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Abstract—Blockchain and distributed ledger technologies have
emerged as one of the most revolutionary distributed systems,
with the goal of eliminating centralised intermediaries and
installing distributed trusted services. They facilitate trustworthy
trades and exchanges over the Internet, power cryptocurrencies,
ensure transparency for documents, and much more. Committee
based-blockchains are considered today as a viable alternative
to the original proof-of-work paradigm, since they offer strong
consistency and are energy efficient. One of the most popular
committee based-blockchain is Tendermint used as core by
several popular blockchains such Tezos, Binance Smart Chain
or Cosmos. Interestingly, Tendermint as many other committee
based-blockchains is designed to tolerate one third of Byzantine
nodes. In this paper we propose TenderTee, an enhanced version
of Tendermint, able to tolerate one half of Byzantine nodes. The
resilience improvement is due to the use of a trusted abstraction,
a light version of attested append-only memory, which makes
the protocol immune to equivocation (i.e behavior of a faulty
node when it sends different faulty messages to different nodes).
Furthermore, we prove the correctness of TenderTee for both
one-shot and repeated consensus specifications.

Index Terms—Blockchain, Tendermint, Trusted Abstraction

I. INTRODUCTION

A blockchain is a distributed ledger that mimics the
functioning of a classical traditional ledger (i.e., trans-
parency and falsification-proof of documentation) in an un-
trusted environment where the computation is distributed. In
blockchain systems, nodes (a.k.a miners) maintain a replica of
a continuously-growing list of ordered blocks that include one
or more transactions that have been verified by the members
of the system. Blocks are linked using cryptography and the
order and the content of newly-added blocks is the outcome
of a distributed agreement algorithm among the nodes.

First examples of blockchains (Bitcoin [24] and Ethereum
[9]) use the proof-of-work paradigm. That is, nodes have to
solve a cryptographical puzzle in order to be allowed to pro-
duce a new block. The difficulty of this puzzle is high enough
such as with high probability only one block is generated at
a specific time. Once produced, the new block is diffused in
the network and each correct node adds the newly produced
block to its local ledger. Proof-of-Work blockchains have
two main drawbacks. Firstly, they present a huge electrical
consumption. Secondly, they potentially allow the creation of
forks which can be a major issue for using blockchain in
industrial applications requiring strong consistency.

These problems motivated the emergence of new
blockchains (e.g. Solidus [2], Byzcoin [20], PeerCensus
[16], Hyperledger [5], RedBelly [15], Tendermint [8],[3],[4],
Hot-Stuff [1], Tenderbake [6] etc) using the consensus
paradigm, a necessary building block in order to ensure
blocks linearizability.

Consensus introduced by Shostak, Pease and Lamport [22],
is one of the fundamental problems in the area of fault-tolerant
distributed computing. In the consensus problem, n nodes
attempt to reach agreement on a value, despite the malicious
behavior of up to t of them. One of the measures of the
quality of a consensus protocol is its resiliency: the fraction
of faulty parties the protocol can tolerate. Since the proof of
the resilience bound of one third for the Byzantine consensus
[22] in environments with no authentication, proved later even
for models with local authentication [7] research struggled to
increase the consensus resilience.

One recent direction is the use of a trusted environment that
provides a simple and limited set of trusted services. In this
line of research, Correia et al. introduces TTCB wormhole
in [13], [14] a distributed component with local parts (local
TTCBs) in nodes and its own bounded secure communication
channel (i.e. a channel that cannot be affected by malicious
faults where all operations have a bounded delay). By using
this wormhole, the authors proved that BFT can support a
fraction of half Byzantine nodes. Although this method allows
to increase fault tolerance, the trusted part remains too wide
and makes practical implementation too difficult to set up.

The practicality of the implementations motivated Chun et
al. to propose Attested Append-Only Memory (A2M) [11],
a trusted system that removes to the faulty nodes the ability
to equivocate (i.e a faulty node may send different messages
to different nodes). An A2M equips a node with a set of
trusted ordered append-only logs that provide an attestation
for each entry. Furthermore, they propose PBFT-EA a modified
PBFT [10] that uses A2M for each message exchanged, the
message is append to a log and the attestation produced is sent
with the message. The use of this abstraction increases the
resilience to half. Compared to TTCB that requires a secure
and synchronous communication channel, A2M requires no
stronger assumptions on network than PBFT.

An alternative to this is the use of a monotonic counter
implemented in a tamperproof module. Levin et al. propose
TrInc ([23]), a trusted monotonic counter that deals with equiv-



ocation in large distributed systems by providing a primitive:
once-in-a-lifetime attestations. They also prove that TrInc can
implement A2M. Monotonic trusted counter is further used
by Veronese et al. in [25]. They propose USIG (Unique
Sequential Identifier Generator) a local service available in
each node that signs a message and assigns it the value of
a counter. The counter verifies uniqueness (never assign the
same identifier to two different messages), monotonicity (never
assign an identifier that is lower than a previous identifier)
and sequentiality (never assign an identifier that is not the
successor of the last assigned identifier). This service has to
be implemented in a tamperproof module.

Another line of research combines speculative methods and
trusted environments (e.g. CheapBFT [19] and ReBFT [17]).
In normal execution case (when there are no Byzantine nodes),
f+1 nodes are enough to guarantee the agreement. In case of
detected or suspected Byzantine nodes the protocol switches to
a PBFT inspired protocol with trusted hardware and activates
f extra passive replicas. Although interesting, the integration
of these methods in blockchains environments may generate
transient forks.

Interestingly, in the context of blockchains, the use of
trusted environments in order to increase the resilience is very
recent. The first use of it was proposed in [26]. The authors
enhance Hot-Stuff blockchain in order to tolerate a minority
of corruptions.

