
A Better Method to Analyze Blockchain Consistency∗

Lucianna Kiffer, Rajmohan Rajaraman and abhi shelat

Northeastern University

{lkiffer,rraj}@ccs.neu.edu,a.shelat@northeastern.edu

ABSTRACT
The celebrated Nakamoto consensus protocol [16] ushered in sev-

eral new consensus applications including cryptocurrencies. A

few recent works [8, 17] have analyzed important properties of

blockchains, including most significantly, consistency, which is a

guarantee that all honest parties output the same sequence of blocks

throughout the execution of the protocol.

To establish consistency, the prior analysis of Pass, Seeman and

Shelat [17] required a careful counting of certain combinatorial

events that was difficult to apply to variations of Nakamoto. The

work of Garay, Kiayas, and Leonardas [8] provides another method

of analyzing the blockchain under both a synchronous and partially

synchronous setting.

The contribution of this paper is the development of a simple

Markov-chain basedmethod for analyzing consistency properties of

blockchain protocols. The method includes a formal way of stating

strong concentration bounds as well as easy ways to concretely

compute the bounds. We use our new method to answer a number

of basic questions about consistency of blockchains:

• Our new analysis provides a tighter guarantee on the con-

sistency property of Nakamoto’s protocol, including for pa-

rameter regimes which [17] could not consider;

• Weanalyze a family of delaying attacks first presented in [17],

and extend them to other protocols;

• We analyze how long a participant should wait before con-

sidering a high-value transaction “confirmed”;

• We analyze the consistency of CliqueChain, a variation of

the Chainweb [14] system;

• We provide the first rigorous consistency analysis of GHOST

[20] under the partially synchronous setting and also analyze

a folklore “balancing"-attack.

In each case, we use our framework to experimentally analyze

the consensus bounds for various network delay parameters and

adversarial computing percentages.

We hope our techniques enable authors of future blockchain

proposals to provide a more rigorous analysis of their schemes.

1 INTRODUCTION
In 2008, Nakamoto [16] proposed the celebrated blockchain pro-

tocol which uses proofs of work to implement a public, immutable

and ordered ledger of records suitable for applications such as

cryptocurrencies. While standard consensus/Byzantine agreement

mechanisms could be used to achieve such an immutable ordered

sequence of records, the amazing aspect of Nakamoto’s protocol

is that it functions in a fully permissionless setting and works as

long as more than half of the computing power in the network fol-

lows the protocol. In contrast, prior work on Byzantine agreement

∗
An earlier version of this paper appeared in the Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security(CCS’18)

showed strong lower-bounds in fixed-party settings when even just

one-third of the participants were adversarial.

Thus, it is remarkable that the honest parties using Nakamoto

can reach agreement on a sequence of blocks. This property has

been strongly validated by the Bitcoin network over almost 10 years

of operation during which the participation has grown by 12 orders
of magnitude from millions of hashes/second to million trillions of

hashes/second!

To understand this phenomena, the original Nakamoto paper

provided the first intuitive analysis as to how the protocol achieved

consensus. Specifically, the paper shows that if an honest participant

adds a block B to the chain and then waits for k more blocks to

be added, the probability that an attacker (with less than 50% of

the computational power) can build an alternative chain that does

not include B drops exponentially with k . While intuitive, this

analysis unfortunately does not consider other attacks, and thus

does not fully establish the consensus property for the protocol. For

example, the analysis does not consider an adversary that attempts

to introduce small disagreements between honest miners so as to

split their computational power among several “forks”.

Garay, Kiayas and Leonardos [8] provided the first formal model-

ing of Nakamoto consensus and proved that the protocol achieved a

common prefix-property. More specifically, if µ denotes the fraction

of honest parties, ρ denotes the fraction of adversarial power, and

p represents the hardness of the proof of work, they show that

if µ > λρ for some λ > 1 such that λ2 − pλ + 1 ≥ 0, then “the

blockchains maintained by the honest players will possess a large

common prefix.” However, their analysis only considered a “static

setting in which the participants operate in a synchronous commu-

nication network in the presence of an adversary that controls a

subset of the players.” In particular, players were either honest or ad-

versarial throughout the protocol, and the network model ensured

delivery of messages “in the next round.” Assuming a synchronous

network is a very strong, possibly unrealistic assumption; indeed,

Nakamoto’s protocol is explicitly designed to work in a network

with message delays such as the public Internet. Furthermore, the

notion of common-prefix is not strong enough because it does not

preclude the chain from alternating between two different versions

on even and odd rounds.

To address these issues, Pass, Seeman, and Shelat [17] provide a

different formal model for studying the properties of Nakamoto’s

protocol. In particular, they introduce an idealized model for the

protocol execution that can capture adaptive corruptions (and un-

corruptions) of parties and a partially synchronous network inwhich
the adversary can adaptively and individually delay messages up

to some delay limit ∆. They also introduce a stronger notion of

consistency and then proceed to show how Nakamoto can achieve

this notion when the hardness of the proof of work p is set with

an appropriate relation to ∆ and the number of participants n.
Their analysis is precise enough to make concrete claims about the

1

1 2 4 10 25 60 100

0

1

10

3

10

1

2

c (blocktime in terms of network delay ∆)

ρ
(
A
d
v
e
r
s
a
r
y
f
r
a
c
t
i
o
n
)

Delay attack from [17]

Consistency from [17]

First Markov Model

Consistency Thm 4.4

Figure 1: Replication of [17, Fig. 1], “Minimumpercentage of
computing power an adversary must hold in order to break
consistency" using same parameters n = 10

5 and ∆ = 10
13,

p = 1

c∆ , but illustrating the new bound from our Thm. 4.4.

relationship between p, ∆, and n for which consistency holds and

also for which a simple delay attack can violate consistency.

In subsequent work in 2017, Garay, Kiayas and Leonardos [7]

studied aspects of how the hardness p is adjusted as more players

join the protocol during epochs in the Nakamoto consensus proto-

col and how this epoch must be sufficiently large to avoid certain

attacks. Techniques from this paper were also used to update [8];

in particular, the updated version of the latter incorporates the defi-

nition of consistency used by Pass, Seeman and Shelat and extends

the previous analysis to the partially synchronous model but is not

precise enough to make concrete claims about the parameters.

1.1 Contributions
In this paper we show how Markov chains can be used to model

blockchain protocols to both simplify the analysis of blockchain

protocols and attacks and to make precise claims about parameter

relationships. To introduce our method, in §4.2 we show how to

replicate the analysis of Nakamoto’s protocol done by Pass et al. [17]

using a Markov model. We validate our method by recovering

essentially the same bound.

By inspecting this graphical Markov model, however, we discov-

ered cases in which the counting of events in [17] under-counts

a special event. Based on this insight, we show in §4.3 how our

Markov model exactly counts so called “convergence opportuni-

ties” and thus leads to more accurate bounds on consistency (see

Thm 4.4). To illustrate this new result, Fig. 1 replicates a graph

from [17] showing a relationship between proof of work hardness

and adversary control. Against the original analysis () and

attack (), our new result from the Markov model () shows

higher resilience at lower parameters where the previous analyses

provided no lower bounds.

To further illustrate our technique, in §5we introduce Cliquechain,

a specific example of the Chainweb protocol [14] for which we can

use our techniques to show the same consistency lower-bound as

Nakamoto’s protocol. Chainweb proposes a blockchain protocol

that creates a braid of various parallel chains. The main idea is that

at each level the chains reference each other according to some

base graph, and thus in order to replace one block in any chain,

you must also replace the blocks in the parallel chains that refer-

ence it. The protocol claims to be able to handle 10K transactions

per second over hundreds or thousands of parallel chains, but the

analysis in the paper again only considers variations of the 50%

attack. Our analysis on consistency does not support this 10k claim.

Bitcoin, running Nakamoto’s protocol with network delay of about

10 seconds, can handle approximately 7 txns/sec, we show that the

Cliquechain protocol with any number of chains is bounded by the

same throughput as Nakamoto’s protocol for the same consistency

guarantee.

In §6, we extend our techniques to establish that the protocol

GHOST [20] also has the same consistency lower bounds. GHOST’s

main claim is also that it can handle higher transaction rates than

Nakamoto’s protocol while being resilient to 50% attacks.

For each protocol we also analyze variants of attacks using our

technique and provide probability distributions for how long the

attacks last. In §4.4 we first show a very simple Markov model

that captures the ‘50% attack’ on Nakamoto presented in [17]. As

discussed so far, the notion of blockchain consistency considered in

the literature is still an asymptotic notion that requires the “proba-

bility of a fork” to fall exponentially with some parameter T . We

use this same attack model to answer very pragmatic questions

about blockchains: For example “how long should one wait before

confirming a transaction?” While folklore holds that one should ig-

nore (i.e., wait for) the last T = 6 blocks, we provide a more precise

answer to this question by modeling an attack in which the goal

of the adversary is to “undo” a recently confirmed transaction. We

show, for example, thatT = 6 is a surprisingly low default for chains

like Ethereum which use more aggressive network parameters.

Since this delay attack is not successful on GHOST, we present

another attack, the ‘Balancing Attack’, with a Markov chain in §6.4

which captures a simplified version of the attack on GHOST.We use

this model to capture a lower bound on transaction confirmation

time for the GHOST protocol in Fig. 11

Our work is not the first to employ Markov-based analysis of

blockchains. Indeed, Eyal and Sirer [6] develop a Markov model to

analyze the success of the selfish mining attack on Nakamoto’s pro-

tocol. Our work, however, is the first to use Markov-based models

to analyze consistency against any adversary, and provides a gen-

eral framework to analyze specific attacks on various blockchain

protocols. Previous studies on consistency [7, 8, 17] have advocated

using Markov methods, but have considered them too complicated

to analyze: for instance, the authors of [17] write “the Markov chain

that arises from this problem is too complicated to analyze using

standard concentration bounds for Markov chains.” We show that

consistency of several blockchain protocols as well as the impact

of specific attacks are well-captured by natural Markov chains, and

can be analyzed using a judicious combination of (a) derivation of

steady-state distributions; (b) concentration bounds for generalized

Markov chains; (c) generating functions for deriving probability

of significant events; and (d) simplification of the Markov chain,

where appropriate. Even in cases, where we are unable to derive

closed-form bounds in terms of the parameters involved, we are

still able to numerically calculate the measures of interest.

