generators. The
use of state reset to detect ASAs is studied by Hodges and
Stebila [44]. Berndt and Liśkiewicz [19] reunite the fields of
cryptography and steganography. Goh, Boneh, Pinkas and
Golle [42] show how to add key recovery to the SSH and
SSL/TLS protocols. Ateniese, Magri and Venturi [8] study
ASAs on signature schemes. Berndt et al. consider ASAs
against protocols such as TLS, WireGuard and Signal [20].
Dodis, Ganesh, Golovnev, Juels and Ristenpart [34] provide
a formal treatment of backdooring PRGs, another form of
subversion. This work was extended by Degabriele, Pater-
son, Schuldt and Woodage [31] to look at robust PRNGs
with input. Camenisch, Drijvers and Lehmann [24] consider
Direct Anonymous Attestation in the presence of a subverted
Trusted Platform Module.

2.5 Cryptographic vs. Non-Cryptographic Subversion

In the literature on cryptography, the notion of an ASA as-
sumes the malicious replacement of one or more algorithms
of a scheme by a backdoored version, with the goal to leak
key material, or at least to weaken some crucial security
property. Different types of substitution attack appear in other
areas of computing and communication. We discuss some
examples in the following.

Program code in the domain of computer malware rou-
tinely modifies system functions to achieve its goals, where
the latter comprises delivering some damaging payload, en-
suring non-detection and thus survival of the malware on the
host system, and in some cases even self-reproduction. Nu-
merous techniques towards suitably modifying a host sys-
tem have been developed and reported on by academic re-
searchers and hackers. Standard examples include redirect-

ing interrupt handlers, changing the program entry point of
an executable file, and interfering with the OS kernel by
overwriting its data structures [43].

Malicious modifications of implemented functionality are
also a recognised threat in the hardware world. It is widely
understood that circuit designers who do not possess the
technical means to produce their own chips but instead out-
source the production process to external foundries, risk that
the chips produced might actually implement a maliciously
modified version of what is expected. A vast number of in-
dependent options are known for when (within the produc-
tion cycle) and how (functionally) subversions could be con-
ducted. For instance, the survey provided in [21] reports that
circuit design software (CAD) could be maliciously altered,
that foundries could modify circuits before production, and
that after production commercial suppliers could replace le-
gitimate chips by modified ones. Further, [21] suggests that
appealing types of functionality modification include devi-
ating from specification when particular input trigger events
are recognised, and/or to leak values of vital internal reg-
isters via explicitly implemented side channels. Any such
technique (or combination thereof) has an individual pro-
file regarding the associated costs and attack detectability.
Which of the many options is most preferable depends on
the specific attack scenario and target.

We refer to the software and hardware based subversion
techniques discussed above as “technology driven”. This is
in contrast to the techniques considered in this paper which
we refer to as “semantics driven”. We consider the two ap-
proaches orthogonal: Our (semantics driven) proposed sub-
version can be implemented using techniques from e.g. [43,
21] (but likewise also through standard methods), and tech-
nology driven subversion proposals can be applied against
cryptographic implementations (but likewise also against any
other interesting target functionality). Our semantics driven
approach in fact aims to maximise technology independence.
As a consequence, the line of attacks proposed in this pa-
per can be implemented easily in software (e.g. in libraries
or drop-in code), in hardware (e.g. in ASICs and FPGAs),
and in mixed forms (e.g. firmware-programmed microcon-
trollers). The strategy to achieve this independence is to base
the attacks and corresponding notions of (in)security on noth-
ing but the abstract functionalities of the attacked scheme as
they are determined by their definitions of syntax and cor-
rectness.

As the technology driven and semantics driven approaches
are independent, they can in particular be combined. This
promises particularly powerful subversions. For instance, con-
sider that virtually all laptops and desktop PCs produced in
the past decade are required to have an embedded trusted
platform module (TPM) chip that supports software compo-
nents (typically boot loaders and operating systems) with
trusted cryptographic services. In detail, software can in-

6 Marcel Armour, Bertram Poettering

teract with a TPM chip through standardised API function
calls and have cryptographic operations applied to provided
inputs, with all key material being generated and held exclu-
sively in the TPM. As TPMs are manufactured in hardware,
it seems that the (technology driven) subversion options pro-
posed in [21] would be particularly suitable. However, as
most of the attacks from [21] require physical presence of
the adversary (e.g., to provide input triggers via specific sup-
ply voltage jitters or for extracting side channel information
by operating physical probes in proximity of the attacked
chip), only those options seem feasible where all attack con-
ditions and events can be controlled and measured via the
software interface provided by the API. This is precisely
what our semantics driven attacks provide. We thus con-
clude by observing that dedicated cryptographic hardware
like TPMs can only be trusted if extreme care is taken dur-
ing design and production. While our article lays open the
most general and clean line of attack, other attacks might
exist as well.

2.5.1 Discussion

As the discussion of cryptographic (“semantics driven”) vs.
non-cryptographic (“technology driven”) subversion shows,
achieving security against adversaries mounting ASAs is dif-
ficult, and essentially reduces to assuming trust in particular
components or architectures. The three main theoretical ap-
proaches to preventing or mitigating against ASAs in the
literature, discussed above in Section 2.4, are reverse fire-
walls, self-guarding protocols and watchdogs. We note that
these approaches apply in the main to asymmetric primi-
tives, and so (appropriately adapted to target receiver al-
gorithms) would be suitable to defend against our attack
against asymmetric schemes in Section 7.

Defending against our attacks on AEAD and MACs is
more difficult. We note that the watchdog model applies in
theory, while reverse firewalls and self-guarding approaches
are ineffective against symmetric primitives. The watchdog
model considers splitting a primitive into constituent algo-
rithms that are run as subroutines by a trusted “amalgama-
tion” layer. This allows the constituent algorithms to be indi-
vidually checked and sanitised. Considering the verification
algorithm of a MAC scheme as an example, the canonical
approach of recalculating and checking the tag is modelled
by letting the verification algorithm be a trusted amalgama-
tion of the tagging algorithm with an identity test. The tag-
ging algorithm typically runs a hash function as a subrou-
tine, and so applying results from [39,11,33] would allow
for the claim that the verification algorithm can be made
subversion-resilient in the watchdog model. The assumption
of a trusted amalgamation is precisely what makes our attack
infeasible, but this assumption is questionable in real world
settings. In particular, as we discussed above, the presence of

non-cryptographic vectors makes this assumption unlikely
to hold in practice.

Lastly, we note that none of the theoretical approaches
are fully satisfying, requiring strong or impractical assump-
tions. Indeed, it is telling that there are no implementations
of subversion-resilient primitives to date, although some re-
cent work seems promising in this regard [23,18]. The best
defense seems to be the unglamorous task of minimising
risk by implementing a variety of control mechanisms across
the whole infrastructure, in a process of security manage-
ment. In particular: software implementations could be pro-
tected by measures including regular integrity tests and se-
cure boot, hardware implementations could be protected by
technical controls such as threshold implementations or test-
ing amplification [37], and both cases can be strengthened
by relying on open source implementations and verified sup-
ply chains. Whilst such measures can go some way towards
minimising risk, we emphasise that there are no security
guarantees.

3 Notation

We refer to an element x ∈ {0,1}∗ as a string, and denote its
length by |x|. The set of strings of length l is denoted {0,1}l .
By ε we denote the empty string. For x ∈ {0,1}∗ we let x[i]
denote the i-th bit of x, with the convention that we count
from 0, i.e., we have x = x[0] . . .x[|x| − 1]. We use Iverson
brackets [·] to derive bit values from Boolean conditions:
For a condition C we have [C] = 1 if C holds; otherwise we
have [C] = 0.

We use code-based notation for probability and secu-
rity experiments. We write ← for the assignment operator
(that assigns a right-hand-side value to a left-hand-side vari-
able). If S,S′ are sets, we write S ∪← S′ shorthand for S←
S∪ S′. If S is a finite set, then s←$ S denotes choosing s
uniformly at random from S. For a randomised algorithm A
we write y←$ A(x1,x2, . . .) to denote the operation of run-
ning A with inputs x1,x2, . . . and assigning the output to vari-
able y. We denote a γ-biased Bernoulli trial by B(γ), i.e., a
random experiment with possible outcomes 0 or 1 such that
Pr[b←$ B(γ) : b = 1] = γ . The assignments b←$ {0,1} and
b←$ B(1/2) are thus equivalent. We use superscript nota-
tion to indicate when an algorithm (typically an adversary)
is given access to specific oracles. An experiment terminates
with a “stop with x” instruction, where value x is understood
as the outcome of the experiment. We write “win” (“lose”)
as shorthand for “stop with 1” (“stop with 0”). We write
“require C”, for a Boolean condition C, shorthand for “if
not C: lose”. (We use require clauses typically to abort a
game when the adversary performs some disallowed action,
e.g. one that would lead to a trivial win.) The “:=” opera-
tor creates a symbolic definition; for instance, the code line

Algorithm Substitution Attacks against Receivers 7

“A := E” does not assign the value of expression E to vari-
able A but instead introduces symbol A as a new (in most
cases abbreviating) name for E.

4 Notions of Subversion Attacks

We consider subversions of the algorithms of cryptographic
schemes. Abstractly, we consider a cryptographic scheme
Π = (Π.gen,Π.S,Π.R) consisting of three components: a
key generation algorithm together with an algorithm on the
sender side and an algorithm on the receiver side. Where
the cryptographic scheme is an encryption scheme, Π.S rep-
resents encryption and Π.R decryption; when we consider
message authentication schemes, the corresponding compo-
nents represent tagging and verification.

We give a generic syntax to the scheme Π as follows:
key generation Π.gen outputs a key pair (kS,kR)∈KS×KR;
the sender algorithm has associated input and output spaces
X ,Y and takes as input a key kS ∈KS and x ∈X , outputting
y ∈ Y; the receiver algorithm has associated input and out-
put spaces Y,X ′ (respectively). We note that X ⊊ X ′; in
particular, ⊥ ∈ X ′ \X . The receiver algorithm takes as in-
put a key kR ∈ KR and y ∈ Y , outputting x ∈ X ′; the special
symbol ⊥ is used to indicate failure. A shortcut notation for
this syntax is

Π.gen→KS×KR, KS×X →Π.S→Y,
and KR×Y →Π.R→X ′.

A scheme Π is said to be δ -correct if for all (kS,kR)←
Π.gen and x ∈ X and y← Π.S(kS,x) and x′ ← Π.R(kR,y)
we have

Pr
[
x′ ̸= x

]
≤ δ ,

where the probability is over all random coins involved. In
the case that δ = 0, the scheme is said to be perfectly correct.
We note that this generic syntax applies to symmetric en-
cryption (Section 5) and message authentication (Section 6),
as well as to public key encryption (Section 7), where for the
symmetric case we require kS = kR.

In the following, we give formal definitions for subver-
sion of key generation, sender and receiver algorithms, to-
gether with the notion of undetectability (UD). In a nutshell,
a subversion is undetectable if distinguishers with black-box
access to either the original scheme or to its subverted vari-
ant cannot tell the two apart. A subversion should exhibit a
dedicated functionality for the subverting party, but simul-
taneously be undetectable for all others. This apparent con-
tradiction is resolved by parameterising the subverted algo-
rithm with a secret subversion key, knowledge of which en-
ables the extra functionality. (The same technique is used in
most prior work, starting with [16].) In what follows we de-
note the corresponding subversion key spaces with Igen,IS
and IR.

In this section we also specify, by introducing notions of
key recoverability, how we measure the quality of a subver-
sion from the point of view of the subverting adversary (who
is assumed to know the subversion keys).

4.1 Undetectable Subversion

We first define undetectability notions for subverted key gen-
eration, sender and receiver algorithms separately. We then
offer a joint definition.

SUBVERTED KEY GENERATION. A subversion of the key
generation algorithm Π.gen of a cryptographic scheme con-
sists of a finite index space Igen and a family of algorithms
Gen = {Π.geni}i∈Igen with

Π.geni→KS×KR.

That is, for all i ∈ Igen the algorithm Π.geni can syntacti-
cally replace the algorithm Π.gen.

As a security property we require that also the observ-
able behaviour of Π.gen and Π.geni be effectively identical
(for uniformly chosen i ∈ Igen). This is formalised via the
games UDG0,UDG1 in Fig. 1 (left). For any adversary A
we define the advantage

Advudg
Π

(A) := |Pr[UDG1(A)]−Pr[UDG0(A)]|

and say that family Gen undetectably subverts algorithm Π.gen
if Advudg

Π
(A) is negligibly small for all realistic A.

SUBVERTED SENDER. A subversion of the sender algorithm
Π.S of a cryptographic scheme consists of a finite index
space IS and a family S = {Si}i∈IS of algorithms

KS×X →Π.Si→Y.

That is, for all i ∈ IS the algorithm Π.Si can syntactically
replace the algorithm Π.S.

As a security property we also require that the observ-
able behaviour of Π.S and Π.Si be effectively identical (for
uniformly chosen i ∈ IS). This is formalised via the games
UDS0,UDS1 in Fig. 1 (centre). Note that, in contrast to prior
work like [16,30], our distinguishers are given free choice
over the keys to be used.4 For any adversary A we define
the advantage

Advuds
Π (A) := |Pr[UDS1(A)]−Pr[UDS0(A)]|

and say that family S undetectably subverts algorithm Π.S
if Advuds

PKE(A) is negligibly small for all realistic A.

4 In [16,30], undetectability is defined with respect to uniform keys.
As code auditors and other security researchers looking for subversion
attacks can specify keys during black-box testing according to their
preferred distribution, we consider uniform-key constraints a rather se-
vere limitation of undetectability notions.