1) Our contribution: Continuing the line of research pro-
posed in [26] we enhance Tendermint [21], [3],[4] with a light
version of the trusted abstraction attested append-only memory
introduced in [11]. The use of this abstraction makes our
protocol, TenderTee, immune to equivocation (i.e behavior of a
faulty node when it sends different faulty messages to different
nodes). TenderTee enjoys one half Byzantine resilience for
both one-shot and repeated consensus. It should be noted
that our work is the first to study repeated consensus in
trusted environments. Beside the theoretical advancement our
work has a strong practical impact since the most important
drawback of the industrialization of the current versions of
Tendermint suffer from their resilience limitations.

II. SYSTEM MODEL

We consider a blockchain system with an infinite set of
nodes which can be
• Obedient (correct): Nodes that always follow the proto-

col.
• Byzantine: Nodes that can deviate arbitrarily from the

protocol.
In order to guarantee the linearizability of the blockchain

nodes repeatedly execute one-shot consensus instances. We
consider that in each consensus instance participate a finite
subset of nodes (called committee members) of size n = 2f+1
out of which at most f are Byzantine. The way the committees
are chosen is currently a hot topic in blockchain area but is
out of scope of the current work.

In the following, we assume the presence of a reliable
byzantine broadcast. Nodes communicate by exchanging mes-

sages through an eventually synchronous network. Eventually
Synchronous means that after a finite unknown time τ there is
an a priori unknown bound δ on the message transfer delay. We
do not consider asynchronous communication systems since
it is impossible to solve consensus in asynchronous systems
when there is at least one failure [18].

We assume that a lightweight Attested Append-Only Mem-
ory (A2M) equips each node with a set of trusted ordered
append-only logs. Each log has an identifier q and offers
methods to append values and access it. There is no method
to replace old value, once a value is added to log it can’t
be replaced. We only present the methods used is the current
paper, for a complete specification of A2M, see [11]. In A2M
original specification, A2M stores only a suffix of the log,
starting from ”low” position L to last ”high” position H,
H >= L. For simplicity, in the sequel we omit L and consider
infinite logs.

Our lightweight A2M abstraction offers the following meth-
ods to write and read values in log q:

• append(q, x) takes a value x, appends it to the log q
and returns an attestation attx. Increments the sequence
number by 1, fills last log entry with x and computes
the cumulative digest dH . This method does not erase
old value, if the log is unable to allocate storage to new
entry, the method fails.

• lookup(q, n, z) takes log identifier q, a sequence number
n and a nonce z and returns a LOOKUP attestation.

• end(q, z) is similar to lookup but returns the last entry
of the given log. We do not use z parameter (z will be
set to n).

• advance(q, n, d, x) is similar to append but allows to
skip ahead by multiple sequence numbers. It takes a
sequence number n > H , and write a new entry in
position n if n > H

Although the use of A2M abstraction makes protocols
immune to equivocation, Clement et al. show in [12] that non-
equivocation is not enough to provide a one half resilience
and that is mandatory to add transferable authentication of
messages. (i.e digital signatures). Therefore, we further assume
that digital signatures are unforgeable, hash function is safe.
Moreover, we consider that each node has a private key and a
public key. We also assume a Public Key Infrastructure (PKI)
and that each node is identified by it’s A2M public key.

III. CONSENSUS AND REPEATED CONSENSUS PROBLEMS

The repeated production of blocks in committee based
blockchains can be viewed as a repeated consensus problem.
At each height of the blockchain exactly one block is decided
and added via a one-shot consensus specified below. The
traditional specification has been modified using the validity
borrowed from [15] in order to meet the requirements in
blockchain systems. That is, a new block is added to the
blockchain only if it does not contain transactions that conflict
with existing transactions in the blockchain.



Definition 1 (One-Shot Consensus). We say that an algorithm
implements One-Shot Consensus if and only if it satisfies the
following properties:
• Termination. Every correct process eventually decides

some value.
• Integrity. No correct process decides twice.
• Agreement. If there is a correct process that decides a

value B, then eventually all the correct processes decide
B.

• Validity[15]. A decided value is valid, it satisfies the
predefined predicate denoted isValid().

The one-shot consensus is needed to agree on the next block
that will be appended to the current blockchain. However, a
blockchain is a list of blocks cryptographically linked and in
order to ensure that nodes agree on the same view of the
blockchain an additional abstraction is needed. To this end, we
will use the generalisation of the repeated consensus resilient
to Byzantine failures introduced in [3]. Each obedient (correct)
node outputs an infinite sequence of decisions, each decision
corresponding to a block in the blockchain analogy. We call
the sequence of decisions the output of the node.

Definition 2 (Repeated Consensus). An algorithm implements
a Byzantine repeated consensus if and only if it satisfies the
following properties:
• brc-Termination. Every obedient node has an infinite

output;
• brc-Agreement. If the ith value of the output of an

obedient node is B, and the ith value of the output of
another obedient node is B′, then B = B′;

• brc-Validity. Each value in the output of any obedient
node is valid; it satisfies a predefined predicate.

If an algorithm implements the repeated consensus then
each obedient node will have an infinite sequence of decisions
(blocks); any two obedient nodes will have the exact same
sequence (the same blockchain), and all blocks in the sequence
will be valid with respect to the application dependant predi-
cate.

In the following we propose and prove correct one-shot
and repeated consensus TenderTee protocols that improve the
resilience of Tendermint protocols proposed in [3] by using
the lightweight A2M abstraction.

IV. TENDERTEE DESCRIPTION

1) General idea: We present algorithms 1, 2, 3 and 4 that
solve one-shot consensus in an eventually synchronous model
in presence of Byzantine faulty nodes. We integrate A2M to
Tendermint algorithms proposed in [4] in order to increase the
protocol resilience.