2

We hope that subsequent papers proposing blockchain protocols

can employ these techniques to frame and analyze properties about

their protocols.

1.2 Related Work
Chainweb andGHOST are two examples of a new class of blockchain

protocols which consider DAG-based chains instead of a linear

chain. Other such examples include the inclusive protocol of Lewen-

berg, Sompolinsky and Zohar [13] which use the DAG to reward

miners for work but whose security is inherited by the security

of GHOST or any other tree-based chain selection policy. SPEC-

TRE, another protocol from the authors of the inclusive protocol

[19], extends the DAG idea by having miners point to all recent

child-free blocks they know in any newly mined block. They claim

security by relaxing the restriction on linearity of transactions.

PHANTOM [21] builds on SPECTRE and organizes the DAG-based

chains in such a way that the blocks mined by honest players form a

well-connected cluster of blocks; in particular, their aim is to ensure

that the largest set of blocks with inter-connectivity exceeding a

certain threshold is composed of honest mined blocks. However,

none of these protocols give a formal argument for the consistency

properties put forth in either [8, 17], but instead mostly rule out

specific attacks.

In [11] and [12], Kiayias et al. analyze both Nakatomoto’s proto-

col and GHOST in a synchronous setting where honest messages

are delivered in the following round, but the adversary can reorder

them. They show an attack on the growth rate of the main-chain to

delay transaction confirmation time in this model of both GHOST

and Nakamoto’s protocol. Their results show that the attack pro-

duces greater delays in the GHOST protocol. They extend their anal-

ysis of Nakamoto’s protocol to the partially synchronous model

in a later version of [8]. In our analysis of GHOST we consider

a stronger adversary that can delay honest messages up to the

network delay, and focus on consistency attacks (instead of chain

growth attacks) which also delay confirmation time.

Sleepy [18] proposes a new blockchain in a model with a CRS

and a PKI and participants who sometimes become inactive; they

show how to replace a proof of work with another rate-limiting

mechanism. We believe our techniques directly apply because they

apply the same counting as [17] (see, e.g. Lemma 2 in [18]).

The Algorand schemes [2, 9] construct a blockchain from im-

proved Byzantine agreement protocols; as far as we can tell, they

require a 2/3 fraction of honest users and thus rely on different

techniques for proving consistency.

The choice of network delay in this paper is supported by mea-

surements of real delays in active blockchain systems [5]. Aposto-

laki et al. show how an ISP can partition the Bitcoin network and

delay messages [1] thus justifying our choice to allow the adversary

the power to rearrange and delay messages between players.

2 THE MODEL
We rely on the formalization of blockchain protocols introduced by

Garay, Kiayas and Leonardos [8] and Pass, Seeman, and shelat [17].

A blockchain is a pair of algorithms (Π, ext); Π is a stateful

algorithm that maintains a local state variable C—called the chain—

which contains a set of abstract records called blocks, each of which

contains a message m. The algorithm ext maps a set of blocks

to a sequence of messages; e.g. ext(C) denotes the sequence of

messages obtained by applying ext to C. The overall aim is for

players to receive messages as inputs and then attempt to include

their message in their own chain and those of others.

A blockchain protocol is executed in a partially asynchronous

network model that involves the following components: (We use κ
to denote the security parameter)

Environment: An environment, represented by Z (1κ), is used to

model all of the external factors related to an execution. It

activates the n players, each either honest or corrupt and
provides all of the inputs for the protocol.

1

Honest players: The honest players run a given blockchain protocol
specified by (Π,C); each honest player keeps a copy of their

current view of the blockchain and tries to contribute to it

by building blocks at the end of their chain.

Adversary: The corrupted players, who are at most a ρ fraction

of the n players, are controlled by an adversary A. The ad-
versary is given two advantages: (a) the adversary is able

to delay and reorder all messages players receive up to a

delay of ∆ rounds; (b) the adversary can control the actions

of each corrupt node; for instance, all corrupt nodes could

work on the same block or different ones. Thus, the model

gives more power to the adversary than might be realistic in

an actual deployment, thus yielding conservative bounds on

the performance of the system.

Random Oracle: All parties have access to a random function

H : {0, 1}∗ → {0, 1}κ which they can access through two

oracles: H(x) simply outputs H (x) and H.ver(x ,y) outputs
1 iff H (x) = y and 0 otherwise. In any round r , the players
(as well as A) may make any number of queries to H.ver. On
the other hand, in each round r , honest players can make

only a single query to H, and an adversary A controlling q
parties can make q sequential queries to H.
Protocols based on proof of work are parametrized by p—
the mining hardness parameter. Informally, a proof-of-work

for the block h−1 and message m is a string η such that

H(h−1,η,m) < Dp , where Dp is set so that the probability

that an input satisfies the relation is less than p.

An execution of a blockchain protocol begins with Z which

can instantiate n players, each of them with identical computing

power. The protocol proceeds in rounds; at each round each player

i receives some message from Z (e.g. transactions to be included

in the blockchain), blocks created by other players, as well as the

opportunity to make a query to oracle H. They include these blocks
in their chain based on the protocol Π, and include the message in

the block they are trying to publish.

The adversary A controls a ρ fraction of the players and thus

gets ρn random oracles queries in each round. A is responsible

for delivering messages sent by the parties to all other parties. A
cannot modify the content of messages broadcast by honest players,

but it may delay or reorder their delivery as long it eventually

delivers all messages within some bound ∆. The environment Z can

communicate with the adversary or access the local state variable

1
For technical reasons, the environment and Adversary must satisfy certain restrictions

which we do not discuss here; see [17] for a description of admissable Z , A

3

C (statei) of player i (i.e., player i’s chain) at any point. At any

given time, Z can either corrupt an honest party j which means

that the adversary gets to control j’s local state and messages, or

uncorrupt a party j which means that A no longer controls j and
instead player j starts executing the protocol Π(1κ) starting from
an empty state.

We summarize the main parameters of a blockchain:

∆ the network delay bound

p = 1

c ·∆ the mining hardness is expressed in terms of pa-

rameter c , roughly the expected number of net-

work delays before some block is mined

ρ the adversarial fraction of parties

µ = 1 − ρ the fraction of honest parties

A useful blockchain protocol offers three main properties that

are parameterized by T : (a) chain-growth, i.e., at any point in the

execution of the protocol, the chain of the honest players grows by

T blocks in the last O (T) rounds with very high probability (in T),
(b) chain-quality, for any T consecutive blocks in any chain held

by some honest player, Θ(T) blocks were contributed by honest

players, and finally (c) consistency: for any T , with overwhelming

probability (in T), at any two rounds r and s with r < s , all but
the last T blocks in the chain of any honest player i at r must be a

prefix of the chain of an honest player j at s .
If we establish consistency, honest parties are guaranteed that

for sufficiently largeT , confirmed blocks will never be lost from the

chain except with tiny probability (which is the property needed

for all the above-mentioned applications; for instance, in Bitcoin, it

ensures that players cannot double-spend money).

Although our techniques can apply to growth and quality, the

main focus of this paper is to analyze consistency. Formally, we

model an execution of the protocol through a random variable

EXEC(Π,C) (A,Z ,κ) denoting the joint view of all players (i.e., all

their inputs, random coins and messages received, including those

from the random oracle) in an execution.

Let view be a joint view in the support of EXEC(Π,C) (A,Z ,κ), and
let viewr

denote the prefix of view up until round r . Let Cri (view)
denote the record chain in the local state of player i in the prefix

of view until round r . Let consistentT (view) = 1 iff for all rounds

r ≤ r ′, and all players i, j (potentially the same) such that i is honest

at viewr
and j is honest at viewr ′

, we obtain that the prefixes of

Cri (view) and C
r ′
j (view) consisting of the first ℓ = |Cri (view) | −T

records are identical.

Definition 2.1. Ablockchain protocol satisfies consistency, if there
exists some constant c and negligible functions ϵ1, ϵ2 such that for

every κ ∈ N,T > c log(κ) the following holds:

Pr

[
view← EXEC(Π,C) (A,Z ,κ) : consistentT (view) = 1

]

≥ 1 − ϵ1 (κ) − ϵ2 (T)

Note that a direct consequence of consistency is that the chain

length of any two honest players can differ by at most T (except

with negligible probability in T).

3 A SIMPLE MARKOV FRAMEWORK FOR
ANALYZING BLOCKCHAIN PROTOCOLS

We present a simple analysis framework for blockchains that com-

bines the approach of Pass et al. with natural Markov chains that
capture protocol dynamics in the presence of adversaries.

At a high-level, each state of our Markov chain represents an

initial state of the blockchain system or the state of the system

following an event of interest. The events of interest include (a)

a new block mined by an honest player; (b) a new block mined

by the adversary; and (c) a sufficiently long quiet period. Each

edge represents an event and has an associated length, which is a

random variable denoting the time it takes for the event to occur,

conditioned on its occurrence. The actual definition of the Markov

chain (the states and the particular events of interest) depends on

the protocol being analyzed, a model of the adversary or an attack

being considered, and the performance measure of interest.

All of the Markov chains used in our analysis satisfy the follow-

ing properties: (a) they are time-homogeneous; that is, the probabil-
ity of transitioning from one state to another is only dependent on

the states, and not on the time at which the transition occurs; (b)

they are irreducible; that is, it is possible to get to any state from any

other state; and (c) they are ergodic; that is, every state is aperiodic

and has a positive mean recurrence time. We refer the reader to

a standard text on probability theory or randomized algorithms

(e.g., [15, Chapter 7]) for more information on Markov chains.

Stationary distribution: Every time-homogeneous, irreducible,

ergodic Markov chain has a (unique) stationary distribution π . For
any given state v , π (v) represents the limit, as n tends to ∞, of

the probability that the chain will be in state v after n transitions

(independent of the starting state). Stationary probabilities can also

be defined for the edges of the chain. Once we define a Markov

chain to model a certain aspect of a blockchain protocol, we derive

the stationary distributions for each state and edge of the Markov

chain, through a set of difference equations. This yields, for each

state v , the stationary probability π (v) of being in state v . Thus,
for any sequence of T rounds, the expected number of visits to v
tends to π (v)T , as T grows. A similar calculation can be done for

each edge of the Markov chain.

