
Combined Fault Injection and Real-Time

Side-Channel Analysis for Android Secure-Boot

Bypassing

Clément Fanjas1, Clément Gaine1, Driss Aboulkassimi1, Simon Pontié1, and
Olivier Potin2

1 CEA-Tech, Centre CMP, Équipe Commune CEA Tech - Mines Saint-Étienne,
F-13541 Gardanne, France

Université Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France
Email: �rstname.lastname@cea.fr

2 Mines Saint-Etienne, CEA, Leti, Centre CMP, F - 13541 Gardanne, France
Email: olivier.potin@emse.fr

Keywords: Secure-Boot · Synchronization · Frequency Detection · Fault Injec-
tion

Abstract. The Secure-Boot is a critical security feature in modern de-
vices based on System-on-Chips (SoC). It ensures the authenticity and
integrity of the code before its execution, avoiding the SoC to run ma-
licious code. To the best of our knowledge, this paper presents the �rst
bypass of an Android Secure-Boot by using an Electromagnetic Fault In-
jection (EMFI). Two hardware characterization methods are combined
to conduct this experiment. A real-time Side-Channel Analysis (SCA)
is used to synchronize an EMFI during the Linux Kernel authentication
step of the Android Secure-Boot of a smartphone-grade SoC. This new
synchronization method is called Synchronization by Frequency Detec-
tion (SFD). It is based on the detection of the activation of a character-
istic frequency in the target electromagnetic emanations. In this work we
present a proof-of-concept of this new triggering method. By triggering
the attack upon the activation of this characteristic frequency, we suc-
cessfully bypassed this security feature, e�ectively running Android OS
with a compromised Linux Kernel with one success every 15 minutes.

1 Introduction

Hardware attacks such as Side-Channel Analysis or Fault Injection represent an
important threat for modern devices. An attacker can exploit hardware vulner-
abilities to extract sensitive information or modify the target behavior. Among
hardware attacks, there are two main kinds of attacks which can exploit a phys-
ical access to the target:

– Side-Channel Analysis (SCA) relies on the fact that data manipulated by
the target can leak through a physical channel like power consumption or

2 C. Fanjas et al

Electromagnetic (EM) emanations. By performing a statistical analysis, an
attacker may retrieve these data.

– Fault Injection attacks aims at disrupting the target during the execution of
sensitive function. There are multiple Fault Injection methodologies, includ-
ing optical injection, Electromagnetic Fault Injection (EMFI), voltage and
clock glitching or body biasing injection.

For both Side-Channel Analysis and Fault Injection, the attacker needs the best
possible synchronization in order to capture the data leakage or disrupt the tar-
get behavior. This synchronization issue is even more present on modern SoCs
which are more complex than traditional micro-controllers. This paper intro-
duces a new method called Synchronization by Frequency Detection (SFD). This
method is based on frequency activity detection in a side-channel as a triggering
event. The name of the designed tool to implement this method is the frequency
detector. It should not be confused with a frequency synchronizer which is a com-
ponent used in Software Defined Radio (SDR). A passive probe captures the EM
emanations from the target. Then an SDR transposes around 0 Hz a selected
frequency band of 20 MHz located between 1 MHz and 6 GHz. The transposed
band is then sampled and transmitted to an FPGA which applies a narrow band-
filter to isolate a specific frequency. The system output is proportional to the
energy of a frequency selected by the user in the target EM emanations. The
whole process is performed in real-time. We validate this method by synchroniz-
ing an EMFI during the Android Secure-Boot of the same target as [GAP+20]
which is a smartphone SoC on developpment board with 4 cores 1.2-GHz ARM
Cortex A53. The technology node of this SoC is 28nm litography process. We
identified a critical instruction in the Linux Kernel authentication process of the
Secure-Boot. Then we found a characteristic frequency that only appears before
this instruction. Synchronization of hardware attacks is an old issue which can
be hard to overcome with no possibility to use the target I/Os. By using the
occurrence of this frequency as triggering event, an EMFI was successfully syn-
chronized with the vulnerable instruction, resulting in the bypass of the Linux
Kernel authentication without using any I/Os.

This work provides several contributions:

– We present a novel synchronization methodology. This new method allows
to trigger hardware attacks on complex target such as high speed System-
on-Chip without using I/Os. The SFD concept could be used in black or
grey box context.

– To our knowledge, we present the first successful bypass of a System-on-
Chip Secure-Boot using an EMFI. This is also one of the first hardware
attack on System-on-Chip which combine SCA and FI. This attack has a
high repeatability rate, with one bypass every 15 minutes.

– Although our target is a developpment board, our usecase is still realistic
since the targeted System-on-Chip is used in smartphones, and the targeted
software is the Android Bootloader.

Combined FI and Real-Time SCA for Android Secure-Boot Bypassing 3

Section 2 provides the related works in term of synchronization methods and
Secure-Boot attacks. Section 3 focuses on the frequency detector system. Sections
4 and 5 describe respectively with the attack set-up and the final experimen-
tation. Finally, the section 6 and 7 are dedicated for discussion, conclusion and
perspectives.

2 Related Works

2.1 Bootloader attacks

Other works focus on Secure-Boot attacks which permit a privilege escalation. In
[BKGS21] the authors explain how to successfully re-enable a hidden bootloader
by using a voltage glitch. This bootloader was destined for testing purposes
and grants high privileges to its user. A similar attack is performed in [CH17],
an EMFI corrupt the SoC DRAM during the boot process, which causes the
bootloader to enter in a debug state. Then the authors use a software exploit to
gain privileges over the TEE. [TSW16] demonstrates how to load arbitrary value
in the target PC. It describes a scenario using this vulnerability to bypass the
security provided by the Secure-Boot and execute a malicious code on the target.
In [VTM+18], the authors provide a methodology for optical fault injection on
a smartphone SoC, targeting the bootloader.