Each block is characterised by its height h which is the
distance in terms of blocks from the genesis block (height 0).
For each new height, algorithms 3 and 4 proceeds in epochs,
and each epoch e consists in three rounds : PRE-PROPOSE,
PROPOSE and VOTE. During the PRE-PROPOSE round, the
proposer pre-proposes a value v to all validators. During the

PROPOSE round, if a validator accepts v then it proposes
such value. If a validator receives enough proposals for the
same value v then it votes for v during the VOTE round.
Finally, if a validator receives enough votes for v, it decides
on v. In this case, enough means at least f + 1 occurences
of the same value from f + 1 different validators and from
each validator only the first value delivered for each round is
considered. If the proposer is correct then it pre-proposes the
same value to all the f + 1 correct validators. All the f + 1
correct validators propose such value, it follows that all the
f + 1 correct validators vote for such value and decide for
it. If the proposer is Byzantine, once it pre-proposes a value
v, it can’t propose a different value v′ for the same round
(see Lemma 4). Each slot in A2M’s log is associated with a
protocol step. So every process can write only one value for
each protocol step (for a given epoch) because each message
exchange is associated with an attestation produced by A2M
(otherwise the message will be rejected).

Each message in the protocol is sent through A2M-
Broadcast (Algorithm 2, see figure 1). A node adds its message
in his A2M’s log that corresponds to the protocol round
(PRE-PROPOSE, PROPOSE or VOTE), and broadcasts it with
the attestation produced when call A2M’s log interface (with
an advance call - see Lines 16, 17 and 18 of Figure 3).
Each message received is verified through Algorithm 1 that
verifies that the attestation is valid (see Figure 2). To simplify
algorithms presentation, we omit attestation verification in
Algorithms 3 and 4 (as it is done by Algorithm 1 for each
message received).

2) Detailed description: Algorithms 3 and 4 proceed in 3
rounds for a given epoch e at height h. Each protocol message
(pre-propose, propose or vote) is sending through A2M-
Broadcast (Algorithm 2) which appends the message value
to the A2M’s log that correspond to the protocol phase and
sends the message with the corresponding A2M’s attestation
produce by the advance call.

We define a SizeEpoch parameter, for each height h, epoch
ei is set to 0. For each (unsuccessful) try of propose a value,
epoch ei is incremented up to a maximum value equal to
2SizeEpoch − 1. We suppose that SizeEpoch is large enough
and that ei never reaches its maximum.
Logs position: For each new height h, each log position is set
to height× SizeEpoch via and advance call.

• Round PRE-PROPOSE : If the validator pi is the pro-
poser of the epoch, it pre-proposes its proposal value,
otherwise, it waits for the proposal from the proposer.
The proposal value of the proposer is its validV aluei if
validV aluei. If a validator pj delivers the pre-proposal
from the proposer of the epoch, pj checks the validity of
the pre-proposal and that A2M’s attestation is valid and if
both conditions are verified, he accepts it with respect to
the values in validV aluei, lockedV aluei, validEpochj

and lockedEpochi. If the pre-proposal is accepted and
valid, pj sets its proposal proposalj to the pre-proposal,
otherwise it sets it to nil.



Algorithm 1 Secure messages management for node i

1: upon reception of ⟨TYPE, h, e, message, attmessage,j⟩ from node j do
2: if ∄c : (⟨TYPE, h, e, c⟩, j) ∈ messagesSet

∧verify(attmessage,j ,message, pubKeyj) then
3: /* We suppose the existence of a function verify that takes an attestation, a

message and a pubKey and return true is attestation is valid for message and
is produce by j’s A2M */

4: messagesSet← messagesSet ∪ (⟨TYPE, h, e, message⟩, j)

Fig. 1. Send message

• Round PROPOSE : During the PROPOSE round, each
validator broadcasts (through A2M-Broadcast primitive)
its proposal, and collects the proposals sent by other
validators (only the one that have a valid A2M log’s
attestation). After the Delivery phase, validator pi has
a set of proposals, and checks if v, pre-proposed by
the proposer, was proposed by at least f + 1 different
validators, if it is the case, and the value is valid, then
pi sets votei, validV aluei and lockedV aluei to v and
updates lockedEpochi to the current epoch ei, otherwise
it sets votei to nil.

• Round VOTE : In the round VOTE, a correct validator
pi votes votei and broadcasts (using A2M-Broadcast
primitive) all the proposals it delivered during the current
epoch. Then pi collects all the message that were broad-
cast. First pi checks if it has delivered at least f + 1 of
proposal for a value v′ pre-proposed by the proposer of
the epoch, in that case, it sets validV aluei, to that value
then it checks if a value v′ pre-proposed by the proposer
of the current epoch is valid and has at least f+1 votes, if
it is the case, then pi decides v′ and goes to next height;
otherwise it increases the epoch number and updates the
value of proposali, with respect to validV aluei.

Algorithm 2 A2M-Broadcast
1: A2M-Broadcast(round,height, epoch,log,message, validEpoch) :

2: broadcast
⟨round, height, epoch,message, validEpoch, advance(log, height×
SizeEpoch + epoch, digest,message)⟩

V. CORRECTNESS OF TENDERTEE IN EVENTUAL
SYNCHRONOUS SETTING

In this section, we prove the correctness of TenderTee
(Algorithms 3 & 4) in an eventually synchronous system. We

Fig. 2. Receive message

Algorithm 3 (part 1) Eventual Synchronous TenderTee for
height h executed by i

1: /* There is 3 A2M’s log available for i : logPreproposei, logProposei and
logV otei */

2: Initialisation:
3: ei := 0 /* Current epoch number */
4: decisioni := nil /* Store the decision of the committee member i */
5: lockedValuei := nil; validValuei := nil
6: lockedEpochi := −1; validEpochi := −1
7: proposali := getValue() /* Store the value the committee member will

(pre-)propose */
8: vi := nil /* Local variable stocking the pre-proposal if delivered */
9: validEpochj := nil /* Local variable stocking the proposer’s validEpoch */
10: votei := nil /* Store the value the committee member will vote for */
11: timeoutPrePropose := ∆Pre-propose; timeoutPropose := ∆Propose;

timeoutVote := ∆Vote

12: Round PRE-PROPOSE :
13: Send phase:
14: if decisioni ̸= nil then
15: ∀v, j : (⟨VOTE, h, ei, v⟩, j) ∈

messagesSeti, broadcast⟨VOTE, h, ei, v⟩
16: return
17: if proposer(h, ei) = i then
18: A2M-Broadcast(PRE −