Concentration bounds: The stationary distribution of a Markov

chain captures the expected number of occurrences of a particular

state (or transition) over a long sequence of transitions. In any

particular instance of the sequence (e.g., a particular run of the

protocol), however, the exact number of occurrences of a state of

interest could certainly deviate from the expectation. Many “well-

behaved” Markov chains satisfy tight concentration bounds which

indicate that the probability that a given measure of interest (e.g.,

the number of occurrences of a particular event) deviates from the

expected value of the measure is exponentially small in the size of

the deviation. Such concentration bounds enable us to establish that

for a sufficiently long sequence of rounds, the measure of interest

(e.g., number of convergence opportunities) is with high probability

close to the expectation given by the stationary distribution.

More formally, we invoke the following theorem on Chernoff-

Hoeffding bounds for “generalized” Markov chains to derive con-

centration bounds for random variables of interest [4].

4

Theorem 3.1 ([4]). LetM be an ergodic Markov chain with state
space [n] and stationary distribution π . Let T be its ϵ-mixing time
for ϵ ≤ 1/8. Let (V1, . . . ,Vt) denote a t-step random walk on M
starting from an initial distribution ϕ on [n], i.e.,V1 ← ϕ . For every
i ∈ [t], let fi : [n] → [0, 1] be a weight function at step i such
that the expected weight Ev←π [fi (v)] = µ for all i . Define the total
weight of the walk (V1, . . . ,Vt) by X =

∑t
i=1 fi (Vi). There exists

some constant c (which is independent of µ, δ , and ϵ) such that

(1) Pr [X ≥ (1 + δ)µt] ≤ c ∥ϕ∥π e
−δ 2µt/(72T) for 0 ≤ δ ≤ 1,

(2) Pr [X ≥ (1 + δ)µt] ≤ c ∥ϕ∥π e
−δ µt/(72T) for δ > 1, and

(3) Pr [X ≤ (1 − δ)µt] ≤ c ∥ϕ∥π e
−δ 2µt/(72T) for 0 ≤ δ ≤ 1,

where ∥ϕ∥π is the π -norm of ϕ given by
∑
i ∈[n] ϕ

2

i /π (i).

Using the above theorem, we are able to establish our bounds

with high probability; that is, the bound fails with probability that

decreases exponentially in the number of rounds executed by the

protocol. In order to apply the theorem, we show how to transform

our original Markov chain and set the weight functions so that X
captures the particular measure of interest. For instance, to measure

the number of visits to a particular state v , we set fi (v) to 1 and set
fi (u) to 0 for u , v , for all i . To measure the number of traversals

of a particular edge, we add an auxiliary vertex in the middle of the

edge, and set the measure to be number of visits to the auxiliary

vertex. In all of our applications of the theorem, the transformed

Markov chains are such that both the number of states and the

mixing time are constant, independent of the number of rounds T ,
but possibly dependent on the model parameters, such as p and ∆.
Thus, for everyv , we are able to show that inT rounds, the number

of visits to state v is (1± δ)π (v)T with probability 1− e−δπ (v)Ω(T)
.

Such concentration bounds enable us to focus our attention on

analyzing the stationary distributions of the Markov chain.

In the following sections, we apply our approach to analyze

three different blockchain protocols—Nakamoto, Cliquechain, and

GHOST— and derive a range of analytical results: (a) consistency

proofs for the protocols via bounds on convergence opportunities;

(b) analysis of resilience against delaying and balancing attacks; (c)

bounds on new performance measures (e.g., length of forks).

4 NAKAMOTO ANALYSIS
In this section, we analyze the Nakamoto protocol using ourMarkov

framework. We begin by reviewing, in §4.1, Pass et al.’s analysis

of Nakamoto using bounds on chain growth, block expiry, and the

important notion of convergence opportunities they introduce for

establishing consistency. In §4.2, we reconsider [17]’s analysis of

convergence opportunities using our Markov framework, and show

how their analysis yields an underestimate. In §4.3, we present a

new lower bound for achieving consistency in Nakamoto’s protocol

by an improved analysis of convergence opportunities using our

Markov chain. Finally, in §4.4, we present a detailed analysis of

Nakamoto’s protocol under a consensus attack, deriving bounds on

the probability that the attack can force forks of a specific length.

4.1 Chain Growth, Block Expiry, Consistency
We begin with the lower bound of [17] on chain growth. Recall that

the maximum number of rounds any message can be delayed is ∆.
Let µ = 1 − ρ denote the fraction of honest players.

Lemma 4.1 (Nakamoto Chain Growth). For any δ > 0, the
growth of the main chain of any honest player in Nakamoto’s pro-
tocol in T rounds is at least T (1 − δ) µ

∆(c+µ) , except with probability
that drops exponentially in T .

Proof. For any i ≥ 1, let Ti denote the number of rounds it

takes for the main chain to grow from i to i + 1. If an honest player

mines a block for a chain length l at time r , by time r +∆ all honest

players know about this block and will now mine a block for a

chain of length at least l + 1. The expected number of rounds for an

honest player to mine a block is
c∆
µ ; therefore, E[Ti] ≤

c∆
µ +∆. The

expected number of rounds for a chain growth of 1 is at most
c∆
µ +∆;

using standard Chernoff-Hoeffding bounds [3, 10], the number of

rounds for a chain growth of д is at most (1 + δ) (c∆µ + ∆)д with

probability 1−e−Ω(д)
. Thus, inT rounds, Nakamoto achieves chain

growth of at least (1 − δ)T
µ

∆(c+µ) with probability 1 − eΩ(T)
. □

A key part of the consistency proof of Pass, Seeman, and Shelat

relies on their “no long block withholding” lemma [17, Lemma 6.10],

which states that if an adversary withholds a block for too long,
it will not end up in the chain of any honest player. This lemma

allows us to make statements about what an adversary is able to

do in a given window of rounds without having to consider more

than a constant number of blocks the adversary mined previously

and didn’t announce, which they may still use in an attack. In this

section we restate that lemma within our framework. This lemma

is useful when we redefine the consistency bounds of Nakamoto’s

protocol, and also for evaluating other protocols in later sections.

Using Lemma 4.1, we get an altered version of the block with-

holding lemma which we refer to as block expiry. Let b be a block

mined by the adversary at time r , and let r + t be the first time any

honest player hears of b; we say b expires if there exists a negligible

function ϵ (.) such that the probability b ends up in the mainchain

of any honest player anytime after r + t is ≤ ϵ (t).

Lemma 4.2 (Nakamoto Block Expiry). There exists a δ ∈ (0, 1)
such that if µ ≥ δρ, then every adversarial block expires.

Proof. Let b be any adversarial block. We set δ such that the ex-

pected growth of any adversarial chain is smaller than the expected

growth of any honest chain. For anyT , the expected growth of any

adversarial chain is at mostT
ρ
c∆ . By a standard Chernoff-Hoeffding

bound [3, 10], for any δ ′ > 0, the probability that the adversarial

chain grows by at least (1 + δ ′)T
ρ
c∆ is at most inverse exponential

in T . So, from Lemma 4.1, we set the parameters such that

µ

(c + µ)
>

ρ

c

. Thus, the probability that at any time after r + t , the adversary
mines a chain longer than any honest player’s chain at that time is

≤ ϵ (tρ) where ϵ is inverse exponential in its argument. □

In the consistency analysis of Nakamoto, Pass, Seeman, and

shelat consider any window of T rounds and count special events,

called Convergence Opportunities, which are events after which all

honest players agree on a single chain; we define them formally in

the following subsection. If an adversarywants to break consistency,

they must combat all convergence opportunities. To analyze what

5

an adversary can do in a given window of T rounds, we must also

argue that there are only a constant number of blocks the adversary

mined before the window, which the adversary can use in an attack

during the window. We now state our version of the consistency

theorem of [17] for any blockchain protocol which states that if

those two properties hold, then the protocol satisfies consistency.

Theorem 4.3 (Blockchain Consistency). A blockchain proto-
col satisfies consistency if ∃δ ∈ (0, 1) satisfying µ ≥ δα such that
for any integer T and in any window of T rounds, with probability
1−ϵ (T) for a negligible function ϵ (·), the number of convergence op-
portunitiesC is greater than the number of adversarial blocks needed
to break all convergence opportunities A, and the number of blocks
mined before T which the adversary can use in T to break conver-
gence opportunities is less than C −A.

Using the above theorem, Pass et al derive the following condi-

tion for Nakamoto’s protocol to achieve consistency, where α =

1 − (1 − p/n) (1−ρ)n and β = ρp. 2

α (1 − (2∆ + 2)α) ≥ (1 + δ)β .

4.2 Counting Convergence Opportunities
Using Markov Chains

We reconsider the analysis of convergence opportunities in [17]

using our Markov approach. A convergence opportunity is an event

after which all honest players agree on a single block as the lat-

est block and therefore agree on a single longest chain. The con-

vergence opportunity is made up of 3 sequences of rounds, each

characterized by the outcome of mining by the honest players.

• First, ∆ rounds pass in which no honest player mines a block.

Thus, by the model, at the end of the ∆ rounds, all honest

players know all honest blocks, and therefore agree on what

is the maximum length of the chain (though not necessarily

the same chain).

• Second, a single honest player mines, thus extending a chain

by one more block than the previous longest chain.

• Third, another ∆ rounds pass in which no honest player

mines. Thus, at the end, all honest players know the new

block and therefore agree on the single longest chain.

To prove that a given protocol achieves consistency, the analysis

first argues that to prevent consensus, it is necessary for the ad-

versary to “break” all convergence opportunities. An adversary

can break a convergence opportunity by disrupting either of the

quiet periods of step one and three by announcing one of their

own blocks during that time. Thus, the analysis attempts to bound

both the number of convergence opportunities the honest players

have and the number of blocks the adversary must mine to break

those. To obtain this count, the analysis in [17] sums over all honest

blocks mined (hits) in any time interval and tracks whether the

“quiet” period between honest hits is less than ∆. In a given period

of L honest hits, let q denote the number of quiet periods between

two honest hits that are less than ∆ rounds, and let Q denote the

same for quiet periods longer than ∆.