8 Marcel Armour, Bertram Poettering

Game UDGb(A)
00 i←$ Igen
01 gen0 := Π.geni
02 gen1 := Π.gen
03 b′←AGen,Send,Recv

04 stop with b′

Oracle Gen
05 (kS,kR)←$ gen

b

06 return (kS,kR)

Oracle Send(kS,x)
07 y←Π.S(kS,x)
08 return y

Oracle Recv(kR,y)
09 x←Π.R(kR,y)
10 return x

Game UDSb(A)
00 i←$ IS
01 S0 := Π.Si
02 S1 := Π.S
03 b′←AGen,Send,Recv

04 stop with b′

Oracle Gen
05 (kS,kR)←$ Π.gen
06 return (kS,kR)

Oracle Send(kS,x)
07 y← Sb(kS,x)
08 return y

Oracle Recv(kR,y)
09 x←Π.R(kR,y)
10 return x

Game UDRb(A)
00 i←$ IR
01 R0 := Π.Ri
02 R1 := Π.R
03 b′←AGen,Send,Recv

04 stop with b′

Oracle Gen
05 (kS,kR)←$ Π.gen
06 return (kS,kR)

Oracle Send(kS,x)
07 y←Π.S(kS,x)
08 return y

Oracle Recv(kR,y)
09 x← Rb(kR,y)
10 return x

Fig. 1 Games UDG, UDS and UDR modelling undetectability for the subversion of (respectively) key generation, sender and receiver algorithms
for a cryptographic scheme Π. See Section 3 for the meaning of “:=”. Note that in each game, the two unsubverted oracles are actually redundant.

SUBVERTED RECEIVER. A subversion of the receiver al-
gorithm Π.R of a cryptographic scheme consists of a finite
index space IR and a familyR= {Π.Ri}i∈IR of algorithms

KR×Y →Π.Ri→X ′.

That is, for all i ∈ IR the algorithm Π.Ri can syntactically
replace the algorithm Π.R.

As a security property we also require that the observ-
able behaviour of Π.R and Π.Ri be effectively identical (for
uniformly chosen i ∈ IR). This is formalised via the games
UDR0,UDR1 in Fig. 1 (right). For any adversary A we de-
fine the advantage

Advudr
Π (A) := |Pr[UDR1(A)]−Pr[UDR0(A)]|

and say that family R undetectably subverts algorithm Π.R
if Advudr

PKE(A) is negligibly small for all realistic A.
The above undetectability notions demand that subver-

sions do not change the observable behaviour of the key
generation, sender and receiver algorithms. A consequence
of this is that none of the correctness or security properties
of the scheme are noticeably harmed by subversion.

4.1.1 Hybrid Subversion of Key Generation, Sender and
Receiver algorithms

We give a joint definition of undetectability, in the case where
the key generation, sender and receiver algorithms are sub-
verted. This is the most general definition; in particular con-
texts it may not be appropriate to consider subversion of a
particular algorithm – we discuss this below in Sections 4.3,
5.3, 6.1.1 and 7.1.1.

Game UDb in Fig. 2 (left) combines games UDGb, UDSb

and UDRb into one. We define

Advud
Π (A) := |Pr[UD1(A)]−Pr[UD0(A)]|.

By a hybrid argument, for all adversaries A there exist ad-
versaries A′,A′′,A′′′ such that

Advud
Π (A)≤ Advudg

Π
(A′)+Advuds

Π (A′′)+Advudr
Π (A′′′).

4.2 Subversion Leading to Key Recovery

We observed above that if any of the components Π.gen,Π.S,
Π.R of a cryptographic scheme Π is undetectably subverted,
with uniformly chosen indices igen, iS, iR that remain unknown
to the participants, then all security guarantees are preserved
from the original scheme. This may be different if (any of)
igen, iS, iR are known to an attacking party, and indeed we as-
sume that mass-surveillance attackers leverage such knowl-
edge to conduct attacks. For any cryptographic scheme, the
most devastating attack goal for an attacker is key recov-
ery (KR): Users generate keys using their key generation
algorithm (kS,kR)←$ Π.genigen .5 Generated secret keys are
kept hidden, and the adversary aims at recovering these keys
through the subversion. Note that in the symmetric case,
kS = kR, whereas in the asymmetric case the receiver’s key
kR represents the private key. In either case, the value kR is
the target of a KR adversary.

We formalise this attack goal in two versions. The KRP
game in Fig. 2 (centre) assumes a passive attack in which
the adversary cannot manipulate inputs or outputs (typically
representing messages or ciphertexts) to the sender or re-
ceiver, and the KRA game in Fig. 2 (right) assumes an active
attack in which the adversary can inject and test arbitrary
receiver inputs (which potentially correspond to sender out-
puts). In both cases, with the aim of closely modelling real-
world settings, we restrict the adversary’s influence on the

5 To preserve generality, our syntax suggests that key generation is
subverted, however this need not be the case. Simply set Π.genigen :=
Π.gen for all igen ∈ Igen. This applies similarly to Π.S and Π.R.

Algorithm Substitution Attacks against Receivers 9

sender inputs x by assuming a stateful “message sampler”
algorithm MS (reflecting the fact that, in the contexts we
consider, inputs to Π.S typically represent messages) that
produces the inputs to Π.S used throughout the game. The
syntax of this message sampler is

Σ ×A→MS→ Σ ×X ×B,

(σ ,α) 7→MS(σ ,α) = (σ ′,x,β),

where σ ,σ ′ ∈ Σ are old and updated state, input α ∈ A mod-
els the influence that the adversary may have on message
generation, and output β ∈ B models side-channel outputs.
In Fig. 2 we write ⋄ for the initial state. Note that while
we formalise the inputs α and the outputs β for generality
(so that our models cover most real-world applications), our
subversion attacks are independent of them.6 For any mes-
sage sampler MS and adversaryA we define the advantages

Advkrp
Π,MS(A) := Pr[KRP(A)]

and Advkra
Π,MS(A) := Pr[KRA(A)].

We say that subversion family Gen,S,R is key recovering
for passive attackers if for all practical MS there exists a
realistic adversary A such that Advkrp

MS(A)
reaches a consid-

erable value (e.g., 0.1).7 The key recovery notion for active
attackers is analogous.

4.2.1 Discussion

We note that the adversary need not necessarily exfiltrate
each individual bit of the user’s key,8 in order to successfully
recover it – this is implicit in our definitions of key recovery.
To formalise this, we let the “leakage key” kℓ ∈ {0,1}λ be
a string such that knowledge of kℓ is sufficient for an adver-
sary to break the security of the primitive. At worst, from
the perspective of the adversary, the leakage key may sim-
ply be the bit representation of the user’s key. We note that in
practice a leakage key consisting of most of the user’s key is
sufficient for an adversary to recover the full key using brute
force; the exact number of bits to be brute forced would de-
pend on the context and would involve a trade-off for the
adversary. Nevertheless, the notion is intuitively clear.

Furthermore, in some contexts there may be some re-
dundancy or structure that allows for a shorter leakage key.
As an example, one may consider DES keys as being 64-bit
strings with 8 bits of redundancy, so that an effective leakage
key would be of size 56 bits. As another example, the private

6 . . . meaning that the reader may safely choose to ignore them.
7 Our informal notions (“realistic” and “practical”) are easily refor-

mulated in terms of probabilistic polynomial-time (PPT) algorithms for
readers who prefer a treatment in the asymptotic framework. Given that
asymptotic notions don’t reflect practice particularly well, we prefer to
use the informal terms.

8 or a bit representation thereof, if it is not a bit string

key in RSA encryption is knowledge of the factorisation of
the public modulus N = pq. Supposing that the modulus N
can be represented using n = ⌊logN⌋-bits, one may consider
RSA private keys as being n/2 = ⌊log p⌋-bit strings. How-
ever, knowledge of around half the bits of p is sufficient to
be able to factorise N using Coppersmith’s partial informa-
tion attack [26], so that an effective leakage key might have
length λ = ⌊log p⌋/2.9

A different approach might be to leak, for example, the
seed of a pseudo-random number generator. We discuss break-
ing security without extracting the full key further in Sec-
tion 4.4.

4.3 Hybrid Subversion

Previous work on subversion has looked at either subverted
key generation10 or subverted encryption/ decryption, but
not considered the case where these are subverted in tandem.
For key generation, this has meant that the subverted algo-
rithm needs to leak the whole key in a single operation. This
setting was studied by Young and Yung [64] under the name
“kleptography”, and they showed how it is possible to sub-
vert key generation such that the adversary is able to recover
the private key sk from the public key pk (together with any
public parameters and knowledge of secret trapdoor infor-
mation). They show how such attacks against key generation
could look in the case of RSA and ElGamal cryptosystems.
Such subversion imposes a large cost on the subverter: re-
quiring that all key bits are leakable in one operation means
that the subverted keys are given some structure (e.g. the
public key is the encryption of the secret key under the at-
tacker’s key). This overhead would likely lead to detection
in a real world setting (using either timing information, code
review or hardware inspection). Considering the subversion
of key generation and sender/receiver algorithms in tandem,
it is possible to reduce this overhead.

Generically, this tandem subversion can be achieved by
subverting key generation to produce weaker keys and com-
bining this with a subverted sender and/or receiver that pro-
vides a subliminal channel. Consider a subverted key gener-
ation algorithm Π.geni that outputs (receiver keys) in some
reduced key set K̃R ⊂KR. The smaller this subverted key set
K̃R, the less information needs to be leaked via the sublimi-
nal channel. One method to implement such a subverted key
generation algorithm is to use the rejection sampling method
described in Section 2.1, so that Π.geni runs the unsubverted
algorithm Π.gen as a subroutine and resamples until keys

9 We note that in practice the security for an RSA modulus of size
n is far less than n/2 bits; for example, an RSA modulus of size 1024
is believed to have security at most 80 bits [10], corresponding to the
computational effort required to factorise an RSA modulus.

10 and potentially, the associated public parameters if those form part
of the formalisation used.

10 Marcel Armour, Bertram Poettering

Game UDb(A)
00 igen←$ Igen; iS←$ IS; iR←$ IR
01 (gen0,S0,R0) := (Π.genigen ,Π.SiS ,Π.RiR)

02 (gen1,S1,R1) := (Π.gen,Π.S,Π.R)
03 b′←AGen,Send,Recv

04 stop with b′

Oracle Gen
05 (kS,kR)←$ gen

b

06 return (kS,kR)

Oracle Send(kS,x)
07 y← Sb(kS,x)
08 return y

Oracle Recv(kR,y)
09 x← Rb(kR,y)
10 return x

Game KRP(A)
00 C← /0
01 igen, iS, iR←$ Igen×IS×IR
02 (kS,kR)←$ Π.genigen ; σ ←⋄
03 k′←ASend,Recv(igen, iS, iR)
04 stop with [k′ = kR]

Oracle Send(α)
05 (σ ,x,β)←MS(σ ,α)
06 y←Π.SiS (kS,x)
07 C ∪←{y}
08 return (y,β)

Oracle Recv(y)
09 require y ∈C
10 x←Π.RiR (kR,y)
11 return x

Game KRA(A)
00 C← /0
01 igen, iS, iR←$ Igen×IS×IR
02 (kS,kR)←$ Π.genigen ; σ ←⋄
03 k′←ASend,Recv(igen, iS, iR)
04 stop with [k′ = kR]

Oracle Send(α)
05 (σ ,x,β)←MS(σ ,α)
06 y←Π.SiS (kS,x)
07 C ∪←{y}
08 return (y,β)

Oracle Recv(y)
09 require y ∈C
10 x←Π.RiR (kR,y)
11 return x

Fig. 2 Left: Game UD modelling hybrid subversion undetectability for a cryptographic scheme Π. Note that not all of the algorithms need
necessarily be subverted, although the syntax allows for this. See the discussion at Sections 5.3, 6.1.1 and 7.1.1. Centre, Right: Games KRP and
KRA modelling key recoverability for passive and active attackers, respectively. Note that the adversary’s aim is to recover the receiver’s key kR,
as in both symmetric and asymmetric settings this value is secret.

are in K̃R. There are certainly more targeted attacks that take
into account the specific structure of keys being generated –
and that may leverage more specific attacks than the generic
weakening of keys.11

4.4 Breaking Security without Extracting the Full Key

The KRA and KRP notions introduced in Section 4.2 as-
sume that key recovery is the ultimate goal in subversion.
This suggests that longer keys make a scheme more resilient,
an approach explored in big key cryptography [14]. In prac-
tice, it may be more efficient to exploit non-generic features
of a particular scheme to minimise the information to be
leaked. In this section, we will consider AEAD schemes as
an illustrative example.

As we detail, many current AEAD schemes have inner
building blocks that maintain their own secret values, and
scaling up key sizes does not automatically also increase the
sizes of these internal values. We note that proposed ASAs
against AEAD schemes (including our attacks presented in
Section 8) can easily be adapted to leak this internal infor-
mation instead of the key. As the recovery of such values
might not always directly lead to full message recovery, the
assessment of whether the resulting overall attack is more or
less effective than our generic attacks has to be made on a
per scheme basis. We exemplify this on the basis of two of
the currently best-performing AES-based AEAD schemes:
GCM [36] and OCB3 [48]. In both cases, the size of the
crucial internal value and the block size of the cipher have

11 For instance, for the specific case of ElGamal encryption, [38] re-
cently demonstrated that the key generation algorithms of relevant
open-source implementations produced public keys that exhibit a
number-theoretical structure that considerably reduces their effective
key length.

to coincide and the latter value is fixed to 128 bits for AES
(independently of key size).