PROPOSE, h, ei, logPrepropose, proposali, validEpochi)
/* Call to trusted hardware, z is a nonce, end return a Lookup attestation :
⟨LOOKUP, logPreproposei, n, z, proposali, w, n′, d⟩ */

19: Delivery phase:
20: set timerPrePropose to timeoutPrePropose
21: while (timerPrePropose not expired)

∧¬(∃vj , ej : sentByProposer(h, ei, vj , ej)) do
22: if ∃vj , ej : sentByProposer(h, ei, vj , ej)) then
23: vi ← vj /* vj is the value sent by the proposer */
24: validEpochj ← ej /* ej is the validEpoch sent by the proposer */
25: if ¬(∃v, epochProp : sentByProposer(h, ei, v, epochProp)) then
26: timeoutPrePropose← timeoutPrePropose+ 1
27: Compute phase:
28: if f+1(⟨PROPOSE, h, validEpochj , vi⟩)

∧ validEpochj ≥ lockedEpochi
∧ validEpochj < ei
∧isValid(vi)
then

29: proposali ← vi
30: else
31: if ¬isValid(vi)

∨(lockedEpochi > validEpochj ∧ lockedValuei ̸= vi) then
32: proposali ← nil /* Note that isValid(nil) is set to false */
33: if isValid(vi) ∧ (lockedEpochi = −1 ∨ lockedValuei = vi) then
34: proposali ← vi

suppose that n = 2f+1 and that each protocol’s message sent
by a node i is sent with an A2M attestation < attm,i,m >.

Lemma 1 (Validity). In an eventually synchronous system,
TenderTee verifies the following property: A decided value
satisfies the predefined predicate denoted as isValid().

Proof. The proof follows by construction. When an obedient



Algorithm 4 (part 2) Eventual Synchronous TenderTee for
height h executed by i

1: Round PROPOSE :
2: Send phase:
3: if proposali ̸= nil then
4: A2M-Broadcast(PROPOSE, h, ei, logPropose, proposali,

validEpochi)
5: else
6: A2M-Broadcast(PROPOSE, h, ei, logPropose,HeartBeat,

validEpochi)
7: Delivery phase:
8: set timerPropose to timeoutPropose
9: while (timerPropose not expires)

∧¬f+1(⟨(HeartBeat,PROPOSE)|PROPOSE, h, ei⟩) do{} /* Note that
the HeartBeat messages should be from different committee members */

10: if ¬f+1(⟨(HeartBeat,PROPOSE)|PROPOSE, h, ei⟩) then
11: timeoutPropose← timeoutPropose+ 1
12: Compute phase:
13: if ∃v′ : f+1(⟨PROPOSE, h, ei, v

′⟩)
∧isValid(v′)
∧sentByProposer(h, ei, v′) then

14: lockedValuei ← v′

15: lockedEpochi ← ei
16: validValuei ← v′

17: validEpochi ← ei
18: votei ← v′

19: else
20: votei ← nil

21: Round VOTE :
22: Send phase:
23: if votei ̸= nil then
24: A2M-Broadcast(V OTE, h, ei, logV ote, votei, validEpochi)
25: else
26:

A2M-Broadcast(V OTE, h, ei, logV ote,HeartBeat, validEpochi)

27: Delivery phase:
28: set timerVote to timeoutVote
29: while (timerVote not expires)

∧¬f+1(⟨(HeartBeat,VOTE)|VOTE, h, ei⟩) do{}
30: if ¬f+1(⟨(HeartBeat,VOTE)|VOTE, h, ei⟩) then
31: timeoutVote← timeoutVote+ 1
32: Compute phase:
33: if ∃v′′ : f+1(⟨PROPOSE, h, ei, v

′′⟩) ∧ isValid(v′′) ∧
sentByProposer(h, ei, v

′′) then
34: validValuei ← v′′

35: validEpochi ← ei
36: if ∃vd, ed : f+1(⟨VOTE, h, ed, vd⟩)

∧isValid(vd)
∧decisioni = nil then

37: decisioni ← vd
38: else
39: ei ← ei + 1
40: vi ← nil
41: if validValuei ̸= nil then
42: proposali ← validValuei
43: else
44: proposali ← getValue()

committee member decides a value (Line 37 of Algorithm 4),
it checks before if that value is valid (Line 36 of Algorithm
4). Therefore, an obedient committee member only decides a
valid value.

Lemma 2 (Integrity). In an eventually synchronous system,
TenderTee verifies the following property: No obedient com-
mittee member decides twice.

Proof. The proof follows by construction. Before deciding
(Lines 36 - 37), an obedient committee member i checks if
there is not already a value decided (decisioni = nil) for
the current height (i .e. line 36). If there is already a value

decided (decisioni ̸= nil), there is no decision (Lines 38 -
44). No obedient committee member decides twice. Moreover,
note that an obedient committee member exits the algorithm,
the epoch after it has decide (Line 14 of Algorithm 3).

Lemma 3. In an eventually synchronous system, TenderTee
verifies the following property: An obedient committee mem-
ber proposes and votes only once per epoch.

Proof. We prove this lemma by construction. In Algorithm 4,
an obedient committee member proposes (Line 4) and votes
only once during the corresponding round (Line 24 or Line
26). At the end of the VOTE round, a committee member
changes epoch (Line 39). Therefore, it cannot propose nor
vote for that epoch any more.

Lemma 4. Processes propose and vote at most once per epoch.

Proof. A process cannot produce two different logs for the
same step as sequence number is monotonic and each height
in logPrepropose (respectively logPropose or logVote) is as-
sociated with a round and an epoch.

Lemma 5. In an eventually synchronous system, TenderTee
verifies the following property: At most one value can be
proposed by at least f + 1 committee members per epoch,
and at most one value can be voted at least f + 1 times per
epoch.

