
Verifiable and forward private conjunctive keyword search from
DIA tree

Laltu Sardar1, Sushmita Ruj2
1Indian Statistical Institute, Kolkata, India ∗

2University of New South Wales, Sydney, Australia †

Abstract

In a dynamic searchable encryption (DSE) scheme, a cloud server can search on encrypted
data that the client stores and updates from time to time. Due to information leakage during the
search and update phase, DSE schemes are prone to file injection attacks. If during document
addition, a DSE scheme does not leak any information about the previous search results, the
scheme is said to be forward private. A DSE scheme that supports conjunctive keyword search
should be forward private. There has been a fair deal of work on designing forward private DSE
schemes in the presence of an honest-but-curious cloud server. However, a malicious cloud server
might not run the protocol correctly and still want to be undetected. In a verifiable DSE, the
cloud server not only returns the result of a search query but also provides proof that the result
is computed correctly.

We design a forward private DSE scheme that supports conjunctive keyword search. At the
heart of the construction is our proposed data structure called dynamic interval accumulation
tree (DIA tree). It is an accumulator based authentication tree that efficiently returns both
membership and non-membership proofs. Using the DIA tree, we can convert any single key-
word forward private DSE scheme to a verifiable forward private DSE scheme that can support
conjunctive query as well. Our proposed scheme has the same storage as the base DSE scheme
and low computational overhead at the client-side. We have shown the efficiency of our design
by comparing it with existing conjunctive DSE schemes. The comparison also shows that our
scheme is suitable for practical use.

Keywords— searchable encryption, forward privacy, conjunctive search, verifiability, accumulator, DIA
tree, authentication tree

1 Introduction
Sensitive data is often encrypted before storing it in outsourced servers (clouds). This makes searching
difficult. In this paper we consider the problem of keyword search. A searchable encryption (SE) scheme
allows a server to search on encrypted data and return the results of the search query to the client. In an
SE scheme, a data owner outsources encrypted data, together with an encrypted search index, to a cloud. A
search query includes an encrypted search trapdoor that allows the cloud to perform search and return the
results, without leaking information of the database. A dynamic SE (DSE) scheme not only allows search
but also supports updates on the database. DSE schemes are designed depending upon the type of data and
query. When the data is a set of documents, each containing a set of keywords, some popular queries over
them include single keyword search, conjunctive or boolean search on a set of keywords, etc. In a conjunctive
keyword search scheme, given a set of keywords, the cloud returns the set of documents that contains all of
them.

In a DSE scheme, updating the database may reveal the relation between the updated set of keywords
and the previous search result. In such a scenario, a file injection attack ([1]) can be performed by a curious

∗Email: laltu.sardar@tcgcrest.org, is presently with IAI, TCG CREST, Kolkata, India
†Email: sushmita.ruj@unsw.edu.au

1

server. A forward private DSE scheme does not leak any information about the previous search results when
new documents are added [2].

Moreover, if a curious server becomes malicious, it may not return the actual search result for monetary
or other benefits. For example, a verifiable DSE guarantees correctness and completeness of the search result
even when the server is malicious. A server not only sends the search result but also a proof that the result
is correct. Any conjunctive DSE scheme should be forward private and verifiable.

There are conjunctive SE schemes by Miao et al. [3], Wang et al. [4], Li et al. [5], Azraoui et al. [6]
etc. Though the schemes are verifiable, they work only for the static databases. Dynamic conjunctive DSE
schemes have been studied in [7], [8], [9]. However, they are either forward private or are verifiable but not
both. In the presence of a malicious adversary, we need both the properties to be present in a conjunctive
DSE.

In this paper, we study a conjunctive SE scheme with both forward privacy and verifiability. We present
a generic scheme that converts any forward private DSE scheme to a verifiable conjunctive DSE scheme
preserving its forward privacy. For verifiability, we propose a new cryptographic accumulator called dynamic
interval accumulation tree (DIA tree).

Cryptographic accumulators are used for proving membership as well as non-membership of elements in
a set. When the size of the set is large, proof generation and (or) proof size becomes expensive. Though the
existing accumulator scheme like [10] can build an accumulation tree for a static database that can provide the
proof of membership as well as non-membership, it is inefficient for a dynamic set. Papamanthou et al. [11]
presented a scheme that dealt with the dynamic set that generates membership proofs efficiently. They
extended their scheme with an additional authenticated tree that allows non-membership checks. However,
this additional structure does not support updates.

In this chapter, we have proposed a Dynamic Interval Accumulation tree (DIA tree) that efficiently
works for both membership and non-membership witnesses and returns proofs even on large dynamic dataset
efficiently. We have used the DIA Tree in our conjunctive DSE scheme for verifiability. Please note that
DIA trees are of important interest and can be applied to the other applications not just constructing DSE
schemes.

Our contributions In this work, we make the following contributions.

• We propose an accumulator using a new data structure called Dynamic Interval Accumulation tree
(DIA tree) that supports efficient proofs of membership and non-membership. To the best of our
knowledge, there is no previous scheme in the literature that provides a single authentication data
structure supporting both membership and non-membership proofs efficiently together with update
support. We provide formal security proof for the accumulator.

• We propose a generic verifiable conjunctive search DSE scheme Blasu that converts any forward private
DSE scheme conjunctive without losing its forward privacy property and without using any extra client
storage for verifiability. To the best of our knowledge, our proposed scheme is the first forward private
as well as verifiable conjunctive SE scheme in a dynamic setting. Moreover, we have given security
proof of the scheme. We have shown that the proposed scheme Blasu is secure against adaptive chosen
query attack.

• We compare our proposed scheme Blasu with the existing schemes and show that the scheme is practical.

1.1 Organization
We summarize our work in the paper as follows. We describe the literature related to our proposed scheme in
Section 2. We briefly introduce the required cryptographic tools in Section 3. We propose an authenticated
data structure DIA tree in Section 4, together with its security proof. Using the tree, in Section 5, we propose
a DSE scheme Blasu that provides verifiability without extra client storage. In Section 6, we compare our
scheme Blasu with a few of the existing similar schemes. Finally, in Section 7, we give the conclusion of our
work.

2 Related Works
Though the term Searchable Encryption was first introduced in the year 2000 for static database, it got
popularity when the first SE for dynamic database [12] was published in 2012. Thereafter, while researchers
were focused on developing the literature of searchable encryption scheme and several works published for

2

static as well as dynamic searchable encryption, file-injection attack by Zhang et al. [1] provided a new
direction of research. [1] forced the researchers to think about dynamic SE schemes to be forward private.

Though ORAM based DSE schemes ([13] etc.) can achieve forward privacy easily, they are impractical
since communication, computation, as well as storage costs, are too high in them. The first non-ORAM
based forward private DSE scheme, presented by Raphael Bost [2], was for a single keyword search only. If
we consider backward privacy, there are several works like [14], [15] etc., that have this property. However,
we do not consider backward private DSE schemes as there are no formal attacks against schemes that do
not have the property.

Again, in most of the works, the cloud service providers are considered semi-honest i.e., honest to follow
the protocol but curious about the data and queries. That is why they become vulnerable when the cloud
server behaves maliciously. Being verifiable, an SE or a DSE scheme becomes protected from such cloud
servers.

While discussing privately verifiability and static database, using trie-like tree data structure, verifiable
SE was first introduced by Chai and Gong [16]. Each node in the tree corresponds to some keywords and
stored identifiers containing it. A verifiable SE scheme for static data, based on the secure indistinguisha-
bility obfuscation, was presented by Cheng et al. [17]. The scheme supports Boolean queries with public
verifiability. A no-dictionary generic verifiable SE scheme was proposed by Ogata and Kurosawa [18]. The
scheme was first to allow searching any binary sting as keyword still maintaining private verifiability using
Cuckoo hash table. In the case of multiple owners, Miao et al. [19] presented a verifiable SE for a single
keyword search. For static data, public verifiability was achieved by Soleimanian and Khazaei [20]. Their
scheme was only for single keyword searches.

Moving to complex queries, works by Miao et al. [3], Miao et al. [21], Wang et al. [4], Li et al. [5] etc.
supports private verifiability, whereas work by Azraoui et al. [6], Xu et al. [22] etc. were publicly verifiable.
[22] is a blockchain-based scheme that supports Boolean range queries keeping the encrypted data index and
queries on a blockchain having a good amount of monetary cost for each search whereas [6] only supports
conjunctive search.

The above-mentioned schemes were for static databases only. There are few works on the literature
of verifiable dynamic SE schemes. For example, the schemes by Yoneyama and Kimura [23], Sardar and
Ruj [24] etc. are for single keyword search and provides verifiability as well. Also, the algebraic PRF based
SE scheme by Yoneyama and Kimura [23] was privately verifiable. A publicly verifiable SE scheme is recently
also proposed by Miao et al. [25].

On the other hand, if we consider complex queries, for dynamic data, a dynamic fuzzy keyword search
scheme was proposed by Zhu et al. [8] which is privately verifiable. Again, publicly verifiable dynamic SE
scheme by Jiang et al. [9] allows the query to be Boolean where Sun et al. [7] allows only conjunctive searches.

Discussing forward privacy on dynamic database, we can see schemes being forward private and verifiable
[23] but not conjunctive, verifiable, and conjunctive but not forward private [9], conjunctive as well as forward
private but not verifiable [26].

In this paper, we have proposed the first forward private conjunctive DSE scheme that is verifiable too.
The scheme uses a forward private single keyword DSE scheme as the base. Moreover, our scheme does not
use any extra client-storage for verifiability.

3 Preliminaries

3.1 System model
In our model of conjunctive verifiable DSE, there are three entities– client, cloud and auditor. The system
model is shown in Figure 1. Here, we briefly describe the system model as follows.

Client: The client owns the database and requires outsourcing its data. It is assumed to be a trusted party.
Before outsourcing the data, it builds a secure search index. Then, it encrypts and sends the data together
with the index. It is the user of the database as well. For every query made, it generates an encrypted query
token and sends it to the cloud. Finally it receives the result from the cloud.

Cloud: The entity cloud is assumed to be malicious. It provides both storage and computation services. It
stores the encrypted data. When a search query is given, it computes over the data and returns result to the
client. It also sends proof of its correct execution to the auditor.

Auditor: The entity auditor is an authority that tells, verifying the proof received from the client and the
cloud, whether the returned result is correct or not. Any party, including the client, can be an auditor.

3

Figure 1: The system model
1. Client sends encrypted data, 2. Client sends query token to the Cloud, 3. After searching, Cloud sends

Result, 4. Cloud sends proof to the Auditor, 5. Client sends proof of received result, 6. Auditor sends
verification result.

3.2 Design Goals
While designing such a scheme, assuming the above system model and aiming to provide a solution toward a
verifiable conjunctive search DSE scheme, with keeping it forward private, we achieve the following objectives.
Confidentiality: From the uploaded data and issued query token, the cloud should not get any information
about the actual database or query. The auditor should not get the same from the received proofs.
Efficiency: We consider the client to be computationally weak, but the cloud has a large amount of storage
and large computational power. Thus, in the designed scheme, computational and storage costs should be
low for the client, while performing verifiability.
Scalability: It is desirable to scale the solution to support a large database.
Forward privacy: Since a DSE scheme, without forward privacy, is vulnerable to even honest-but-curious
adversary, it is desirable the scheme to be forward private while achieving public verifiability for a conjunctive
search result.

3.3 Cryptographic Tools

3.4 Multiset Hash
Definition 1 (Multiset Hash [27]). Let by M ⊏ B we mean a multiset M of elements of a countable set B.
Let multiset union of two multisets M = {m1,m2, . . . ,m|M |} and M ′ = {m′

1,m
′
2, . . . ,m

′
|M ′|, } be defined as

M ⊔M ′ = {m1,m2, . . . ,m|M |,m
′
1,m

′
2, . . . ,m

′
|M ′|}.