2.2 Attack synchronization issue

The issue related to the synchronization of hardware attacks has already been
identified in several works such as [MBTO13, GAP+20]. The delay between the
triggering event and the occurence of the vulnerability needs to be as stable as
possible to maximize the attack success rate. The variation of this delay is called
jitter, it is highly correlated with the target complexity. Modern architectures
make use of optimizations such as speculative execution and complex strategies of
cache memory management. Although providing high performance, these mech-
anisms bring highly unpredictable timing, which may cause an important jitter
with the accumulation of operations. One of the most commonly used techniques
to overcome the synchronization issue is based on the I/Os target exploitation
to generate the trigger signal [BKGS21, TSW16, MDH+13, RNR+15, DDRT12,
SMC21, GAP+20]. This method minimizes the amount of operations performed
by the target during the interval between the triggering event and the vulnera-
bility. Therefore it reduces the jitter associated with these operations. However
other triggering methods are required in scenarios where self-triggering is not
possible or in which the synchronization quality is not enough.

2.3 Existing synchronization methods

One alternative to self-triggering is to use essential signals to the target, such as
reset or communication bus [BKGS21, SMC21, VTM+18]. However these signals
are not always available or suitable for triggering purpose.

4 C. Fanjas et al

Side-Channel attacks require aligned traces to perform an efficient statistical
analysis to retrieve the secret information manipulated by the target. Traces
alignment can be done during the attack with an online synchronization, but
also with signal postprocessing [DSN+11]. In [CPM+18] the authors presented an
offline synchronization method to pre-cut traces before alignment3. They made
only one capture using an SDR during the execution of several AES encryption.
They identified a frequency in the orignal capture, which only appears before the
AES encryptions. By cutting the original capture accordingly with this frequency
occurence, they were able to extract each AES and roughly align the traces
in post-processing. This method is close to the SFD method presented in this
paper. The main difference is that [CPM+18] presents an offline method which
is dedicated for side-channel analysis, whereas the SFD method is an online
method, which is also efficient for fault injection.

[HHM+12] presents an attack based on the injection of continuous sinusoidal
waves via a power cable to disrupt an AES implemented on an FPGA. This
attack does not need synchronization since it is a continuous injection that affects
the target during all the encryption. However in [HHM+14] the same authors
present a method to improve this attack by injecting the sinusoidal waves only
during the last round of the AES. The injection is triggered after the occurence
of an activity in the target EM emanations.

In [VWWM11] the authors use a method called “pattern based triggering” to
synchronize an optical fault injection on a secure microcontroller. It consists in a
real-time comparison of the target power signal with a known pattern which ap-
pears before the vulnerability. The FPGA board sampling frequency is 100 MHz.
However there can be some higher frequency patterns between two samples. To
detect these patterns, the system uses a frequency conversion filter which out-
puts an envelop of the target power signal. Although being at a lower frequency,
this envelop signal represents the high frequency pattern occuring between two
samples. The concept of “pattern based triggering” or “pattern matching” is ex-
plored in details in [BBGV16], the authors also propose a method based on an
envelop signal to represent high frequency pattern in lower frequency. The pat-
tern based triggering method feasibility is strongly correlated with the sampling
rate of the monitored signal. Therefore this method is not suited for triggering
attacks on target such as SoC which runs at high frequency (i.e. GHz level)
unless there is a frequency conversion method between the input signal and the
pattern comparison. An alternative would be to use ADC with high sampling
rate, however it means that the processing behind the ADC needs to be able to
handle more data.

3 Frequency detector

This section proposes a new device for synchronizing hardware security charac-
terization benches. The goal of this tool is to perform real-time analysis of the
3 This method is partially inspired by https://github.com/bolek42/rsa-sdr which is
an o�ine synchronization method to align SCA traces

Combined FI and Real-Time SCA for Android Secure-Boot Bypassing 5

EM activity allowing the detection of events that happen inside the SoC. Tar-
geted specifications for the frequency detector are listed bellow as requirements:

R.1 Be able to detect an event that happens as close as possible to the execution
of an instruction vulnerable to fault injection. The number of instructions
between the detected event and the vulnerable instruction should be limited
to minimize the temporal uncertainty of the vulnerable instruction execution.

R.2 The event must be detected before the fault injection vulnerability. Due
to causality issue, the fault injection setup must be triggered before the
EM shot. Moreover, the use-case studied in this paper is more restrictive
because our fault injection setup must be triggered at least 150 ns before.
For SCA use-cases, the causality constraint is relaxed because an oscilloscope
can record the past.

R.3 Provide a real-time detection. The delay between an event and its detection
must be the most constant as possible. This delay is the latency of the EM
activity analysis. In practice, this delay will not be constant. The variation
of this delay is the temporal uncertainty inserted by the detection operation.
To minimize this delay, implementation of this operation must fit a real-time
constraint. For example, using a classical computer to perform the detection
would insert too temporal uncertainty to fit this constraint. For SCA use-
cases, an offline post-treatment can improve synchronization of side-channel
traces if the Signal to Noise Ratio (SNR) is acceptable. This post-process
relaxes the temporal uncertainty constraints but can not be applied in fault
injection use-cases.

R.4 The kind of event EM signature is specific to the use-case. The requirement
for this study is to be able to detect the computation of cryptographic op-
erations executed before, during, or just after a RSA signature check. For
example, long-integer arithmetic or hash computation can be targeted. Re-
quirements for the SoC Secure-Boot use-case are:

R.4.1 To be able to detect repetitive events.
R.4.2 To be able to detect events that require few microseconds of computation

as long-integer arithmetic or hash. The duration of events detected in
this work is 20 µs.

R.4.3 To be able to detect event from the EM activity of an high speed SoC.
Knowing that the CPU of the studied SoC runs at clock rates between
800 MHz and 1.2 GHz.

In the next, methodological and technological choices are detailed and the per-
formances of the frequency detector are evaluated.