Proof. We prove this lemma by contradiction. Let v, v′ such
that v ̸= v′. Since there are 2f +1 committee members in the
system, if v or v′ gets at least f +1 proposals (resp. votes), it
means that at least 1 committee members propose (resp. vote)
for both v and v′ which contradicts Lemma 4

Lemma 6. Let v be a value, e an epoch, and the set Lv,e =
{i : i obedient ∧ lockedValuei = v ∧ lockedEpochi = e at
the end of epoch e}. In an eventually synchronous system,
TenderTee verifies the following property: If |Lv,e| ≥ 1 then
no obedient committee member i will have lockedValuei ̸=
v ∧ lockedEpochi ≥ e, at the end of each epoch e′ > e;
moreover, a committee member in Lv,e only proposes v or nil
for each epoch e′ > e.

Proof. Let v be a value, e an epoch, and Lv,e = {i :
i obedient ∧ lockedValuei = v ∧ lockedEpochi = e at the end
of epoch e}, we assume that |Lv,e| ≥ 1. We prove the theorem
by induction:
• Initialisation: At the end of epoch e, by assumption, we

have that |Lv,e| ≥ 1. There is an obedient committee
member in that set, say i (i ∈ Lv,e). It means that i
updates lockedValuei to v during epoch e, therefore i
delivered f+1 proposals for the value v (Lines 13 - 15 of
Algorithm 4). By Lemma 5, at most one value can have
at least f+1 proposals during epoch e, and since v has at
least f + 1 proposals, no obedient committee member j
can update lockedValuej to a value v′ ̸= v during epoch
e. At the end of e, lockedValuej ̸= v∨ lockedEpochj < e.

• Induction: Let a ≥ 1, we assume that ∀i ∈ Lv,e,
lockedValuei = v at the end of each epoch between e



and e+ a, we also assume that if a value was proposed
at least f + 1 times during these epochs it was either v
or nil. We prove that at the end of epoch e + a + 1, no
obedient committee member j will have lockedValuej =
v′ ∧ lockedEpochj = e+ a+ 1 with v′ ̸= v.
Let i ∈ Lv,e such that i delivers a pre-proposal for v,
then i will set proposali to v; it will propose v since
lockedValuei = v (Lines 28 - 34 of Algorithm 3 & Line
4 of Algorithm 4), in any other case, if i does not deliver
a pre-proposal, or delivers a pre-proposal for a value v′ ̸=
v, it will set proposali to nil and will propose nil (Lines
28 - 34 of Algorithm 3 & Line 4 of Algorithm 4), since
isValid(nil) = false and by assumption, there is
no e′ ∈ {e, . . . , e + a} where there were at least f +
1 proposals for a value v′ ̸= v, and lockedEpochi ≥
e. All committee members in Lv,e will then propose v
or nil during epoch e + a + 1. By Lemma 3, obedient
committee members only propose once per epoch, at least
f + 1 committee members (the ones in Lv,e) propose v
or nil; since messages cannot be forged, the only values
that can get at least f + 1 proposals for the epoch e +
a+ 1 are v and nil. If an obedient committee member j
delivers at least f+1 proposals for v, it sets lockedValuej
to v and lockedEpochj to e + a + 1 (Lines 13 - 15 of
Algorithm 4); otherwise, it does not change lockedValuej
nor lockedEpochj (Line 20 of Algorithm 4). At the end of
epoch e+ a+1, there is no obedient committee member
j such that lockedValuej ̸= v∧ lockedEpochj = e+a+1.
Moreover, committee members in Lv,e, only propose v
or nil during epoch e+ a+ 1.

We proved that if |Lv,e| ≥ 1, no obedient committee member
i will have lockedValuei ̸= v ∧ lockedEpochi ≥ e; moreover
a committee member in Lv,e only proposes v or nil for each
epoch e′ > e.

Lemma 7 (Agreement). In an eventually synchronous system,
TenderTee verifies the following property: If there is an obedi-
ent committee member that decides a value v, then eventually
all the obedient committee members decide v.

Proof. Let i be an obedient committee member. Without loss
of generality, assume that i is the first obedient committee
member that decides, and assume that it decides value v during
epoch e. At time t where i decided, no other node has decided,
even those having a bigger epoch number. To decide, i deliv-
ered at least f+1 votes for v for epoch e. Since there are less
than f Byzantine committee members, and by Lemma 3 obe-
dient committee members can only vote once per epoch, so at
least 1 obedient committee members voted for v during epoch
e, so we have |Lv,e| = |{j : j obedient ∧ lockedValuej =
v ∧ lockedEpochj = e at the end of epoch e}| ≥ 1. By
Lemma 6 a committee member in Lv,e only proposes v or
nil during each epoch after e, and no obedient committee
member j will have lockedValuei ̸= v ∧ lockedEpochi ≥ e.
Thanks to the broadcast guarantees (brb-Termination-1), all
obedient committee members will eventually deliver the f +1

votes for v from epoch e; since when an obedient committee
member decides, it sends back all votes it delivered than makes
it decided (Line 14 of Algorithm 3).

If an obedient committee member j does not decide before
delivering these votes, when eventually it delivers them, it will
decide v (Lines 36 - 37 of Algorithm 4). Otherwise, it means
that j decides before delivering the votes from epoch e.

By contradiction, we assume that j decides a value v′ ̸= v
during an epoch e′ > e, so j delivered at least f + 1 votes
for v′ during epoch e′ (Lines 36 - 37 of Algorithm 4). Since
an obedient committee member only votes once by Lemma
3, there are less than f Byzantine committee members and
the messages are unforgeable, at least 1 obedient committee
members voted for v′ during epoch e′.