A triplet (H,+H,≡H) of PPT algorithms is said to be a multiset hash on B with security parameter λ
when it satisfies the following properties:

1. H(M) ∈ {0, 1}λ, ∀M ⊏ B (compression)

2. H(M) ≡H H(M), ∀M ⊏ B (comparability)

3. H(M ⊔M ′) ≡H H(M) +H H(M ′), ∀M,M ′ ⊏ B (incrementality)

Clarke et al. [27] presented an incremental multiset hash function which is set-collision resistant.

3.5 Bilinear Map
Definition 2 (Bilinear Map [11]). Let G1, G2 and GT be three (multiplicative) cyclic groups of prime order
p. Let G1 =< g1 > and G2 =< g2 >. A map ê : G1 ×G2 → GT is said to be an admissible non-degenerate
bilinear map if is satisfies the following properties.

1. ∃ Bilinearity i.e., ê(ua, vb) = ê(u, v)ab, ∀u ∈ G1, ∀v ∈ G2 & ∀a, b ∈ Zp

2. ∃ Non-degeneracy i.e., ê(g1, g2) ̸= 1, and

3. ∃ Efficiency i.e., ê can be computed efficiently.

4

In our case, we consider G1 = G2 = G, and G =< g >. For our scheme we require the group G to be a
GDH group (see Definition 4). Let us consider the following bilinear map generating algorithms .

(p,G,GT , g, ê)← BMGen(1λ): It is a PPT algorithm (bilinear map generator) that takes a security parameter
λ as input and outputs a uniquely random tuples (p,G,GT , g, ê) of bilinear pairing parameters.

(p,G,GT , g, ê)← BMGGen(1λ): It is a PPT algorithm (bilinear map generator) that takes a security parameter
λ as input and outputs a uniquely random tuples (p,G,GT , g, ê) of bilinear pairing parameters where G is a
GDH group.

3.6 q-Strong Diffie-Hellman Assumption
Definition 3 (q-Strong Diffie-Hellman Assumption [11]). Let λ be a security parameter and (p,G,GT , ê, g) be
a uniformly randomly generated tuple of bilinear pairing parameters. Given an upper bound q, an element
s

$←− Z∗
p and the set {g, gs1 , gs2 , . . . , gsq}, it is said to satisfy q-strong Diffie-Hellman (q-SDH) assumption if,

any probabilistic polynomial time (PPT) adversary A can find a pair (c, g
1

x+c) only with negligible probability,
namely

Advq-SDH
A = Pr

[
A(g, gs, gs2 , · · · , gsq)→ (s, g

1
s+c)

]
≤ neg(λ),

where c ∈ Zp.

3.7 Gap Diffie-Hellman (GDH) group
Definition 4 (GDH group [28]). Let G be a multiplicative cyclic group with prime order p. For a, b, c,∈ Zp,
given g, ga, gb, gc ∈ G, deciding whether c = ab is called Decisional Diffie-Hellman (DDH) problem in G.
Again, For a, b,∈ Zp, given g, ga, gb ∈ G, computing gab ∈ G is called Computational Diffie-Hellman (CDH)
problem in G. The group G is said to be a Gap Diffie-Hellman (GDH) group if, the CDH problem is hard,
but the DDH problem is easy in G.

Definition 5 ((τ, t, ϵ)-GDH group [28]). The group G is said to be (τ, t, ϵ)-GDH group if, the DDH problem
on G can be solved in at most time τ and no algorithm which runs in time at most t can break CDH on G
with probability ≥ ϵ.

3.7.1 Signature Based on GDH Groups

Boneh et al. [28] first presented a signature scheme based on bilinear map over GDH Group. The scheme
can be described as follows.

Let ê : G×G→ GT be a bilinear map where |G| = |GT | = p, a prime and G =< g >. A BLS signature
scheme S=(KeyGen, Sign, Verify) is given as a tuple of three algorithms as follows.

• (sk, pk) ← KeyGen: It selects α
$←− Zp. It keeps the private key sk = α and publishes the public key

pk = gα.

• σ ← Sign(sk,m): Given sk = α, and some message m, it outputs the signature σ = (H(m))α where,
H : {0, 1}∗ → G \ {1} is a full-domain one-way hash function.

• {0/1} ← Verify(pk,m, σ): For a message m, signature σ with public key pk, it checks whether
(g, pk,H, σ) is a Diffie-Hellman tuple by verifying equality between ê(σ, g) and ê(H(m), pk).

3.7.2 Dynamic universal accumulator

A dynamic universal accumulator (DUA) allows one to outsource a set of elements, with the ability to query
the existence of an element in a set. It also allows the elements to be added/deleted to/from the set, together
with functionality to verify the result. Let us consider a DUA proposed by Au et al. [10]. Let AC = (Init,
Gen, Update, MemWitGen, MemWitVer) be such a DUA described as follows.
Initialization. (s, tup)← AC.Init(λ):
Given a security parameter λ, let us consider a uniformly generated tuple tup = (p,G,GT , g, ê) of bilinear
pairing parameters generated with BMGGen (see Appendix 3.5). Then ê : G × G → GT be a bilinear pairing
such that |G| = |GT | = p for some λ-bit prime p and G =< g >. Let q be the maximum number of elements
to be accumulated. Then a uniformly random element s from Z∗

p is selected. s is treated as secret key.

5

Accumulator Generation. Acc(Y) ← AC.Gen(Y, s): Given a k-size set Y = {y1, . . . , yk}, where yi ∈ Z∗
p ,

let v(s) =
∏

y∈Y (y + s) mod p be a polynomial of degree k ≤ q. Then the accumulator is Acc(Y) = gv(s),
which can be computed efficiently.
Membership witness generation wt(ȳ)← AC.MemWitGen(PG, Y, ȳ):
For a set of elements Y = {y1, . . . , yk} ∈ Z∗

p , a membership witness wt(ȳ) for the element ȳ ∈ Y is given by

wt(ȳ) =
[
g
∏k

i=1(yi+s)
] 1

ȳ+s

= [Acc(Y)]
1

ȳ+s .

Membership witness verification bv ← AC.MemWitVer(Acc(Y), ȳ, wt(ȳ)): Membership witness is verified
by checking if ê(Acc(Y), g) = ê(wt(ȳ), gȳ+s). Finally, a bit bv is returned where bv = 1 if equality holds and
bv = 0 otherwise.
Correctness: of membership verification follows from

ê(wt(ȳ), gȳ+s) = ê(g
∏

y∈Y ,y ̸=ȳ(y+s), gȳ+s) = ê(g
∏

y∈Y (y+s), g) = ê(Acc(Y), g)

Updating accumulator Acc(Y ′) ← AC.Update(Acc(Y), s, ȳ, op): Let Acc(Y) be the accumulator value for
a set of elements Y = {y1, . . . , yk} ∈ Gp. If ȳ is added, i.e., op = add, the new accumulator value will
be Acc(Y ′) = Acc(Y)ȳ+s, where Y ′ = Y ∪ {ȳ}. Similarly, if an element ȳ is deleted, i.e., op = delete, the
accumulator changes to Acc(Y ′) = Acc(Y)

1
ȳ+s , where Y ′ = Y \ {ȳ}. For both case, the secret value s is

needed to compute updated value.

3.8 Definitions and Terminologies

3.8.1 Notations

Let identifiers of the documents belong to the space of document identifiers D. Let DB ⊆ D. Let each
document contains some keywords belonging to a keyword space W. For each keyword w ∈ W, let DB(w) =
{idw1 , idw2 , . . . , idwnw

} be the set of document identifiers that contains w, where nw = |DB(w)| and idwi ∈ DB
is the ith identifier. nw is also called the frequency of the keyword w ∈W . Thus,

⋃
w∈W DB(w) ⊆ DB.

Let EDB = {cid : id ∈ D} where by cid we mean the encrypted document that has id as identifier. Let
us consider the existence of a one-way function which maps every document identifier to a random number.
However, when we say cloud returns documents to the client, we assume the cloud performs the function on
every identifier before returning them.

Let, R : {0, 1}∗ → {0, 1}∗ be a PRNG and F : {0, 1}λ×{0, 1}∗ → {0, 1}λ be a PRP. A stateful algorithm
stores its previous states and use them to compute the current state. In Table 1, we have shown some
notations used in this paper.

Table 1: Notations

SymbolMeaning Symbol Meaning
S Set of elements from {0, 1}∗ DT DIA tree
Bi ith bucket d root of DT
Si sorted set of elements in Bi s secret key of client for DT
li lower bound of Bi ai ith accumulators
ri upper bound of Bi W the keyword set
So
i Si ∪ {li, ri} wi ith keyword in W
G a bilinear group x, x′, x′′ elements of G
ê a bilinear map wt(x) membership witness of x
e an elements from {0, 1}∗ wtn(x) non-membership witness of x
g a generator of G idwj jth file that contains w

H a one-way hash ϕ(v) membership proof of v
{0, 1}∗ → G \ {1} SL(v) set of siblings of v

6

3.8.2 Dynamic Searchable Encryption (DSE) scheme

A dynamic searchable encryption (DSE) scheme Σ consists of algorithms (KeyGen, Build, SrchTkn, Search,
UptdTkn, Update), between a client and a server, briefly described as follows.
KΣ ← KeyGen(1λ): is a PPT algorithm run by the client that takes a security parameter 1λ and outputs the
secret key KΣ.
(ξ, EDB) ← Build(DB,KΣ): is a client-side PPT algorithm that takes the dataset and the secret key as
input and outputs a pair (ξ, EDB) where EDB the encrypted database, and ξ an encrypted index.
τΣw ← SrchTkn(w,KΣ): is also a client-side PPT algorithm that generates an encrypted search trapdoor τΣw
for a keyword w with the help of KΣ.
Rw ← Search(ξ, τΣw): with this PPT algorithm, the server perform search over ξ for τΣw and returns the
search result Rw to the client.
τΣu ← UptdTkn(KΣ, w, id): Given a keyword-document pair (w, id) the client generates an token, encrypted
with KΣ, for update with the help of this PPT algorithm.
ξ′ ← Update(ξ, τΣu , op) is a cloud-side algorithm that updates ξ according to the op for the update token τΣu ,
and keeps the updated index ξ′.

Confidentiality of a DSE

Definition 6 (CKA2-security of a DSE scheme). [12] Let Σ =(KeyGen, Build, SrchTkn, Search, UptdTkn,
Update) be a DSE scheme. Let A be a stateful adversary, C be a challenger, S be a stateful simulator and
LΣ = (Lbld

Σ ,Lsrch
Σ ,Lupdt

Σ) be a stateful leakage algorithm. Let us consider the following two games.

RealΣA(λ): At first C generates a key KΣ ← KeyGen(1λ). In the same time, A chooses a set of documents DB
and sends it to C. Then, C computes (ξ, EDB)← Build(DB,KΣ) and sends (ξ, EDB) to A. During search
phase, A makes a polynomial number of adaptive queries. In each query A sends either a search query for a
keyword w or an update query for (id, op) for a document with identifier id operation op. Depending on the
query, C returns either the search token tΣw ← SrchTkn(w,KΣ) or the update token tΣu ← UptdTkn(KΣ, w, id)
to A. Finally A returns a bit b that is output by the experiment.

IdealΣA,S(λ): At first, A generates DB and gives it to S together with and Lbld
Σ (DB). On receiving Lbld

Σ (DB),
S generates (ξ, EDB) and sends it to A. A makes a polynomial number of adaptive queries q ∈ {w, (id, op)}.
For each query, S is given either Lsrch

Σ (w) or Lupdt
Σ (id, op). Depending on the query q, S returns to A either

search token tΣw or update token tΣu . Finally A returns a bit b that is output by the experiment.
We say Σ is LΣ-secure against adaptive dynamic chosen-keyword attacks if for any PPT (probabilistic

polynomial-time) adversary A, there exists a simulator S such that

|Pr[RealΣA(λ) = 1]− Pr[IdealΣA,S(λ) = 1]| ≤ µ(λ) (1)

Correctness: The correctness of a DSE scheme ensures that the every search protocol must return the
correct result for every query, except with negligible probability.

A DSE scheme Σ that does not leak any information about the previous search results, is said to be forward
private.