3.1 Frequency detection methodology

We consider that using an FPGA to perform analysis can meet the real-time
constraint R.3. However, this analysis must be able to detect events in a large
bandwidth signal (R.4.3). High speed Analog to Digital Conversion (ADC) and
the data analysis from high sampling rate signal represent a challenge. To im-
prove the feasibility of our solution, we associated the FPGA with an SDR. As

6 C. Fanjas et al

illustrated by the Figure 1, our tool is based on a passive probe and an amplifier
to measure the EM emanations from the target. The SDR shifts one frequency
range of this signal to the baseband. The SDR outputs are transmitted to the
FPGA. These signals are an image of 20-MHz band selected by the user in the
RF signal spectrum. This solution is simpler with an SDR because the FPGA
can perform analysis at low sampling rate signals (fs = 20 Msamples/s). It is
compatible with requirement R.4.3 because these signals are an image of an high
frequency band.

The choice of SDR output sampling rate is a trade-off. Designing an im-
plementation that meets the real-time constraint R.3 is easier with a smaller
sampling rate. Nevertheless, low temporal resolution increases the temporal un-
certainty.

Regarding the requirement R.4.1, limiting the detection to repetitive events
is acceptable. Execution of loops emits EM activities. If the loop step is regular
and associated to a timing period Tloop then the EM emanations should be
significant for frequency Floop = 1

Tloop
and its harmonics. Observing EM activity

of a SoC around a specific frequency should allow to detect a repetitive event.
In this work, we propose to monitor in real-time the activity in a narrow

band around a characteristic frequency in order to trigger the fault injection.
The frequency is selected by the user, it should be characteristic from a loop
in the code executed by the target a short time before the vulnerability. The
methodology to identify a characteristic frequency is described in section 4.4.
A digital signal processing is performed by the FPGA on SDR output signals
in order to focus on the activity in a narrow band. To select this band, a pass-
band filter is implemented in the FPGA. This digital filter has a fixed band.
Combining the SDR and this filter is equivalent to a high frequency band-pass
filter. An user can control the central frequency of the band by configuring the
SDR. Digital processing offers the possibility to design more selective filters than
analog filters. To respect R.1 and R.2 requirements, the delay introduced by the
signal processing in the detection is limited to 3.2 µs by using 64th-order filters.
The goal is to only detect the targeted event to avoid false-positive. The output
of the frequency detector is an image of the power in a narrow band around the
frequency selected by the user in the EM emanations. This image is sent to a
Digital to Analog Converter (DAC).

3.2 Frequency detector design

In this section, we describe the design of the frequency detector. The two main
components are an SDR and an FPGA. The Figure 1 illustrates the system.

The SDR is a HackRF One from Great Scott Gadgets4. It has a half-duplex
capability but its reception mode is only used in this work. The input is a RF
signal and the output is pair of 8-bit samples to be sent to a computer through an
USB connection. In our work, the input is an amplified image of the electromag-
netic activity of the SoC target. The output is composed by two sampled signals.
4 HackRF One: https://greatscottgadgets.com/hackrf/one/

Combined FI and Real-Time SCA for Android Secure-Boot Bypassing 7

ADC

P
f0+Δf2

(t)

Δf1

-10MHz
0

+10MHz

Band-pass filter

DAC

Zybo-Z7 (FPGA)

F(Hz)
Δf2

Frequency conversion

f0 f0+10MHzf0-10MHz

F(Hz)
0 +10MHz -10MHz

ADC

I

Q

Hack-RF One

F(Hz)

f0

Fig. 1. Block diagram of the frequency detector

These signals are result of an IQ demodulation. User defines a f0 frequency be-
tween 1 MHz and 6 GHz. An analog f0 sinusoidal signal from an oscillator is
mixed to the RF signal with a multiplier to generate I (superheterodyne re-
ceiver). I is the In phase signal. It is sampled by an ADC after a Low-Pass
Filtering (LPF). The mixer shifts the RF signal from one frequency range to
another. For example, mixer shifts activity at frequency |fRF | to activities at
|fRF + f0| and |fRF − f0| (1).

sin
(
2πfRF t

)
. sin

(
2πf0t

)
=

1

2
cos
(
2π(fRF−f0)t

)
− 1

2
cos
(
2π(fRF+f0)t

)
(1)

|S(I)|

f

f

|S(RF)|

fRF

fBB

-f0

-f0+f0
+f0

-fRF+2 fBB

Fig. 2. Issue of image frequency

When only signal I is used, there is a an issue of image frequency. Fig-
ure 2 illustrates this problem. If |fRF | is shifted to |fBB | in the baseband with
f0 = fRF − fBB , then the image frequency | − fRF + 2fBB | is also shifted to
| − fRF + 2fBB + f0| = |fBB | and produces interference. To solve this issue the
signal I+j.Q must be considered instead of only I. A sinusoidal signal with a 90◦

phase shift is mixed to the RF signal with a multiplier to generate Q. Q is the
Quadrature signal. Sampled signal I and Q are sent to a computer. In classical
application of an SDR, a software signal processing is performed on I + j.Q to
demodulate this shifted RF signal. As explained in section 3.1, I and Q samples
must be sent to an FPGA. Therefore, we modified the SDR. In an HackRF One,

8 C. Fanjas et al

a Complex Programmable Logic Device (CPLD) gets I and Q samples from
the ADC and transmits them to a micro-controller. This micro-controller sends
them to a computer through an USB connection. The signal processing can not
be performed by the CPLD because it has not enough logic-cells. The CPLD
bitstream has been modified to also send I and Q samples to a PCB header.
Our patch is publicly available5.

A Digilent Zybo-Z7 board was connected to this PCB header of the HackRF
One to receive these samples. I and Q signals sampled at 20 Msamples/s rate
are received by the programmable logic of the Xilinx Zynq 7010 FPGA. This
complex signal I + j.Q is an image of a 20-MHz bandwidth around the user-
defined frequency f0.

The requirement is to select only activities of a small bandwidth. To fit this
constraint, a narrow band-pass filter was designed. This digital filter will be used
by the FPGA to filter I and Q samples. DC offsets in radio system is a known
issue [Abi95]. Therefore, the band-pass filter has been centered around the 8-
MHz frequency to avoid the system output to be impacted by a ghost DC offset.
The band-pass filter was designed as an one-side filter. The filter should select
frequencies around 8 MHz and attenuate frequencies arround -8 MHz. This is
possible because the FPGA can discriminate negative and positive frequencies
in I + j.Q.