2
Note we define the probability anyone finds a block as p = 1

c∆ while [17] defines it

as pn where their p = 1

c∆n .

S0 S1

hit ≤ ∆
∆

hit, hit ≤ ∆

hit +∆

Figure 2: A simple Markov model for counting convergence
opportunities

To arrive at their consistency proof, the consistency lemma [17,

Lemma 6.11] derives a lower bound of 2Q − L on the number of

convergence opportunities. Specifically, they show that except with

probability 1−e−Ω(βt)
, there are at least (1−δ ′′′) (1− 2α (∆+ 1))αt

convergence opportunities between any two rounds r and r + t ,
and moreover, an adversary only mined at most (1 +w ′′) (t + 1)β
blocks, for arbitrary small constants δ ′′′,w ′′ ≥ 0.

Using a simple Markov chain, we show below that the above

lower bound is not accurate; it may underestimate the true count

of convergence opportunities.

Figure 2 presents a Markov model which precisely captures the

count from Pass et al. It has 2 states: S0 represents a “messy” state

where honest mined blocks occur in less than ∆ rounds from one

another, while S1 is the state where quiet periods between honest

mined blocks is at least ∆ rounds. As long as quiet periods are

shorter than ∆ rounds the system stays in S0; otherwise we move to

state S1. Once in S1, the system stays in S1 as long as quiet periods

between honest mined blocks are at least ∆ rounds, otherwise the

state changes to S0. Let ei j represent the edge from state Si to state

Sj . Below are the events that happen when each edge is traversed:

e00 = one quiet period of less than ∆ rounds followed by a

single honest mined block

e01 = one quiet period that is at least ∆ rounds

e11 = a single honest mined block followed by a quiet period

of at least ∆ rounds

e10 = an honest mined block followed by one quiet period

of less than ∆ rounds followed by an honest mined block.

Consider a random walk on this Markov chain. We can compute

the number of honest mined blocks by counting one block every

time e00 or e11 is traversed, and 2 every time e10 is traversed. To
calculate Q , we count the number of times e01 is traversed plus the

number of times e11 is traversed. Letting Ei j represent the expected
number of times ei j is traversed, we have:

2Q − L = 2(E01 + E11) − (E00 + E11 + 2E10)

= 2E01 + E11 − 2E10 − E00

Our analysis plan is to compare the expected fraction of events

that are convergence opportunities with the expected fraction of

events that are blocks mined by the adversary, and then invoke

concentration bounds from Theorem 3.1. To calculate the expecta-

tions, we solve for the probability of crossing each edge, and the

stationary probabilities. For the remainder of the paper we assume

the probability a block is found in each round p << 1, thus α ≈ µp.3

3
We can set the unit of a round so that our assumption holds. A more careful analysis

arriving similar bounds without this assumption can be seen in [22].

6

Let P∆ = (1 − µp)∆ be the probability of ∆ silent rounds.

Pr[e00] = Pr[e10] = 1 − P∆

Pr[e01] = Pr[e11] = P∆

π0 = Pr[S0] = (1 − P∆)π0 + (1 − P∆)π1

π1 = Pr[S1] = P∆π1 + P∆π0

Since π0 + π1 = 1 we get that π0 = 1 − P∆ and π1 = P∆.
To calculate the expected number of times we hit each edge ei j ,

we divide πipi j by the total weighted time spent on all edges, which

in turn requires the expected time spent on each edge li j . Letting

pi | ≤∆ = Pr[hit at time i | silence lasted ≤ ∆] =
pi
p≤∆ , we get:

pi | ≤∆ =
(1 − µp)i−1µp

∆∑
j=1

(1 − µp) j−1µp

; l00 =
∆∑
i=1

ipi | ≤∆

l01 = ∆; l11 =
1

µp
+ ∆; l10 =

1

µp
+

∆∑
i=1

ipi | ≤∆

The total weighted time spent on all edges is

∑
i, j Pr[ei j]πi li j . Thus

2Q−L is equal to 2(e01π0+e11π1)− (e00π0+e11π1+2e01π0) divided
by the total weighted time spent on all edges. We simplify this to

2(e01π0 + e11π1) − (e00π0 + e11π1 + 2e01π0)

= 2 · (P∆ (1 − P∆) + P
2

∆)

− ((1 − P∆)
2 + P2∆ + 2 ∗ P∆ (1 − P∆))

= P2∆ − (1 − P∆)
2

We then calculate the total weighted time spent on the edges and

plot the bound for convergence opportunities as

P2∆ − (1 − P∆)
2∑

i, j Pr[ei j]πi li j

in Figure 1 as (). Note this bound is slightly stronger than the

same count from [17] because we use a more accurate probability

for µ (while Pass et al. use a conservative approximation); these two

calculations are equivalent when we use the same approximation.

In order to establish a concentration bound for the convergence

opportunities count, we show the following. For each state v , the
number of visits to v in T rounds is concentrated around the ex-

pected number of visits in T rounds with high probability; for each

edge e , the number of visits to e as well as the time spent on e
are concentrated around their respective expectations with high

probability. Since the count we are measuring is a linear combina-

tion of the number of visits, we obtain the desired high probability

concentration bound. We obtain these concentration bounds by an

application of Theorem 3.1. Before we can apply the theorem, we

transform the Markov chain to another equivalent Markov chain,

presented in Figure 3, in which traversing each edge takes one step

of the chain. Now, the number of visits to a vertex v in T rounds

can be captured by the random variable X by setting fi (v) to be 1,

and fi (u) to be 0 for all u , v , for all i . Theorem 3.1 immediately

yields a bound that the number of visits to v in T rounds is within

(1 ± δ) of its expectation with probability 1 − e−Ω(T)
, where the

hidden constant depends on ∆ and p, factors that determine the

mixing time of the transformed Markov chain.

S0 S1

N

N N N

N

NN N

H

N

H

H

∆ − 1

∆ − 1

N

H

Figure 3: Markov chain equivalent to that in Figure 2. The
label H (resp., N) on an edge marks event that a block (resp.,
no block) was mined by an honest player in the round. The
edge labeledH from the two rectangular blocks of states rep-
resents an edge from each state in the blocks.

Problems with this counting. The analysis of Pass et al. lower
bounded the number of convergence opportunities by counting

the number of (honest) hits and by counting the number of “quiet”

periods that were longer than ∆, and comparing this with an upper

bound on the expected number of blocks the adversary can mine.

We now show when this analysis underestimates the number of

convergence opportunities, even getting a negative count.

Consider the following sequence of events where, slightly abus-

ing notation,H represents a round with a “hit”,Q represents at least

∆ rounds with no mined blocks, and q represents a quiet period of

fewer than ∆ rounds,

H ,q,H ,Q,H ,Q,H ,q,H ,q,H ,q, . . . ,

the Pass et al. method underestimates the number of convergence

opportunities as−2, when there should be 1.We see that when c < 2,

multiple honest blocks are being mined in each ∆ in expectation,

so we are mostly looping in state S0. In this setting, 2Q will be less

than all honest blocks mined, so this analysis gives a negative count,

i.e., an obvious underestimate!

In the following section we use our same Markov model to do

an exact count of all convergence opportunities, so, at low c , i.e.
high mining probability, we still get meaningful results.

4.3 An Improved Analysis of Convergence
Opportunities

We present an improved analysis of convergence opportunities

and bound the number of blocks the adversary would need to

kill all convergence opportunities, i.e. break consistency. In the

Markov model we created in the previous analysis to reproduce

the count of Pass, Seeman and shelat, we notice that the edge e1,1
looping on state S1 exactly captures convergence opportunities.

When we transition from S0 to S1 we get a big quiet period, a

‘Q’,and whenever we loop in S1 we get a hit and big quiet period,

i.e. ‘HQ’. Thus looping in S1 gives us a sequence of convergence
opportunities. To exactly count the expected number of honest

convergence opportunities we thus only need to count the expected

number of times the edge e1,1 is traversed. This is Pr[e1,1]π1 = P2∆
7

divided by the total weighted time spent on all edges. We get the

following new theorem of our new consistency lower bound plotted

in figure 2.

Theorem 4.4 (Nakamoto Consistency). Nakamoto’s protocol
satisfies consistency if there exists δ > 0 such that

P2∆∑
i, j

Pi, jπi li, j
≥ (1 + δ)β (1)

4.4 Nakamoto Consensus Attack
Pass et al. [17] introduce the delay attack on the consistency of

Nakamoto’s protocol in which the adversary simply delays all hon-
est blocks the maximum amount allowed by the model. Through

this delay, the adversary is able to thwart the growth rate of the

honest chain, while mining efficiently their own private chain of

length at least the size of the honest chain. Figure 7 (1-chain) shows

a simple Markov model which captures this attack, where once

an honest block is mined, any honest blocks mined in the ∆ steps

after are wasted work since those honest players don’t know about

the initial block. Figure 1 ‘example attack’, taken from [17] and

recalculated using our Markov model, shows the minimum fraction

of mining power the adversary needs for each c in order for the

attack to succeed with high probability.

We now present the Markov model of Figure 4 for this attack,

and calculate the probability the adversary can generate a private

chain of length k , for each µ, ∆ and c . The states are as follows:

• Sx : the state where the attack fails

• S−1: state where the honest chain is ahead by one block

• S0: state with honest and attacker’s chains of equal length

• Si for i ≥ 1: state where the adversary chain is longer than

the honest chain by i blocks

For this analysis we introduce the following variables:

µ ′ = µ (1 − ρp)∆ ρ ′ = µ (1 − (1 − ρp)∆)

ρ ′′ = 1 − (1 − ρp)∆ + (1 − ρp)∆ρ

Let Pi (k) be the probability that starting from state Si , we visit

ρ, ρ ′, or ρ ′′ edges ≥ k times before hiting state Sx . We calculate:

Pi (0) = 1 i ≥ 0

P−1 (k) = ρ ′′P0 (k − 1)

P0 (k) = ρP1 (k − 1) + µP−1 (k)

Pi (k) = ρPi+1 (k − 1) + ρ
′Pi (k − 1) + µ

′Pi−1 (k) i > 0

Using generating functions, we show how to derive closed form

expressions for Pi (k) for fixed i and k . For all k ≥ 0, define

fk (x) =
∑
i≥0

Pi (k)x
i .