The schemes [29], [2], etc., are good examples of a forward private DSE schemes. In our proposed scheme,
we use any forward private DSE scheme Σ as a black box. We assume the black box scheme Σ is correct and
LΣ-secure against adaptive dynamic chosen-keyword attacks.

3.8.3 Verifiable Dynamic Conjunctive Searchable Encryption (VDCSE)

A dynamic conjunctive SE (DCSE) scheme supports conjunctive keyword search in dynamic database. In the
presence of a malicious adversary, a verifiable dynamic conjunctive SE scheme provides the ability to verify
whether the returned result is consistent with the updated database. We define a VDCSE scheme formally
as follows.

Definition 7 (Verifiable Dynamic Conjunctive Searchable Encryption). A verifiable dynamic conjunctive
searchable encryption (VDCSE) scheme Ψ is a tuple (VCKeyGen, VCBuild, VCSrchTkn, VCSearchCD,VCSearchCT,
VCUpdtTkn, VCUpdate) of algorithms defined as follows.

7

• KΨ ← VCKeyGen(λ): Given a security parameter λ, this PPT algorithm, run by the client, outputs a
key KΨ.

• (st, EDB, γ, I)← VCBuild(DB,KΨ): This is PPT algorithm run by the client. Given KΨ and a set
of documents DB, it outputs the encrypted set of documents EDB together with an encrypted search
index γ and an auxiliary data structure I for verifiability. It also outputs state st of the database.

• τΨs ← VCSrchTkn(KΨ, ŵ, st): Given KΨ, st and a set of keywords ŵ, the client runs this PPT
algorithm and outputs a search token τΨs .

• (pfc, R̂ŵ, Xŵ) ← VCSearchCD(γ, I, tΨs): Given γ, I and τΨs , in this cloud-run PPT algorithm, the
cloud returns result set R̂ŵ of document ids, a proof pfc.

• (pfu)← VCSearchCT(R̂ŵ, t
Ψ
s): Given R̂ŵ, in this client-run PPT algorithm, the client returns a proof

pfu.

• νŵ ← VCVerify(d, pfu, pfc, R̂ŵ) This is a PPT algorithm that takes the proofs pfu, pfc together with
the result R̂ŵ and outputs the verification bit νŵ

• (τΨu , st′) ← VCUpdtTkn(K, id, st): Taking a key KΨ, a document identifier id and the present state
st, the cloud runs this PPT algorithm and outputs an update token τΨu and a new state st′.

• (EDB′, γ′, I ′)← VCUpdate(γ,EDB, I, τΨu , op): It is a cloud-run PPT algorithm which takes an update
token τΨu , operation bit op, EDB, the index γ and the auxiliary information I and outputs updated
(EDB′, γ′, I ′).

Correctness A VDCSE scheme Ψ is said to be correct if ∀λ ∈ N, ∀KΨ generated using KeyGen(λ) and all
sequences of search and update operations, every search outputs the correct set of identifiers, except with a
probability neg(λ).

Verifiability By verification, we mean verification of a search result. We verify whether the search is
performed on the current state of the database. We do not include verification of updates on the cloud-side.
If the cloud cheats, and updates incorrectly, it will fail verification test when a search result includes such
updated information.

3.8.4 Security Definitions

We follow security definition of [20]. Security of a VDCSE scheme is divided into two parts– confidentiality
and soundness, described as follows.

Confidentiality: This property protects the client to leak only allowed amount of information, not more
than that. We define the confidentiality of a VDCSE as follow.

Definition 8 (CKA2-Confidentiality). Let Ψ = (VCKeyGen, VCBuild, VCSrchTkn, VCSearchCD, VCSearchCT,
VCUpdtTkn, VCUpdate) be a verifiable dynamic conjunctive searchable Encryption scheme. Let A, C and S
be a stateful adversary, a challenger and a stateful simulator respectively. Let LΨ=(Lbld

Ψ ,Lsrch
Ψ ,Lupdt

Ψ) be a
stateful leakage algorithm. Let us consider the following two games.

RealΨA(λ): At first, a key KΨ ← VCKeyGen(λ) is generated by the challenger C. Then a database DB is
chosen by the adversary A and sent to C. The encrypted database EDB is built and an encrypted search
index is generated by C as (st, EDB, γ, I) ← VCBuild(DB,KΨ) and then (EDB, γ, I) is sent to A. In the
next phase a polynomial number of adaptive queries are made by A. In each of them, either a search query
for a keyword set ŵ or an update query for a keyword-document pair (w, id) and operation bit op is sent
to C by it. In sequence, C returns either a search token τΨs ← VCSrchTkn(KΨ, ŵ, st) or an update token
τΨu ← VCUpdtTkn(K, id, st) to A. Finally, a bit b, that is output of the experiment, is returned by A.

IdealΨA,S(λ): At first, a database DB is chosen by A and is given to S together with Lbld
Ψ (DB). Then, a

simulated database and index (EDB, γ) is generated by S and sent to A. Then a polynomial number of
adaptive queries are made by A. For each query, either Lsrch

Ψ (ŵ,DB) or Lupdt
Ψ (op, w, id), depending on the

query, is given to S. Accordingly, S returns either search token τΨs or update token τΨu to A. Finally, a bit
b′, that is output of the experiment, is returned by A.

We say Ψ is LΨ-secure against adaptive dynamic chosen-query attacks if ∀ PPT adversary A, ∃ a simu-
lator S such that

|Pr[RealΨA(λ) = 1]− Pr[IdealΨA,S(λ) = 1]| ≤ µ(λ) (2)

8

where µ(λ) is negligible in λ.

Soundness The soundness property ensures the client gets complete result with respect to the present
state of database. The game-based definition of soundness property of a VDCSE scheme is given as follow.

Definition 9 (Soundness). Let Ψ be a VDCSE scheme with Ψ = (VCKeyGen, VCBuild, VCSrchTkn, VCSearchCD,
VCSearchCT, VCUpdtTkn, VCUpdate). Let us consider the following game.

soundΨ
A(λ): At first, a key KΨ ← VCKeyGen(λ) is generated by the challenger C. Then, a database DB

is chosen by the adversary and sent to C. The encrypted database is computed as (st, EDB, γ, I) ←
VCBuild(DB,KΨ) by C and then (EDB, γ, I) is sent to A. A polynomial number of adaptive queries are
made by A. In each of them, either a search query, for a keyword set ŵ, or an update query, for a keyword-
document pair (w, id) and operation bit op, is sent to C. In response, depending on the query, either a search
token τΨs ← VCSrchTkn(KΨ, ŵ, st) or an update token τΨu ← VCUpdtTkn(K, id, st) is returned to A.

In the challenge phase, a target keyword set ŵ is chosen by A and a search query for ŵ is sent to C.
In response, a search token τΨs is returned from which (Rŵ, νŵ) is searched by A, where νŵ = accept is
verification bit from C. Finally, a pair (R∗

ŵ, ν
∗
w) for a keyword set ŵ is generated by A. If ν∗ŵ = accept even

when R∗
ŵ ̸=

⋂
w∈ŵ DB(w), A returns 1 as output of the game, otherwise returns 0.

We say that Ψ is sound if ∀ PPT adversaries A, Pr[soundΨ
A(λ) = 1] ≤ µ(λ).

4 Dynamic Interval Accumulation tree (DIA tree)
If we consider membership witnesses, they can not be updated without the secret key. However, the client
computes them initially by itself and stores them in the cloud. It fetches and updates them each time a new
element is added or deleted. For a given set of elements, if only one accumulator is generated for the set, then
the generating membership witness for a new element x becomes inefficient. This is because the membership
witness generation considers all elements belong to the set in the computation i.e., computational complexity
grows with the size of the set. If the set is too large, the computation of the witness becomes impractical.

This is why, instead of generating a single accumulator, the set is divided into buckets and a separate
accumulator is generated for every bucket. In the next level, this set of accumulators becomes input set and
another set of accumulators is generated for them. The process continues until only one element, i.e., the
root is left. The generated tree is an accumulation tree.

Papamanthou et al. [11] studied the above approach previously in their work of authenticated hash table.
In spite of the work is good for membership-proof and supports updates, it has a serious issue. For non-
membership poof, they take an additional accumulation tree which is based on intervals. This tree does not
support deletion. This makes the tree an append-only tree.

We take a different interval approach and construct DIA tree. The tree gives the ability to perform both
membership and non-membership in a single tree, even in case the set is dynamic and large.

4.1 DIA Tree construction
For a given set S, in our proposed DIA tree construction, the set is stored separately. A tree is constructed
to give proof of whether an element exists in the given set S. We describe a DIA tree scheme DIAT as a tuple
(Init, BuildTree, Search, Update) of algorithms as follows.

Initialization [(s, tup)← DIAT.Init(1λ)]: Given a security parameter λ, a tuple (p,G,G, ê, g)← BMGen(1λ)
is generated. Let tup = (p,G,G, ê, g). An element s is chosen randomly from Z∗

p and finally (tup, s) is
returned.

Building the Tree [(DT, d)← DIAT.BuildTree(tup, s, S)]: We consider in the given set S = {e1, e2, . . . , en},
each ei is of fixed length and sorted. Let the complete range of elements be [0, 2λ). We divide the range into
b half-open intervals, each of size 2η. Then the number of intervals will be b = 2λ−η. Let the ith intervals
be [2i−1, 2i) and it corresponds to the ith bucket Bi. Finally, we take range of bucket Bi as closed intervals
[2i−1 − 1, 2i]. Let Si = {ei,1, ei,2, . . . , ei,ni} be the sorted set of elements from S, falls into the bucket Bi.
We consider So

i = Si ∪ {li, ri}, i = 1, . . . , b, where li = 2i−1 − 1, ri = 2i, ∀i = 1, . . . , b, and l0 = −∞ and
rni

= +∞. Now, we treat each So
i separately as follow.

Let Ii,j = (ei,j , ei,j+1),∀j = 0, . . . , ni, where ei,0 = li and ei,ni
= ri. Then, we map each of the

intervals in G as xi,j = H(Ii,j), where H : {0, 1}∗ → G that brings each interval to an element in G. Let
S̄i = {(xi,j) : j = 0, . . . , ni}. Thus, the set of elements belongs to Si transfers to the set of S̄i.

9

Finally, we get the sets S̄1, S̄2, . . . , S̄b and make accumulators for each of them. The elements of the set
S̄i are kept in the leaves, say at Level-h, where h is the height of the tree. For each set S̄i, the accumulator
is generated as ai ← AC.Gen(S̄i, s) where ai = g

∏
x∈S̄i

(H′(x)+s) ∈ G and H′ : G→ Z∗
p.

Next, we start from the set {a1, a2, . . . , ab}, recursively make an m-ary tree, above the leaves, until we
reach only one accumulator, say d, the digest of the tree. If h is the height of the tree then mh−1 = b. Thus,
every internal node of the tree DT stores the accumulator corresponding to its set of children. Moreover,
every node, including leaf nodes and excluding the root, contains membership proof with respect to its parent.
Thus if v is a node, it keeps membership proof as ϕ(v) = g

∏
x∈SL(v)(H

′(x)+s) ∈ G where SL(v) is the set
of siblings of v. We can see that the each internal node has same number of children, whereas Level-(h− 1)
nodes stores random number of children. Finally, the accumulation tree DT is returned to the cloud, and
the client stores d.

Search [(bx, we)← DIAT.Search(DT, e)]: Given an element e, this algorithm tells whether it exists together
with a witness. This is done as follows.

Let Bk be the bucket for e. If e /∈ Sk, it finds other two elements e′, e′′ ∈ So
k such that e′ < e < e′′ in

the bucket corresponding to e. Then it computes x ← H(I) where I = (e′, e′′). Then it gives membership
witness wt(x) = πI for x in DT . Let v0, v1, . . . , vh nodes in the path corresponding to the node x where vh is
the root of the tree. Then, wt(x) is of the form (e′, e′′, πI) where πI = (π1, π2, . . . , πh) and each πi is a pair
(αi, βi) defined as

αi = Φ(vi−1) and βi = g
∏

u∈SL(vi−1)(H(Φ(u))+s)
, i = 1, 2, . . . , h (3)

Note that, in our proposed scheme, we pre-compute both αi and βi.
Now, if e ∈ Sk, it finds another two elements e′, e′′ ∈ So

k such that e′ < e < e′′. Then the witness of
non-existence of x is given by wtn(x) = (e′, e′′, πI′ , πI′′) where I ′ = (e′, e) and I ′′ = (e, e′′).

be = 1 indicates existence and we = wt(x) is set whereas bx = 0 indicates the opposite and we = wtn(x)
is set.