An obedient committee member votes a non-nil value if that
value was proposed at least f + 1 times during the current
epoch (Lines 13 - 26 of Algorithm 4). By Lemma 4 processes
proposes at most once, there are less than f Byzantine
committee members and the messages are unforgeable, so at
least 1 obedient committee members proposed v′ during e′.
Since e′ > e and |Lv,e| ≥ 1, by Lemma 6 there are at least
1 obedient committee members that proposed v or nil during
epoch e′. Even if all the f committee members remaining
proposes v′, there cannot be f+1 proposals for v′, which is a
contradiction. So j cannot decide v′ ̸= v after epoch e and we
assume that e is the first epoch where an obedient committee
member decides.

Lemma 8. In an eventually synchronous system, if there is
an epoch after which when an obedient committee member
broadcasts a message during a round, it is delivered by all
obedient committee members during the same round, Tender-
Tee verifies the following property: If an obedient committee
member i updates lockedValuei to a value v during epoch e,
then at the end of the epoch e, all obedient committee members
have validValue = v and validEpoch = e.

Proof. We prove this lemma by construction.
Let e be the epoch after which when an obedient committee

member broadcasts a message during a round r, it is delivered
by all obedient committee members during the same round
r. Let i be an obedient committee member, we assume that
at the end of epoch e′ ≥ e, i has lockedValuei = v and
lockedEpochi = e′, it means that i delivered at least f + 1
proposals for v during epoch e′ (Lines 13 - 15 of Algorithm
4). Thanks to the reliable broadcast guarantees, and since all
messages are propagated,all obedient committee members will
deliver these proposals for v, in the worst-case in the VOTE
round. Let j be an obedient committee member since j will
deliver at least f + 1 proposals for v and epoch e′ during the
VOTE round, it will set validValuej = v and validEpochj = e′

(Lines 33 - 35 of Algorithm 4).

Lemma 9 (Termination). In an eventually synchronous sys-
tem, TenderTee verifies the following property: Every obedient
committee member eventually decides some value.



Proof. By construction, if an obedient committee member
does not deliver more than f + 1 messages (or 1 from the
proposer in the PRE-PROPOSE round) from different com-
mittee members during the corresponding round, it increases
the duration of its round, so eventually during the synchronous
period of the system all the obedient committee members will
deliver the pre-proposals, proposals and votes from obedient
committee members respectively during the PRE-PROPOSE,
PROPOSE and the VOTE round; and messages delivered by
an obedient committee member will be delivered by the others
at most in the following round. Let e be the first epoch after
that time.

If an obedient committee member decides before e, by
Lemma 7 all obedient committee members eventually decide,
which ends the proof. Otherwise, at the beginning of epoch
e, no obedient committee member decides yet. Let i be the
proposer of epoch e. First, we assume that i is obedient and
pre-propose v; v is valid since getValue() always return a
valid value (Line 7 of Algorithm 3 & Line 44 of Algorithm 4),
and validValuei is always valid (Lines 13 & 33 of Algorithm
4). We have 2 cases:

• Case 1: At the beginning of epoch e, |{j : j obedient ∧
(lockedEpochj ≤ validEpochi ∨ lockedValuej = v)}| ≥
f + 1.
Let j be an obedient committee member where the con-
dition lockedEpochj ≤ validEpochi∨ lockedValuej = v
holds. After the delivery of the pre-proposal v from i, j
will update proposalj to v (Lines 28 - 34 of Algorithm
3). During the PROPOSE round, j proposes v (Line 4
of Algorithm 4), since there are at least f + 1 similar
obedient committee members (included j), they will all
propose v, and all obedient committee members will
deliver at least f+1 proposals for v (Line 8 of Algorithm
4).
Obedient committee members will set their variable vote
to v (Lines 13 - 4 of Algorithm 4), then will vote v,
and they will deliver all the votes (at least f + 1) from
this epoch (Lines 24, 26 & 27 of Algorithm 4). Since
we assume that no obedient committee members decided
yet, and since they each deliver at least f + 1 votes for
v, they will decide v (Lines 36 - 37 of Algorithm 4).

• Case 2: At the beginning of epoch e, |{j : j obedient ∧
(lockedEpochj ≤ validEpochi ∨ lockedValuej = v)}| <
f + 1.
Let j be an obedient committee member where the con-
dition lockedEpochj > validEpochi∧ lockedValuej ̸= v
holds. When i will make the pre-proposal, j will set
proposalj to nil (Line 32 of Algorithm 3) and will
propose nil (Line 4 of Algorithm 4).
By counting only the proposed values of the obedient
committee members, no value will have at least f + 1
proposals for v. There are two cases:

– No obedient committee member delivers at least f +1
proposals for v during the PROPOSE round, so they
will all set their variable vote to nil, then they will vote

nil and go to the next epoch without changing their
state (Lines 20 & 24 - 27 & 38 - 44 of Algorithm 4).

– If some obedient committee members delivers at least
f+1 proposals for v during the PROPOSE round, i.e.,
some Byzantine committee members send proposals
for v to those committee members.
As in the previous case, they will vote for v, and since
there are f +1 of them, all obedient committee mem-
bers will decide v. Otherwise, there are less than f+1
obedient committee members that deliver at least f+1
proposals for v. Only them will vote for v (Line 24
or 26 of Algorithm 4). Without Byzantine committee
members, there will be less than f +1 votes for v, no
obedient committee member will decide (Lines 36 -
37 of Algorithm 4) and they will go to the next epoch;
if Byzantine committee members send votes for v to
an obedient committee member such that it delivers
at least f + 1 votes for v during VOTE round, then
the obedient committee member will decide (Lines 36
- 37 of Algorithm 4), and by Lemma 7 all obedient
committee members will eventually decide.
Let k be one of the obedient committee members that
delivers at least f + 1 proposals for v during the
PROPOSE round, it means that lockedValuek = v and
lockedEpochk = e. It follows by Lemma 8 that at the
end of epoch e, all obedient committee members will
have validValue = v and validEpoch = e.

If there is no decision, either no obedient committee
member changes its state, or all obedient committee
members change their state and have the same validValue
and validEpoch; therefore, eventually a proposer of an
epoch will satisfy Case 1, and that ends the proof.