We show that fk (x) satisfies the following equation.

fk (x) =
ρ

x
(fk−1 (x) − fk−1 (0)) + ρ

′(fk−1 (x) − fk−1 (0))

+µ ′x fk (x) + µρ
′′ fk−1 (0) (2)

To establish Equation 2, we show that for every i ≥ 0, the coefficient

of x i in the right-hand side equals Pi (k). For i = 0, we observe that

S0

S−1

S1 S2 S3

Sx

µ

µ ′
µ ′ µ ′

µ ′

ρ ′ρ ′ ρ ′

ρ ρρρ

ρ ′′ ∆ + µ

Figure 4: Our Markov chain model which we use to capture
the probability that the delay attack lasts for some k blocks.

the constant term in the right-hand side is the sum of two terms:

the constant term in (ρ/x) fk−1 (x) and µρ ′′ fk−1 (0). This equals

ρP1 (k − 1) + µρ
′′P0 (k − 1) = P0 (k),

as desired. For i > 0, the term x i appears in the right-hand side

of Equation 2 in three summands: (ρ/x) fk−1 (x), ρ
′ fk−1 (x), and

µ ′x fk (x). Adding these up, we obtain

ρPi+1 (k − 1) + ρ
′Pi (k − 1) + µ

′Pi−1 (k) = Pi (k).

We now express the generating function fk (x) of Equation 2 as the

following recurrence in k .

f0 (x) = 1 + x + x2 + . . . =
1

1 − x

fk (x) =
(ρ + ρ ′x) (fk−1 (x) − fk−1 (0)) + µρ

′′x fk−1 (0)

x (1 − µ ′x)
,k > 0.

Note that P0 (k) is fk (0); so by unravelling the above recurrence,

we can derive a closed form expression for P0 (k) for any given k .
In Figure 5 we plot P0 (k) for c = 1, 4 and 60 for a 49% and 25%

adversary. We see that for the Bitcoin hardness parameter (c = 60),
forks of length 6 (the suggested confirmation time) are possible

with roughly 5% probability for an adversary controlling 25% of the

mining power and are evenmore than 1% for length 9. For Ethereum

whose c parameter is set to less than 4, waiting 15 confirmations

corresponds to roughly 1% probability, which perhaps justifies the

aggressive choice of c.

5 CLIQUECHAIN ANALYSIS
Informally, Nakamoto consensus relies on a simple “longest chain”

rule to pick between different forks when the network is not in

agreement. Sompolinsky and Zohar and later Sompolinsky, Lewen-

berg and Zohar began to study a more general class of rules for

picking between forks that apply to directed acyclic graphs. The

first idea in this framework was the GHOST [20] protocol which

considered trees of blocks instead of linear chains, they provide

an analysis which we extend in the next section. They extended

this idea to general DAG protocols where blocks can point to more

than one parent block, they call these inclusive protocols [13]. In-
clusive protocols have a voting mechanism for which transactions

to accept, but inherit security from GHOST or any other tree-based

selection policy underlying it. In subsequent ongoing work, they

consider ideas of how blocks can reference multiple parent blocks

and how to reason about linearity of transactions [19, 21].

8

2 4 6 8 10 12 14 16 18

10
−3

10
−2

10
−1

Length of fork

P
r
o
b
a
b
i
l
i
t
y

49% Adv

25% Adv

c=1

c=4

c= 60

Figure 5: This graph depicts the probability for an execution
of Nakamoto to sustain a fork of a particular length. The
three regions correspond to this probability at settings of c =
1, c = 4, c = 60where the hardness for the proof of work is set
such that a block is expected to be mined in c∆ attempts. In
each case, the top solid line of a shaded region represents the
probability for a 49% adversary, whereas the bottom dashed
line represents the same for a 25% adversary.

In this section we explore another class of DAG protocols in-

spired by Chainweb [14]. In Chainweb, the blockchain is a block-
braid made of multiple parallel chains in which each block must

refer to blocks in specific braids according to a reference base

graph. Chainweb security analysis is base-graph dependent and

the authors of Chainweb have attempted to analyze the general

graph case and provide a ‘50%’-attack type analysis. We specifically

choose a clique as the base graph (resulting in a proposal we call

Cliquechain
4
) to facilitate a rigorous analysis. As far as we know,

we provide the first consensus lower bound for any variant of a

non-trivial DAG-style protocol. Our consensus analysis applies to

any number of chains, while in our attack analysis we focus on the

2-chain and 3-chain examples and we see that as we add chains

the protocol becomes more resilient to these attacks. Our analy-

sis, however, does not support all the performance claims made in

the Chainweb paper as we provide provable consistency for any-

chain Cliquechain only up to the same throughput as Nakamoto’s

protocol.

5.1 The Model
In Cliquechain we havem parallel blockchains and, at any layer

l , each block points to a layer l − 1 block on its chain, as well as

a layer l − 1 block on each chain. Thus in total a block at layer l
referencesm blocks of layer l − 1, one on each chain.

Blocks in a layer must be compatible with one another, meaning

they must all point to the same blocks in the previous layer. Fig-

ure 6 shows an example of this with 1, 2, and 3-chain versions of

Cliquechain. Note that the 1-chain version is simply Nakamoto’s

4
Cliquechain is the block consensus protocol. For reasoning about validity of messages,

we refer to Chainweb’s SPV protocol for creating inter-chain transactions[14].

protocol. When choosing which block to mine while running an

m-chain Cliquechain, a miner runs the following protocol.

(1) Let C be the set of all individual Cliquechains possible from

the graph of all blocks mined.

(2) Let L be the longest length of any chain in C , where the

length of the chain is the highest level of any block.

(3) Let S be the set of all compatible sets of L level blocks, where

a compatible set is a set where all blocks point to all the same

blocks in level L − 1.
(4) Let s be the maximum sized set in S or a random set from

one of the maximum sized sets.

(5) If |s | = m, level L is complete, choose a random chain to

mine a L + 1 level block pointing to all blocks in s .
(6) Otherwise, mine a block on a chain not in s which is com-

patible with the blocks in s .

Note that a new layer cannot start being mined until a compatible

previous layer has beenmined. Thus, all chains grow synchronously.

As blocks are mined on a chain in a layer, honest miners move to

the remaining chains. If all players act honestly, each layer grows

in expected c∆m rounds since the probability a block is mined in a

given round is
1

c∆ .

5.2 Block Expiry
The block expiry argument for Cliquechain works similarly to the

block expiry argument for Nakamoto’s protocol. The argument

is two part: the first is that Cliquechain’s honest chain growth is

lower bounded by the same bound as Nakamoto’s protocol, thus

this allows us to use the same lowerbound for block expiry.

Lemma 5.1 (Cliquechain Chain Growth). For any δ > 0, the
growth of themain chain of any honest player in anm-chain Cliquechain
protocol inT rounds is at leastT (1−δ) µ

∆(c+µ) blocks over all chains,
except with probability that drops exponentially in T .

Proof. In the worst case, honest players in Cliquechain all work

on the same chain at all times, i.e. sequentially. Thus the chain

growth is similar to that of a single chain, where all players must

learn of a block in the previous chain before moving on to the

next chain. Thus Cliquechain’s growth is lowerbounded by the

same bound as Nakamoto’s protocol which is the 1-chain version

of Cliquechain. □

For a block to be included in the main Cliquechain at level L, all
blocks in layers > Lmust have a path to this block. Thus if a block is

not included in the main Cliquechain at the time it is created, then

as time goes on all future blocks, starting on the next layer, point

to another block an honest player has of the same chain and level.

Thus for Cliquechian we also get the same block expiry lemma as

Nakamoto’s protocol.

Lemma 5.2 (Cliquechain Block Expiry). There exists a δ ∈
(0, 1) such that if µ ≥ δρ, then every adversarial block expires.

Proof. Let b be a block mined by the adversary at time r , and
let r +t be the first time any honest player hears of b. The adversary
is mining efficiently so it’s expected number of blocks in T rounds

T
ρ
c∆ , while as proven above, any honest web has at least T

µ
∆(c+µ)

added to it. Starting at the next layer from b, all blocks on b’s web

9

must point to it, and all blocks on an honest chain’s web with

another block in b ′s place, call it b ′, must point to b ′. So in order

for b to not be able to replace b ′ in the honest chain’s web, the

adversary must not have mined more blocks, and created a heavier

web, than any honest web. By a standard Chernoff-Hoeffding bound,

for any δ ′ > 0, the probability that the adversarial chain grows by

at least (1 + δ ′)T
ρ
c∆ is at most inverse exponential in T . So, from

Lemma 4.1, we set the parameters such that

µ

(c + µ)
>

ρ

c

. □

5.3 Convergence Opportunities
Recall that “convergence opportunities” are events at the end of

which all honest players agree on a single chain. A convergence

opportunity has 3 parts: ∆ rounds where no honest player mines a

block, a single honest block mined (termed a ‘hit’), then another ∆
rounds where no honest player mines a block. After a convergence

opportunity in Cliquechain, all honest players agree that the con-

vergence opportunity block is in the longest Cliquechain, and any

blocks they now mine on must be compatible with this block.

Lemma 5.3. At the end of a convergence opportunity (∆ silence +
single honest hit +∆ silence), all honest players in Cliquechain start
working on blocks compatible with the honest hit block.

Proof. Let C be the set of allm-Cliquechains from the blocks

mined which all honest players see after the first ∆ silent rounds,

let h be the player who mines the block in step 2, and C ′ the new
set of chains created by the addition of this new block.

1. After the first ∆ silence, the longest layer of any chain in C is

of length L. Player h chooses the largest compatible subset in the

set of all sets of blocks of layer L. If there is not one unique largest
set, h chooses one of the largest sets at random.