Verify Search [b ← DIAT.VerifySearch(d, be, we, e)]: If be = 1, verifier verifies whether β
H(αi−1)+s
i = αi,

∀i = 1, 2, . . . , h. It recomputes the element x = H′(e′, e′′) and computes αi = x. Then, it verifies

ê(αi, g) = ê(βi−1, g
(H(αi−1)+s)), i = 1, 2, . . . , h,

Additionally, it is checked if ê(d, g) = ê(βl, g
(H(αh)+s)) where d is the root digest. The result is accepted if

all are verified correctly.
If be = 0, it recomputes the element x1 = H′(e′, e) and x2 = H′(e, e′′). verifies the same for both intervals.

It returns accept if, witnesses are verified for both intervals. verification is done similarly as above.

Update [d′ ← DIAT.Update(DT, T, s, d, e, op)]: Given an element e let Bk be its bucket. Then it finds two
elements e′, e′′ ∈ So

k, such that e′ < e < e′′. Then x′ ← H′(e′, e), x′′ ← H′(e, e′′) and x ← H′(e′, e′′) are
computed. Let v1, v2, vh be the path above them. Let ϕ(v), wt(v) denotes accumulator and witness stored in
v resp. Now, for op = add, we do the following.

1. At level h, x′, x′′ are inserted and x is removed. The client can calculate and upload their witnesses

as wt(x′)← {ϕ(v1)}
(H(x′)+s)
(H(x)+s) and wt(x′′)← {ϕ(v1)}

(H(x′′)+s)
(H(x)+s)

2. For v1, client computes ϕ1(v1)← {ϕ(v1)}H(x′)+s, ϕ2(v1)← {ϕ1(v1)}H(x′′)+s and ϕ0(v1)← {ϕ2(v1)}
1

H(x)+s .
It computes
ϕ1(vi) ← (ϕ(vi))

(H(ϕ0(vi−1))+s) and ϕ0(vi) ← (ϕ1(vi))
1

(H(ϕ(vi−1))+s) , for other vis. Thus, the new accu-
mulator values along the path are ϕ0(v1), ϕ0(v2), . . ., ϕ0(vh).

3. For each child u of v1, server computes updated witness wt0(u) without using s directly as follow.

(a) Compute wt1(u)← ϕ(v1).(wt(u))
(H(x′)−H(u))

(b) Compute wt2(u)← ϕ1(v1).(wt1(u))
(H(x′′)−H(u))

(c) compute wt0(u)←
(
wt2(u)

ϕ0(v1)

) 1
H(x)−H(u)

4. Finally for any other child u of vi new witnesses computed by the server are

wt1(u)← ϕ(v1).(wt(u))
H(ϕ0(vi))−H(u) and

10

wt0(u)←
(
wt1(u)

ϕ0(v1)

) 1
H(ϕ(vi))−H(u)

5. The client keeps d′ = ϕ(vh) as the new digest of the root

The client needs to keep the new digest only. Verification of the update is not required. If the server changes
something, no search result will be verified correctly.

If op = delete, the tree can be updated in a similar way. The only changes in the algorithm are membership
witnesses update of the leaf nodes (of the same bucket) and updating ϕ(v1). During deletion, at Level-h, x
is inserted and x′, x′′ are removed and the tree is updated accordingly as follows.

1. For v1, client computes updated witness ϕ0(v) of ϕ(v) as

ϕ1(v1) ← {ϕ(v1)}(H(x)+s),

ϕ2(v1) ← {ϕ1(v1)}
1

H(x)+s , and

ϕ0(v1) ← {ϕ2(v1)}
1

H(x′′)+s .

For 1 < i <= h, similarly as in delete, it computes the new accumulator values ϕ0(v1), ϕ0(v2), . . . , ϕ0(vh).

2. For each child u of v1, server computes updated witness wt0(u) without using s directly as follow.

(a) Compute wt1(u)← ϕ(v1).(wt(u))
(H(x)−H(u))

(b) Compute wt2(u)←
(
wt1(u)

ϕ2(v1)

) 1
H(x′)−H(u)

(c) compute wt0(u)←
(
wt2(u)

ϕ0(v1)

) 1
H(x′′)−H(u)

3. Additionally, at Level-h, x is inserted and x′, x′′ are removed. Client computes the witnesses

wt(x)← {ϕ(v1)}
1‘

(H(x′)+s)(H(x′′)+s) .

4. Finally, for any other child u of vi (i > 1) new witness wt0(u) computed similarly as

wt0(u)←
(
wt1(u)

ϕ0(v1)

) 1
H(ϕ(vi))−H(u)

where, wt1(u) = ϕ(v1).(wt(u))
(H(ϕ0(vi))−H(u))

5. The client keeps d0 = ϕ(vh) as the new digest of the root

4.2 Example of a DIA tree
Let us consider a 3-ary tree with height h = 3. Then there are h+ 1 levels where Level-0 is the root. Then
Level-2 has 9 elements. Each node at Level-2 can hold at most 5 elements. Then, all possible elements can
be mapped in [0,44]. The ith element at Level-2 corresponds to the bucket [5i, 5(i + 1) − 1]. However, for
construction, we want them to be in some open interval which allows any operation to effect one bucket only.
So, we take ith interval as Ii = (li, ri) = (5i− 1, 5(i+ 1)) (see Figure 2).

Now, given a set S = {6, 7, 9, 13, 21, 24}, we consider the following 15 (open) intervals, (−1, 5), (4, 6),
(6, 7), (7, 9), (9, 10), (9, 13), (13, 15), (14, 20), (19, 21), (21, 24), (24, 25), (24, 30), (29, 35), (34, 40), (39, 45).
Let Ii be the ith interval. Then we take hash xi = H(Ii), for each i, to map them as an element of G. Then
the 2nd Level-2 node stores {x2, x3, x4, x5}, 5th Level-2 node stores {x9, x10, x11}, 6th stores x12 etc.

In addition, any node, except leaves, stores accumulator for its set of children. Moreover, any node,
except the root, stores witness of membership in the parent node.

Search: To search an element e = 21, at first, its corresponding interval is searched. Let its boundaries be
l = 19 and r = 25. And then it searches two elements e′ = 13 and e′′ = 24 in S such that e′ < e < e′′. Finally,
it sets e′ = max{e′, l} and e′′ = min{e′′, r}. This is equivalent to say that we are choosing two elements e′

and e′′ in the left and the right of e respectively from the bucket corresponding to e (see Figure 3).
Since, 21 is in S, it considers the intervals as I ′ = (e′, e) = (19, 21) and I ′′ = (e, e′′) = (21, 24). Then

calculate the hashes x′ = H(I ′) and x′′ = H(I ′′). We see that both x′ and x′′ are in the tree. So, for each of

11

x1

Level-0

1

2(0,4) (5,9) (10,14) (15,19) (20,24) (25,29) (30,34) (35,39) (40,44)

x3

x2 x4
x5

x9 x10 x11x6
x7

x8 x12 x13 x14 x15

Figure 2: DIA tree for S

Level-0

1

2(0,4) (5,9) (10,14) (15,19) (20,24) (25,29) (30,34) (35,39) (40,44)

x1 x3

x2 x4
x5

x9 x10 x11x6
x7

x8 x12 x13 x14 x15
returned x9 and x10 while searching for e=21

returned x6while searching for e=10

Figure 3: search for e = 21 and e = 10

them, with the result, cloud returns proof of their existence. The proof contains accumulators and witnesses
stored in every node from leaf to root in the path of the bucket.

Similarly, if 10 is searched, the proof for the interval (9, 13) is returned. This is because if some element
belongs to S, it appears in two intervals– in one as the right boundary and in another as the left boundary.
When it is not in S, there exists an interval that contains the searched element.

Update: When we want to add e = 11, we find similarly e′ = 9 and e′′ = 13 such that e′ < e < e′′, in the
bucket corresponding to 3 (see Fig. 4a). Then we just remove x6 corresponding to the interval I = (9, 13)
and then add two intervals I ′ = (9, 11) and I ′′ = (11, 13). For that we remove x6 = H(I) and add both
x′ = H(I ′) and x′′ = H(I ′′). After doing the same, accumulators in the path of the bucket from leaf to root
and and witnesses for each of their children are updated.

Again, we delete an element only if it exists in S. So, in that case, given an element e = 7, we can find
two intervals I ′ and I ′′ where e is left and right bound i.e., I ′ = (6, 7) I ′′ = (7, 9). So, e′ = 6 and e′′ = 9 (see
Fig. 4b). Let I = (e′, e′′) = (6, 9). To delete the element e = 7, we remove both x′ = H(I ′) and x′′ = H(I ′′),
and then add x = H(I) and update the tree accordingly.

4.3 Complexity of DIA tree
Let h be the height of the tree. Since, the leaves store elements in G corresponding to the intervals, parents
of the leaves store different numbers of elements. However, the tree is a complete m-ary tree from Level-0 to
Level-(h− 1), i.e., without leaves.

Storage Cost: Since, the tree is an m-ary tree without the leaves, it can hold upto b = m(h−1) elements in
Level-(h− 1) and each node at Level-(h− 1) can hold at most 2λ

m(h−1) elements. However, there may be some
nodes at Level-(h− 1) that may not contain only one element. If the size of the set is n, then the number of
leaves is n+1+m(h−1). Now, each node stores an accumulator of its children and a witness of its parent. The
root only keeps an accumulator and every leaf keeps an element in G corresponding to its interval. Number
of internal nodes, from root to Level-(h− 1) is m(h−1) +m(h−2) + . . .+ 1 = (m(h) − 1)/(m− 1). Thus, the
number of elements the DIA tree store is 2(m

h−1
m−1 +m(h−1)+1+n)− 1. This is stored at the cloud-side. The

client keeps only the root and the secret key.

Building Cost: The numbers of accumulators at internal nodes is mh−1
m−1 . Among them, m(h−1)−1

m−1 accumu-
lators, in the Level above h− 1, are for set of size m each. The accumulators at Level-(h− 1) are for the set

12

Level-0

1

2

x’
x7x’’

removed x6, inserted x’ and x’’

(0,4) (5,9) (10,14) (15,19) (20,24) (25,29) (30,34) (35,39) (40,44)

x9 x10 x11x8 x12 x13 x14 x15x1 x3

x2 x4
x5

(a) Adding e = 11

x1

Level-0

1

2

x
x2

x5
x6

x7 removed x3, x4; and inserted x

(0,4) (5,9) (10,14) (15,19) (20,24) (25,29) (30,34) (35,39) (40,44)

x9 x10 x11x8 x12 x13 x14 x15

(b) deleting e = 7

Figure 4: Updating the tree

of average size n−1
mh . Besides, the number of witnesses to be generated is (m

h−1
m−1 +m(h−1) + 1) + (n− 1) =

mh−1
m−1 +m(h−1) + n The above cost is a one time client-side cost.
Search Cost: During a search, the cloud has to return the accumulators and witnesses in the paths cor-
responding to the given intervals. The cloud can retrieve them O(2(h + 1)) or O(h + 1) time depending
on whether the search element exists or not. Thereafter, the cloud returns 4(h + 1) group elements if the
searched element exists, else returns 2(h+ 1) group elements.
Verification Cost: To verify the result, the verifier needs to compute 4(h + 1) and 2h powers in G. The
cost is half if the searched element does not exist.
Update Cost: During an update, an interval, the client retrieves all nodes in the path corresponding to
the interval and all witnesses that are affected due to this change. The client only retrieves and updates
2(m(h − 1) + 1) accumulators and sends them back to the cloud. The cloud stores them and updates the
witnesses to their children. The number of such witnesses is m(h − 1) for the nodes above Level-h. Other
than that, there can have 2λ/b witnesses at the bottom at most whereas the number is |S|/b on average .
The cost is double when the searched interval exists in the database.