The digital filter was designed in two steps. The first step consist in designing
of a low-pass filter. Targeted characteristics are: a 5-kHz pass band, a cut after
750 kHz, and a 64th-order. The MathWorks Matlab tool was used to design a
linear-phase Finite Impulsion Response (FIR) filter targeting the characteristics.
The effective bandwidth of the designed low-pass filter is 209 kHz. Equation (2)
describes the low-pass filter Ha(z) in the Z-domain. The 65 coefficients ai are
the output of the filter design and are real double values.

Ha(z) =

64∑
i=0

aiz
−i (2)

The second step is the design of two complex filters from Ha(z). Shifts (3)
and (4) were used to design filters H0(z) and Hπ

2
(z).

H0(z) =

64∑
i=0

biz
−i =

64∑
i=0

ai.e
j2π(i+1) 8 MHz

fsampling .z−i (3)

Hπ
2
(z) =

64∑
i=0

ciz
−i =

64∑
i=0

ai.e
j2π(i+1) 8 MHz

fsampling
+j π2 .z−i (4)

Equation (5) and (6) show how to filter input Iin + j.Qin to compute Iout +
j.Qout with bi and ci the coefficients from (3) and (4) respectively.

Iout(n) =

64∑
i=0

Re(bi).Iin(n− i)−
64∑
i=0

Im(bi).Qin(n− i) (5)

5 HackRF One, CPLD patch: https://github.com/simonpontie/hackrf_cpld_patch/

Combined FI and Real-Time SCA for Android Secure-Boot Bypassing 9

Qout(n) =

64∑
i=0

Im(ci).Qin(n− i)−
64∑
i=0

Re(ci).Iin(n− i) (6)

-10 MHz -8 MHz -6 MHz -4 MHz -2 MHz 0 MHz 2 MHz 4 MHz 6 MHz 8 MHz 10 MHz
f (Hz)

-80

-60

-40

-20

0

M
a
g

n
it

u
d

e
 (

d
b

)

Complex band-pass filter
-3db bandwidth (418 kHz)

Fig. 3. Complex band-pass digital �lter

Figure 3 shows performances of the filter. It is an one-side digital filter around
8 MHz (∆f2 in figure 1) with a 418-kHz (∆f1 in figure 1) bandwidth. This signal
processing is composed by four FIR filters with real coefficients: Re(bi), Im(bi),
Re(ci), and Im(ci). FIR filters were quantified and implemented with the “FIR
compile” tool from the Xilinx Vivado tool suite. A hardware implementation
was designed to use these filters and to compute Iout and Qout. An image of the
Iout + j.Qout power is approximated by implementing the equation (7).

P̃ (n) = Iout(n)
2 +Qout(n)

2 (7)

Iout+j.Qout is an image of a frequency band between f0+8MHz−209 kHz
and f0 + 8 MHz − 209 kHz of the RF signal. Because it is a narrow band, the
RF signal might be regarded as a sinusoidal signal RFa (8). The power of RFa

is
A2
a

2R
(9). Equations (10), (11), and (12) show P̃ as an image of the RF signal

power with this sinusoidal assumption.

RFa(t) = Aasin
(
2π(f0+8MHz+fa)t+φa

)
, fa ∈ [−209 kHz, 209 kHz] (8)

PRFa =

〈
A2
asin

2
(
2π(f0 + 8 MHz + fa)t+ φa

)〉
R

=
A2
a

2R
(9)

Iout(t) = RFa(t). sin
(
2πf0t

)
' Aa

2
cos
(
2π(8 MHz + fa)t+ φa

)
(10)

Qout(t) = RFa(t). sin
(
2πf0t+

π

2

)
' Aa

2
sin
(
2π(8 MHz + fa)t+ φa

)
(11)

P̃ (t) ' A2
a

4

(
cos2

(
2π(8 MHz + fa)t+ φa

)
+ sin2

(
2π(8 MHz + fa)t+ φa

))
=
A2
a

4
(12)

10 C. Fanjas et al

An uncontroled φa can delay the time between activation of the frequency and
when the output is maximal. IQ demodulation is important because output of
our system will be the same regardless of the φa value (12).

The approximated image of the power in the narrow band (7) can be effi-
ciently computed because it only requires two squares and one addition. This
signal P̃ is sent to a R-2R DAC to be converted as an analog signal. This ana-
log signal is an approximated image of the power in the RF signal between
f0 +8 MHz− 209 kHz and f0 +8 MHz+209 kHz. By controlling f0, an user
can observe an approximated image of the power in a 418-kHz band chosen in
[8 MHz, 6 GHz]. In the next we continue to use the sinusoidal assumption, thus
we refer to this narrow band as a frequency.

3.3 Frequency detector performances

This system red is able to detect the activation of a specific frequency between
8 MHz and 6 GHz. The system output is updated by the frequency shift and
the signal processing. These operations are stream processes but require a delay
to propagate information from the input to the output. To characterize this
latency we used a Low Frequency Generator (LFG) to generate an Amplitude-
Shift Keying (AFK) modulated signal with a carrier frequency Fi. It is emitted
by a probe situated near the probe of the frequency detector. The frequency
detector has been set to trigger upon the Fi frequency activation. An oscilloscope
is used to measure the delay ∆t between the frequency activation (modulation
signal) and the output of our system. The standard deviation σ∆t of this delay
corresponds to the jitter induced by our system. The oscilloscope triggers upon
the rise of the frequency activation signal. The delay is measured between the
oscilloscope trigger time and when the frequency detector output exceed 50% of
its maximal value. Several measures (within ten thousand) have been performed.
The mean time is equal to an average 〈∆t〉 of 2.56 µs and its standard deviation
σ∆t is equal to 60.9 ns. The standard deviation σ∆t fits the requirement R.3
because 60.9 ns is a temporal uncertainty close to the temporal resolution. This
resolution is 50 ns and it is corresponding to the software radio sampling period
of the I/Q signals. 95% of the value belongs to an interval of ∆tmean± 2σ which
corresponds to the interval [2.44µs; 2.68µs]. To fit the causality requirement R.2,
user must explore only characteristic frequency of events that happen 2.83µs
(' 2.68µs+ 150 ns) before the targeted vulnerability. In addition, the low-pass
filter introduced by the DAC limits the minimum period of detectable activity.
The frequency activity needs to stay active long enough to let the frequency
detector output rise to the desired level. The measured rise-time value for the
frequency detector output (between 5% and 95%) is 922 ns. We measure ∆t
as the delay between the rise of the frequency activation signal and the rising
edge of the frequency detector output at 50% of the maximum value. Thus the
frequency needs to stay active at least 461 ns (i.e. 50% of the rise-time) in order
to be detected. This fits the requirement R.4.2.