If i, the proposer of epoch e, is Byzantine and more than
f+1 obedient committee members delivered the same message
during PRE-PROPOSE round, and the pre-proposal is valid,
the situation is like i was obedient. Otherwise, there are not
enough obedient committee members that delivered the pre-
proposal, or if the pre-proposal is not valid, then there will be
less than f+1 obedient committee members that will propose
that value, which is similar to the case 2.

Since proposers are selected in a round-robin fashion, an
obedient committee member will eventually be the proposer,
and obedient committee members will decide.

Theorem 10. In an eventually synchronous system, TenderTee
implements the one-shot consensus specification.

Proof. The proof follows directly from Lemmas 1, 2, 7 and
9. By Lemma 1, we show that TenderTee satisfies Validity, by
Lemma 7, we show that TenderTee satisfies Agreement, and
by Lemma 9, we show that TenderTee satisfies Termination.

VI. TENDERTEE REPEATED CONSENSUS ALGORITHM

We now present the repeated consensus module of Tender-
Tee.



Function TenderTee-Repeated-Consensus(Π);
%Repeated consensus for the set Π of nodes%

Init:
(1) h← 1 %Height%; B ← ⊥; C ← ⊥ %Set of committee members%;
(2) commitsReceivedhi ← ∅; toRewardhi ← ∅; TimeOutCommit← ∆Commit;
—————————————————————————————————————

while (true) do
(3) B ← ⊥;
(4) C ← committeeMembers(h); %Application and blockchain dependant%
(5) if (i ∈ V ) then
(6) B ← TenderTee-consensus(h, V, toRewardh−1

i );
(7) % Consensus A2M function for the height h%
(8) trigger A2M-broadcast ⟨COMMIT, (B, h)i, atti⟩;
(9) else
(10) wait until (∃B′ : |MoreThanHalf(B′, commitsReceivedhi )|); %Wait f+1 (verified)

commits for the same block%
(11) B ← B′;
(12) endif
(13) set timerCommit to TimeOutCommit;
(14) wait until(timerCommit expired);
(15) trigger decide(B);
(16) advance(logPrepropose, h*SizeEpoch - 1, digest, 0);
(17) advance(logPropose, h*SizeEpoch - 1, digest, 0);
(18) advance(logVote, h*SizeEpoch - 1, digest, 0);
(19) %Update log h%
(20) h← h + 1;

endwhile
—————————————————————————————————————

upon event delivery ⟨COMMIT, (B′, h′)j , attj⟩:
(21) if ((B′, h′)j /∈ commitsReceivedh

′
i ) ∧ (j ∈ committeeMembers(h′))

∧verify(COMMIT, (B’,h’)j , attj , pkj )) then
(22) commitsReceivedh

′
i ← commitsReceivedh

′
i ∪ (B′, h′)j ;

(23) toRewardh
′

i ← toRewardh
′

i ∪ j;
(24) trigger A2M-broadcast ⟨COMMIT, (B′, h′)j , attj⟩;
(25) endif

Fig. 3. TenderTee Repeated Consensus algorithm for Obedient node i.

a) Detailed description of the algorithm: We describe in
Figure 3 the Tendermint algorithm for the repeated consensus
(Definition 2). Each message is sent through A2M-Broadcast
(Algorithm 2) and each message received is verified with
Algorithm 1 (verify A2M’s attestation validity). For a node
i, the algorithm proceeds as follows:

• i computes the set of committee members for the current
height;

• If i is a committee member, then it calls the TenderTee-
consensus function (the one-shot TenderTee consensus)
solving the consensus using A2M for the current height,
then broadcasts the decision (using A2M-broadcast func-
tion), and sets B to that decision;

• Otherwise, if i is not a committee member, it waits for at
least n/2, or equivalently f +1, commits from the same
block and sets B to that block;

• In any case, it sets the timer to TimeOutCommit to collect
more commits and lets it expire. Then i decides B and
goes to the next height.

Whenever i delivers a commit, it broadcasts it using A2M-
broadcast function (Lines 21 - 25 of Figure 3).

b) Data structures: The integer h represents the current
height of the node. C is the current set of committee members.
B is the variable that will be set to the block to be appended.
commitsReceivedhi is the set containing all the commits i
delivered for the height h. toRewardhi is the set containing

the committee members from which i delivered commits for
the height h. TimeOutCommit represents the time a committee
member has for collecting commits after an instance of con-
sensus. TimeOutCommit is set to the default value ∆Commit.

c) Functions: Let Height = N∗ be the set of all heights,
let Commits be a set of all possible commits, and let B be the
set containing all possible blocks.

We also recall that Πρ is the set of nodes in the system run.
• committeeMembers : Π×Height → 2Πρ is an ap-

plication dependent and deterministic selection function
which gives the set of committee members for a given
height with respect to the blockchain history. We have
∀h ∈ Height, |committeeMembers(h)| = n.

• TenderTee-consensus : Height×2Πρ ×2Commits → B is
a consensus algorithm. It outputs for the node the decision
of the TenderTee-consensus (Definition 1) among the
committee members.

• MoreThanHalf : B × 2Commits → {false,true} is a
predicate which checks if there are commits from at least
f + 1 different committee members for a given block in
the given set.

• isValid : B → {false,true} is an application-
dependent predicate that is satisfied if the given block
is valid. If there is a block B such that isValid(B) =
true, we say that B is valid. We note that for any non-
block, we set isValid to false, (i.e., isValid(⊥) =
false), the validity of the block depends on the



blockchain and the application, and isValid is known
by all nodes.

VII. CORRECTNESS OF TENDERTEE REPEATED
CONSENSUS

In this section, we prove the correctness of the repeated
consensus module of TenderTee, when assuming that the
consensus algorithm used (Line 6 of Figure 3) is correct
(Definition 1). In the proofs below, the lines mentioned refer
to the lines in the algorithm presented in Figure 3.