4.4 Advantages of DIA tree
We have seen how the system works in a DIA tree, using on interval-approach. For a given set S, in both of [11]
and our proposed DIA tree construction, the set is stored separately. In [11], leaf nodes stores H(x),∀x ∈ S
where H maps each element in a bilinear group G. However, in our case, we store maps of the open intervals
as H((x, y));x, y ∈ S.

Papamanthou et al. [11] used an interval-based approach for non-membership proof only. They store
the given set S, and an accumulation tree corresponding to the open intervals. However, there is no formal
description of how it works. Secondly, they have to maintain two trees, one for membership proof and another
for non-membership proof where the second one works only when the given set S is static.

Our proposed accumulation tree, DIA tree, gives proof of membership as well as non-membership even
the set S is dynamic. Moreover, it uses a single tree, resulting reduction of cloud storage. We achieve those
at the cost of computation. In DIA tree, the update time is thrice, and the search time is at most twice
than that in [11]. However, the required time is asymptotically the same for both. We give computational
complexity of DIA tree in Appendix 4.3.

13

There is another basic difference between the two constructions. In [11], the computation of witnesses is
done by the server when verification is required. This is useful when the frequency of the search is very low.
However, if a frequent search is there, we have to return only proofs fast. So, in the DIA tree we pre-compute
all witnesses which enable the frequent search. For the same, the client has to update the O(mh) witnesses
during each interval update.

Moreover, we can see that the sorted Merkle tree can solve the problem of both membership and non-
membership proof with very efficiently. However, one downside of sorted Merkle hash trees is that even if
a single element in the data set S is changed, that element may need to move to a different leaf, and the
entire hash tree will need to be recomputed from scratch. This can take O(|S|) hash computations. DIA
tree provide the same functionality as Merkle trees, but also support an efficient update, requiring at most
O(log|S|) calculations to update an element. This is the advantage of any accumulation tree over Merkle
tree including our proposed one.

4.5 Security of a DIA tree
We see that Φ(v) gives an accumulator corresponding to the subset of the set S rooted at v. Thus, Φ(v) is
also called the bilinear digest of the tree rooted at v.

Theorem 1 (Acc Tree Security). Given a security parameter λ and a set U= {x1, x2, . . ., xn}, xi ∈ G, let DT
be the accumulation tree constructed with AC.Gen() as above. Under the q-strong Diffie-Hellman assumption,
the probability that a PPT adversary A, knowing only the bilinear pairings parameters (p,G,G, ê, g) and the
elements {g, gs1 , gs2 , . . . , gsq}, of G, for some randomly chosen s from Z∗

p and n ≤ q, can find another set V ,
with elements from G, such that V ̸= U and Φ(V) = Φ(U) is neg(k).

Proof. Follows from the proof of Papamanthou et al. [11].

Theorem 2 (Security of our construction). Given a security parameter λ and a set S = {e1, e2, . . .,
en}, where ei ∈ {0, 1}∗, let DIAT be the accumulation tree constructed as above. Under the q-strong Diffie-
Hellman assumption, the probability that a PPT adversary A, knowing only the bilinear pairings parameters
(p,G,G, ê, g) and the elements {g, gs1 , gs2 , . . . , gsq} of G, for some randomly chosen s from {0, 1}∗ and n ≤ q,
can find another set S′, with elements from G, such that S′ ̸= S and Φ(S′) = Φ(S) is neg(λ).

Proof. Here, we use Theorem 1 with reduction method. We show that if Theorem 2 is false, then so is
Theorem 1. But, since Theorem 1 is true, it implies Theorem 2 is true.

The main difference between our DIAT and Papamanthou et al. [11] is that our scheme supports efficient
updates.

Since H is public, if S = {e1, e2, . . ., en} is given then so is S̄ = {x1, x2, . . ., xn}. Let us consider
Theorem 2 does not hold, then there exists a PPT algorithm A, which finds another set S′ = {e′1, e′2, . . .,
e′n′} such that Φ(S′) = Φ(S) with probability ≥ neg(λ).

Let U = S̄ and V = S̄′ where S̄′ = {H(I ′0),H(I ′1), . . . ,H(I ′n′)} and I ′i = (e′i, e
′
i+1),∀i. Thus, given U ,

we have found a PPT adversary A that finds another set V with probability ≥ neg(λ). This contradicts
Theorem 1. Thus our assumption that Theorem 2 does not hold is false. Hence Theorem 2 is true.

5 Our proposed VDCSE scheme
In this section, we propose our scheme which is forward secure and verifiable. Our scheme does not use any
extra storage for verification. We see in the next that verifiability with O(|W |) client storage is very easy for
any single keyword search scheme.

5.1 Single keyword search DSE with O(|W |) extra storage for verifiability
For single keyword searches [24] shows that when there is client storage of O(|W |), verifiability can be achieved
with any hash function for static data. Whereas, the same can be achieved with multiset hash ([27]) when the
data is dynamic. These schemes are for single keyword search only. Besides, for dynamic data, when forward
privacy is concerned, the solution [23, 24] shows how forward privacy can be achieved without extra client
storage and still with keeping them verifiable. We see that if for every keyword w ∈ W , the client is able to
store a digest of the set of identifiers DB(w), then any multiset hash H solves the problem of verifiability for
a single keyword search. The client can compute an aggregated hash using multiset hashing, which can be

14

updated with every update done by the client. The client can recompute the aggregated hash when receives
search results for the keyword and can match with the stored one. In such a scenario, since all computations
are done by the client and nothing is outsourced to the cloud, there is no forgery. Thus, with O(|W |) client
storage, the client can verify the result, using multiset hashing, in any single keyword search DSE scheme,
without affecting the forward or backward privacy.

A conjunctive forward private keyword search scheme can be either static or dynamic. A dynamic con-
junctive search may have forward privacy. With non-trivial solution1, [9] deals with verifiability when data
is static and [7, 23] deal when they are dynamic. However, when forward privacy is concerned, the above
solutions are not applicable. Also, they used at least O(|W |) client storage as well. In a conjunctive dynamic
SE scheme, if the client is able to store the accumulator corresponding to each keyword w ∈ W , then the
client is able to verify the received result. It can verify whether all resulted identifiers are present in a keyword
or not. Since this requires extra computation the client can outsource this computation to a proxy server too.
Thus, the extra O(|W |) client storage makes the scheme easier to verify the search result for any conjunctive
dynamic SE scheme without effecting its forward or backward privacy if there is any.

DSE without O(|W |) extra storage: We see that O(|W |) client storage can make any conjunctive as
well as single and Boolean keyword search scheme verifiable. Trivially, if the client issues a single keyword
search token for each keyword in the conjunctive query and server returns the search result for each of them,
Then it can compute the intersections of them to get the final result. This can also be done using [24] without
extra client storage. However, the trivial approach has two issues. Firstly, it leaks the complete result for
each keyword instead of the required. Secondly, searching for identifiers containing each keyword requires
extra computation power. Thus, it is inefficient for a conjunctive search.

There are conjunctive DSE schemes that are either verifiable without forward privacy ([4]) or are forward
private without verifiability ([26]). There are other conjunctive schemes which are neither forward private nor
conjunctive. In the next, we have shown it is difficult to extend them to a verifiable DCSE scheme without
that extra storage.

5.2 Difficulty in Extending existing schemes to a VDCSE scheme
It is an important question that whether existing conjunctive DSE without forward privacy [26] or without
verifiability [4] can be extended with having both properties.

The key point of [26] is that modification of documents is not allowed here and the files are always
unchanged. So, if we keep the accumulators at the leaf node of VBTree corresponding to every document, the
accumulators will be always unchanged. However, the solution is not complete. If we keep the accumulators
in the leaf then, for membership or non-membership proof, it must reveal what are the elements in the set.
Thus the tree structure will be revealed and the scheme can not be forward private anymore. The cloud
sends which tuple is not present in a node in the path. So we have to keep the accumulators in the nodes of
the tree. However, if some new file is added then the complete path of the file may be revealed to add new
elements in the nodes. Thus, it is hard to extend [26] to be verifiable without extra client storage.

Besides, [4] is for static data. So forward privacy is not applicable to it. If we extend the scheme to
be dynamic then we can only try to make it forward private. We can see that it keeps the accumulator
corresponding to every keyword on the cloud-side. When an update happens, the cloud has to update the
accumulators too, and updating it reveals whether the keyword was searched previously. So, its extension to
forward private is not possible in this way.

5.3 Overview of our proposed scheme Blasu

In this section, we present a generic forward private conjunctive DSE scheme with verifiability that makes
any forward private single keyword search scheme to conjunctive one. However, we want to reduce this extra
client storage for verifiability. Our proposed forward private conjunctive DSE scheme with verifiability does
not use any extra client storage for verifiability. Here, we give a short overview of our scheme Blasu.

In most of the conjunctive schemes, including ours, the least-frequency method is considered (exception
[26]). In this method, the least frequent keyword is taken and its result is found. Then for each resulting
document, the presence of all other keywords is checked. For example, given a query ŵ = {w1, w2, . . . , wk},
let Rw1

= {idw1
1 , idw1

2 , . . . , idw1
nw1
} be the single keyword query result for the lowest frequent keyword w1. The

1A trivial solution is downloading search results for all keywords present in a conjunctive query and taking the
intersection of them at client-side

15

frequency of a keyword is the number of documents that contain it. The server computes Rw1
and checks if

id1
i , for 1 ≤ i ≤ nw1

, contains all the keywords in ŵ \ {w1} and includes it in the search result Rŵ, in the
case does.

Our proposed scheme Blasu uses a forward private DSE scheme Σ as a black box.At the time of building
two data structures, a hash table, and a DIA tree are built in addition to the encrypted index. For each
keyword-document pair, a unique element is created. The element stores a signature generated using the
corresponding keyword and the document identifier. It is kept in the hash table that gives it efficient access.
After all the elements are generated, a DIA tree is built on them.

To search, we use the least-frequency approach. The client first generates a search token and sends it to
the cloud. The cloud performs a search using Σ for a minimal frequent keyword. Then, for each document
identifier in the result, the cloud checks its existence of other keywords. It returns the documents, each of
which contains all searched keywords together with proof of its correct execution. The elements and DIA
tree help the cloud to return the proof. To update a new keyword-document pair, the client generates the
corresponding element and sends it to the cloud, which then updates both the table and the tree accordingly.

5.4 Technical Details
There are three phases in our proposed VDCSE scheme Ψ which is an algorithm tuple (VCKeyGen, VCBuildIndex,
VCSrchTknGen, VCSearchCD, VCSearchCT, VCUpdtTknGen, VCUpdate)– initialization, search and update. The
interaction between the entities, during those phases, are shown in Fig 5. The phases are described as follows.
Initialization: It is divided into two parts– key generation and building an encrypted search index, given
as below.
Key Generation: is given Algo. 1. Let E = (Enc, Dec) be a CPA-secure symmetric encryption scheme with
key-space {0, 1}λ. Given some security parameter λ, the key KΣ is generated for Σ. Moreover, three λ-bit
stings Ks, Kt and Ks̄ are picked at random to use them as secret.

Algorithm 1: Ψ.VCKeyGen(1λ)

1 KΣ ← Σ.KeyGen(1λ) ; (sk, pk)← S.KeyGen(1λ) ;
2 Ks,Kt,Ks̄ ← {0, 1}λ; s← {0, 1}λ /*for DIAT*/;
3 return KΨ = (Ks,Kt,Ks̄, sk, pk,KΣ, s);

For each keyword, Ks is used as a key, together with the keyword, for generating a seed. This seed is
used to generate a sequence of random numbers. Similarly, for each keyword, Kt helps to generate a tag that
helps to find some random positions in a table (Tsig). Whereas Ks̄ generates a unique key for the symmetric
encryption scheme E . A BLS signature scheme S = (KeyGen, Sign, Verify) is generated together with a
tuple tup = (p,G,G, ê, g) and a key pair (sk, pk). A λ-bit secret key s is chosen for DIA tree DT . Finally,
KΨ = (Ks,Ks̄,Kt, sk, pk,KΣ) is returned
Encrypted Index Building: is given in Algo 2. Instead of DB(w), for each w ∈ W , we consider
DB(w) ∪ {idw0 }, where {idw0 } is a random unassigned identifier. Doing so prevents the server to return an
empty set of identifiers. Whenever the cloud returns the actual file it neglects the first identifier. Without
loss of generality, we take DB(w) = DB(w) ∪ {idw0 } and DB = {DB(w) ∪ {idw0 } : w ∈ W}. In rest of the
paper, we consider the same.