AES-GCM. We consider the following abstraction of GCM.
The AEAD key k is used directly to create an instance E of
the AES blockcipher. To encrypt a message m with respect
to associated data d and nonce n, E is operated in counter
mode, giving a pad E(n+1) ∥ E(n+2) ∥ . . . , where a spe-
cific nonce encoding ensures there are no collisions between
counter values of different encryption operations. The first
part c1 of the ciphertext c = c1c2 is obtained by XORing the
pad into the message, and finally the authentication tag c2
is derived by computing c2 ← E(n) + Hh(d,c1). Here Hh
is an instance of a universal hash function H indexed (that
is, keyed) with the 128-bit value h = E(0128). Concretely,
Hh(d,c1) = ∑

l
i=1 vihl−i+1, where coefficients v1, . . . ,vl are

such that a prefix v1 . . .v j is a length-padded copy of the
associated data d, the middle part v j+1 . . .vl−1 is a length-
padded copy of ciphertext component c1, and the last item vl
is an encoding of the lengths of d and c1. The addition and
multiplication operations deployed in this computation are
those of a specific representation of the Galois field GF(2128).

In executing a practical ASA against AES-GCM, it might
suffice to leak the value h (which has length 128-bits in-
dependently of the AES key length, and furthermore stays
invariant across encryption operations). The insight is that
if the key of a universal hash function is known, then it
becomes trivial to compute collisions. Concretely, assume
the adversary is provided with the AES-GCM encryption
c = c1c2 = enc(k,n,d,m) for unknown k,m but chosen d,n.
Then by the above we have c2 = R+∑

j
i=1 vihl−i+1 where

the coefficients v1 . . .v j are an encoding of d and R is some
residue. If, having been successfully leaked by the ASA, the
internal value h is known, by solving a linear equation it

Algorithm Substitution Attacks against Receivers 11

is easy to find an associated data string d′ ̸= d, |d′| = |d|,
such that for its encoding v′1 . . .v

′
j we have ∑

j
i=1 v′ih

l−i+1 =

∑
j
i=1 vihl−i+1. Overall this means that we have found d′ ̸= d

such that enc(k,n,d′,m) = c = enc(k,n,d,m). In a CCA at-
tack the adversary can thus query for the decryption of c
with associated data d′ and nonce n, and thus fully recover
the target message m. We finally note that this attack can be
directly generalised to one where also the c1 and c2 compo-
nents are modified, resulting in the decryption of a message
m′ ̸= m for which the XOR difference between m and m′ is
controlled by the adversary.

OCB3. Multiple quite different versions of the OCB en-
cryption scheme exist [45], but a common property is that
the associated data input is incorporated via “ciphertext trans-
lation” [56]. To encrypt a message m under key k with as-
sociated data d and nonce n, in a first step the message m is
encrypted with a pure AE scheme12) to an intermediate ci-
phertext c∗← enc∗(k,n,m). Then to obtain the final cipher-
text c, a pseudo-random function value Fk(d) of the associ-
ated data string is XORed into the trailing bits of c∗. Con-
cretely, in OCB3 we have Fk(d) = ∑

l
i=1 E(vi +Ci) where all

addition operations are XOR combinations of 128 bit values,
E(·) stands for AES enciphering with key k, values v1, . . . ,vl
represent a length-padded copy of associated data d, and co-
efficients C1, . . . ,Cl are (secret) constants deterministically
derived from the value L = E(0128).

In the context of an ASA we argue that it is sufficient to
leak the 128 bit value L. The attack procedure is, roughly,
as in the AES-GCM case. Assume the adversary is provided
with the OCB3 encryption c = enc(k,n,d,m) for unknown
k,m but chosen d,n, and assume the adversary knows L and
thus C1, . . . ,Cl . Now let 1 ≤ s < t ≤ l be any two indices,
let ∆ = Cs +Ct and let d′ ̸= d, |d′| = |d|, be the associated
data string with encoding v′1, . . . ,v

′
l such that we have v′s =

vt +∆ and v′t = vs +∆ and v′i = vi for all i ̸= s, t. Then we
have E(v′s +Cs) = E(vt +∆ +Cs) = E(vt +Ct) and E(v′t +
Ct) = E(vs +∆ +Ct) = E(vs +Cs), which leads to Fk(d) =
Fk(d′) and ultimately enc(k,n,d′,m) = enc(k,n,d,m). In a
CCA attack environment, this can immediately be leveraged
to the full recovery of m. As in the AES-GCM case, we note
that many variants of our attack exist (against all versions
of OCB), including some that manipulate message bits in a
controlled way.

5 AEAD Schemes

We recall standard notions of (deterministic) nonce-based
AEAD, as per [56], and study how to adapt them to the

12 Assuming the above notation for AEAD schemes, we give a simi-
lar syntax to AE schemes: an AE scheme encrypts a message m under
key k with nonce n to produce a ciphertext denoted enc∗(k,n,m).

Game IND-CCAb(A)
00 C← /0,N← /0
01 k←$ AEAD.gen
02 b′←AEnc,Dec

03 stop with b′

Oracle Enc(n,d,m0,m1)
04 require n /∈ N
05 N ∪←{n}
06 c← AEAD.enc(k,n,d,mb)
07 C ∪←{(n,d,c)}
08 return c

Oracle Dec(n,d,c)
09 require (n,d,c) /∈C
10 m← AEAD.dec(k,n,d,c)
11 return m

Game subIND-CCAb(A)
00 igen, iS, iR←$ Igen×IS×IR
01 C← /0,N← /0
02 k← AEAD.genigen
03 b′←AEnc,Dec

04 stop with b′

Oracle Enc(n,d,m0,m1)
05 require n /∈ N
06 N ∪←{n}
07 c← AEAD.enciS (k,n,d,m

b)

08 C ∪←{(n,d,c)}
09 return c

Oracle Dec(n,d,c)
10 require (n,d,c) /∈C
11 m← AEAD.deciR (k,n,d,c)
12 return m

Fig. 3 Games modelling indistinguishability under chosen-ciphertext
attacks (IND-CCA), and subverted indistinguishability under chosen-
ciphertext attacks (subIND-CCA) for an authenticated encryption
scheme with associated data AEAD.

ASA setting. Formally, a scheme AEAD providing authenti-
cated encryption with associated data consists of algorithms
AEAD.gen,AEAD.enc,AEAD.dec. The scheme has associ-
ated spaces K,N ,D,M,C. The key generation algorithm
AEAD.gen outputs a key k ∈ K. The encryption algorithm
AEAD.enc takes key k ∈ K, nonce n ∈ N , associated data
d ∈D and message m∈M, to produce ciphertext c∈ C. The
decryption algorithm AEAD.dec takes key k, nonce n ∈ N ,
associated data d ∈ D and ciphertext c ∈ C to output either
a message m ∈M or the special symbol ⊥ /∈M to indicate
rejection. A shortcut notation for this syntax is

AEAD.gen→K, K×N ×D×M→ AEAD.enc→C
and K×N ×D×C → AEAD.dec→M∪{⊥} .

Scheme AEAD is said to be δ -correct if for k←$ AEAD.gen
and c← AEAD.enc(k,n,d,m) for some (n,d,m) and m′←
AEAD.dec(k,n,d,c) the probability that m′ ̸= m is upper-
bounded by δ , where the probability is over all coins in-
volved.

5.1 IND-CCA

We formalise indistinguishability under chosen-ciphertext
attack for an AEAD scheme via the game IND-CCA in Fig. 3
(left). For any adversary A we define the advantage

Advind-cca
AEAD (A) := |Pr

[
IND-CCA0(A)

]
−Pr

[
IND-CCA1(A)

]
|

and say that scheme AEAD is indistinguishable against chosen-
ciphertext attacks if Advind-cca

AEAD (A) is negligibly small for all
realistic A.

12 Marcel Armour, Bertram Poettering

Game AUTH(A)
00 k←$ AEAD.gen
01 C← /0, N← /0
02 AEnc,Dec

03 lose

Oracle Enc(n,d,m)
04 require n /∈ N
05 N ∪←{n}
06 c← AEAD.enc(k,n,d,m)
07 C ∪←{(n,d,c)}
08 return c

Oracle Dec(n,d,c)
09 m← AEAD.dec(k,n,d,c)
10 if m ̸=⊥∧ (n,d,c) /∈C:
11 win
12 return m

Game subAUTH(A)
00 igen, iS, iR←$ Igen×IS×IR
01 k←$ AEAD.genigen
02 C← /0, N← /0
03 AEnc,Dec

04 lose

Oracle Enc(n,d,m)
05 require n /∈ N
06 N ∪←{n}
07 c← AEAD.enciS (k,n,d,m)

08 C ∪←{(n,d,c)}
09 return c

Oracle Dec(n,d,c)
10 m← AEAD.deciR (k,n,d,c)
11 if m ̸=⊥∧ (n,d,c) /∈C:
12 win
13 return m

Fig. 4 Games modelling authenticity (AUTH) and subverted authen-
ticity (subAUTH) of an authenticated encryption scheme with associ-
ated data AEAD.

5.2 Authenticity

We formalise the authenticity of an AEAD scheme via the
game AUTH in Fig. 4 (left). For any adversary A we define
the advantage

AdvauthAEAD(A) := Pr[AUTH(A)]

and say that AEAD provides authenticity if AdvauthAEAD(A) is
negligibly small for all realistic A.

5.3 Subverting AEAD

We note that AEAD satisfies the generic syntax introduced
above in Section 4, with key generation algorithm Π.gen =

AEAD.gen, sender algorithm Π.S=AEAD.enc and receiver
algorithm Π.R=AEAD.dec. We may thus apply the generic
notions of subversion and undetectability introduced in Sec-
tion 4.1. In Fig. 3 (right) and Fig. 4 (right) we specify the
games subIND-CCA and subAUTH (respectively), modelling
the adversary’s ability to compromise the expected security
properties of a scheme Π when that scheme has been sub-
verted.

We note that for symmetric primitives, key generation is
unlikely to be subverted in practice as symmetric keys are
typically generated by some external means not connected
with or influenced by the scheme itself — e.g. through key
agreement protocols13, or by a trusted platform module. Nev-
ertheless, we retain a syntax that allows for the more general
case.

13 While many different types of security model for key agreement
exist (see [54] for a recent overview), all of them have in common that
they guarantee that all produced session keys are effectively perfect,
i.e., uniformly distributed in some convenient key space.

6 Message Authentication Schemes

Cryptographic message authentication is typically realised
with a message authentication code (MAC). Given a key k
and a message m, a tag t is deterministically derived as per
t ← tag(k,m). The (textbook) method to verify the authen-
ticity of m given t is to recompute t ′← tag(k,m) and to con-
sider m authentic iff t ′ = t. If this final tag comparison is im-
plemented carelessly, a security issue might emerge: A nat-
ural yet naive way to perform the comparison is to check the
tag bytes individually in left-to-right order until either a mis-
match is spotted or the right-most bytes have successfully
been found to match. Note that, if tags are not matching,
such an implementation might easily give away, as timing
side-channel information, the length of the matching prefix,
allowing for practical forgery attacks via step-wise guessing.

This issue is understood by the authors of major cryp-
tographic libraries, which thus contain carefully designed
constant-time string comparison code. A consequence is that
services for tag generation and verification are routinely split
into two separate functions tag and vfy.14 Our notion of
a message authentication scheme follows this approach. It
comprises MAC based authentication as a special case, but
it also comprises the more exotic randomised MACs as con-
sidered in [1].

Formally, a scheme MAC providing message authenti-
cation consists of algorithms MAC.gen,MAC.tag,MAC.vfy
and associated spaces K,M,T . The key generation algo-
rithm MAC.gen outputs a key k ∈ K. The tagging algorithm
MAC.tag takes a key k ∈ K and a message m ∈M, and re-
turns a message, tag pair (m, t) ∈M×T . The verification
algorithm MAC.vfy takes a key k ∈ K, a message m ∈M,
and a tag t ∈ T , and returns either the message m (indicating
that the tag is accepted) or the special symbol ⊥ to indicate
rejection.15 A shortcut notation for this syntax is

MAC.gen→K and K×M→MAC.tag→M×T
and K×M×T →MAC.vfy→M∪{⊥} .

We formalise the (strong) unforgeability of a message au-
thentication scheme via the game UF in Fig. 5 (left, first col-
umn). For any adversary A we define the advantage
Advuf

MAC(A) := Pr[UF(A)] and say that the scheme MAC is
(strongly) unforgeable if Advuf

MAC(A) is negligibly small for
all realistic A.