Combined FI and Real-Time SCA for Android Secure-Boot Bypassing 11

4 Attack environment setup

The target used in this work is already described in section 1. [GAP+20] presents
a methodology to bypass one of the security mechanisms of Linux OS by tar-
getting a specific core with a clock frequency fixed at 1.2 GHz. The fault model
proposed by the authors is based on instruction skipping. This paper reproduces
a similar experience with three main differences:

– The software targeted is the Android Secure-Boot.
– The core targeted is different.
– The frequency during the boot phase is set to 800 MHz.

This section describes preliminary experiments to tune fault injection and
SFD setups. This exploration includes the search of an EMFI vulnerability in
the Android Secure-Boot. For the EM analysis we used a probe (RF-B 0.3-3)
and a preamplifier (PA303/306) from Langer. The injection probe is based on
the same design as describe in [GAP+20]. To move the probe at the SoC surface,
we used an XYZ motorized axis from Owis.

4.1 Electromagnetic Fault Injection

A pulse generator delivers a pulse up to 400 V into an EM injection probe. The
target communicates with a host PC by UART. The PC configures the pulse
generator voltage and controls an XYZ motorized stage to move the probe at the
chip surface. The purpose of this experiment consists in characterizing the EMFI
regardless of the triggering method. Therefore, a target with the Secure-Boot
disabled was used to validate fault injection experiments on a fully controlled
software code. The code used to observe the fault injection effect is composed
by a sequence of SUB instructions, which are surrounded by GPIO toggles. This
program has deterministic inputs and outputs in a scenario without injecting
faults. The GPIO triggers the EMFI during the SUB sequence. The results are
sent by the target through the UART bus. These results are compared with the
expected value to determine whether a fault has been injected. This experiment
is repeated 50 times for each position of the probe with a step of 500µm between
two positions. We scanned all the chip which corresponds to an area of 13.5mm
by 11mm. The results of the global scan is superimposed on the chip IR imaging
as shown in figure 4 (A). We observe the presence of faults in a small area.
Consequently, a more accurate scan of this faulty area with a small step of 50µm
was performed to identify the best position. This scan result is shown in figure
4 (B). The best fault rate was achieved with a 400 V pulse voltage.

12 C. Fanjas et al

1000

750

500

250

-500
 0
 500

1500

2500

3500

4500

5500

 5
0

0

1
5

0
0

2
5

0
0

30
0

0
3

5
0

0

4
5

0
0

5
0

0
0

5
5

0
0

6
5

0
0

7
5

0
0

X(µm)

Y
(µ

m
)

0

10

20

30

40

50

F
au

lt
nu

m
be

r
by

 p
os

iti
on

5
0

0
0

3
0

0
0

 0

1500

1250

3
2

5
0

3
5

0
0

3
7

5
0

40
0

0

4
2

5
0

4
5

0
0

4
7

5
0

(A) (B)

Fig. 4. Fault injection sensitivity scan for 400 V pulse.

4.2 Electromagnetic leakage measurement

A scan of the chip was performed during the execution of a code leaking at a
predetermined frequency. The power around frequency was measured for each
position above the chip. This experiment was also applied on the other side of
the PCB, above the decoupling capacitors. Eventually, the best passive probe
position appeared to be above one of the decoupling capacitors.

4.3 Secure-Boot vulnerability

The Secure-Boot is a crucial security feature in a mobile device. It ensure that
the running OS can be trusted. It is a chain of programs loaded successively
in memory. There is an authentication of each program before executing it to
ensure that it is legitimate. In our experimentations, we used a development
board with a partially enabled Secure-Boot to start Android. Figure 5 describes
the Secure-Boot architecture implemented on our target. The First Stage Boot-

FSBL SSBL

TZ

Little Kernel (aboot) OS

Authentication
Authentication Authentication

Authentication

Active on our
target

Not active on our
target

Fig. 5. Secure-Boot Architecture

loader (FSBL) is stored in Read Only Memory (ROM). The FSBL loads the
Secondary Stage Bootloader (SSBL) from external memory. The SSBL starts

Combined FI and Real-Time SCA for Android Secure-Boot Bypassing 13

and loads the Trusted OS executed in secure-mode. Then the SSBL loads and
runs Little Kernel, which is the Android Bootloader of the target. Little Kernel
loads the Linux Kernel of Android. Since the target is a development board, the
Secure-Boot is partially enabled. The authentication of the SSBL by the FSBL
is not active, there is also no authentication of Little Kernel by the SSBL. To
the best of our knowledge, there is no publicly procedure for activating these
authentications. However, the Linux Kernel authentication by Little Kernel can
be easily activated by recompiling the Little Kernel code with the right com-
pilation settings. This paper only focuses on the Linux Kernel authentication.
During the Linux Kernel compilation, the SHA256 digest of the image is com-
puted and signed with a private key using the RSA algorithm. The signed hash
value is stored in the Kernel image. The authentication process is detailed in
Figure 6. Little Kernel has the public key which allows to decrypt the signature.
During the authentication, Little Kernel computes the SHA256 digest of the
current image (ie. HASH_1). Little Kernel decrypts the signed digest available
in the image (ie. HASH_2) with the public key, then it compares the two hash
values. A comparison result not equal to 0 means that the image is corrupted or
the signature is invalid.