To generate an encrypted search index, the client takes an empty hash table Tsig where it keeps a key-value
pair (poswi , (σ

w
i , v

w
i)) for each keyword-doc pair (w, idwi). The key poswi indicates the position in the table

where value (σw
i , v

w
i) keeps two things– a signature σw

i for the pair and encrypted file-sequence-number vwi
for the keywords. A symmetric key encryption scheme Enc can be taken to get vwi . Finally, the client builds a
DIA tree DT for the set P of all such positions. The tree DT is constructed with DIAT.BuildTree(tup, s, P)
as described in Section 4. The root of the tree is kept at client-side. Moreover, the documents are kept
encrypted. The encrypted index ξ for them is generated using Σ. Here γ = {ξ, TSig} and I = DT .
Search Phase: The search phase consists of three steps. At first, the client generates a search token to
search for a set of keywords and sends it to the cloud server. Then, the cloud server performs a search on
the encrypted database and generates a proof of the search result. The client also generates a proof of the
received result and gives it to the auditor. Finally, an auditor verifies the result and the proofs.
Search token generation: Given a query ŵ = {w1, w2, . . . , w|ŵ|}, the client first generates search token τΣw1

for w1 (the lowest frequent keyword), according to the base searchable encryption scheme Σ (Algo. 3). This

16

Client
Initialization

Cloud

1. Generates KΨ

2. Builds (ξ, EDB, Tsig, DT)
(ξ, EDB, Tsig, DT)

Client Cloud Auditor

Search

1. Generates τΨ
s , sŵ, s̄ŵ

2. Stores sŵ, s̄ŵ τΨ
s

1. Computes (Rw1 , R̂ŵ, ac)
2. Computes pfc

(Rw1 , R̂ŵ, ac) pfc

3. Computes pfu d, pfu

1. Finds verification
bit b from pfu, pfc, d

b

Client
Update

Cloud

1. Generates τΨ
u = (τΣ

u , pos, val) τΨ
u

1. Updates Tsig
Accumulators in the

path of each posi ∈ pos
2. Updates Accumulators
3. Keeps updated root d Updated Accumulators

1. Stored updated
accumulators
2. Updates witnesses
of children

1

Figure 5: Interaction between entities in different phases

17

Algorithm 2: Ψ.VCBuild(DB,KΨ)

1 Tsig ← An empty list of size |W| ;
2 for w ∈ W do
3 sw ← F (Ks, w); tagw ← F (Kt, w); s̄w ← F (Ks̄, w);
4 for i = 0 to cw(= |DB(w)|) do
5 rwi ← R(sw||i);
6 mw

i ← rwi .id
w
i mod q; poswi ← F (tagw, id

w
i ||i);

7 σw
i ← S.Sign(sk,mw

i) ; vwi ← E .Enc(s̄w, i) ;
8 Tsig[pos

w
i]← (σw

i , v
w
i);

9 end
10 end
11 P = {poswi : w ∈ W and i = 0, 1, . . . , nw};
12 (DT, d)← DIAT.BuildTree(tup, s, P);
13 DB = {DB(w) : w ∈W};
14 (ξ, EDB)← Σ.Build(DB,KΣ) ;
15 Client keeps the root digest d;
16 return (ξ, EDB, Tsig, DT) to cloud;

helps to find file identifiers that contain w1. Then, it generates corresponding set of tags {tagw1 , tagw2 , . . . , tagw|ŵ|}
for all keywords. These tags help to find whether the keyword-document pairs exist without revealing the
actual keyword. Additionally, sŵ = {sw1

, sw2
, . . . , sw|ŵ|} and s̄ŵ = {s̄w1

, s̄w2
, . . . , s̄w|ŵ|} are generated by the

client. Finally, τΨs = (τΣw1
, tagw1 , tagw2 , . . . , tagw|ŵ|) is issued as a search token for the cloud and sŵ, s̄ŵ are

stored at client-side.

Algorithm 3: Ψ.VCSrchTknGen(ŵ,KΨ)

1 {w1, w2, . . . , w|ŵ|} ← ŵ, where w1 is minimal frequent ;
2 (Ks,Kt,Ks̄, sk, pk,KΣ, s)← KΨ;
3 τΣw1

← Σ.SearchToken(w1,KΣ);
4 for i = 1 to i = |ŵ| do
5 tagwi ← F (Kt, wi); swi ← F (Ks, wi); s̄wi ← F (Ks̄, wi);
6 end
7 τΨs ← (τΣw1

, tagw1 , . . . , tagw|ŵ|);
8 sŵ ← (sw1 , sw2 , . . . , sw|ŵ|); s̄ŵ ← (s̄w1 , s̄w2 , . . . , s̄w|ŵ|);
9 return τΨs for cloud and (sŵ, s̄ŵ) only for client;

Search and proof generation: After receiving the search token τΨs from the client, at first, the cloud finds
single keyword search result Rw1

={idw1
0 , idw1

1 , . . . , idw1
nw1
} for the keyword w1 using Σ. Then from Rw1

and
the tag tagw1 , it finds the position of the keyword-file pairs corresponding to w1 and retrieves signatures of
them from the table Tsig. After that, it multiplies them as an aggregate signature for w1 which is treated
proof pf (0)

c for w1.
Then, for each file in Rw1

, it checks whether other keywords are present in the file by verifying the
existence of the keyword-file pairs. To verify them, corresponding positions are regenerated and checked
whether the table Tsig contains them. If for some jth file id, the position does not exist, the cloud computes
non-membership proof pf (i)

c for that positions. If all keywords are contained in jth file, then the product of
their signatures is returned as proof corresponding to the keyword, and the set a

(j)
c of vji s are returned to

the client. R̂ŵ keeps the identifiers that contain all keywords.
Thus, for each file in Rw1

, if it is in R̂ŵ, then the cloud returns the product of the signatures corresponding
to the keyword file pairs and the set of vji s. In case a file in Rw1 is not present in R̂ŵ, it returns a non-
membership proof for the position corresponding to a non-existing keyword-file pair. Finally, the cloud server

18

returns its part of the proof pfc and (R̂ŵ, Xŵ) to the client where Xŵ = (Rw1
, ac) and ac is the auxiliary

information from cloud.

Algorithm 4: Ψ.VCSearchCD(γ, τΨs)

1 Cloud Receives τΨs from client ;
2 (τΣw1

, tagw1 , tagw2 , . . . , tagw|ŵ|)← τΨs ;
3 Rw1 ← Σ.Search(ξ, τΣw1

);
4 {idw1

0 , idw1
1 , . . . , idw1

nw1
} = Rw1 ;

5 for i = 0 to nw1 do
6 posw1

i ← F (tagw1 , id
w1
i ||i);

7 σ′
i ← Tsig[pos

w1
i][0]; ;

8 end
9 pf

(0)
c = σ′ ←∏nw

i=0 σ
′
i; R̂ŵ ← Φ;

10 if |ŵ| = 1 return (Rw1 , pf
(1)
c)

11 for j = 1 to nw1 do
12 flag = 0;
13 for i = 2 to |ŵ| do
14 poswi

j ← F (tagwi , id
w1
j);

15 if [Tsig[pos
wi
j]] = ⊥ then

16 pf
(j)
c ← DIAT.Search(DT, poswi

j);

17 a
(j)
c ← poswi

j ; flag = 1 ;
18 break;
19 end
20 (σi

j , v
i
j)← Tsig[pos

wi
j];

21 end
22 if flag = 0 then
23 pf

(j)
c ←∏|ŵ|

i=2 σ
i
j ; a

(j)
c ← (v2j , . . . , v

|ŵ|
j);

24 R̂ŵ ← R̂ŵ ∪ {idw1
j };

25 end
26 end

27 pfc = (pf
(0)
c , pf

(1)
c , . . . , pf

(nw1)
c);

28 ac = (a
(1)
c , a

(2)
c , . . . , a

(nw1)
c) ; Xŵ = (Rw1 , ac);

29 return pfc and (R̂ŵ, Xŵ) ;

After receiving(R̂ŵ, Xŵ = (Rw1 , ac)), the client generates its part of the proof pfu. For w1, it regenerates
all the random numbers mw1

i for each of the files in Rw1
. Then it generates the product of them as m0 =∑nw1

i=0 mw1
i mod p (see step 3 to step 10 in in Algo. 5).

For each file id ∈ Rw1
\ {w1}, if id ∈ R̂ŵ, the client decrypts the encrypted numbers vji s, generates

random numbers corresponding to each keyword and calculates the product mi of them as pf
(i)
u . This acts

as membership proof of all the keywords in the file. So, we do not have to generate a separate proof for all
keyword-file pairs. In case, id /∈ R̂ŵ, the client keeps pf

(i)
u as null. This is because the cloud already keeps

non-membership proof for them.
The auditor (or any third party) verifies the search result by taking pfc from the cloud, and pfu, R̂ŵ and

d form the client. The algorithm is given in Algo. 5.
Verification: The auditor verifies for w1 as well as for each files in Rw1 . There are two cases in verification.
For the identifiers ∈ R̂ŵ, containing all keywords, it verifies S.Verify(pk, pfu[k][1], pfc[k]). For the identifiers
/∈ R̂ŵ that does not contains some keyword, non-membership proof, for corresponding pos, is verified with
DIAT.VerifySearch. auditor returns accept only when all get success (see Algo. 6).

19

Algorithm 5: Ψ.VCSearchCT(γ, τΨs)

1 Client Receives (R̂ŵ, Xŵ = (Rw1 , ac)) ;

2 (a
(1)
c , a

(2)
c , . . . , a

(nw1)
c)← ac;

3 {idw1
0 , idw1

1 , . . . , idw1
n′
w1
} ← Rw1 ; nw1 ← C[w1] ;

4 if nw1 ̸= n′
w1

then return reject;
5 {sw1 , sw2 , . . . , sw|ŵ|} ← sŵ (see Algo. 3);
6 for i = 0 to nw1 do
7 rw1

i ← R(sw1 ||i);
8 mw1

i ← idw1
i .rw1

i mod p;
9 end

10 pf
(0)
u = m0 =

∑nw1
i=0 mw1

i mod p ;
11 for j = 1 to nw1 do
12 if idw1

j /∈ R̂ŵ then pf
(i)
u = (0, a

(j)
c) ;

13 else
14 (v2j , v

3
j , . . . , v

|ŵ|
j)← a

(j)
c ;

15 for i = 2 to |ŵ| do
16 ki ← E .Dec(s̄wi , v

i
j);

17 rji ← R(swi ||ki);
18 mj

i ← R̂ŵ[i].r
j
i mod p;

19 end
20 mj =

∑|ŵ|
i=2m

j
i mod p;

21 pf
(j)
u = (1,mj)

22 end
23 end

24 return pfu = {pf (0)
u , pf

(1)
u , . . . , pf

(nw1)
u };

Algo. 6: Ψ.Verify(d, pfu, pfc, R̂ŵ)

1 Receives pfu from client and pfc from cloud;
2 for k = 0 to nw1 do
3 if pfu[k][0] = 0 then
4 bv = DIAT. VerifySearch(d, pfc[k][0], pfc[k][1], pfu[k][1])
5 else
6 bv ← S.Verify(pk, pfu[k][1], pfc[k])
7 end
8 if bv = failure return reject ;
9 end

10 return accept ;

20

Updating the database: Given a new file f with a new identifier id, the client first generates an update
token. From f , it extracts the set of keywords {w1, w2, . . . , wnid

}, where nid is the number of keywords present
in f . It computes update token τΣu of the file according to Σ. For each keyword-doc pair, during update,
corresponding entries in Tsig and the DIA tree DT are updated. Since, the client stores the frequencies of
the keywords as the state, it retrieves them to compute key-value pairs for the table Tsig.