6.1 Subverting MACs

We note that MACs satisfy the generic syntax introduced
above in Section 4, with key generation algorithm Π.gen =

14 See https://nacl.cr.yp.to/auth.html for an example.
15 It is more common to consider the output of a MAC verification

algorithm to be a bit representing acceptance or rejection; this can be
obtained from our syntax by evaluating [MAC.vfy(k,m, t) = m].

https://nacl.cr.yp.to/auth.html

Algorithm Substitution Attacks against Receivers 13

Game UF(A)
00 k←$ MAC.gen
01 C← /0
02 ATag,Vfy

03 lose

Oracle Tag(m)
04 t←MAC.tag(k,m)
05 C ∪←{(m, t)}
06 return (m, t)

Oracle Vfy(m, t)
07 m←MAC.vfy(k,m, t)
08 if [m ̸=⊥]∧ [(m, t) /∈C]:
09 win
10 return m

Game subUF(A)
00 igen, iS, iR←$ Igen×IS×IR
01 k←$ MAC.genigen
02 C← /0
03 ATag,Vfy

04 lose

Oracle Tag(m)
05 t←MAC.tagiS (k,m)

06 C ∪←{(m, t)}
07 return (m, t)

Oracle Vfy(m, t)
08 m←MAC.vfyiR (k,m, t)
09 if [m ̸=⊥]∧ [(m, t) /∈C]:
10 win
11 return m

Game IND-CCAb(A)
00 C← /0
01 (pk,sk)← PKE.gen
02 b′←AEnc,Dec(pk)
03 stop with b′

Oracle Enc(m0,m1)
04 c← PKE.enc(pk,mb)
05 C ∪←{c}
06 return c

Oracle Dec(c)
07 require c /∈C
08 m← PKE.dec(sk,c)
09 return m

Game subIND-CCAb(A)
00 igen, iS, iR←$ Igen×IS×IR
01 C← /0
02 (pk,sk)← PKE.genigen
03 b′←AEnc,Dec(pk)
04 stop with b′

Oracle Enc(m0,m1)
05 c← PKE.enciS (pk,mb)

06 C ∪←{c}
07 return c

Oracle Dec(c)
08 require c /∈C
09 m← PKE.deciR (sk,c)
10 return m

Fig. 5 Left: Games modelling the unforgeability (UF) and subverted unforgeability (subUF) of a message authentication scheme. Right: Games
modelling indistinguishability under chosen-ciphertext attacks (IND-CCA), and subverted indistinguishability under chosen-ciphertext attacks
(subIND-CCA) for a public key encryption scheme PKE.

MAC.gen, sender algorithm Π.S=MAC.tag, receiver algo-
rithm Π.R = MAC.vfy. We may thus apply the generic no-
tions of subversion introduced in Section 4.1. We obtain the
notion of subverted unforgeability subUF, as in Fig. 5 (left,
second column).

6.1.1 Discussion

We note that for symmetric primitives, key generation is un-
likely to be subverted (see the discussion at Section 5.3),
leaving us with the possibility that either the tagging or the
verification algorithm (or both) could be subverted. How-
ever, as tagging and verification are typically performed by
distinct, remote parties, successfully conducting such attacks
would require replacing implementations of two participants,
which we think is considerably less feasible than replacing
only one implementation.

7 Public Key Encryption Schemes

In this section, we consider ASAs against PKE schemes.
A treatment of key encapsulation mechanisms (KEMs) is
given in Appendix A.1.

A PKE scheme PKE = (PKE.gen,PKE.enc,PKE.dec)
consists of a triple of algorithms together with key spaces
KS,KR, a message spaceM and a ciphertext space C. The
key-generation algorithm PKE.gen returns a pair (pk,sk) ∈
KS×KR consisting of a public key and a private key. The
encryption algorithm PKE.enc takes a public key pk and a
message m ∈M to produce a ciphertext c ∈ C. Finally, the
decryption algorithm PKE.dec takes a private key sk and a
ciphertext c∈ C, and outputs either a message m∈M or the
special symbol ⊥ /∈ M to indicate rejection. The correct-
ness requirement is that for (pk,sk)←$ gen and m ∈M and

c←PKE.enc(pk,m) and m′←PKE.dec(sk,c) the probabil-
ity that m′ ̸=m is upper-bounded by δ , where the probability
is over all coins involved.

We formalise the indistinguishability under chosen-ci-
phertext attack of a PKE scheme via the game IND-CCA in
Fig. 5 (right, first column). For any adversary A we define
the advantage

Advind-cca
PKE (A) := |Pr[IND-CCA0(A)]−Pr[IND-CCA1(A)]|

and say that scheme PKE is indistinguishable against chosen-
ciphertext attacks if Advind-cca

PKE (A) is negligibly small for all
realistic A.

7.1 Subverting PKE Schemes

We note that PKE schemes satisfy the generic syntax intro-
duced above in Section 4, with the key generation algorithm
Π.gen = PKE.gen, sender algorithm Π.S = PKE.enc, and
receiver algorithm Π.R= PKE.dec. We may thus apply the
generic notions of subversion introduced in Section 4.1. See
Fig. 5 (right, second column) for the game subIND-CCA,
modelling the adversary’s ability to compromise IND-CCA
when interacting with a subverted scheme.

7.1.1 Discussion

For PKE schemes, subverting the encryption algorithm is
less interesting, as the sender has no secret information to
leak. It would be possible to consider the subversion of en-
cryption with the view of compromising confidentiality of
ciphertexts, but we are targeting the stronger notion of key
recovery (which will lead to a full compromise of the con-
fidentiality of all ciphertexts). For PKE schemes, in con-
trast to symmetric encryption, subverting the key generation

14 Marcel Armour, Bertram Poettering

algorithm is a meaningful option, and we explain in Sec-
tion 4.3 how subversion attacks can be amplified when ap-
plied together with a subverted key generation algorithm.

8 Concrete Subversion Attacks via Acceptance vs.
Rejection

We assume that the objective of a subverted receiver algo-
rithm is to leak a bit string kℓ ∈ {0,1}λ representing either
some leakage that will enable recovery of the secret (private)
key kR, following the discussion at Sections 4.2.1 and 4.3, or
else a string that is sufficient to break security in the sense
of Section 4.4. We refer to kℓ as the leakage key in what fol-
lows. At worst, from the subverter’s perspective, the leakage
key will simply be a bit string representation of kR.

We propose two key-recovering subversion attacks against
a scheme Π = (Π.gen,Π.S,Π.R) satisfying the syntax given
in Section 4. While both attacks subvert the receiver algo-
rithm only, they differ in that our first attack is passive (can
be mounted by a mass surveillance adversary who eaves-
drops) and our second attack is active (requires intercepting
and modifying sender outputs in transmission – i.e., cipher-
texts, in the case of AEAD or PKE, or message-tag pairs
in the MAC case.). The driving principles behind the two
attacks are closely related: In both cases the receiver al-
gorithm of the attacked scheme is manipulated such that it
marginally deviates from the regular accept/reject behaviour;
by making these deviations depend on the leakage key, the
bits of the latter are leaked one by one.

Our passive attack rejects a sparse subset of the receiver
inputs that the unmodified algorithm would accept. Our ac-
tive attack does the opposite by accepting certain receiver in-
puts that the unmodified algorithm would reject. A property
of the former (passive) attack is that the scheme’s probabil-
ity of incorrect decryption is increased by a small amount
(rendering it detectable with the same probability); we be-
lieve however that in settings where rejected messages are
automatically retransmitted by the sender (for example, in
low-level network encryption like IPSec), this attack is still
practical and impactful. Our active attack does not influ-
ence correctness. However, as key bits are leaked only when
the receiver algorithm is exposed to bogus inputs, success-
ful adversaries are necessarily active. The active attack fur-
thermore has the following attractive property: The underly-
ing receiver outputs (i.e., messages) corresponding to the in-
jected inauthentic receiver inputs are not arbitrary (and thus
unexpected to the processing application), but identical with
sender inputs previously sent by the sender algorithm. This
allows attacks to be kept “under the radar”: the receiver will
not realise that an attack has been mounted, as all accepted
messages it receives will be those sent by the sender.

We note that both of our subversions are stateless, which
not only allows for much easier backdoor implementation

Exp CC(S,η)
00 S′← /0; l← 0
01 while S′ ⊊ S:
02 s←$ S
03 if B(η):
04 S′ ∪←{s}
05 l← l +1
06 stop with l

Fig. 6 Coupon collector experiment (see Lemma 8.1). Recall that B(η)
denotes a Bernoulli trial with success probability η (see Section 3).

from a technical perspective but also should decrease the
likelihood that an implemented attack is detected through
code review or observing memory usage. That said, our pas-
sive attack also has a stateful variant with an interesting ad-
ditional practicality feature. We discuss this further below.
We note that our subversion approach, for leaking at most
one bit per operation, remains on the conservative side. De-
pending on the circumstances, in practice, more aggressive
methods that leak more than one bit per operation, are ex-
pected to be easily derived from our subversion proposals.

8.1 Combinatorics: Coupon Collection

The passive and active attacks both exfiltrate secret key ma-
terial one bit at a time. The following lemma recalls a stan-
dard coupon collector statement that will help analysing the
efficiency of this approach, in particular how long it takes
until all bits are extracted. For a proof of the lemma, see
e.g. [46, §8.4].

Lemma 8.1 Fix a finite set S (of “coupons”) and a proba-
bility 0 < η ≤ 1. Experiment CC(S,η) in Fig. 6 measures
the number of iterations it takes to visit all elements of S
(“collect all coupons”) when picked uniformly at random
and considered with probability η . The expected number of
iterations is given by O(n logn), where n = |S|. More pre-
cisely we have

E[CC(S,η)] =
|S|
η

(
1
1
+

1
2
+ . . .+

1
|S|

)
= O(n logn).

Note that parameter η is fully absorbed by the O(·) notation.

8.2 Passive Attack

We first give an intuition of our passive attack. Our attack
subverts the receiver algorithm so that an adversary who ob-
serves decryption error events in a “normal” run of com-
munication between sender and receiver is able to learn bits
of the leakage key. The subverted receiver monitors incom-
ing ciphertexts. It applies a hash function to each of them to
obtain a pointer to a bit of the leakage key. It then, with a

Algorithm Substitution Attacks against Receivers 15

Proc Π.Ri(kR,y)
00 kℓ′← Gi
01 x←Π.R(kR,y)
02 if x =⊥: return x
03 if B(γ):
04 ι ← Fi(y)
05 if kℓ′[ι] ̸= kℓ[ι]:
06 x←⊥
07 � kℓ′[ι]← !Gi[ι]
08 return x

Proc A(i)
09 kℓ′← Gi
10 while kℓ′ incorrect:
11 pick any α ∈ A
12 (y,β)← Send(α)
13 x′← Recv(y)
14 if x′ =⊥:
15 ι ← Fi(y)
16 kℓ′[ι]← !Gi[ι]
17 return kℓ′

Fig. 7 Passive subversion of receiver algorithm Π.R of a scheme Π. As
in Fig. 6, B(·) denotes a Bernoulli trial. We let !b := 1−b denote the
inversion of a bit value b ∈ {0,1}. Left: Decryption subversion as in
Section 4.1. Line 07 is redundant if the attack is stateless; in a stateful
attack this line is meaningful – see the discussion below. Right: Key
recovering adversary for game KRP as in Section 4.2.

configurable probability, artificially rejects the ciphertext if
the indicated bit of the leakage key does not match some
hard-coded reference value. The adversary is able to ap-
ply the same hash function to the ciphertext and thus learns
whether the bit position deviates from the reference value.
By bit-wise learning the difference between the leakage key
and the reference value, eventually the adversary can put the
complete leakage key together.

In the remaining part of this section, we describe the
specification of our subversion and KRP adversary in detail,
and analyse their effectiveness.

8.2.1 Description of our Passive Attack

We define our passive subversion of the receiver algorithm
Π.R of a scheme Π in Fig. 7 (left). It is parameterised by a
probability 0≤ γ ≤ 1, a large index space IR, a PRF (Fi)i∈IR ,
and a family (Gi)i∈IR of random constants. For the PRF we
require that it be a family of functions Fi : Y → [0 ..λ −1]
(that is: a pseudo-random mapping from the ciphertext space
to the set of bit positions of a leakage key kℓ), and for the
constants we require that Gi ∈ {0,1}λ (that is: a random el-
ement of the set of leakage keys {0,1}λ). (That we use the
same index space IR for two separate primitives is purely for
notational convenience; our analyses will actually assume
that (Fi) and (Gi) are independent.16)

We provide details on our attack. The idea is that kℓ′

(line 00), which is shared by the subverted algorithm and
the key recovering adversary through knowledge of Gi, rep-
resents an initial reference key17; the key recovery adver-
sary, throughout the attack, learns the bits that differ be-
tween kℓ and kℓ′. This means that the subversion only needs

16 At the expense of introducing more symbols we could also have
formally separated the index spaces of (F) and (G). We believe that
our concise notation adds significantly to readability.

17 For generality, we consider G a keyed family of constants. The
simplest case would have all constants fixed to the same hardcoded
string (say, the string of all zeroes), which would aid in reducing the
size of the implementation code.

to leak (on average) half as many bits compared to leak-
ing the whole of kℓ. The Bernoulli trial (line 03) controls
the rate with which such differing bits are exfiltrated, and
the PRF (line 04) controls which bit position ι is affected in
each iteration. By PRF security, these bit positions can be as-
sumed uniformly distributed (though knowledge of the sub-
version index i allows tracing which ciphertext is mapped to
which position). Any bit difference is communicated to the
adversary by artificially rejecting (line 06) the ciphertext, al-
though it is actually valid.

We specify a corresponding KRP adversary in Fig. 7
(right). It starts with the same random string Gi as the sub-
version and traces the bit updates of Π.Ri until eventually
the full key kℓ is reconstructed. We assume that A can tell
whether the full leakage key kℓ has been recovered (line 10),
e.g. by recovering the secret key kR from kℓ and verifying
one or more recorded authentic outputs with it.

Note that our adversary A does not need to know the
sender inputs (equivalently, receiver outputs) x ∈ X , which
typically represent plaintext messages in the settings we con-
sider, emerging throughout the experiment: The core of the
attack, in lines 13 to 16, is independent of the value of x. This
considerably adds to the practicality of our attack: While
messages are not always secret information, in practice they
might be hard to obtain. Conducting mass-surveillance at-
tacks is certainly easier if the attacks depend exclusively on
the knowledge of ciphertexts (like in our case, line 15).