SHA256 HASH_1

RSA HASH_2

auth = True

auth = False

Public key

Linux kernel
image

Signed HASH

 =0?

Fig. 6. Authentication process.

The comparison result is used to set the value of the auth variable. To load
an image, the auth variable needs to be set to 1, it is set to 0 by default. By
exploring the Little Kernel code, it appears that the comparison of the two hash
values is performed by the function memcmp(HASH_1,HASH_2). This function
computes the difference between each byte of HASH_1 and the corresponding
bytes of HASH_2. The return value of this function is used by a conditional
if to determine the image validity. This means that faulting the comparison
result or the conditional if would be interesting to modify the program control
flow to avoid setting the auth value to 0. We compiled Little Kernel to search a
vulnerability in the assembly code. The conditional if which verifies the result
of memcmp(HASH_1, HASH_2) is identified in the ASM code in algorithm 1.
The register r6 is allocated by the compiler to represent the image authenticity
(ie. auth). The result of memcmp is stored in the register r0.

14 C. Fanjas et al

Algorithm 1ASM and C pseudocodes

C pseudocode
ret← memcmp(HASH_1, HASH_2)
if ret == 0 then

auth = 1
end if

ASM pseudocode
r0← bl memcmp
CLZ r6, r0
LSR r6, r6,#5

Figure 7 represents the paths the assembly code can follow after the com-
parison. The CLZ instruction6 returns in the output register the number of bits
equal to 0 before the first bit equal to 1 in the input value. The LSR instruction6
translates each bits of the register value on the rigth by a specified number of
bits given as input. By analyzing the behavior of this code, it seems that skip-
ping the LSR instruction would keep the value of CLZ r6,r0 in r6. In such case
the value in r6 is in the range [0, 31] if the two digests are different.

R0=0 CLZ R6, R0 R6=32 LSR R6, R6, #5 R6=1

R6∈[0;31]

Valid image

Malicious image LSR skip

CLZ R6, R0 R6∈[0;31] LSR R6, R6, #5 R6=0R0 !=0

Fig. 7. Algorithm behavior

A modified Linux Kernel with only one different byte from the original was
used to validate the potential exploitation of this vulnerability. Since the signed
hash did not change, it should be different from the computed hash of the mod-
ified image. When the authentication is activated, Little Kernel rejects the cor-
rupted image. However, the image is accepted if the LSR instruction is replaced
by a NOP instruction. This confirm that skipping the LSR instruction could be
exploited by an attacker to load successfully a corrupted image.

4.4 Characteristic frequency research

Little Kernel is modified to toggle a GPIO state a short time after the vulnerable
instruction. An oscilloscope and a passive EM probe are used to measure the tar-
get EM emanations. This experience aims at finding a characteristic frequency
suitable for triggering purpose. Figure 8 provides the spectrogram generated
thanks to the EM measurements from the target. It is possible to identify several
characteristic frequencies in the SHA256 computation and in the RSA decryp-
tion. The purpose of this methodology is to find a characteristic frequency which
happens a short time before the LSR instruction. The frequency at 124.5 MHz
was sufficiently detectable by our frequency detector. This frequency appears
6 See �ARM Architecture Reference Manual ARMV7-A and ARMv7-R edition�

Combined FI and Real-Time SCA for Android Secure-Boot Bypassing 15

1 2 3 4 5 6 7 8 9

Time (ms)

0

20

40

60

80

100

120

140

160

180

200

Fr
e
q

u
e
n
cy

 (
M

H
z)

SHA256 RSA

LSR
instruction

Po
w

e
r/

fr
e
q

u
e
n

cy
 (

d
B

/H
z)

Fig. 8. Target EM emanations spectrogram around the LSR instruction.

during the execution of a loop in the function BN_from_montgomery_word
from openssl which is used by the RSA decryption function. We set up the fre-
quency detector to generate a trigger signal upon this frequency activation. We
measured the delay between the vulnerability and the trigger signal by rising a
GPIO a short time after the vulnerable instruction. The mean value of the delay
between the rise of the GPIO and the rise of the frequency detector output is
80.57 µs, the standard deviation measured is 476 ns which corresponds to 381
clock cycles at 800 MHz. This result is used to set the delay between the fre-
quency detection and the EM pulse. This value is an approximation since the
mean delay of 80.57 µs is measured between the frequency detection and the
GPIO, not between the frequency detection and the targeted instruction.

5 Linux Kernel Authentication bypassing on Android

Secure-Boot

The previous section shows that it is possible to modify the target control flow
by skipping instructions using EMFI. Moreover, a characteristic frequency is
identified before a vulnerability in the Android Secure-Boot. Section 5 presents
an experiment using all these settings to bypass the Linux Kernel authentication.

5.1 Experimental setup

An oscilloscope generate the trigger signal upon the rise of the frequency detec-
tor output. The power supply which reboot the board after each experiment is
controled by the PC as described in figure 9. The UART bus allows to monitor
the results. The injection probe is placed above the SoC at the best location de-
termined in section 4.1. Note that an EM pulse close enough could be destructive
for the frequency detector components. If the two probes are too close then a RF

16 C. Fanjas et al

switch should protect the frequency detector acquisition path during the pulse.
An alternative is to place the passive probe below the PCB near the decoupling
capacitors. The PCB and the chip act as a shield between the two probes as
described in figure 9. Unfortunately, the Linux Kernel authentication is not

SET

V/⬆
Settings

Pulse generator

E
M

F
I

p
ro

b
e

Passive
EM probe

Frequency
detector

F
D

 o
u

tp
u

t

Trigger

UART

OscilloscopePulse generator

M1

M2

ON/OFF

SET

V/⬆

A/⬇

|

SET:12.00 1.000

U-IN: 26.50V

12.00V
2.000A

✓
CV

|

Power supply

Control

System-on-Chip
PCB

Fig. 9. Experimental setup

activated in the Little Kernel binary of the target. Therefore, an unmodified
Little Kernel has been compiled to activate the authentication. Using a modified
Linux Kernel image with only one modified byte confirms that the authentica-
tion works properly. When loading this image, the authentication fails and the
board reboot in recovery mode. The goal of this work is to boot Android with
the modified Linux Kernel, which should be impossible. The frequency detector
is configured to trigger the injection upon the 124.5 MHz frequency activation.
The pulse generator voltage and the delay between the frequency detection and
the EMFI are also configured according to the parameters of the section 4. The
experiment follows two steps:

– Step 1: The board boots.
– Step 2: The PC gets a message from the UART logs which attests if the

authentication succeed or failed.