For each keyword wi, it generates tag tagwi
, swi

and s̄wi
with the secret key. Then it generates key-value

pair (posi, vali) for every keywords wi as given in Algo. 8. Finally, it returns τΨu = (τΣu , pos, val) to the
cloud.

Algo. 7: Ψ.VCUpdtTkn(KΨ, st, f)

1 {w1, w2, . . . , wnid
} ∈ f ;

2 (Kt,Ks, sk, pk,KΣ)← KΨ ;
3 τΣu ← Σ.UpdateToken(KΣ, wi, id) ∀i ∈ [nid];
4 for i = 1 to nid do
5 swi ← F (Ks, wi); tagwi ← F (Kt, wi);
6 s̄wi ← F (Ks̄, wi); nwi ← C[wi];
7 ri ← R(swi ||(nwi + 1)); C[wi] = C[wi] + 1;
8 mi ← ri.id mod p; vi ← E .Enc(s̄w, cw + 1);
9 σi ← S.Sign(sk,mwi

i);
10 posi ← F (tagwi , id); vali = (σi, vi)

11 end
12 pos← {pos1, pos2, . . . , posnid

};
13 val← {val1, val2, . . . , valnid

};
14 return τΨu = (τΣu , pos, val)

During the update phase, the cloud updates the file f according to Σ. Then it inserts key-value pairs
in the table Tsig. Finally, after updating them in the database, it updates DT for each posi and returns
corresponding proof of update for each position.

Algo. 8: Ψ.VCUpdate(Ttag, γ, op, f)

1 (τΣu , pos, val) = τΨu ;
2 Σ.Update(ξ, τΣu , op) ;
3 {pos1, pos2, . . . , posn} ← pos; {val1, val2, . . . , valn} ← val;
4 for i = 1to i = n do
5 if (op=add) then Tsig[posi]← vali;
6 else remove Tsig[posi];
7 inpt← (DT, s, posi, op, d) ;
8 d′ ← DIAT.Update(inpt)

9 end
10 Client keeps updated d′;
11 return

Extra cost for verifiability: Building the index requires O(N) key-value pairs computation and a DIA
tree for a set of size N . During the search, the server has to compute O((|ŵ| + 1).|Rw1 |) key-value pair,
O(|R̂ŵ|.|Rw1 |) multiplications in G. It also has to compute O(|ŵ|.(|Rw1 | − |R̂ŵ|)) key-value pairs together
with proofs of their non-membership. To generate proof at the client-side, the client only generates random
numbers and computes the product of them which makes them very efficient for lightweight clients.

21

5.5 Security of our proposed scheme

5.5.1 Confidentiality

We see that the DIA tree is just an additional data structure that is get searched (updated) when the key of a
key-value pair is searched (updated). So, it does not give any extra information about the encrypted database.
(At the time of simulation, the simulator can also keep a similar tree based on the simulated database. The
simulator only gives existential proof. So, in our security proof, we have not taken the accumulator part.)
Else, suppose we have stored with a list of entries, then we build a simulator corresponding to that simulated
database. In either case, the simulator must be there and so is the DIA tree. Since a verification phase is
there, we can not return the random element in that case of the DIA tree. So, we can eliminate DT from
leakage, but we should keep it with valid proof.

Leakage function: Let LΣ = (Lbld
Σ ,Lsrch

Σ ,Lupdt
Σ) be the leakage function of Σ, then the leakage function LΨ

= (Lbld
Ψ , Lsrch

Ψ , Lupdt
Ψ) of Ψ is given as follows.

Lbld
Ψ (DB) = {Lbld

Σ (DB), |Tsig|}
Lsrch
Ψ (ŵ) = {Lsrch

Σ (w1), {(idw1
i , posw1

i , σw1
i) : i = 1, 2, . . . , nw1

},
{(posij , σi

j) : ∀idj ∈ Rwi
, wi ∈ ŵ, i ̸= 1}}

Lupdt
Ψ (w, id) = {id,Lupdt

Σ (w, id), posw, σw}

Since we consider any forward private DSE scheme Σ which LΣ-secure against adaptive chosen keyword
attack, we have the following theorem.

Theorem 3. Let Σ = (KeyGen, Build, SearchToken, Search, UpdateToken, Update) be the forward
private correct DSE scheme with leakage function LΣ = (Lbld

Σ ,Lsrch
Σ ,Lupdt

Σ). If Σ is LΣ-secure against adaptive
chosen keyword attack, under random oracle model, then for any adversary AΣ, there exists a simulator SΣ
which simulates Σ.

The proof of the above theorem depends on the scheme Σ and can be seen in the corresponding paper
(for example; [2]).

However, assuming the theorem we will proof confidentiality of Ψ. We show that Ψ is LΨ-secure against
adaptive dynamic chosen-query attacks in the random oracle model. The proof of confidentiality is given as
follows.

Theorem 4. If F is a PRF, R is a PRG and Σ is LΣ-secure against adaptive dynamic chosen-query attacks
in the random oracle model, then Ψ is LΨ-secure against adaptive dynamic chosen-query attacks, under
q-SDH assumption, in random oracle model.

Proof. We give the proof of the above theorem, according to Definition 8. It is sufficient to show that, for
any PPT adversary AΨ, there exists a simulator SΨ, for which, the output of RealΨAΨ

(λ) and IdealΨAΨ,SΨ
(λ)

are computationally indistinguishable.
Let AΣ be the part of AΨ for Σ, then by Theorem 3, there exists a simulator SΣ that simulates Σ.

Therefore, it is to remain to construct a simulator SΨ to simulated extra data structure Tsig and query
tokens (both search and update). Then, SΨ simulates as follows.
Simulating F : Simulation of the PRF F is done using a table TF in random oracle model. For a given pair
(x, y) of elements in G, if TF [(x, y)] = ⊥, i.e. the corresponding entry does not exists, a random entry is kept
as TF [(x, y)]← {0, 1}λ and finally TF [(x, y)] is returned.
Simulating Build: Given the leakage Lbld

Ψ (DB) = {Lbld
Σ (DB), |Tsig|}, S simulates two data structure EDB

and the table Tsig. The DIA tree always accumulates the keys of the key-value pairs of Tsig. Again, Tsig is
simulated with a table T̃sig. While simulating, let SΣ returns D̃B while simulating EDB.

To keep the tags, a table T̃tag taken by SimΨ. It stores a random λ-bit string for every keyword w. It
acts as random oracle and returns t̃agw ← T̃tag[w]. A table T̃ ′

sig is also kept by SimΨ to indicate whether an
entry T̃sig is queried or not.

The building of the data structures are simulated as follows.

1. T̃sig ← Φ and T̃ ′
sig ← Φ

2. For i = 1 to i = |Tsig| do

22

(a) posi
$←− {0, 1}λ; vali

$←− {0, 1}λ

(b) T̃sig[posi]← vali; T̃ ′
sig[posi]← 0

3. D̃B ← SΣ(Lbld
Σ (DB))

4. tup = (p,G,G, ê, g)← BMGen(1λ) is generated for D̃T.

5. s← {0, 1}λ

6. D̃IAT.build(tup, s, {posi : i = 1, . . . , |Tsig|})

7. return (D̃B, T̃sig, D̃T) and keeps (T̃ ′
sig, s, p)

Simulating search token: Let the search leakage Lsrch
Ψ (ŵ) is given.

A table TF is taken to keep the positions for each keyword-file pair. Given a tuple (t̃agw, id, i) it returns
a position in the table. If the position is searched before, then it returns the previous one, else it allocate
a new and return that. These table is kept at SΨ. Let {w1, w2, . . . , wn} ∈ ŵ where w1 has least frequency.
The complete simulation of search token is done by SΨ as follows.

1. Receives τΨs from client ;

2. τΣw1
← SimΣ.SimSearch(LΣ

srch(w1));

3. For i = 1 to n′
w1

(a) t̃agwi

o←− T̃tag[wi];

(b) posw1
i

o←− TF [(t̃agw1
, idw1

i ||i)];
(c) σ′

i
o←− T̃sig[p̃os

w1

i];

4. pf
(1)
c = σ′ ←∏nw

i=1 σ
′
i;

5. For j = 1 to n′
w1

(a) For i = 2 to nq

i. p̃os
wi

j
o←− TF [(t̃agwi

, idw1
j)];

ii. If (Tsig[pos
wi
j] = ⊥)

• T̃sig[p̃os
wi

j]← ⊥ ; a(j)c ← null;

• pf
(j)
c ← DIAT.Search (D̃T , poswi

j)

• continue for next i;
iii. (σi

j , v
i
j)← T̃sig[pos

wi
j];

(b) pf
(j)
c = σj ←

∏|ŵ|
i=1 σ

i
j ; a

(j)
c ← (v1j , v

2
j , . . . , v

|ŵ|
j);

6. pfc = (pf
(1)
c , pf

(2)
c , . . . , pf

(nw1
)

c);

7. ac = (a
(1)
c , a

(2)
c , . . . , a

(nw1
)

c);

8. Return pfc and (Rw1
, R̂ŵ, ac) ;

9. return τ̃Ψs = (τ̃Σ, t̃agw)

Here, oracle access is indicated by “ o←−”, if the elements is not empty, then it is returned, else a random
element is allocated and then returned.

23

Simulating Update token Leakage function to add a document f , with identifier id, containing {w1, w2, . . . , wnw
},

is given by
LΨ
updt(f) = {H ′(id), {(LΣ

updt(wi, id)) : i = 1, 2, . . . , nid}}.

1. For each keyword wi ∈ f

(a) τ̃ iu ← SimΣ(LΣ
updt(w, id))

(b) t̃agwi

o←− T̃tag[wi]

(c) nwi
← C[wi] + 1

(d) If TF [(t̃agwi
, id||(nwi + 1))] is not null,

i. p̃osi ← TF [(t̃agwi
, id||(cv + 1))]

Else
i. p̃osi ← a random posi such that T̃sig[posi] is null
ii. TF [(t̃agwi

, id||(nwi
+ 1))]← p̃osi; (iii) T̃ ′

sig[posi]← 1

(e) σ̃i
$←− G

2. p̃os← {p̃os1, p̃os2, . . . , p̃osnid
}; σ̃ ← {σ̃1, σ̃2, . . . , σ̃nid

}
3. Return τ̃Ψu = (p̃os, σ̃)

Since, in each entry, the signature generated in Tsig is of the form gαmr and corresponding entry in T̃sig

is of the form gαr
′
, where r is pseudo-random (as R is so) and r′ is randomly taken, we can say that power

of g in both are indistinguishable. Hence, Tsig and T̃sig are indistinguishable.
Besides, the indistinguishability of τ̃Ψu , τ̃Ψs with respect to τΨs , τΨu respectively follows from the pseudo-

randomness of F .

5.5.2 Soundness

We see that the server can cheat the cloud in four ways only, by returning– (1) incorrect number of identifiers
in Rw1 , (2) some altered identifier in Rw1 , (3) some result Rw′ of other keyword set w1 instead of Rw1 or (4)
some subset of R̂ŵ. However, for each case, the cheating will be detected as follows.

1. Since, the client stores the frequency of each keyword as in the state of the database, it can identify
incorrect frequency.

2. If any identifier is altered, mj
i in Step 18 of Algo. 5 does not match and consequently, signature

verification will be failed.

3. Signature is bounded with keywords by sw. During proof generation at the client-side, it is regenerated.
So signature verification will be failed if result set is changed.

4. Finally, if some subset of R̂ŵ is returned, there will be some identifier id ∈ R̂ŵ that is skipped in the
returned set. So, the server has to find at least one w ∈ ŵ, such that (id, w) pair does not exist.
However, since this is not true, the cloud server can not give non-membership proof for any such pair.