While we present our subversion as stateless (i.e., the
reference key is kept static between invocations), it also works
if the Π.Ri algorithm maintains state between any two invo-
cations and remembers which differing bit positions have
already been communicated. Activate line 07, and execute
line 00 only during the first invocation, to obtain the state-
ful attack. With respect to the detectability and key recovery
notions from Section 4, the attack’s performance is the same
whether the subversion is stateful or not. The stateful ver-
sion offers better correctness after a subversion is detected,
in the sense that the algorithm will only behave unexpect-
edly at most |kℓ|= λ occasions; once the leakage key kℓ has
been exfiltrated, the subverted scheme Π.Ri behaves identi-
cally to the honest scheme Π.R. (This case is practically less
relevant and not covered by our formal models.)

We establish the following statements about the key re-
coverability and undetectability of our passive subversion
attack.

Theorem 8.1 For a δ -correct scheme Π, let Π.Ri be defined
as in Fig. 7 (left) and A as defined in Fig. 7 (right). If Fi be-
haves like a random function and constants Gi are uniformly
distributed, then for any message sampler MS, the key re-
covery advantage Advkrp

MS(A) is expected to reach value 1
once the receive algorithm was invoked on O(λ logλ) dif-
ferent inputs.

16 Marcel Armour, Bertram Poettering

Proof We model algorithm A(i) by experiment CC(S,η)

from Fig. 6, with S = [0 ..λ −1] and η = 1− (δ −1)(γ/2−
1). The (pseudo-)randomness of Fi ensures that elements of
s ∈ S, here representing the possible values of the index ι

(line 04), are picked uniformly at random. The probability
η = 1− (δ −1)(γ/2−1) = δ +(1−δ)(γ/2) arises through
success of the CC experiment being equivalent to the Π.Ri
outputting x =⊥. This occurs either:

– Through an early exit with ⊥ = Π.R(kR,y) at line 02,
which has probability δ .

– Else, continuing to line 03 with⊥ ≠ Π.R(kR,y) and trig-
gering both line 03 (with probability γ) and line 05 (with
probability 1/2, as Pr [kℓ′[ι] ̸= kℓ[ι]] for ι←Fi(t) is 1/2).

Applying Lemma 8.1 gives the expected number of mes-
sages to be sent as O(λ logλ).

Theorem 8.2 LetA be an adversary playing the UDR game
(as in Fig. 1, right), such that A makes at most q queries to
the receiver oracle Recv. The undetectability advantage of
the subversion Π.Ri, as defined in Fig. 7 (left), is bounded
by

AdvUDR
Π (A)≤ 1− (1− γ)q.

Proof Any adversary playing the UDR game against the
subverted Π.Ri must, in order to win, trigger x = ⊥ with
a valid sender output (receiver input) y. More precisely, the
adversary A must find y such that Π.R(kR,y) ̸= ⊥ but
Π.Ri(kR,y) = ⊥. Figure 8 (left) shows the (obviously) best
adversarial strategy. Even if the adversary can submit y such
that ι ← Fi(y) would be assigned in line 04 (Fig. 7), this is
contingent on B(γ) succeeding in line 03; thus Pr[x =⊥]≤ γ

in line 05 (Fig. 8). Clearly, detection adversary A (Fig. 8,
left) always returns 1 when interacting with the unsubverted
receiver algorithm, as always x ̸=⊥. Thus,

AdvUDR
Π (A) = |Pr[UDR1(A)]−Pr[UDR0(A)]|

≤ 1− (1− γ)q.

8.3 Active Attack

In this section we describe our second subversion attack. In
contrast to the previous attack, key recovery requires an ac-
tive adversary, i.e., one who injects crafted ciphertexts into
the regular transmission stream. Our ASA has the desirable
property (from the point of view of the subverter) that cor-
rectness is maintained.

We give an overview of our attack for the case of AEAD.
(The generalisation to MAC and PKE is immediate; for the
generic version following our abstract syntax see Fig. 9.)
A prerequisite of the attack is a keyed random permutation
Pi of the AEAD ciphertext space. The key is known exclu-
sively to the subversion adversary. The AEAD encryption

Proc A
00 (kS,kR)←$ Π.gen
01 repeat q times:
02 pick any x ∈ X
03 y←Π.S(kS,x)
04 x← Recv(kS,y)
05 if x =⊥:
06 return 0
07 return 1

Proc A
00 (kS,kR)←$ Π.gen
01 S←{y}
02 ct= 0
03 while ct< q:
04 pick any x ∈ X
05 y←Π.S(kS,x)
06 y′←$ Y \S
07 if Π.R(y′) =⊥:
08 ct← ct+1
09 x← Recv(kS,y′)
10 S ∪←{y′}
11 if x ̸=⊥:
12 return 0
13 return 1

Fig. 8 Detection adversaries for Game UDR as in Fig. 1. Left: For the
passive attack from Fig. 7. Right: For the active attack from Fig. 9.

algorithm S remains unmodified. For honestly generated ci-
phertexts, the (subverted) algorithm Ri implements the un-
modified AEAD decryption routine R. This ensures correct-
ness.

To start a key recovery attack, the subversion adversary
waits for an honest ciphertext c and replaces it with Pi(c).
That is, the adversary suppresses the delivery of c and in-
stead injects a “randomised same-length version” of the ci-
phertext. By the authenticity property of the AEAD scheme,
the unmodified R algorithm would reject this ciphertext. This
is where the (subverted) Ri deviates from R: If any incoming
ciphertext is deemed invalid upon decryption with R, with
the expectation that this could be the case due to a KRA
attack being in operation, Ri applies P−1

i to c and tries to
decrypt the result (with R). If R rejects, Ri rejects also (in-
terpretation: c was simply a random ciphertext, not injected
by the KRA adversary). If however R accepts, then Ri con-
cludes that a KRA attack is in operation, and that it (Ri) is
supposed to leak key material.18 Observing that Ri just re-
covered the originally encrypted message m, we let Ri either
deliver that message, or we let it return ⊥, i.e., indicate de-
cryption failure. That way, if a message is delivered by Ri, it
is always correct. As in Sec 8.2, we modulate key bits into
the decision of delivering vs rejecting.

The above should make clear how the attack works. De-
tails, and the generic version, are in Section 8.3.2. We note
that a technical prerequisite of the attack is that for valid ci-
phertexts c, Pi(c) should not also be a valid ciphertext. As P
is a random permutation, the standard AUTH and UF prop-
erties of AEAD and MAC ensure this. However, the situa-
tion is different for PKE where it is easy to define schemes
that accept every ciphertext input, e.g. by outputting a valid
but dummy message. We resolve this technicality by requir-

18 Multiple options for this exist, for instance could the full kR be
embedded into the returned m; this would be powerful, but also has
practical disadvantages that would hinder effectiveness. We hence pur-
sue a different, milder approach.

Algorithm Substitution Attacks against Receivers 17

ing the mild assumption of ciphertext sparseness: We say
that a PKE scheme has a sparse ciphertext space if the de-
cryption algorithm makes an internal decision about the va-
lidity of an incoming ciphertext, with the property that uni-
formly picked ciphertexts are deemed invalid with overwhelm-
ing probability.

We studied a range of practically relevant PKE schemes
and observe that all of them satisfy the ciphertext sparseness
demand. For reference we provide corresponding details for
OAEP and Cramer-Shoup encryption in Appendix B. We
further observe that the general classes of plaintext-aware
schemes [15] (see also Appendix C) and of schemes with
publicly verifiable ciphertexts [52] have this property as well.
We confirm also for all four of the NIST post-quantum cryp-
tography round 3 finalists19, that are specifically designed to
mask decryption failures by accepting every ciphertext and
outputting a random value rather than the rejection symbol,
that they provide ciphertext sparseness: The mechanics of
the decryption/decapsulation algorithms are such that first
an internal yet explicit ciphertext validity decision is made
and then either the correct or an independent, randomised
value is output. Our subversions can easily adapt to such
specifications and be directly based on the outcome of the
validity check.

Lastly, we note that for the active attack there is no ad-
vantage to the subverted receiver keeping state. This is be-
cause the subverted receiver reveals key bits only when ex-
plicitly queried by the adversary – thus, the adversary is able
to maintain all necessary state. Note this is in contrast to our
passive attack where the adversary observes the receiver but
does not interact with it, and ultimately thus the attack could
benefit mildly from the subversion Ri keeping state.

In the remaining part of this section, we define ciphertext
sparseness, describe the specification of our subversion and
KRA adversary, and analyse their effectiveness.

8.3.1 Ciphertext Sparseness

We define ciphertext sparseness for a scheme Π as follows:
We say that Π = (Π.gen,Π.S,Π.R) is ciphertext ε-sparse if
Pr [R(y) ̸=⊥] ≤ ε for y←$ Y . If ε is negligibly small, we
refer to the scheme as being ciphertext sparse. For AEAD
and MAC schemes, ciphertext sparseness is a corollary of
the unforgeability (authenticity) properties. In particular: an
AEAD scheme that has AdvauthAEAD(A)≤ ε is ciphertext ε-
sparse, as if Pr [R(y) ̸=⊥]> ε for y←$ Y , then an adversary
who simply chooses an element of Y uniformly at random
would win the AUTH game with probability greater than ε .
Similarly, a MAC scheme with Advuf

MAC(A)≤ ε is ciphertext

19 Classic McEliece, CRYSTALS-KYBER, NTRU and SABER. De-
tailed information on the submissions, in particular their specifications,
are available at the NIST PQC website https://csrc.nist.gov/

projects/post-quantum-cryptography/round-3-submissions

Proc Π.Ri(kR,y)
00 kℓ′← Gi
01 x←Π.R(kR,y)
02 if x ̸=⊥:
03 return x
04 y′← P−1

i (y)
05 x′←Π.R(kR,y′)
06 if x′ =⊥:
07 return ⊥
08 ι ← Fi(y′)
09 if kℓ[ι] ̸= kℓ′[ι]:
10 return x′

11 return ⊥

Proc A(i)
12 kℓ′← Gi
13 while kℓ′ incorrect:
14 pick any α

15 (y,β)← Send(α)
16 y′← Pi(y)
17 if y′ = y, jump to line 14
18 x← Recv(y′)
19 if x ̸=⊥:
20 ι ← Fi(y′)
21 kℓ′[ι]← !Gi[ι]
22 return kℓ′

Fig. 9 Active subversion of the receiver algorithm Π.R of a ciphertext
ε-sparse scheme Π (see the discussion at Section 8.3). Left: Decryp-
tion subversion as in Section 4.1. Right: Key recovering adversary for
game KRA as in Section 4.2. The adversary needs to have no influence
over messages (modelled by α; see the discussion at Section 4.2). As
before we let ! denote the inversion of a bit value.

ε-sparse. As discussed above, ciphertext sparseness is a rea-
sonable assumption also for many practical PKE schemes.

8.3.2 Description of our Active Attack

We define our active subversion of the receiver algorithm
of ciphertext-sparse scheme Π in Fig. 9 (left). It is param-
eterised by a large index space IR, a PRF (Fi)i∈IR , a PRP
(Pi)i∈IR , and a family (Gi)i∈IR of random constants. (As
in Section 8.2, our analyses will assume that (Fi) and (Pi)

and (Gi) are independent.) For the PRF we require that it be
a family of functions Fi : Y → [0 ..λ −1] (that is: a pseudo-
random mapping from the output space to the set of bit po-
sitions of a leakage key kℓ ∈ {0,1}λ), for the PRP we re-
quire that it be a family of length-preserving permutations
Pi : Y →Y (that is: a pseudo-random bijection on the sender
output space), and for the constants we require that Gi ∈
{0,1}λ (that is: a random element of the set of leakage keys).

The idea of our attack is as follows. Lines 01 to 03 of Π.Ri
ensure that authentic receiver inputs are always accepted
(no limitation on correctness). If however a receiver input
(sender output) y is identified as not valid, i.e., is unauthen-
tic, then a secret further check is performed: The original
value y is mapped to an unrelated value y′ using the ran-
dom permutation (line 04), and the result y′ is checked for
validity (line 05). For standard (invalid) sender outputs y
this second validity check should also fail, and in this case
algorithm Π.Ri rejects as expected (lines 06 and 07). The
normally not attainable case that the second validity check
succeeds is used to leak key bits. The mechanism for this
(lines 08 to 11) is as in our passive attack from Section 8.2,
namely by communicating via accept/reject decisions the
positions where the bits of a hard-coded random reference
value kℓ′ and the to-be-leaked key kℓ differ.

The corresponding key recovery adversary crafts these
required bogus receiver inputs by obtaining a valid sender

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

18 Marcel Armour, Bertram Poettering

output20 y (line 15) and modifies it in line 16. The informa-
tion thus leaked by the validity checking routine is used to
reconstruct target leakage key kℓ in the obvious way (lines 19
to 21). We establish the following statements about the key
recoverability and undetectability of our active subversion
attack.

Theorem 8.3 For an ε-sparse scheme Π, let Π.Ri be de-
fined as in Fig. 9 (left) and A as in Fig. 9 (right). If Fi
and Pi behave like random functions, and constants Gi are
uniformly distributed, then for any message sampler MS,
the key recovery advantage Advkra

MS(A) is expected to reach
value 1 once the receive algorithm was invoked on O(λ logλ)

different inputs.

Proof By the ciphertext ε-sparseness of the scheme Π, each
invocation of algorithm Π.Ri in an execution of attack A(i)
has x ̸= ⊥ in line 02 (Fig. 9) with probability ε and thus
line 04 is reached with probability 1− ε . We model algo-
rithm A(i) by the experiment CC(S,η) from Fig. 6, with
S= [0 ..λ −1] and η =(1−ε)/2. The (pseudo-)randomness
of Fi ensures that elements of s ∈ S, here representing the
possible values of the index ι (line 20), are picked uniformly
at random. The probability 1/2 arises through success of the
CC experiment being equivalent to the condition x ̸= ⊥ in
line 19. This occurs precisely when Π.Ri returns x′ ̸=⊥ in
line 10, which is conditional on Π.Ri reaching past line 07.
The probability that x ̸= ⊥ in line 19 is 1/2 as this is the
probability that for any sender output y′ and ι←Fi(y′), kℓ[ι] ̸=
Gi[ι] (line 09). We now apply Lemma 8.1, which gives us
that the expected number of messages to be sent is O(λ logλ).