2. If the set is of sizem, player h mines a block on level L on a

random chain and points it to all blocks in the set. This new block

is now the only L + 1 block, and after the second ∆ silence, all

honest players hear about this block and start working on blocks

compatible with this block.

3. Otherwise, h chooses a chain not in the set and mines a block

which is compatible with the set. This new set is now the unique

largest set and after ∆ silence all honest players hear of this block

and mine blocks compatible with this set. □

Note that after a convergence opportunity, honest miners now all

agree on level L − 1, and which chains still need to be mined blocks

compatible with level L − 1. A convergence opportunity however

does not differentiate between the case where there are two layer

L blocks on the same chain which point to all the same blocks.

Since these two blocks agree on the previous layer, we still say

we’ve converged on the previous layer. From the above we get that

any convergence opportunity in Nakamoto is also a convergence

opportunity in Cliquechain. Thus we can use the convergence

opportunity count we derived in §4.3. We have already shown that

block expiry in Cliquechain is satisfied under the same conditions

as Nakamoto. Thus, we can extend the consistency theorem of

Nakamoto’s protocol to Cliquechain.

A0 A1 A2

A0 A1 A2

B0 B1 B2

A0 A1 A2

B0 B1 B2

C0 C1 C2

Figure 6: 1, 2, and 3-chain Cliquechain examples where the
solid line represents a block pointing to a parent block in its
chain, and a dotted line represents a block cross-referencing
another chain. Notice 1-chain is simply Nakamoto’s proto-
col. In anm-chain Cliquechain protocol each block at layer
ℓ points directly their parent (the ℓ − 1 block of their chain)
plus references to a block in eachm − 1 of the other chains.

1-chain

S0

hit +∆

2-chain

S0 S1
Hit

∆+Hit + ∆

hit≤ ∆ +∆

3-chain

S0 S1 S2
Hit ∆+ Hit

Hit ≤ ∆, +∆

∆+ Hit +∆

C

B

A

Figure 7: Markov chain models capturing the delay attack
on 1, 2 and 3-chain Cliquechain protocols.

Corollary 5.4. Cliquechain satisfies consistency under the same
conditions as stated in Theorem 4.4.

5.4 Cliquechain Consensus Attacks
We evaluate how Cliquechain preforms under a version of the delay

attack of [17]. This attack works on Cliquechain similarly to how it

works on Nakamoto’s protocol. The goal of the adversary is to delay

10

1 2 4 10 25 60 100

0

1

10

3

10

1

2

c (blocktime in terms of network delay ∆)

ρ
(
A
d
v
e
r
s
a
r
y
f
r
a
c
t
i
o
n
)

Delay attack (1-chain)

Delay attack (2-chain)

Delay attack (3-chain)

Our Consistency Analysis

Figure 8: The minimum percentage of computing power
an adversary must hold in order to break consistency for
n = 10

5, ∆ = 10
13, p = 1

c∆ . We compare the delay attacks
for Cliquechain’s 1-chain, 2-chain and 3-chain models

all honest messages the maximum amount ∆. The adversary’s strat-
egy is to maximize wasted honest work by having honest miners

work on blocks they don’t know have already been mined, there-

fore delaying the growth of the honest chain(s) while the adversary

mines efficiently on their own secret chain(s). With Cliquechain,

this attack is thwarted by the fact that the honest players split their

mining power among all chains, so if a block is mined and delayed

on one chain, the honest miners on the remaining chains that don’t

yet have a block on that level, are not wasting work during that ∆
delay.

To evaluate these attacks we construct Markov models which

represent all possible scenarios of how honest blocks are mined

in a layer of Cliquechain. Crucial to this analysis is the fact that

in Cliquechain no blocks in a new layer can be mined until the

previous full layer is mined. Thus all variations of how a layer is

mined can restart once the full layer has been mined. Figure 7 shows

our Markov models for the 1,2 and 3-chain Cliquechain protocols,

with 1-chain being just the Nakamoto delay attack.

For all models, state S0 represents the state where miners are

mining a fresh new layer, and Si is the state where i chains have a
block at that layer. We say an attack succeeds if the expected time

for the honest players to mine a block in this model is more than

the expected time for an adversary to mine a block efficiently. The

expected time for an honest player to mine a block is the expected

time to leave state S0 and get back to state S0 divided by the number

of chains (i.e. how many blocks were added to the honest full braid).

The 1-chain analysis is just the Nakamoto analysis, we analyze

the 2-chain and 3-chain attack below:

Theorem 5.5. For any δ > 0, the delay attack on the 2-chain
Cliquechain protocol succeeds when

(1 + δ)

2

(l01 + Pr[e10A]l10A + Pr[e10A]l10A) <
1

(1 − µ)p

except with exponentially small probability in the length of the at-
tack.

Proof.

Pr[e01] = 1 l01 =
1

µp

Pr[e10A] = (1 − µp)∆ l10A = ∆ +
1

µp
+ ∆

Pr[e10B] = 1 − Pr[e10A] l10B = [

∆∑
i=1

i (1 − µp)∆µp

Pr[e10B]
] + ∆

Recall that an attack succeeds if the time for the honest players

to grow the chain in this model is more than the time taken for

an adversary to mine a block. Comparing the expectations of the

random variables representing these two measures, we obtain the

following condition for the success of the attack.

1

2

(l01 + Pr[e10A]l10A + Pr[e10A]l10A) <
1

(1 − µ)p

As we did for Nakamoto’s analysis, we establish strong concen-

tration bounds (within (1 ± δ) factors for any δ > 0) for both

measures using Theorem 3.1 in conjunction with a larger expanded

Markov chain equivalent to the 2-chain of Figure 7, and a Chernoff-

Hoeffding bound, respectively. This yields the desired condition of

the theorem. □

Theorem 5.6. For any δ > 0, the delay attack on the 3-chain
Cliquechain protocol succeeds when

1 + δ

3

(l01 +T1) <
1

(1 − µ)p

except with exponentially small probability in the length of the at-
tack.

Proof.

Pr[e01] = 1 l01 =
1

µp

Pr[e10A] = Pr[two honest hits in ≤ ∆ time steps]

PAi = Probability the second hit happens at time i

=

i−1∑
j=1

(1 −
2

3

µp) j−1
2

3

µp (1 −
1

3

µp)i−j−1
1

3

µp

Pr[e10A] =
∆∑
i=2

PAi l10A =
∆∑
i=1

i
PAi

Pr[e10A]

Pr[e10B] = Pr[one honest hit in ≤ ∆1 time,

a second honest hit after ∆1 before ∆2]

PBj = Probability first hit happens at time j

=
∑j
i=1 (1 −

2

3
µp) j−1 2

3
µp (1 − 1

3
µp)∆−j (1 − 1

2
µp)i−1 1

2
µp

PBi = Probability second hit happens at time i

11

=
∑∆
j=1 (1 −

2

3
µp) j−1 2

3
µp (1 − 1

3
µp)∆−j (1 − 1

2
µp)i−1 1

2
µp

Pr[e10B] =
∆∑
j=1

PBj l10B =
∆∑
i=1

i
PBi

Pr[e10B]

Pr[e10C] = Pr[one honest hit in ≤ ∆1 time,

a second honest hit after ∆2]

PCj = Probability first hit happens at time j

= (1 −
2

3

µp) j−1
2

3

µp

Pr[e10C] =
∆∑
j=1

PCj (1 −
1

3

µp)∆−j (1 −
1

2

µp) j

l10C = [

∆∑
j=1

j
PCj

Pr[e10C]
] + ∆ +

1

µp
+ ∆

Pr[e12] = (1 −
2

3

µp)∆ l12 = ∆ +
1

µp

Pi = Probability a hit happens at time i

= (1 −
1

2

µp)i−1
1

2

µp

Pr[e20A] =
∆∑
i=1

Pi l21A = [

∆∑
i=1

i
Pi

Pr[e20A]
] + ∆

Pr[e20B] = (1 −
1

2

µp)∆ l20B = ∆ +
1

µp
+ ∆

LetTi be the expected time to get from state Si to state S0, we have:

T2 = Pr[e20A]l20A + Pr[e20B]l20B

T1 = Pr[e10A]l10A + Pr[e10B]l10B + Pr[e10C]l10C

+ Pr[e12]l12T2

An attack succeeds if the time for the honest players to grow the

chain in this model is more than the time taken for an adversary to

mine a block. Comparing the expectations of the random variables

representing these two measures, we obtain the following condition

for the success of the attack.

1

3

(l01 +T1) <
1

(1 − µ)p

As we stated for the 2-chain analysis, we establish strong concen-

tration bounds (within (1 ± δ) factors for any δ > 0) for both

measures using Theorem 3.1 in conjunction with a larger expanded

Markov chain equivalent to the 3-chain of Figure 7, and a Chernoff-

Hoeffding bound, respectively. This yields the desired condition of

the theorem. □

Figure 8 shows the minimum adversarial percentage needed for

the attacks to succeed for each value of c (where the probability any
block is mined in a round is

1

c∆). We compare this with the lower

bound for anym-chain Cliquechain protocol, which is the same

for Nakamoto’s protocol. We can see that as the number of chains

goes up in the Cliquechain protocol, so does the resilience of the

protocol to the delay attack. At 3-chain, the protocol is essentially

resilient to the attack except for very small c . Note however that
the consistency lower bound remains the same, so there may exist

another attack to which these protocols are susceptible.

0

1A 2A 3A 4A

1B

2B

2C

2D

3C

Figure 9: An example of a block tree where a miner follow-
ing Bitcoin’s longest chain rule would mine on 4A, but a
miner following the GHOST rule would mine on 3C.

6 GHOST ANALYSIS
In this section we extend our method to analyze the GHOST pro-

tocol by Sompolinsky et al. [20]. Section 6.1 provides a summary

of GHOST. We extend our analysis of Nakamoto to GHOST and

introduce a new consensus attack on GHOST and a Markov model

which captures the attack. We note that in their analysis of GHOST,

Sompolinsky et al. define a fork collapse similar to Pass et al.’s con-
vergence opportunity which we use in this paper. We note however

that a crucial point of the analysis we do in this paper is that, under

any adversarial strategy, blocks expire, meaning any block has a

limited time interval in which it can effect the mainchain. This is

not the same as the proof provided in [20] which only accounts for

a 50% attack, and not other adversaries.