6 Comparison with existing schemes
Here we discuss a few previous schemes and compare them with our proposed one. Since we have shown that
it is trivial to get a conjunctive scheme with client storage, we are considering the schemes that have no extra
client storage for verifiability. We have summarized the comparison in Table 2.

We see that most of the works for verifiability are based on accumulators. The static scheme [4] used
two types of accumulators: One for each keyword and another for the total keyword file pair. When the
size of the member set increases, generating non-membership proof takes enormous time. Thus it becomes
impractical for a large database. Moreover, it does not support dynamic data. Moreover, to verify, the client
needs to compute |Rw1 | × |R̂ŵ| number of power of g and needs two round of communications.

The static scheme [21] used bilinear map for verifiability. Due to the existence of an auditor, the client
does not need to compute anything for verification. However, during search token generation requires O(|W|)
amount of storage as well as communication which is large when the keyword set os large.

24

Table 2: Comparison with existing conjunctive search SE schemes

Scheme Is ForwardVerifiable client Comm client Comp client Comm client Comp
name Dyn? Secrecy Cost to verify cost to verify Cost to update cost to update
[4] × – ✓ O(|W|.|DB|) + 2R O(|Rw1 |.|R̂ŵ|)Ex – –
[21] × – ✓ O(|W|) + 1R O(|Rŵ|)(Ex+ Hs) – –
[3] × – ✓ O(|Rŵ|) + 2R O(|Rŵ|)(Ex+ Bm) – –
[6] × – ✓ O(|ŵ| log |W|) + 1R O(|ŵ| log |W|)(Ex+ Bm+ Hs) – –
[26] ✓ ✓ × – – O(|f |) + 1R O(|f |)Hs
[5] ✓ × ✓ O(2|ŵ|(logN + 1)) + 2RO(3|ŵ| logN)M + O(3|ŵ|)Ex O(|f |) +1R O(|f |)Ex
[9] ✓ × ✓ O(|ŵ| logN) +1R O(|ŵ| logN)(Ex+ Bm) O(|f | logN)+2R O(|f | logN)Ex

Our Scheme ✓ ✓ ✓ O(|Rw1 |) + 1R O(|ŵ|.|Rw1 |)Hs O(|f |) + 1R O(|f |)Hs + O(|f |)Ex
M– multiplication in GT , Ex– exponentiation in G, R– rounds of communication, Hs– number of
hashes. Bm– bilinear map. ∗ in the complexities we considered most expensive operations only.

Mio et al. [3] is a static verifiable scheme that uses an interactive challenge-response method for veri-
fication. However, it requires O(|W|.|DB|) cloud storage which is very large. Moreover, in verification, it
requires 2 rounds of communication. It does not discuss the case when a subset of the result is returned.

The static scheme [6] used the cuckoo hashing. It similarly keeps an accumulator for each keyword and
uses polynomial interpolation to prove the set intersection.

The dynamic scheme Li et al. [5] used an accumulator for each keyword. The accumulators are stored
in the cloud in a Merkle tree that ensures the integrity of them. Updates of accumulators are not discussed.
One big difference of [5] with us is that [5] computes membership proofs on the go when it requires. So, if the
number of searches is high, this scheme will become slow. As in most of the verifiable dynamic schemes, it
also has two rounds of communication during an update. Though [26] is forward private, it is not verifiable.
It is also difficult to extend it to be verifiable.

[9] is a good dynamic scheme with verifiable support. It keeps an accumulator for each keyword and makes
an accumulator tree for them. To verify whether the returned intersection set is correct it uses polynomial
interpolation with FFT. This makes the computational cost higher (O(N log2 N)) for the server and makes
the scheme unsuitable when the number of searches is high. Moreover, the scheme is not forward private too.

In our scheme, the verification can be done via any auditor, so if the client wants, it can outsource it. So,
in the table bilinear map computation is ignored. Moreover, we see that most of the schemes use no extra
client storage for verifiability, but they have different cloud storage requirements.

The works, including [9], [6] etc., that use intersection method, have higher complexity as they have to
find all results first. The proof includes related information which increases communication cost too.

7 Conclusion
In this paper, we first designed an efficient authentication tree DIA tree. The tree can be scaled to large
databases when searches are too frequent than updates. Then, we have proposed a conjunctive DSE scheme
that is verifiable too. The scheme uses a forward private single keyword DSE scheme as the base. Moreover,
our scheme does not use any extra client-storage for verifiability. We have used our designed DIA tree for
verifiability. Later, we have shown that the scheme is practical comparing with existing schemes.

We can see that most of the verifiable conjunctive search schemes, including ours, use public-key encryp-
tion for verifiability though some single keyword verifiable schemes use symmetric one. Solving the same
problem with a symmetric-key encryption technique is still a good open problem in this direction. Besides,
though there is no practical attacks over non-backward private DSE schemes, still backward privacy should
be present in future verifiable conjunctive search DSE schemes which is more challenging.

References
[1] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong to us: The

power of file-injection attacks on searchable encryption. In 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016., pages 707–720, 2016.

25

[2] Raphael Bost.
∑

oφoς: Forward secure searchable encryption. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pages
1143–1154, 2016.

[3] Yinbin Miao, Jianfeng Ma, Fushan Wei, Zhiquan Liu, Xu An Wang, and Cunbo Lu. VCSE: verifiable
conjunctive keywords search over encrypted data without secure-channel. Peer-to-Peer Netw. Appl.,
10(4):995–1007, 2017.

[4] Jianfeng Wang, Xiaofeng Chen, Shifeng Sun, Joseph K. Liu, Man Ho Au, and Zhi-Hui Zhan. Towards
efficient verifiable conjunctive keyword search for large encrypted database. In Javier López, Jianying
Zhou, and Miguel Soriano, editors, Computer Security - 23rd European Symposium on Research in Com-
puter Security, ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part II, volume
11099 of Lecture Notes in Computer Science, pages 83–100. Springer, 2018.

[5] Yuxi Li, Fucai Zhou, Yuhai Qin, Muqing Lin, and Zifeng Xu. Integrity-verifiable conjunctive keyword
searchable encryption in cloud storage. Int. J. Inf. Sec., 17(5):549–568, 2018.

[6] Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen, and Refik Molva. Publicly verifiable conjunctive
keyword search in outsourced databases. In 2015 IEEE Conference on Communications and Network
Security, CNS 2015, Florence, Italy, September 28-30, 2015, pages 619–627, 2015.

[7] Wenhai Sun, Xuefeng Liu, Wenjing Lou, Y. Thomas Hou, and Hui Li. Catch you if you lie to me:
Efficient verifiable conjunctive keyword search over large dynamic encrypted cloud data. In 2015 IEEE
Conference on Computer Communications, INFOCOM 2015, Kowloon, Hong Kong, April 26 - May 1,
2015, pages 2110–2118, 2015.

[8] Xiaoyu Zhu, Qin Liu, and Guojun Wang. A novel verifiable and dynamic fuzzy keyword search scheme
over encrypted data in cloud computing. In 2016 IEEE Trustcom/BigDataSE/ISPA, Tianjin, China,
August 23-26, 2016, pages 845–851, 2016.

[9] Shunrong Jiang, Xiaoyan Zhu, Linke Guo, and Jianqing Liu. Publicly verifiable boolean query over
outsourced encrypted data. IEEE Trans. Cloud Computing, 7(3):799–813, 2019.

[10] Man Ho Au, Patrick P. Tsang, Willy Susilo, and Yi Mu. Dynamic universal accumulators for DDH
groups and their application to attribute-based anonymous credential systems. In Topics in Cryptology
- CT-RSA 2009, The Cryptographers’ Track at the RSA Conference 2009, San Francisco, CA, USA,
April 20-24, 2009. Proceedings, pages 295–308, 2009.

[11] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Cryptographic accumulators
for authenticated hash tables. Cryptology ePrint Archive, Report 2009/625, 2009.

[12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable symmetric encryp-
tion. In the ACM Conference on Computer and Communications Security, CCS’12, Raleigh, NC, USA,
October 16-18, 2012, pages 965–976, 2012.

[13] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. TWORAM: efficient oblivious RAM
in two rounds with applications to searchable encryption. In Advances in Cryptology - CRYPTO 2016
- 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part III, pages 563–592, 2016.

[14] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private searchable encryption
from constrained cryptographic primitives. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017, pages 1465–1482, 2017.

[15] Shifeng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, Viet Vo, and Surya Nepal.
Practical backward-secure searchable encryption from symmetric puncturable encryption. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, pages 763–780, 2018.

[16] Qi Chai and Guang Gong. Verifiable symmetric searchable encryption for semi-honest-but-curious cloud
servers. In Proceedings of IEEE International Conference on Communications, ICC 2012, Ottawa, ON,
Canada, June 10-15, 2012, pages 917–922, 2012.

26

[17] Rong Cheng, Jingbo Yan, Chaowen Guan, Fangguo Zhang, and Kui Ren. Verifiable searchable sym-
metric encryption from indistinguishability obfuscation. In Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS ’15, Singapore, April 14-17, 2015,
pages 621–626, 2015.

[18] Wakaha Ogata and Kaoru Kurosawa. Efficient no-dictionary verifiable searchable symmetric encryption.
In Financial Cryptography and Data Security - 21st International Conference, FC 2017, Sliema, Malta,
April 3-7, 2017, Revised Selected Papers, pages 498–516, 2017.

[19] Yinbin Miao, Jianfeng Ma, Ximeng Liu, Junwei Zhang, and Zhiquan Liu. VKSE-MO: verifiable key-
word search over encrypted data in multi-owner settings. SCIENCE CHINA Information Sciences,
60(12):122105:1–122105:15, 2017.

[20] Azam Soleimanian and Shahram Khazaei. Publicly verifiable searchable symmetric encryption based on
efficient cryptographic components. Des. Codes Cryptography, 87(1):123–147, 2019.

[21] Yinbin Miao, Jianfeng Ma, Ximeng Liu, Qi Jiang, Junwei Zhang, Limin Shen, and Zhiquan Liu. VCKSM:
verifiable conjunctive keyword search over mobile e-health cloud in shared multi-owner settings. Perva-
sive and Mobile Computing, 40:205–219, 2017.

[22] Cheng Xu, Ce Zhang, and Jianliang Xu. vchain: Enabling verifiable boolean range queries over
blockchain databases. In Proceedings of the 2019 International Conference on Management of Data,
SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 141–158. ACM,
2019.

[23] Kazuki Yoneyama and Shogo Kimura. Verifiable and forward secure dynamic searchable symmetric
encryption with storage efficiency. In Information and Communications Security - 19th International
Conference, ICICS 2017, Beijing, China, December 6-8, 2017, Proceedings, pages 489–501, 2017.

[24] Laltu Sardar and Sushmita Ruj. Fspvdsse: A forward secure publicly verifiable dynamic sse scheme. In
Provable Security - 13th International Conference, ProvSec 2019, Cairns, QLD, Australia, October 1-4,
2019, Proceedings, pages 355–371, 2019.

[25] Meixia Miao, Jianfeng Wang, Sheng Wen, and Jianfeng Ma. Publicly verifiable database scheme with
efficient keyword search. Inf. Sci., 475:18–28, 2019.

[26] Zhiqiang Wu and Kenli Li. Vbtree: forward secure conjunctive queries over encrypted data for cloud
computing. VLDB J., 28(1):25–46, 2019.

[27] Dwaine E. Clarke, Srinivas Devadas, Marten van Dijk, Blaise Gassend, and G. Edward Suh. Incremental
multiset hash functions and their application to memory integrity checking. In Advances in Cryptology
- ASIACRYPT 2003, 9th International Conference on the Theory and Application of Cryptology and
Information Security, Taipei, Taiwan, November 30 - December 4, 2003, Proceedings, pages 188–207,
2003.

[28] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. J. Cryptology,
17(4):297–319, 2004.

[29] Raphael Bost, Pierre-Alain Fouque, and David Pointcheval. Verifiable dynamic symmetric searchable
encryption: Optimality and forward security. IACR Cryptology ePrint Archive, 2016:62, 2016.

27