Theorem 8.4 LetA be an adversary playing the UDR game
(as in Fig. 1, right), such that A makes at most q queries
to the verification oracle Recv. If Pi behaves like a random
function, and the scheme Π is ciphertext ε-sparse, then the
undetectability advantage of the subversion Π.Ri, as defined
in Fig. 9 (left), is given by Advudr

Π (A)≤ 1− (1− ε)q.

Proof Any detection adversary A playing the UDR game
against the subverted Π.Ri must, in order to win, trigger
Π.Ri(y) ̸=⊥ with a bogus y. That is, a sender output y with
Π.R(kR,y) = ⊥ but Π.Ri(kR,y) ̸= ⊥. This will occur if y =
Pi(y′), where Π.R(kR,y′) ̸=⊥. As i is chosen uniformly ran-
domly from IR and P is a (pseudo-)random function, the
optimal strategy is to sample values of y′ and test whether
Recv(kR,y′) ̸=⊥. Algorithm A in Fig. 8 (right) shows this
strategy. WhenA interacts with the unsubverted receiver al-
gorithm, we have that Pr[UDR1(A)] = 1 by construction.

20 Note that in the symmetric case, such authentic outputs are ob-
tained by intercepting valid communications between the sender and
receiver; in the public key case, an adversary can easily craft their own
authentic outputs using the public key. We consider adversaries that
have no influence on message choices for the most powerful attack
(hence the arbitrary value of α in line 14); adversaries who are able to
utilise α (and β) may be even more effective.

When interacting with the subverted receiver algorithm, A
returns x ̸=⊥ by either triggering line 02 or line 10 of Π.Ri.
By the ciphertext sparseness of the scheme, line 02 is trig-
gered with probability 1− ε . Triggering line 10 happens
with probability ≤ ε . Thus we have

AdvUDR
Π (A) = |Pr[UDR1(A)]−Pr[UDR0(A)]|

≤ 1− (1− ε)q .

9 Conclusion

Our work examines subversion attacks against the receiving
party, a class of ASA that was missed by previous work. We
give an abstract framework and show that ASAs targeting
receivers apply equally to any primitive meeting the syn-
tax – namely, AEAD, MAC and PKE schemes. The internal
details of our attacks (described in Sections 8.3.2 and 8.2.1)
are such that we require a PRF (Fi)i∈IR to uniformly hash ci-
phertexts to bit positions. In the AEAD setting, this require-
ment can be dropped where the AEAD scheme meets the
widespread design goal of IND$ security [56], i.e. cipher-
texts indistinguishable from random bits. Combined with
the fact that symmetric keys are typically 256 bits, the first 8
bits of the (uniformly distributed) ciphertexts are sufficient
to point to the bit position. This allows for a reduced foot-
print (and thus significantly adds to the practicability of the
attack for an adversary).

Acknowledgements The research of Armour was supported by the
EPSRC and the UK government as part of the Centre for Doctoral
Training in Cyber Security at Royal Holloway, University of London
(EP/P009301/1).

References

1. Fatema Al Mansoori, Joonsang Baek, and Khaled Salah. Sub-
verting MAC: How authentication in mobile environment can be
undermined. In 2016 IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS), pages 870–874, April
2016. doi:10.1109/INFCOMW.2016.7562200.

2. Marcel Armour and Carlos Cid. Partition oracles from weak key
forgeries. Cryptology ePrint Archive, Report 2021/1296, 2021.
https://eprint.iacr.org/2021/1296.

3. Marcel Armour and Carlos Cid. Partition oracles from weak key
forgeries. In Mauro Conti, Marc Stevens, and Stephan Krenn, edi-
tors, Cryptology and Network Security, pages 42–62, Cham, 2021.
Springer International Publishing.

4. Marcel Armour and Bertram Poettering. Substitution attacks
against message authentication. IACR Transactions on Symmet-
ric Cryptology, 2019(3):152–168, 2019. doi:10.13154/tosc.

v2019.i3.152-168.
5. Marcel Armour and Bertram Poettering. Subverting decryption in

AEAD. In Martin Albrecht, editor, 17th IMA International Con-
ference on Cryptography and Coding, volume 11929 of Lecture
Notes in Computer Science, pages 22–41. Springer, Heidelberg,
December 2019. doi:10.1007/978-3-030-35199-1_2.

https://doi.org/10.1109/INFCOMW.2016.7562200
https://eprint.iacr.org/2021/1296
https://doi.org/10.13154/tosc.v2019.i3.152-168
https://doi.org/10.13154/tosc.v2019.i3.152-168
https://doi.org/10.1007/978-3-030-35199-1_2

Algorithm Substitution Attacks against Receivers 19

6. Marcel Armour and Bertram Poettering. Algorithm substitution
attacks against receivers. Int. J. Inf. Secur., 2022. doi:10.1007/

s10207-022-00596-5.
7. Marcel Armour and Bertram Poettering. Algorithm substitution

attacks against receivers. IACR Cryptol. ePrint Arch., 2022. URL:
https://eprint.iacr.org/2022/604.

8. Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi.
Subversion-resilient signature schemes. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, ACM CCS 2015: 22nd
Conference on Computer and Communications Security, pages
364–375. ACM Press, October 2015. doi:10.1145/2810103.

2813635.
9. Nimrod Aviram, Benjamin Dowling, Ilan Komargodski, Ken-

neth G. Paterson, Eyal Ronen, and Eylon Yogev. Practical (post-
quantum) key combiners from one-wayness and applications to
TLS. Cryptology ePrint Archive, Report 2022/065, 2022. https:
//eprint.iacr.org/2022/065.

10. Elaine Barker. Nist special publication 800-57 part 1, revision
5. Recommendation for Key Management, 2020. doi:10.6028/

NIST.SP.800-57pt1r5.
11. Balthazar Bauer, Pooya Farshim, and Sogol Mazaheri. Combiners

for backdoored random oracles. In Hovav Shacham and Alexan-
dra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part II, volume 10992 of Lecture Notes in Computer Science,
pages 272–302. Springer, Heidelberg, August 2018. doi:10.

1007/978-3-319-96881-0_10.
12. Mihir Bellare and Viet Tung Hoang. Resisting randomness

subversion: Fast deterministic and hedged public-key encryption
in the standard model. In Elisabeth Oswald and Marc Fis-
chlin, editors, Advances in Cryptology – EUROCRYPT 2015,
Part II, volume 9057 of Lecture Notes in Computer Science,
pages 627–656. Springer, Heidelberg, April 2015. doi:10.1007/
978-3-662-46803-6_21.

13. Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance
without the state: Strongly undetectable algorithm-substitution at-
tacks. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, edi-
tors, ACM CCS 2015: 22nd Conference on Computer and Commu-
nications Security, pages 1431–1440. ACM Press, October 2015.
doi:10.1145/2810103.2813681.

14. Mihir Bellare, Daniel Kane, and Phillip Rogaway. Big-key
symmetric encryption: Resisting key exfiltration. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Com-
puter Science, pages 373–402. Springer, Heidelberg, August 2016.
doi:10.1007/978-3-662-53018-4_14.

15. Mihir Bellare and Adriana Palacio. Towards plaintext-aware
public-key encryption without random oracles. In Pil Joong
Lee, editor, Advances in Cryptology – ASIACRYPT 2004, vol-
ume 3329 of Lecture Notes in Computer Science, pages 48–
62. Springer, Heidelberg, December 2004. doi:10.1007/

978-3-540-30539-2_4.
16. Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Secu-

rity of symmetric encryption against mass surveillance. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Com-
puter Science, pages 1–19. Springer, Heidelberg, August 2014.
doi:10.1007/978-3-662-44371-2_1.

17. Mihir Bellare and Phillip Rogaway. Optimal asymmetric en-
cryption. In Alfredo De Santis, editor, Advances in Cryptol-
ogy – EUROCRYPT’94, volume 950 of Lecture Notes in Com-
puter Science, pages 92–111. Springer, Heidelberg, May 1995.
doi:10.1007/BFb0053428.

18. Pascal Bemmann, Rongmao Chen, and Tibor Jager. Subversion-
resilient public key encryption with practical watchdogs. In
Juan Garay, editor, PKC 2021: 24th International Conference
on Theory and Practice of Public Key Cryptography, Part I,
volume 12710 of Lecture Notes in Computer Science, pages

627–658. Springer, Heidelberg, May 2021. doi:10.1007/

978-3-030-75245-3_23.
19. Sebastian Berndt and Maciej Liskiewicz. Algorithm substitution

attacks from a steganographic perspective. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 2017: 24th Conference on Computer and Communica-
tions Security, pages 1649–1660. ACM Press, October / Novem-
ber 2017. doi:10.1145/3133956.3133981.

20. Sebastian Berndt, Jan Wichelmann, Claudius Pott, Tim-Henrik
Traving, and Thomas Eisenbarth. ASAP: Algorithm substitution
attacks on cryptographic protocols. Cryptology ePrint Archive,
Report 2020/1452, 2020. https://eprint.iacr.org/2020/

1452.
21. Swarup Bhunia, Michael S Hsiao, Mainak Banga, and Seetharam

Narasimhan. Hardware trojan attacks: threat analysis and counter-
measures. Proceedings of the IEEE, 102(8):1229–1247, 2014.

22. James Birkett and Alexander W. Dent. Relations among notions
of plaintext awareness. In Ronald Cramer, editor, PKC 2008:
11th International Workshop on Theory and Practice in Pub-
lic Key Cryptography, volume 4939 of Lecture Notes in Com-
puter Science, pages 47–64. Springer, Heidelberg, March 2008.
doi:10.1007/978-3-540-78440-1_4.

23. Angèle Bossuat, Xavier Bultel, Pierre-Alain Fouque, Cristina
Onete, and Thyla van der Merwe. Designing reverse firewalls
for the real world. In Liqun Chen, Ninghui Li, Kaitai Liang,
and Steve A. Schneider, editors, ESORICS 2020: 25th Euro-
pean Symposium on Research in Computer Security, Part I, vol-
ume 12308 of Lecture Notes in Computer Science, pages 193–
213. Springer, Heidelberg, September 2020. doi:10.1007/

978-3-030-58951-6_10.
24. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anony-

mous attestation with subverted TPMs. In Jonathan Katz and Ho-
vav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
Part III, volume 10403 of Lecture Notes in Computer Science,
pages 427–461. Springer, Heidelberg, August 2017. doi:10.

1007/978-3-319-63697-9_15.
25. Rongmao Chen, Xinyi Huang, and Moti Yung. Subvert KEM to

break DEM: Practical algorithm-substitution attacks on public-
key encryption. In Shiho Moriai and Huaxiong Wang, edi-
tors, Advances in Cryptology – ASIACRYPT 2020, Part II, vol-
ume 12492 of Lecture Notes in Computer Science, pages 98–
128. Springer, Heidelberg, December 2020. doi:10.1007/

978-3-030-64834-3_4.
26. Don Coppersmith. Finding a small root of a bivariate integer equa-

tion; factoring with high bits known. In Ueli M. Maurer, editor,
Advances in Cryptology – EUROCRYPT’96, volume 1070 of Lec-
ture Notes in Computer Science, pages 178–189. Springer, Heidel-
berg, May 1996. doi:10.1007/3-540-68339-9_16.

27. Ronald Cramer and Victor Shoup. A practical public key cryp-
tosystem provably secure against adaptive chosen ciphertext at-
tack. In Hugo Krawczyk, editor, Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer Sci-
ence, pages 13–25. Springer, Heidelberg, August 1998. doi:

10.1007/BFb0055717.
28. Ronald Cramer and Victor Shoup. Design and analysis of practi-

cal public-key encryption schemes secure against adaptive chosen
ciphertext attack. SIAM Journal on Computing, 33(1):167–226,
2003.

29. Claude Crépeau and Alain Slakmon. Simple backdoors for RSA
key generation. In Marc Joye, editor, Topics in Cryptology – CT-
RSA 2003, volume 2612 of Lecture Notes in Computer Science,
pages 403–416. Springer, Heidelberg, April 2003. doi:10.1007/
3-540-36563-X_28.

30. Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering.
A more cautious approach to security against mass surveil-
lance. In Gregor Leander, editor, Fast Software Encryption –
FSE 2015, volume 9054 of Lecture Notes in Computer Science,

https://doi.org/10.1007/s10207-022-00596-5
https://doi.org/10.1007/s10207-022-00596-5
https://eprint.iacr.org/2022/604
https://doi.org/10.1145/2810103.2813635
https://doi.org/10.1145/2810103.2813635
https://eprint.iacr.org/2022/065
https://eprint.iacr.org/2022/065
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.1007/978-3-319-96881-0_10
https://doi.org/10.1007/978-3-319-96881-0_10
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1145/2810103.2813681
https://doi.org/10.1007/978-3-662-53018-4_14
https://doi.org/10.1007/978-3-540-30539-2_4
https://doi.org/10.1007/978-3-540-30539-2_4
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/978-3-030-75245-3_23
https://doi.org/10.1007/978-3-030-75245-3_23
https://doi.org/10.1145/3133956.3133981
https://eprint.iacr.org/2020/1452
https://eprint.iacr.org/2020/1452
https://doi.org/10.1007/978-3-540-78440-1_4
https://doi.org/10.1007/978-3-030-58951-6_10
https://doi.org/10.1007/978-3-030-58951-6_10
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1007/978-3-030-64834-3_4
https://doi.org/10.1007/978-3-030-64834-3_4
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-36563-X_28
https://doi.org/10.1007/3-540-36563-X_28

20 Marcel Armour, Bertram Poettering

pages 579–598. Springer, Heidelberg, March 2015. doi:10.