In §6.4 we show this with an attack of GHOST which utilizes the

concept of the adversary saving blocks they have mined as bank
to be utilized as needed in the attack. In the following section we

introduce the notion of a ‘subtree expiry’ to replace the requirement

of ‘block expiry’.

6.1 Review of GHOST protocol
Themain claim of the GHOST protocol is to be able to handle higher

transaction rates through higher block creation rates and/or larger

block sizes which increase the network delay (i.e. time it takes

for blocks to propagate through the network). The protocol works

by miners keeping track of a tree of blocks instead of a chain and

choosing to mine on the block tree which is heaviest, rather than the
chain which is longest. A block’s weight is calculated by summing

the number of blocks in it’s subtree (i.e. the number of blocks who

directly point to it or who point to a chain which eventually points

to it). Thus a miner starts at the root block and successively picks

the heaviest subtree until it arrives at a childless block to build

on. Figure 9 illustrates this where a miner following the GHOST

rule would mine on block 3C, while a miner following Nakamoto’s

longest chain protocol would mine on 4A. The idea behind this new

rule is that even if two honest nodes mine competing blocks which

point to the same parent block, both blocks still increase the weight

of the parent block and therefore the probability at least the parent

block will be on the mainchain.

12

6.2 Subtree Expiring
For our analysis of GHOST we extend the idea of block expiry

to what we call subtree expiry. In short, if an adversary wants a

path to beat the current heaviest announced path of any honest

player, both paths share a last common block where their subtrees

diverged. We argue that in order for the adversary to make an

honest player choose the other subtree in the future that is not their

current heaviest announced subtree, blocks in that subtree must be

announced.

In GHOST each block not only has a length in a chain path which

corresponds to it’s depth in the tree, but it has a weight equal to the

sum of all blocks in the subtrees pointing to it. We reason that for

the GHOST protocol, all blocks on any honest player’s path have

a weight increase of at least that of the Nakamoto chain growth.

Below we state the subtree growth and expiry lemmas for GHOST.

Lemma 6.1. For any δ > 0, and for any honest player’s chain at
time r , there is some block b in the chain at some length l with weight
w , where at time r + T for some T , the block the player now has at
length l and all blocks it points to have an expected weight increase
≥ T (1 − δ)

µ
∆(c+µ) .

Proof. In this proof we use the same reasoning as the Nakamoto

growth lemma of this paper [lemma 4.1]. Consider the path P any

honest player takes in the tree to find the heaviest path. Whenever a

new honest block b ′ is announced, either this block is now part of P
and all blocks in P have a weight of at least 1 added to it. Or the path

to b ′ diverges from P at some block b, where P is in some subtree

pointing to b and b ′ is in another. The subtree of P must have at

least the weight of the subtree of b if the honest player did not add

b to it’s path. Thus for each ∆ period surrounding an honest hit, the

weight of some subtree in all honest paths increases by at least 1,

and thus all blocks the subtree points to also increase in weight by

at least 1. We count this using the same Markov model of lemma 4.1.

The expected number of rounds needed for a weight increase of one

is at most
c∆
µ + ∆; using standard Chernoff-Hoeffding bounds, the

number of rounds for an increase of д is at most (1 + δ) (c∆µ + ∆)д

with probability 1−e−Ω(д)
. That is, inT rounds, GHOST achieves a

subtree weight increase of at least (1 − δ)T
µ

∆(c+µ) with probability

1−eΩ(T)
. We get that for any honest player’s chain at time r , there is

some block at time ≥ r +T whose weight (and therefore the weight

of all blocks it points to) increased in time T by ≥ (1 − δ)T
µ

∆(c+µ)
blocks. □

We now use the subtree growth to prove that if the adversary

withholds blocks in a subtree for too long, then that subtree will not

become part of any honest path in the future except with negligible

probability.

Lemma 6.2. Let C be some subtree where the adversary is mining
which no honest player is mining on, but which some honest player
is mining on another subtree which points toC’s parent. Let r be the
point when only the adversary is mining on C and r + t be when
the first honest player hears of any block in C after r . There exists
a negligible function ϵ (.) and some δ ∈ (0, 1) s.t. µ ≥ δρ and the
probability C becomes part of any honest path is ≤ ϵ (t).

Proof. Consider the block b which C points to. At time r , there
is some other subtree which points to b which an honest player is

mining on. If at some timeT ≥ r+t , some honest player was mining

on this other subtree before hearing of a block in C , then from the

previous section we know that this subtree grew in expectation

by ≥ T
µ

∆(c+µ) blocks. Thus if the following inequality holds, then

except with negligible probability, the adversary was not able to

mine enough blocks in C to make C the heavier choice from the

honest subtree:

µ

(c + µ)
>

ρ

c

If at time r + t no honest player was mining on any subtree that

b points to, then that means there was some time after r which

the path pointing to C diverged from all honest paths. We consider

the latest such point in the path, i.e. the last block the adversary’s

path has in common with any honest path and the point where this

divergence occurred. For any honest player to now be mining on

another subtree pointing to this block, this subtree must satisfy the

previous lemma’s subtree growth since time r . Thus if this subtree’s
growth is more than the adversary’s, then at timeT , the probability
that the adversary mined a heavier subtree is ≤ ϵ (t). This holds for
the following inequality:

µ

(c + µ)
>

ρ

c

□

Thus if an adversary keeps a subtree silent, i.e. any block in that

subtree silent, then no honest players will contribute to it, and if

the adversary mines less blocks then any honest subtree growth,

then the adversary’s subtree will not be the heaviest choice on any

honest player’s path in the future.

6.3 Convergence Opportunity
Recall from the previous section that the analytical analysis of

Nakamoto’s protocol done by Pass et al. for consensus relies on the

idea of “convergence opportunities” which are events at the end of

which all honest players agree on a single chain. The convergence

opportunities are made up of 3 steps where we consider only what

happens with the honest players and in order for an adversary to

be able to break consensus, they must at the very least be able to

break all convergence opportunities.

With GHOST, we can’t use the same “longest path” or “heaviest

block” argument, so we instead use a “heaviest path” argument.

Lemma 6.3. At the end of a convergence opportunity (∆ silence +
single honest hit +∆ silence), all honest players in GHOST will follow
the same “heaviest path” down the block tree.

Proof. Let T be the tree all honest players see after the first

∆ silent rounds, let h be the player who mines the block in step

2, and T ′ the new tree created by the addition of this new block.

Now consider the path h took when deciding which block to mine

on. Starting at the genesis block, at each block h chooses the next

heaviest subtree inT and two things can happen to this same choice

in T ′ :
1. There is a single heaviest sub-tree, thus, inT ′ this subtree will

have an additional block, while the other subtree won’t change,

and the heaviest subtree will continue to be the heaviest.

13

2. There is more than one subtree with the max weight, so h
chooses an arbitrary one to go down. Thus in T ′, the subtree h
chooses will have one more block while all other subtrees won’t

change, and therefore in T ′ this subtree will be the single heaviest
subtree. □

Again, for the adversary to be able to break consensus in GHOST,

they must at the very least be able to break all convergence op-

portunities. Since the convergence opportunities in GHOST are

the same as that of Nakamoto’s protocol, we can use our Markov

model from section 4.3 to also count the number of convergence

opportunities an adversary would need to match in order to break

consensus in GHOST. In the previous section we also proved that

subtree expiry in GHOST is also satisfied under the same bounds as

Nakamoto’s protocol. Thus, we can extend the consistency theorem

of Nakamoto’s protocol to GHOST.

Corollary 6.4. GHOST satisfies consistency under the same bounds
of theorem 4.4.

6.4 GHOST Consensus Attacks
The original GHOST paper analyzes GHOST under the 50% attack

introduced by Nakamoto [16] where the adversary silently mines

their own chain in an attempt to overtake the mainchain (i.e. the

honest chain). In §4.4 we saw that with Nakamoto’s protocol, as

block size increases (i.e. ∆ increases) or block time decreases (i.e.

c decreases), more honest forks take place meaning honest nodes

divide their computing power among more blocks while the adver-

sary continues to mine efficiently and can therefore overtake the

honest mainchain with less than 50% of the computational power of

the network. In contrast, with this attack, GHOST remains resilient

for any value of ∆ or c since all honest nodes contribute to the

overall weight of the honest subtree. We now present a new attack

on GHOST, the balance attack, in which the adversary leverages

honest computing power to maintain two subtrees of equal weight.

The point of our attack is for the adversary to maintain a fork in

the block tree persisting for as long as they can, thereby delaying

consensus and the time to confirm that a transaction has made

it onto the main chain. The adversary does this by splitting the

honest computing power among the two subtrees and mining on

both subtrees and using their blocks to balance the two subtrees

whenever they become uneven. The adversary’s strategy begins

once a fork takes place (i.e. two blocks are mined within ∆ of each

other). We define the attack in Algorithm 1.

We model this attack with the Markov chain in figure 10. In

the model, we have 3 layers of states: the parity, delta left, and
delta right layers. Each parity state P (l , r) represent the state where
both subtrees are of equal length and the adversary’s banks have

amounts l and r . Each delta left state ∆lef t (l , r) represents the state
where the left subtree is up by one honest block and there is a

delta race until the adversary has to reveal the honest block to all

players. In this state, either an honest node on the right subtree

wins a block in the delta race, the adversary uses a right bank to

rebalance the subtree, or an honest player on the left wins again

and the adversary uses bank to pay off the last left honest block

and begins another delta race. The delta right states, ∆r iдht (l , r),
are equivalent to the delta left states, but with the right subtree

Algorithm 1 GHOST_attack(n, ρ, c,∆)

1: Once a fork takes place (i.e. two blocks (adversarial or honest)

are created within ∆ rounds) the adversary sends one block to

half the honest nodes, and the other block to the other half.