The authentication happens between these two steps. During the authentication,
the 124.5 MHz frequency is activated. It is detected by the frequency detector
which triggers the pulse after the 80 µs fixed delay. The step 2 allows discrimi-
nating the following scenarios:

1. The “timeout” scenario: the board stops to print log on the UART, the PC
never receives the message of step 2. This probably means that the board
has been crashed.

2. The “recovery” scenario: the PC gets a message which indicates that the
authentication has failed and the board will reboot in recovery mode. This
is the expected behavior of the board when no fault has been injected.

3. The “false positive” scenario: the PC gets a message which indicates that the
authentication succeeded, but for unknown reasons the board stops printing
log just after sending this message.

Combined FI and Real-Time SCA for Android Secure-Boot Bypassing 17

4. The “success” scenario: The PC gets a first message confirming that the
authentication succeeded and the board continues to print logs after this
message. It means that the authentication has been successfully bypassed.

5.2 Experimental results

15000 injections has been performed. The total campaign duration is 18 hours.
For the “success” case, the boot proceeds during 15 s before rebooting the

Scenario timeout recovery false positive success

Number of attempts 6754 7912 251 83
(45.03%) (52.75%) (1.67%) (0.55%)

Table 1. Campaign results

board. It is unlikely that an error would propagate during 15 s and cause the
board crash before the end of the boot process. To confirm this hypothesis we
performed a new campaign, stopping after the first “success” case and letting
the boot proceed. It confirmed that Android has been correctly started with
the modified Linux Kernel. 83 “success” over 15000 injections corresponds to a
0.55% success rate. This experiment can succeed in less than 15 minutes if all
the settings are properly fixed.

6 Discussion

In this section, we propose a discussion about our results and methodology.
Firstly, we want to highlight that we used a smartphone SoC implemented on
a development board. Therefore, we have a quite high control over the target,
which may not be possible with a true smartphone. For example, we have a
physical access to the GPIO through the board connectors, for the setup vali-
dation. We also have the board schematics and the target code. Moreover, this
attack depends from the target. The vulnerable instruction and the measured
delay may change with an other compiler. Also the code leaking at 124.5MHz
may change on an other target. Therefore the attack settings need to be adapted
for each target.

Secondly, we note that a similar approach based on a commercial solution
exists such as the icWaves associated to the Transceiver from Riscure company.
The icWaves solution applies a pattern matching method on its input signal
to trigger the attack. The Transceiver is used before the icWaves to capture
informations in high frequency. This system is based on an SDR coupled with
an FPGA as same as our frequency detector but both solutions differ on signal
processing. The first difference lays in the signal analyzed by the FPGA: the
complex signal (I + j.Q) for the frequency detector versus the module of this
signal for the icWave (|I + j.Q|). Thus, the frequency detector has the ability to
differentiate frequencies above and below the local oscillator frequency (f0). In

18 C. Fanjas et al

the signal processing chain of the Riscure solution, a rectifier is used as envelope
detection. Furthermore, the envelope detection requires some constraints as the
presence of the carrier in the RF signal and a modulation index that is less or
equal than 100% to avoid losing information. The signal processing of the SFD
method uses a high Q factor filter to increase the selectivity. This method is useful
to build a system to only detect activities from a sub part of the SDR output
bandwidth. It allows the user to increase the sampling rate of the SDR in order
to reduce the temporal uncertainty of the detection by maintaining a narrow
sensitive band ensuring the best selectivity. We also note that the SDR used in
the frequency detector designed in this work is limited to a 20 MHz sampling
rate versus 200 MHz for the Riscure Transceiver. The jitter of our system is
correlated with the sampling rate, an higher sampling rate would reduce this
jitter. Therefore we could implement our method with better hardware such as
the Ettus USRP X310 used in the Riscure Transceiver.

Currently the Riscure solution does not implement our SFD method. The
Riscure Transceiver bandwith is selectable between 390kHz and 160MHz. At
2MHz7 their tool has a 17.3µs delay against a 2.56µs delay for our tool. There
is no information about the jitter of the Riscure Transceiver. However it is im-
portant to note that the Riscure setup can be optimized and a fair comparison
should be based on experiments.

Other triggering methods may exists, such as PCB signals, communication
bus or other events in Side-Channel. For comparison purpose, we measured the
delay between other basics events and the vulnerability. The mean delay between
the rise of the target power supply and the rise of the GPIO is around 1.248 s
(〈∆t〉) and its jitter is approximately 5 ms (σ∆t), which is 10000 greater that the
frequency detector temporal uncertainty. This signal is unusable for our attack.
We also used an oscilloscope to generate a trigger signal upon the detection of a
known message on the UART. We choose the closest UART message to the vul-
nerability. This message appears in the Little Kernel logs sent over the UART.
The mean delay between this trigger signal and the rise of a GPIO after the
targeted instruction is around 113 ms (〈∆t〉) and has a jitter of 2 µs (σ∆t). It
is 4 times greater than the temporal uncertainty of our frequency detector with
the 124.5 MHz frequency. This trigger signal is usable. The setup is limited to
an oscilloscope and it is a simpler setup than our SFD method. The experiment
can succeed in a short amount of time with this jitter (estimated to 1 hour for a
success). However, the UART logs can be easily disabled during the compilation
of Little Kernel. If avoiding printing logs on the UART is quite easy, it is much
more difficult to hide completely the EM emanations from the target. The ad-
vantages of the SFD method is that it detects internal activity of the SoC and
is not limited to I/O.
7 https://riscureprodstorage.blob.core.windows.net/production/2017/07/transceiver
_datasheet.pdf