1007/978-3-662-48116-5_28.
31. Jean Paul Degabriele, Kenneth G. Paterson, Jacob C. N. Schuldt,

and Joanne Woodage. Backdoors in pseudorandom number
generators: Possibility and impossibility results. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology –
CRYPTO 2016, Part I, volume 9814 of Lecture Notes in Com-
puter Science, pages 403–432. Springer, Heidelberg, August 2016.
doi:10.1007/978-3-662-53018-4_15.

32. Alexander W. Dent. The Cramer-Shoup encryption scheme is
plaintext aware in the standard model. In Serge Vaudenay, edi-
tor, Advances in Cryptology – EUROCRYPT 2006, volume 4004
of Lecture Notes in Computer Science, pages 289–307. Springer,
Heidelberg, May / June 2006. doi:10.1007/11761679_18.

33. Yevgeniy Dodis, Pooya Farshim, Sogol Mazaheri, and Stefano
Tessaro. Towards defeating backdoored random oracles: Indiffer-
entiability with bounded adaptivity. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020: 18th Theory of Cryptography Con-
ference, Part III, volume 12552 of Lecture Notes in Computer
Science, pages 241–273. Springer, Heidelberg, November 2020.
doi:10.1007/978-3-030-64381-2_9.

34. Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels,
and Thomas Ristenpart. A formal treatment of backdoored
pseudorandom generators. In Elisabeth Oswald and Marc Fis-
chlin, editors, Advances in Cryptology – EUROCRYPT 2015,
Part I, volume 9056 of Lecture Notes in Computer Science,
pages 101–126. Springer, Heidelberg, April 2015. doi:10.1007/
978-3-662-46800-5_5.

35. Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz.
Message transmission with reverse firewalls—secure commu-
nication on corrupted machines. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016,
Part I, volume 9814 of Lecture Notes in Computer Science, pages
341–372. Springer, Heidelberg, August 2016. doi:10.1007/

978-3-662-53018-4_13.
36. Morris J. Dworkin. SP 800-38D: Recommendation for block

cipher modes of operation: Galois/Counter Mode (GCM) and
GMAC. US National Institute of Standards and Technology, 2007.
doi:10.6028/NIST.SP.800-38D.

37. Stefan Dziembowski, Sebastian Faust, and François-Xavier Stan-
daert. Private circuits III: Hardware trojan-resilience via test-
ing amplification. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, edi-
tors, ACM CCS 2016: 23rd Conference on Computer and Com-
munications Security, pages 142–153. ACM Press, October 2016.
doi:10.1145/2976749.2978419.

38. Luca De Feo, Bertram Poettering, and Alessandro Sorniotti. On
the (in)security of ElGamal in OpenPGP. In Yongdae Kim, Jong
Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21: 2021
ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15 - 19,
2021, pages 2066–2080. ACM, 2021. doi:10.1145/3460120.

3485257.
39. Marc Fischlin, Christian Janson, and Sogol Mazaheri. Backdoored

hash functions: Immunizing HMAC and HKDF. In Steve Chong
and Stephanie Delaune, editors, CSF 2018: IEEE 31st Computer
Security Foundations Symposium, pages 105–118. IEEE Com-
puter Society Press, 2018. doi:10.1109/CSF.2018.00015.

40. Marc Fischlin and Sogol Mazaheri. Self-guarding cryptographic
protocols against algorithm substitution attacks. In Steve Chong
and Stephanie Delaune, editors, CSF 2018: IEEE 31st Computer
Security Foundations Symposium, pages 76–90. IEEE Computer
Society Press, 2018. doi:10.1109/CSF.2018.00013.

41. Federico Giacon, Felix Heuer, and Bertram Poettering. KEM com-
biners. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018:
21st International Conference on Theory and Practice of Public

Key Cryptography, Part I, volume 10769 of Lecture Notes in Com-
puter Science, pages 190–218. Springer, Heidelberg, March 2018.
doi:10.1007/978-3-319-76578-5_7.

42. Eu-Jin Goh, Dan Boneh, Benny Pinkas, and Philippe Golle. The
design and implementation of protocol-based hidden key recovery.
In Colin Boyd and Wenbo Mao, editors, ISC 2003: 6th Interna-
tional Conference on Information Security, volume 2851 of Lec-
ture Notes in Computer Science, pages 165–179. Springer, Heidel-
berg, October 2003.

43. Dieter Gollmann. Computer Security (3. ed.). Wiley,
2011. URL: http://eu.wiley.com/WileyCDA/WileyTitle/

productCd-1118801326.html.
44. Philip Hodges and Douglas Stebila. Algorithm substitution at-

tacks: State reset detection and asymmetric modifications. IACR
Transactions on Symmetric Cryptology, 2021(2):389–422, 2021.
doi:10.46586/tosc.v2021.i2.389-422.

45. Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram
Poettering. Cryptanalysis of OCB2: Attacks on authentic-
ity and confidentiality. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part I, volume 11692 of Lecture Notes in Computer Science,
pages 3–31. Springer, Heidelberg, August 2019. doi:10.1007/

978-3-030-26948-7_1.
46. Richard Isaac. The pleasures of probability. Springer Science &

Business Media, 2013.
47. Lars R. Knudsen and Tadayoshi Kohno. Analysis of RMAC. In

Thomas Johansson, editor, Fast Software Encryption – FSE 2003,
volume 2887 of Lecture Notes in Computer Science, pages
182–191. Springer, Heidelberg, February 2003. doi:10.1007/

978-3-540-39887-5_14.
48. Ted Krovetz and Phillip Rogaway. The OCB authenticated-

encryption algorithm, 2014. https://tools.ietf.org/html/

rfc7253.
49. Julia Len, Paul Grubbs, and Thomas Ristenpart. Partition-

ing oracle attacks. In 30th USENIX Security Symposium
(USENIX Security 21), pages 195–212. USENIX Association,
August 2021. URL: https://www.usenix.org/conference/

usenixsecurity21/presentation/len.
50. Hui Ma, Rui Zhang, Guomin Yang, Zishuai Song, Shuzhou Sun,

and Yuting Xiao. Concessive online/offline attribute based en-
cryption with cryptographic reverse firewalls - secure and ef-
ficient fine-grained access control on corrupted machines. In
Javier López, Jianying Zhou, and Miguel Soriano, editors, ES-
ORICS 2018: 23rd European Symposium on Research in Com-
puter Security, Part II, volume 11099 of Lecture Notes in Com-
puter Science, pages 507–526. Springer, Heidelberg, September
2018. doi:10.1007/978-3-319-98989-1_25.

51. Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic
reverse firewalls. In Elisabeth Oswald and Marc Fischlin, ed-
itors, Advances in Cryptology – EUROCRYPT 2015, Part II,
volume 9057 of Lecture Notes in Computer Science, pages
657–686. Springer, Heidelberg, April 2015. doi:10.1007/

978-3-662-46803-6_22.
52. Juan Manuel González Nieto, Mark Manulis, Bertram Poettering,

Jothi Rangasamy, and Douglas Stebila. Publicly verifiable cipher-
texts. J. Comput. Secur., 21(5):749–778, 2013. doi:10.3233/

JCS-130473.
53. Bertram Poettering and Paul Rösler. Combiners for AEAD. IACR

Transactions on Symmetric Cryptology, 2020(1):121–143, 2020.
doi:10.13154/tosc.v2020.i1.121-143.

54. Bertram Poettering, Paul Rösler, Jörg Schwenk, and Douglas
Stebila. SoK: Game-based security models for group key ex-
change. In Kenneth G. Paterson, editor, Topics in Cryptology
– CT-RSA 2021, volume 12704 of Lecture Notes in Computer
Science, pages 148–176. Springer, Heidelberg, May 2021. doi:

10.1007/978-3-030-75539-3_7.

https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-53018-4_15
https://doi.org/10.1007/11761679_18
https://doi.org/10.1007/978-3-030-64381-2_9
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.1145/2976749.2978419
https://doi.org/10.1145/3460120.3485257
https://doi.org/10.1145/3460120.3485257
https://doi.org/10.1109/CSF.2018.00015
https://doi.org/10.1109/CSF.2018.00013
https://doi.org/10.1007/978-3-319-76578-5_7
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118801326.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118801326.html
https://doi.org/10.46586/tosc.v2021.i2.389-422
https://doi.org/10.1007/978-3-030-26948-7_1
https://doi.org/10.1007/978-3-030-26948-7_1
https://doi.org/10.1007/978-3-540-39887-5_14
https://doi.org/10.1007/978-3-540-39887-5_14
https://tools.ietf.org/html/rfc7253
https://tools.ietf.org/html/rfc7253
https://www.usenix.org/conference/usenixsecurity21/presentation/len
https://www.usenix.org/conference/usenixsecurity21/presentation/len
https://doi.org/10.1007/978-3-319-98989-1_25
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.3233/JCS-130473
https://doi.org/10.3233/JCS-130473
https://doi.org/10.13154/tosc.v2020.i1.121-143
https://doi.org/10.1007/978-3-030-75539-3_7
https://doi.org/10.1007/978-3-030-75539-3_7

Algorithm Substitution Attacks against Receivers 21

55. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A
method for obtaining digital signatures and public-key cryptosys-
tems. Communications of the Association for Computing Machin-
ery, 21(2):120–126, 1978.

56. Phillip Rogaway. Authenticated-encryption with associated-data.
In Vijayalakshmi Atluri, editor, ACM CCS 2002: 9th Conference
on Computer and Communications Security, pages 98–107. ACM
Press, November 2002. doi:10.1145/586110.586125.

57. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng
Zhou. Cliptography: Clipping the power of kleptographic attacks.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in
Cryptology – ASIACRYPT 2016, Part II, volume 10032 of Lecture
Notes in Computer Science, pages 34–64. Springer, Heidelberg,
December 2016. doi:10.1007/978-3-662-53890-6_2.

58. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng
Zhou. Destroying steganography via amalgamation: Kleptograph-
ically CPA secure public key encryption. Cryptology ePrint
Archive, Report 2016/530, 2016. https://eprint.iacr.org/

2016/530.
59. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng

Zhou. Generic semantic security against a kleptographic adver-
sary. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Com-
puter and Communications Security, pages 907–922. ACM Press,
October / November 2017. doi:10.1145/3133956.3133993.

60. Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng
Zhou. Correcting subverted random oracles. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology –
CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Com-
puter Science, pages 241–271. Springer, Heidelberg, August 2018.
doi:10.1007/978-3-319-96881-0_9.

61. Bruce Schneier, Matthew Fredrikson, Tadayoshi Kohno, and
Thomas Ristenpart. Surreptitiously weakening cryptographic sys-
tems. Cryptology ePrint Archive, Report 2015/097, 2015. https:
//eprint.iacr.org/2015/097.

62. Gustavus J. Simmons. The prisoners’ problem and the sublimi-
nal channel. In David Chaum, editor, Advances in Cryptology –
CRYPTO’83, pages 51–67. Plenum Press, New York, USA, 1983.

63. Yi Wang, Rongmao Chen, Xinyi Huang, and Baosheng Wang.
Secure anonymous communication on corrupted machines with
reverse firewalls. IEEE Transactions on Dependable and Se-
cure Computing, pages 1–1, 2021. doi:10.1109/TDSC.2021.

3107463.
64. Adam Young and Moti Yung. The dark side of “black-box” cryp-

tography, or: Should we trust capstone? In Neal Koblitz, editor,
Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture
Notes in Computer Science, pages 89–103. Springer, Heidelberg,
August 1996. doi:10.1007/3-540-68697-5_8.

65. Adam Young and Moti Yung. Kleptography: Using cryptogra-
phy against cryptography. In Walter Fumy, editor, Advances in
Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in
Computer Science, pages 62–74. Springer, Heidelberg, May 1997.
doi:10.1007/3-540-69053-0_6.

A Key and Data Encapsulation Mechanisms

A.1 Key Encapsulation Mechanisms

For completeness, we give the corresponding definitions of subversion
attacks against key encapsulation mechanisms, together with notions
of undetectability and key recovery.

Game IND-CCAb(A)
00 C← /0
01 (pk,sk)← KEM.gen
02 b′←AEncap,Decap(pk)
03 stop with b′

Oracle Encap
04 (k0,c)← KEM.enc(pk)
05 k1←$ K
06 C ∪←{c}
07 return (kb,c)

Oracle Decap(c)
08 require c /∈C
09 k← KEM.dec(sk,c)
10 return k

Game subIND-CCAb(A)
00 C← /0
01 igen, iS, iR←$ Igen×IS×IR
02 (pk,sk)← KEM.genigen
03 b′←AEncap,Decap(pk)
04 stop with b′

Oracle Encap
05 (k0,c)← KEM.enciS (pk)
06 k1←$ K
07 C ∪←{c}
08 return (kb,c)

Oracle Decap(c)
09 require c /∈C
10 k← KEM.deciR (sk,c)
11 return k

Fig. 10 Games modelling indistinguishability under chosen-ciphertext
attacks (IND-CCA), and subverted indistinguishability under chosen-
ciphertext attacks (subIND-CCA) for a key encapsulation mechanism
KEM.