Lemma 11 (brc-Termination). In an eventually synchronous
system, and assuming that TenderTee one-shot consensus is
correct, the TenderTee Repeated Consensus algorithm verifies
the following property: Every obedient node has an infinite
output.

Proof. By contradiction, let i be an obedient node and we
assume that i has a finite output. Two scenarios are possible,
either i cannot go to a new height, or from a certain height h
it outputs only ⊥.

• If i cannot progress, one of the following cases is
satisfied:

– The function TenderTee-consensus does not termi-
nate (Line 6), which is a contradiction since it violates
the Termination property of the TenderTee-consensus
(Termination in Definition 1).

– i waits an infinite time for receiving enough commits
(Line 10), which cannot be the case thanks to the A2M-
broadcast guarantees and the eventual synchronous
assumption, all the obedient committee members termi-
nate the function TenderTee-consensus and broad-
cast their commit.

• If i does not decide at each height (Line 15), it means that
from a given height, i only outputs ⊥. Let height h be the
first such height, and let h′ > h; (i) either i is a committee
member for h′ and the function TenderTee-consensus
returns ⊥ (Lines 5 & 6), or (ii) i is not a committee
member for h′ but delivered at least f + 1 commits for
⊥ (Lines 10 & 24).

(i) If TenderTee-consensus returns the value ⊥, it
means by the Validity property (Definition 1) of the
consensus that isValid(⊥) = true, which is a con-
tradiction with the definition of the function isValid.

(ii) Only committee members commit, and each of them
broadcasts its commit (Lines 5 - 8), and f < n/2.
Since non-committee members collect at least n/2
commits, it means that i delivered a commit from at
least one obedient committee member. By the Validity
property of the TenderTee-consensus (Definition 1),
obedient nodes only decide/commit on valid value, and
⊥ is not valid, which is a contradiction.

Therefore, if i is an obedient node, then it has an infinite
output.

Lemma 12 (brc-Agreement). In an eventually synchronous
system, and assuming that the TenderTee-consensus func-
tion is correct (i.e. it verifies the one-shot consensus speci-
fication), TenderTee Repeated Consensus Algorithm verifies
the following property: If the hth value of the output of an
obedient node is B, then B is the hth value of the output of
any other obedient node.

Proof. We prove this lemma by construction. Let i and j be
two obedient nodes, and let h be a height. Two cases are
possible:

• i and j are committee members for the height h, so
both calls the function TenderTee-consensus (Lines 5
& 6). By Agreement property of the TenderTee-consensus
(Lemma 7), i and j decide the same value and then output
that same value (Line 15).

• At least one of i and j is not a committee member for
the height h. Without loss of generality, we assume that
i is not a committee member for the height h. Since
all the obedient committee members commit the same
value, let say B, thanks to the Agreement property of
the TenderTee-consensus (Definition 1), and since they
broadcast their commit (Line 8), eventually there will
be more than f + 1 commits for B. So no other value
B′ ̸= B can be present at least f + 1 times in the set
commitReceivedhi . Therefore, i outputs the same value
B as obedient committee members (Line 10). If j is a
committee member, that ends the proof. If j is not a
committee member, then by the same argument, j outputs
the same value B. Hence, both i and j output the same
value B for height h.

Lemma 13 (brc-Validity). In an eventually synchronous sys-
tem, and assuming that TenderTee-consensus function is
correct (i.e. it verifies the one-shot consensus specification),
TenderTee Repeated Consensus Algorithm verifies the follow-
ing property: Each value in the output of any obedient node is
valid; it satisfies the predefined predicate denoted isValid.

Proof. We prove this lemma by construction. Let i be an
obedient node, and assume that the hth value of the output
of i is B. If i decides a value (Line 15), then that value has
been set during the execution and for that height (Line 3).

• If i is a committee member for the height h, then B is the
value returned by the function TenderTee-consensus.
By the Validity property of the TenderTee-consensus
(Definition 1), we have isValid(B) = true.

• Let h be a height, and B be the hth value of the output
of a node j. If j is not a committee member for the
height h, it means that it delivered more than f+1 signed
commits from the committee members for the value B
(Lines 5 - 8 and 21 - 25), hence at least one obedient
committee member committed B, and by the Validity
property of the TenderTee-consensus (Definition 1), we
have isValid(B) = true.



Each value in the output of an obedient node satisfies the
predicate isValid.

Theorem 14. In an eventually synchronous system, and
assuming that the TenderTee-consensus function is cor-
rect (i.e. it verifies the one-shot consensus specification),
the TenderTee Repeated Consensus algorithm implements the
Repeated Consensus.

Proof. Assuming that the TenderTee-consensus function
verifies the one-shot consensus specification, the proof follows
directly from Lemmas 11, 12 and 13. By Lemma 11, we show
that the TenderTee Repeated Consensus algorithm satisfies
brc-Termination, by Lemma 12, we show that the TenderTee
Repeated Consensus algorithm satisfies brc-Agreement, and by
Lemma 13, we show that the TenderTee Repeated Consensus
algorithm satisfies brc-Validity.

VIII. CONCLUSION

This work presents TenderTee, a enhanced version of Ten-
dermint blockchain. TenderTee uses a lightweight A2M trusted
abstraction in order to increase the Byzantine resilience of the
original one-shot and repeated consensus Tendermint protocols
from one third to one half. By reducing the number of needed
nodes this protocol is appealing for industrialisation since
the number of nodes to be maintained in order to guarantee
agreement is drastically reduced.

Although, TenderTee is not the first in the blockchain
context to use trusted abstractions in order to improve the
blockchain resilience from one third to one half, our contribu-
tion has the merit to address one-shot and repeated consensus
modules, both necessary in guaranteeing the linearizability of
any committee based blockchain.

An important further research direction is to automate our
approach in order to enhance any committee based blockchain
with one half resilience. Finally, the automatic design of
correct by construction of a committee based blockchain
having optimal resilience and optimal time complexity is the
final target of this line of research.
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