2: while the fork persists do
3: Adversary mines on the subtree with least bank

4: if honest node mines a block then
5: ∆ rounds count down begins

6: if honest node mines on the opposite subtree then
7: fork is rebalanced

8: if no honest miner mines in ∆ rounds then
9: if adversary had bank to use then
10: adversary uses bank to rebalance the fork

11: else adversary loses

12: if the side that is winning mines again then
13: use bank to balance the previous win

14: ∆ counter restarts

15: if there is no ∆ counter then
16: adversary mines on side with least bank

dominating. Figure 10 represents a sample of states reachable from

P (l , r).5

In this model, let a be the adversarial mining probability, where

al ,ar denotes which subtree the adversary was mining on, and

al∆,ar∆ are the probabilities the adversary mines within ∆ steps.

Let hl and hr be the honest mining probabilities on either subtree,

andhl∆,hr∆ the probabilities an honest player mines a block within

∆ rounds on a given subtree. Lastly, let ∆
free

be the probability that

∆ rounds pass without anyone (adversary or honest player) mining

a block. Every transition crossing a “∆” edge (i.e hl∆,hr∆,al∆,ar∆
and ∆

free
) causes an increase of the fork length by one block. Thus

to determine the probability of reaching a fork of a specific length

k , we calculate the probability we cross k edges before reaching

a state where the attack fails. We say the attack fails when the

adversary needs to balance one side of the fork but does not have

any stored bank on that side, i.e. a state where l = −1 or r = −1.
We now calculate the probability that the attack lasts for k blocks.

We introduce the following variables:

hr =hl = 0.5µ ar = al = ρ ∆
free
= (1 − p)∆

(hr∆ + ar∆) = (hl∆ + al∆) = (1 − p)∆ (0.5µ + ρ)

Let Sl,r (k) be the probability that starting from state Sl,r , we visit
a ∆ edge ≥ k times before the attack fails, i.e. before we visit a state

where l or r equals −1. We get the following probabilities:

Pl,r (k) = 1 for l ≥ k, r ≥ k

∆
r iдht
l,r (k) = 1 for l ≥ k, r − 1 ≥ k

∆
lef t
l,r (k) = 1 for l − 1 ≥ k, r ≥ k

Sl,r = 0 for l = −1 or r = −1

5
Variations on the attack can handle uncle limits, where we limit the bank the adversary

can use to be within u blocks of the current block.

14

∆left

(l − 1, r)
∆left

(l, r)

P (l − 1, r)

P (l, r − 1)

P (l, r) P (l + 1, r)

∆right

(l, r − 1)
∆right

(l, r)

hr∆

∆
free

hl∆, al∆ hr

al

hl hr∆, ar∆

hl∆

∆
free

ar

al

Figure 10: GHOST attack Markov chain snapshot.

∆
r iдht
l,r (k) = (hr∆ + ar∆)Pl,r (k − 1) + hl∆∆

r iдht
l,r−1 (k − 1)

+ ∆
free

Pl,r−1 (k − 1)

∆
lef t
l,r (k) = (hl∆ + al∆)Pl,r (k − 1) + hr∆∆

r iдht
l−1,r (k − 1)

+ ∆
free

Pl−1,r (k − 1)

Pl,r (k) = hr∆
r iдht
l,r (k) + hl∆

lef t
l,r (k) + alPl+1,r (k) r ≥ l

Pl,r (k) = hr∆
r iдht
l,r (k) + hl∆

lef t
l,r (k) + ar Pl,r+1 (k) r < l

We are interested in P0,0 (k), the probability of a fork of at least k .
We can then use this to calculate for a certain protocol parameter,

how many blocks should you wait for confirmation of a transaction,

for a given confidence. In Figure 11 we plot P0,0 (k) for c = 1, 4, 60

with ρ = .49, .25. When compared with the plots for Nakamoto’s

protocol, GHOST is more resilient to this attack than Nakamoto’s

protocol is to the delay attack. However, for low c , forks can last

for more than 10 blocks with non-negligible probabilities.

7 LIMITATIONS AND FUTUREWORK
We make conservative choices in our analysis. For example, for

GHOST we define the minimum subtree growth as the same as the

minimum chain growth of Nakamoto’s protocol. This ignores the

case when honest players all work on the same subtree and thus

all honest blocks contribute to the growth of the weight or when

multiple blocks are mined in ∆ rounds which contribute to a single

subtree. These cases suggest that a tighter bound of GHOST’s sub-

tree weight growth is possible. Similarly in Cliquechain’s growth,

we assumed honest players were mining sequentially and not tak-

ing advantage of the parallel work possible with the protocol. The

delay attacks for Cliquechain give a better lower bound for the

growth of any honest chain; we leave the generalization of our

Markov model to any n-chain Cliquechain as future work.

2 4 6 8 10 12 14

10
−4

10
−3

10
−2

10
−1

Length of fork

P
r
o
b
a
b
i
l
i
t
y

49% Adv

25% Adv

c=1

c=4

c= 60

Figure 11: This graph depicts the probability for an execu-
tion of GHOST to sustain a fork of a particular length for
various values of c and ρ. The three regions correspond to
this probability at settings of c = 1, c = 4, c = 60 where the
hardness for the proof of work is set such that a block is
expected to be mined in c∆ attempts. In each case, the top
solid line of a shaded region represents the probability for
a 49% adversary, whereas the bottom dashed line represents
the same for a 25% adversary.

It has been our experience that the simplest or most intuitive

model for an attack which we consider may not be solvable for all

analyses we are interested in. In Nakamoto’s protocol, the simple

one state model of the attack yields an asymptotic upper bound for

the effectiveness of the attack, but we need a more complex Markov

model in order to analyze the attack over short time periods. With

the Cliquechain attacks, the Markov models become more complex

as chains are added. We used our Markov models to provide an

asymptotic upper bound for the attack, but it is not yet clear what

model we need to perform a short-term analysis of the attack like

we do for Nakamoto’s protocol. With GHOST we see the opposite.

We have derived a recurrence relation for short-term fork length

distributions under the balance attack, but obtaining asymptotic

bounds under the attack is still open. We are pursuing ways to unify

our techniques and make our Markov-based method for analyzing

blockchain consistency more comprehensive.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments.

This research was supported in part by NSF grants CCF-1422715,

CCF-1535929, TWC-1646671, TWC-1664445, CNS-1616234 andCNS-

1409191.

REFERENCES
[1] M. Apostolaki, A. Zohar, and L. Vanbever. Hijacking bitcoin: Routing attacks on

cryptocurrencies. arXiv preprint arXiv:1605.07524, 2016.
[2] J. Chen and S. Micali. Algorand. https://arxiv.org/abs/1607.01341, 2016.

[3] H. Chernoff. A measure of the asymptotic efficiency for tests of a hypothesis

based on the sum of observations. Annals of Mathematical Statistics, 23:493–509,
1952.

[4] K.-M. Chung, H. Lam, Z. Liu, and M. Mitzenmacher. Chernoff-Hoeffding Bounds

for Markov Chains: Generalized and Simplified. In 29th International Symposium
on Theoretical Aspects of Computer Science (STACS 2012), pages 124–135, 2012.

15

[5] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network.

In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference on,
pages 1–10. IEEE, 2013.

[6] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable.

In International conference on financial cryptography and data security, pages
436–454. Springer, 2014.

[7] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol with

chains of variable difficulty. In Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part I, pages 291–323, 2017.

[8] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis

and applications. In EUROCRYPT (2), pages 281–310, 2018.
[9] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling

byzantine agreements for cryptocurrencies. In SOSP’17, 2017.
[10] W. Hoeffding. On the distribution of the number of successes in independent

trials. Annals of Mathematical Statistics, 27:713–721, 1956.
[11] A. Kiayias and G. Panagiotakos. Speed-security tradeoffs in blockchain protocols.

IACR Cryptology ePrint Archive, 2015:1019, 2015.
[12] A. Kiayias and G. Panagiotakos. On trees, chains and fast transactions in the

blockchain. IACR Cryptology ePrint Archive, 2016:545, 2016.
[13] Y. Lewenberg, Y. Sompolinsky, and A. Zohar. Inclusive block chain protocols.

In International Conference on Financial Cryptography and Data Security, pages

528–547. Springer, 2015.

[14] Q. Martino and Popejoy. Chainweb: A proof-of-work parallel-chain architecture

for massive throughput, May 2018.

[15] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, New York, NY,

USA, 2005.

[16] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[17] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchro-

nous networks. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 643–673. Springer, 2017.

[18] R. Pass and E. Shi. The sleepy model of consensus. In ASIACRYPT’2017, 2017.
[19] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. Spectre: A fast and scalable cryp-

tocurrency protocol. IACR Cryptology ePrint Archive, 2016:1159, 2016.
[20] Y. Sompolinsky and A. Zohar. Secure high-rate transaction processing in bitcoin.

In International Conference on Financial Cryptography and Data Security, pages
507–527. Springer, 2015.

[21] Y. Sompolinsky and A. Zohar. PHANTOM: A scalable blockdag protocol. Cryp-

tology ePrint Archive, Report 2018/104, 2018. https://eprint.iacr.org/2018/104.

[22] J. Zhao, J. Tang, Z. Li, H. Wang, K.-Y. Lam, and K. Xue. An analysis of blockchain

consistency in asynchronous networks: Deriving a neat bound. In 2020 IEEE
40th International Conference on Distributed Computing Systems (ICDCS), pages
179–189. IEEE, 2020.

16

https://eprint.iacr.org/2018/104

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 The Model
	3 A Simple Markov Framework for Analyzing Blockchain Protocols
	4 Nakamoto Analysis
	4.1 Chain Growth, Block Expiry, Consistency
	4.2 Counting Convergence Opportunities Using Markov Chains
	4.3 An Improved Analysis of Convergence Opportunities
	4.4 Nakamoto Consensus Attack

	5 Cliquechain Analysis
	5.1 The Model
	5.2 Block Expiry
	5.3 Convergence Opportunities
	5.4 Cliquechain Consensus Attacks

	6 GHOST Analysis
	6.1 Review of GHOST protocol
	6.2 Subtree Expiring
	6.3 Convergence Opportunity
	6.4 GHOST Consensus Attacks

	7 Limitations and Future Work
	References