Game IND-CCAb(A)
00 C← /0
01 k←$ DEM.gen
02 b′←AEnc,Dec

03 stop with b′

Oracle Enc(m0,m1)
04 require C = /0
05 c← DEM.enc(k,mb)
06 C ∪←{c}
07 return c

Oracle Dec(c)
08 require C ̸= /0
09 require c /∈C
10 m← DEM.dec(k,c)
11 return m

Game subIND-CCAb(A)
00 C← /0
01 igen, iS, iR←$ Igen×IS×IR
02 k←$ DEM.genigen
03 b′←AEnc,Dec

04 stop with b′

Oracle Enc(m0,m1)
05 require C = /0
06 c← DEM.enciS (k,m

b)

07 C ∪←{c}
08 return c

Oracle Dec(c)
09 require C ̸= /0
10 require c /∈C
11 m← DEM.deciR (k,c)
12 return m

Fig. 11 Games modelling indistinguishability under one-time chosen-
ciphertext attacks (IND-CCA), and subverted indistinguishability under
one-time chosen-ciphertext attacks (subIND-CCA) for a data encapsu-
lation mechanism DEM.

A.1.1 KEM Definition

A KEM scheme KEM = (KEM.gen,KEM.enc,KEM.dec) for a finite
session key space K is a triple of algorithms together with a key space
KS×KR and ciphertext space C. The key generation algorithm KEM.gen
returns a pair (pk,sk) ∈ KS×KR consisting of a public key and a se-
cret key. The encapsulation algorithm KEM.enc takes a public key pk
to produce a session key k ∈ K and a ciphertext c ∈ C. Finally, the
decapsulation algorithm KEM.dec takes a secret key sk and a cipher-
text c ∈ C, and outputs either a session key K ∈ K or the special sym-
bol ⊥ /∈ K to indicate rejection. The correctness requirement is that
for all (pk,sk) ∈ KS ×KR we have Pr [KEM.dec(sk,c) ̸= k] ≤ δ for
(k,c)← KEM.enc(pk).

A.1.2 IND-CCA

For a key encapsulation mechanism, we formalise the indistinguisha-
bility under chosen-ciphertext attack via the game IND-CCA in Fig. 10

https://doi.org/10.1145/586110.586125
https://doi.org/10.1007/978-3-662-53890-6_2
https://eprint.iacr.org/2016/530
https://eprint.iacr.org/2016/530
https://doi.org/10.1145/3133956.3133993
https://doi.org/10.1007/978-3-319-96881-0_9
https://eprint.iacr.org/2015/097
https://eprint.iacr.org/2015/097
https://doi.org/10.1109/TDSC.2021.3107463
https://doi.org/10.1109/TDSC.2021.3107463
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6

22 Marcel Armour, Bertram Poettering

(left). For any adversary A we define the advantage

Advind-cca
KEM (A) := |Pr

[
IND-CCA0(A)

]
−Pr

[
IND-CCA1(A)

]
|

and say that scheme KEM is indistinguishable against chosen-ciphertext
attacks if Advind-cca

KEM (A) is negligibly small for all realistic A.

A.1.3 Subverting KEM

We note that KEM schemes satisfy the generic syntax introduced above
in Section 4, with key generation algorithm Π.gen=KEM.gen, sender
algorithm Π.S = KEM.enc, receiver algorithm Π.R = KEM.dec. We
may thus apply the generic notions of subversion introduced in Sec-
tion 4.1, and observe that the passive attack in Section 8.2 applies. If
the KEM scheme is in addition ciphertext sparse, according to the no-
tion in Section 8.3.1, then the attacks in Section 8.3 will also apply.
Figure 10 (right) shows the game modelling subverted indistinguisha-
bility under chosen-ciphertext attacks.

A.2 Data Encapsulation

A DEM scheme DEM = (DEM.gen,DEM.enc,DEM.dec) is a triple
of algorithms together with associated key space K, message space M
and ciphertext space C. The key generation algorithm DEM.gen returns
key k ∈K. The encapsulation algorithm DEM.enc takes key k ∈K and
a message m ∈M, and outputs a ciphertext c ∈ C. The decapsulation
algorithm DEM.dec takes a key k ∈K and a ciphertext c ∈ C, and out-
puts either a message m ∈M or the special symbol ⊥ /∈M to indicate
rejection. The correctness requirement is that for all keys k∈K,m∈M
it holds that Pr [DEM.dec(k,c) ̸= m]≤ δ for c← DEM.enc(k,m).

A.2.1 IND-CCA

We formalise the indistinguishability under one-time chosen-ciphertext
attack of a data encapsulation mechanism via the game IND-CCA in
Fig. 11 (left). Note how lines 04 and 08 ensure that the adversary’s first
query is an encryption query, and that all further queries are decryption
queries. (This precisely matches the typical situation as it emerges in a
KEM/DEM hybrid.) For any adversary A we define the advantage

Advind-cca
DEM (A) := |Pr

[
IND-CCA0(A)

]
−Pr

[
IND-CCA1(A)

]
|

and say that scheme DEM is indistinguishable against chosen-ciphertext
attacks if Advind-cca

A is negligibly small for all realistic A.

A.2.2 Subversion of DEM

We note that Data Encapsulation Mechanism schemes satisfy the generic
syntax introduced above in Section 4, with key generation algorithm
Π.gen = DEM.gen, sender algorithm Π.S = DEM.enc, receiver algo-
rithm Π.R=DEM.dec. We may thus apply the generic notions of sub-
version introduced in Section 4.1, and observe that the passive attack in
Section 8.2 applies. If the DEM scheme is in addition ciphertext sparse,
according to the notion in Section 8.3.1, then the attacks in Section 8.3
will also apply. Figure 11 (right) shows the game modelling subverted
indistinguishability under chosen-ciphertext attacks.

DISCUSSION. Typically, a DEM is used together with a KEM in a so-
called hybrid encryption scheme that uses the KEM to share (symmet-
ric) session keys with which plaintext messages are encrypted under
the DEM. In such a setting, subverting the KEM is sufficient to under-
mine the security of messages sent via the hybrid scheme. Following
the discussion at Section 4.3, it is conceivable to subvert a KEM and
DEM in tandem so that the KEM’s secret key is leaked by the both
together. This could allow the subversion to effectively be distributed
between the two primitives, aiding undetectability in practice.

Proc CS.gen(G,g, ĝ,hk)
00 x1,x2,y1,y2,z1,z2←$ Zq
01 a← gx1 ĝx2 ,b← gy1 ĝy2 ,d← gz1 ĝz2

02 pk← (a,b,d)
03 sk← (x1,x2,y1,y2,z1,z2)
04 output (sk,pk)

Proc CS.enc(pk,m)
05 u←$ Zq,w← gu, ŵ← ĝu

06 e← du ·m
07 ρ ← Hhk(a, â,e)
08 v← aubuρ

09 output c = (a, â,e,v)

Proc CS.dec(sk,c)
10 parse c as (a, â,e,v)
11 ρ ← Hhk(a, â,e)
12 if v ̸= ax1+y1ρ · âx2+y2ρ

13 return ⊥
14 else:
15 m← c · (az1 âz2)−1

16 return m

Fig. 12 Cramer-Shoup PKE scheme CS= (CS.gen,CS.enc,CS.dec).

B Example Ciphertext Sparse PKE Schemes

We describe two widespread PKE schemes that satisfy the notion of
ciphertext sparseness described in Section 8.3.1.

OAEP. Optimal Asymmetric Encryption Padding (OAEP) was intro-
duced by Bellare and Rogaway [17] and is a widely deployed and stan-
dardised PKE scheme. The encryption algorithm of OAEP works on
message space M= {0,1}ℓ with fixed message length ℓ. Let k0 and k1
be integers, and G : {0,1}k0→{0,1}ℓ+k1 and H : {0,1}ℓ+k1→{0,1}k0

be two hash functions. Messages are padded before being encrypted us-
ing the trapdoor permutation (typically RSA): To pad a message m ∈
M, set m′←m ∥ 0k1 and choose r←$ {0,1}k0 . Then set s←m′⊕G(r),
t ← r⊕H(s) and m̂← s ∥ t. To decrypt a ciphertext, first decrypt (i.e.
apply the trapdoor inverse) before unpadding the resulting padded mes-
sage m̂: Parse m̂ as s ∥ t with s ∈ {0,1}ℓ+k1 and t ∈ {0,1}k0 . Now com-
pute r← t⊕H(s) and m′← s⊕G(r). If m′ ̸= m ∥ 0k1 for some m then
reject, otherwise return m.

For a randomly chosen element c in the ciphertext space C, the re-
dundancy introduced by padding will ensure that decrypting c results in
a valid message with probability 2−k1 . This is because choosing c←$ C
is equivalent to choosing a random m′←$ {0,1}ℓ+k1 , assuming that the
trapdoor permutation and hash functions all behave like random func-
tions. Equivalently, the scheme is ciphertext 2−k1 -sparse, according to
the definition in Section 8.3.1.

CRAMER-SHOUP. The Cramer-Shoup PKE scheme was introduced
in [28]. The encryption scheme CS = (CS.gen,CS.enc,CS.dec) is de-
fined in relation to a set of public parameters consisting of finite group G
with |G| = q and a pair of generators g, ĝ for G, together with a hash
key hk for a family of keyed collision resistant universal hash functions
Hhk : G3→ Zq. The family of keyed hash functions is such that given
a randomly chosen tuple of group elements and randomly chosen hash
function key, it is computationally infeasible to find a different tuple of
group elements that hashes to the same value using the given hash key.
We give details of Cramer-Shoup in Fig. 12.

For a randomly chosen element c = (a, â,e,v) in the ciphertext
space G4, the redundancy introduced by the hash function will ensure
that decrypting c results in a valid message with probability q−1. To see
this, consider fixed a, â,e: this gives a fixed value of ax1+y1ρ · âx2+y2ρ ∈
G and thus Pr [v = ax1+y1ρ · âx2+y2ρ] = q−1.

C Plaintext Awareness

We here give the definition of plaintext awareness, a property of PKE
schemes that implies ciphertext sparseness (see Section 8.3.1). Plain-
text awareness essentially means that an adversary is unable to create
ciphertexts without knowing the underlying plaintext message. This
means that ciphertexts which have not been generated from underlying

Algorithm Substitution Attacks against Receivers 23

Game PAb
K,MS,A(D)

00 C← /0
01 σ ←⋄
02 (pk,sk)← PKE.gen
03 AEnc,Dec(pk)
04 b′←D
05 stop with b′

Oracle Enc(α)
06 (σ ,m,β)←$ MS(σ ,α)
07 c← PKE.enc(pk,m); C ∪← c
08 return c

Oracle Dec(c)
09 require c /∈C
10 if b = 0:
11 return PKE.dec(sk,c)
12 else:
13 return K(pk,c,R[A],C)

Fig. 13 Game modelling plaintext awareness (PA), for a public key en-
cryption scheme PKE. Note that we retain β (modelling side-channel
information) in the syntax of message sampler MS for consistency with
previous sections, but here the adversary is not given output β .

plaintext messages should be rejected, implying that ciphertexts cho-
sen uniformly at random from the ciphertext space are unlikely to be
valid. Both the Cramer-Shoup cryptosystem [27,32] and RSA+OAEP
[55,17], outlined in Section 8.3.1, satisfy plaintext awareness.

The formal definitions of plaintext awareness in the standard model
were proposed by Bellare and Palacio [15], and were slightly extended
by Dent and Birkett [32,22]. A scheme is plaintext aware if for all
ciphertext creators (attackers) A, there exists a plaintext extractor K
which takes as input the random coins of A and can answer the de-
cryption queries of A in a manner that A cannot distinguish from a
real decryption oracle. In order to model the attacker’s ability to ob-
tain ciphertexts for which it does not know the underlying plaintext,

the ciphertext creator is equipped with an oracle that will return the
encryption of a randomly chosen message m←$ MS, where MS is an
arbitrary (stateful) message sampling algorithm that takes as input α

allowing an adversary (ciphertext creator) to specify a distribution on
messages. In Fig. 13, we write ⋄ for the initial state of MS. After in-
teracting with either the real decryption algorithm or the knowledge
extractor simulating decryption, the ciphertext creator outputs a cipher-
text c. A distinguisher D is now tasked with guessing which case we
are in. Note that the knowledge extractor K does not have access to the
distinguisher’s randomness.

We formalise plaintext awareness of a public key encryption scheme
via the game PA in Fig. 13. For any distinguisher D we define the ad-
vantage

Adv
pa
K,MS,A(D) := |Pr

[
PA0

K,MS,A(D)
]
−Pr

[
PA1

K,MS,A(D)
]
|.

We say that a scheme is plaintext aware if for all realistic ciphertext
creators A, there exists a knowledge extractor K such that for all mes-
sage samplers MS and distinguishers D, the advantage Adv

pa
K,MS,A(D)

is negligibly small.
We note that a PKE scheme that satisfies plaintext awareness and

indistinguishability against chosen ciphertext attacks (Section 7) is nec-
essarily ciphertext sparse. To see this, suppose that the PKE scheme
is not ciphertext sparse. For a randomly chosen ciphertext c←$ C, the
real game PA0

K,MS,A(D) will output a valid message m. However, in the
random game PA1

K,MS,A(D) the knowledge extractor will not be able
to output m without contradicting the plaintext awareness and CCA se-
curity of the scheme. We thus conclude that the scheme is ciphertext
sparse.

	Introduction
	Related Work
	Notation
	Notions of Subversion Attacks
	AEAD Schemes
	Message Authentication Schemes
	Public Key Encryption Schemes
	Concrete Subversion Attacks via Acceptance vs. Rejection
	Conclusion
	Key and Data Encapsulation Mechanisms
	Example Ciphertext Sparse PKE Schemes
	Plaintext Awareness