Combined FI and Real-Time SCA for Android Secure-Boot Bypassing 19

7 Conclusion

In this paper, we present an hardware attack on a smartphone SoC. This is a
combined attack using a real-time analysis of the target EM emanations to syn-
chronize an EMFI. This attack allows to bypass the Linux Kernel authentication
step of the Android Secure-Boot, therefore it is possible to load a malicious Linux
Kernel despite the Secure-Boot being activated. The mean success rate of this
experiment is around one bypass every 15 minutes. To our knowledge, this is
the first System-on-Chip Secure-Boot bypass using EMFI. We also present a
novel synchronization method for hardware security characterization. Our ap-
proach relies on the fact that reducing the delay between the triggering event
and the targeted code vulnerability will decrease the jitter associated with this
delay. Thus, it will increase the hardware attack success rate. The SFD method
uses the activation of a characteristic frequency in the target EM emanations
as triggering event. This method is based on an SDR and an FPGA to gener-
ate an output signal proportional to the power of the selected frequency. The
selected frequency is included in the range between 8 MHz and 6 GHz and is
identified thanks to EM emanations analysis. Our system introduces a mean
delay of 2.56 µs between the input signal (i.e. the target EM emanations) and
the output signal. This mean delay is associated to a jitter of 60.9 ns. Using this
synchronization method, we were able to skip a critical instruction by triggering
an injection upon the activation of a known frequency. This approach could be
used in future work for synchronizing hardware attacks against other targets
such as new SoC references or other Secure-Boots. A perspective consist in ap-
plying this methodology to bypass the SSBL authentication by the FSBL. Thus
it would be possible to get privileges over the TEE.

8 Acknowledgment

The experiments were done on the Micro-PackSTM platform in the context of
EXFILES: H2020 project funded by European Commission (No. 88315).

References

[Abi95] Asad A Abidi. Direct-conversion radio transceivers for digital communi-
cations. IEEE Journal of solid-state circuits, 30(12):1399�1410, 1995.

[BBGV16] Arthur Beckers, Josep Balasch, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Design and implementation of a waveform-matching based trig-
gering system. In International Workshop on Constructive Side-Channel
Analysis and Secure Design, pages 184�198. Springer, 2016.

[BKGS21] Otto Bittner, Thilo Krachenfels, Andreas Galauner, and Jean-Pierre
Seifert. The forgotten threat of voltage glitching: A case study on nvidia
tegra x2 socs. In 2021 Workshop on Fault Detection and Tolerance in
Cryptography (FDTC), pages 86�97. IEEE, 2021.

[CH17] Ang Cui and Rick Housley. {BADFET}: Defeating modern secure boot
using {Second-Order} pulsed electromagnetic fault injection. In 11th
USENIX Workshop on O�ensive Technologies (WOOT 17), 2017.

20 C. Fanjas et al

[CPM+18] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, and
Aurélien Francillon. Screaming channels: When electromagnetic side chan-
nels meet radio transceivers. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 163�177,
2018.

[DDRT12] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria.
Electromagnetic transient faults injection on a hardware and a software
implementations of aes. In 2012 Workshop on Fault Diagnosis and Toler-
ance in Cryptography, pages 7�15. IEEE, 2012.

[DSN+11] Nicolas Debande, Youssef Souissi, Maxime Nassar, Sylvain Guilley, Thanh-
Ha Le, and Jean-Luc Danger. �re-synchronization by moments�: An e�-
cient solution to align side-channel traces. In 2011 IEEE International
Workshop on Information Forensics and Security, pages 1�6. IEEE, 2011.

[GAP+20] Clément Gaine, Driss Aboulkassimi, Simon Pontié, Jean-Pierre Nikolovski,
and Jean-Max Dutertre. Electromagnetic fault injection as a new forensic
approach for socs. In 2020 IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1�6. IEEE, 2020.

[HHM+12] Yu-ichi Hayashi, Naofumi Homma, Takaaki Mizuki, Takafumi Aoki, and
Hideaki Sone. Transient iemi threats for cryptographic devices. IEEE
transactions on Electromagnetic Compatibility, 55(1):140�148, 2012.

[HHM+14] Yu-ichi Hayashi, Naofumi Homma, Takaaki Mizuki, Takafumi Aoki, and
Hideaki Sone. Precisely timed iemi fault injection synchronized with em
information leakage. In 2014 IEEE International Symposium on Electro-
magnetic Compatibility (EMC), pages 738�742. IEEE, 2014.

[MBTO13] David P Montminy, Rusty O Baldwin, Michael A Temple, and Mark E
Oxley. Di�erential electromagnetic attacks on a 32-bit microprocessor
using software de�ned radios. IEEE transactions on information forensics
and security, 8(12):2101�2114, 2013.

[MDH+13] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and
Emmanuelle Encrenaz. Electromagnetic fault injection: towards a fault
model on a 32-bit microcontroller. In 2013 Workshop on Fault Diagnosis
and Tolerance in Cryptography, pages 77�88. Ieee, 2013.

[RNR+15] Lionel Riviere, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien
Bringer, and Laurent Sauvage. High precision fault injections on the in-
struction cache of armv7-m architectures. In 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 62�
67. IEEE, 2015.

[SMC21] Albert Spruyt, Alyssa Milburn, and �ukasz Chmielewski. Fault injection
as an oscilloscope: fault correlation analysis. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, pages 192�216, 2021.

[TSW16] Niek Timmers, Albert Spruyt, and Marc Witteman. Controlling pc on arm
using fault injection. In 2016 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pages 25�35. IEEE, 2016.

[VTM+18] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adèle Moris-
set, and Sébastien Ermeneux. Laser-induced fault injection on smartphone
bypassing the secure boot-extended version. IEEE Transactions on Com-
puters, 69(10):1449�1459, 2018.

[VWWM11] Jasper GJ Van Woudenberg, Marc F Witteman, and Federico Menar-
ini. Practical optical fault injection on secure microcontrollers. In 2011
Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 91�99.
IEEE, 2011.

