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ABSTRACT

The Recent progress in practical applications of secure computation
protocols has also attracted attention to the symmetric-key primi-
tives underlying them. Whereas traditional ciphers have evolved to
be efficient with respect to certain performance metrics, advanced
cryptographic protocols call for a different focus. The so called
arithmetic complexity is viewed through the number and layout of
non-linear operations in the circuit implemented by the protocol.
Symmetric-key algorithms that are optimized with respect to this
metric are said to be algebraic ciphers. Previous work targeting
ZK and MPC protocols delivered great improvement in the per-
formance of these applications both in lab and in practical use.
Interestingly, despite its apparent benefits to privacy-aware cloud
computing, algebraic ciphers targeting FHE did not attract similar
attention.

In this paper we present Chaghri, an FHE-friendly block cipher
enabling efficient transciphering in BGV-like schemes. A complete
Chaghri circuit can be implemented using only 16 multiplications,
48 Frobenius automorphisms and 32 rotations, all arranged in a
depth-32 circuit. Our HElib implementation achieves a throughput
of 0.28 seconds-per-bit which is 63% faster than AES in the same
setting.
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1 INTRODUCTION

Traditional block ciphers are built with carefully chosen linear
and non-linear layers to resist well studied attacks. Besides being
secure, traditional block ciphers are designed to be efficient in their
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hardware and software implementations. Depending on the target
application domain, their design optimizes the running time, gate
count, or memory/power consumption. For instance, while an IoT
device calls for lowermemory/power consumption and gate count, a
high speed router calls for lower latency. Different efficiencymetrics
come into consideration when the target application domain is a
secure computation protocol.Multi-Party Computation (MPC), Zero-
Knowledge (ZK) proofs, and Fully Homomorphic Encryption (FHE) are
examples of such secure computation protocols that are described
via algebraic operations. These operations can be translated into
arithmetic computations and vice versa. Converting computations
into a sequence of algebraic operations over a finite field is called
arithmetization and it was first applied to cryptographic protocols
by Lund et al. [28].

Consider the following scenario in which a secure computation
protocol employs a block cipher: a client sends its data encrypted
under an FHE scheme to a cloud server that operates on encrypted
data. However, depending on the complexity of the function per-
formed by the server, the scheme’s parameter set might result in
a drastic increase in the size of the freshly encrypted ciphertext.
Consequently, this increase would add unwanted overhead to the
communication. One solution to this problem is transciphering

meaning all the private data sent by a client can be encrypted using
a block cipher. Then, the server decrypts homomorphically, and
consequentially they are able to operate on encrypted data without
additional overhead to the communication [31].

The increase in the popularity of advanced cryptographic proto-
cols gave rise to new designs known as algebraic ciphers such as
MiMC [2],LowMC [1],Kreyvium [7], FLIP [30], Rasta[12],Dasta [21],
Pasta [13], Fasta [8], Elisabeth [9], Rubato [20], Poseidon [18], Vi-
sion, and Rescue [3]. Unlike traditional block ciphers, the design of
these algorithms is driven by arithmetic complexity improving the
efficiency of the protocol employing them. Therefore, the relevant
attacks and security of these algorithms are also different.

As the design of algebraic ciphers is an evolving research area,
there are several design strategies introduced as a framework. The
Marvellous design strategy [3] and the Hades design strategy [19]
are examples of such design strategies. The ciphers that are pro-
posed following these design strategies are shown to be efficient in
ZK and MPC applications. Although numerous algebraic ciphers
were proposed for ZK and MPC applications, there are not many
algebraic ciphers proposed in the context of FHE. Yet, FHE is an
effective tool to remove privacy barriers obstructing data sharing.
Therefore, designing an FHE-friendly algebraic cipher still stands
as a research area that needs to be improved.

https://doi.org/10.1145/3548606.3559364
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In this work we address the key factors affecting the efficiency
and present a novel FHE-friendly algebraic cipher Chaghri. Imple-
mented using the HElib software library Chaghri performs 63%
faster than AES, making it, to the best of our knowledge, the most
efficient block cipher in this setting.

This paper is structured as follows: in Section 2 we recall the
Marvellous design strategy, the ciphers designed following it, the
notion of non-procedural computation, and BGV-based fully homo-
morphic encryption. In Section 3 we motivate the decisions taken
in designing Chaghri, and in Section 4 we give the specifications
of the cipher. Following this, we argue the security and efficiency of
Chaghri by presenting a security analysis against the applicable
statistical and structural attacks in Section 5, and the performance
numbers together with the benchmarking figures in Section 6. This
paper does not include a “conclusion” section.

2 PRELIMINARIES

In this section we mention some related previous work, and some
prior knowledge that is required for the design of Chaghri.

2.1 The Marvellous Design Strategy

The Marvellous design strategy [3] introduces a set of decisions to
be taken when designing a secure and efficient algebraic cipher. The
state of a Marvellous design is an element in the vector space Fℓ𝑞 ,
with𝑞 either a power of 2 or a prime number and ℓ > 1. AMarvellous

design is an SP network that repeatedly applies its round function
to its state for 𝑁 iterations. Figure 1 depicts a schematic description
of the encryption operation of a Marvellous design. A plaintext and
a master key are the inputs to the first round. Each round consists
of two steps and each step employs three layers: S-box, linear, and
subkey injection. The subkeys used in subkey injection are derived
from the master key by means of a key schedule algorithm.

Sbox

Linear Layer

Key addition

Step 1

Sbox

Linear Layer

Key addition

Step 2

Input

Round i

Output

1≤i≤N

Figure 1: The encryption operation of Vision and Rescue

The S-box layer of a Marvellous round applies an S-box to each
of the ℓ state elements. Each S-box consists of a power map 𝑔 : 𝑥𝛼
and possibly followed by an invertible affine transformation. The
motivation behind employing a power map S-boxes is their well
studied cryptanalytic properties [32]. The two steps of aMarvellous

round employ different S-boxes in terms of their degrees. Let the
S-box employed in the first step be denoted by 𝜃0, and the S-box
employed in the second step be denoted by 𝜃1. 𝜃0 is chosen such that

it has a high degree when the encryption is performed and a low
degree when the decryption is performed. 𝜃1 is chosen such that it
serves the opposite goal: it has a low degree when the encryption
is performed and a high degree when the decryption is performed.
This construction provides a high degree in both encryption and
decryption, and consequently results in the same cost for both.

The linear layer diffuses local properties to the entire state. This
is realized bymultiplying theMarvellous state vector by a maximum
distance separable (MDS) matrix. The authors [3] offer to use ℓ × 2ℓ
Vandermonde matrices using powers of an F𝑞 primitive element.
To obtain the MDS matrix, the Vandermonde matrix is echelon
reduced and the ℓ × ℓ identity matrix is removed.

The key schedule algorithm of a Marvellous design is indeed the
iteratively applied encryption round function. In order to generate
the subkeys, the round function takes the master key instead of the
plaintext input, and takes additional round constants instead of the
subkeys injected. The round constants are chosen such that they
do not belong to a subfield of F𝑞 , nor are rotational invariant. The
intermediate state after the round constant injection is provided as
a subkey.

The number of rounds in a Marvellous round is set to be

2 ·max(𝑟0, 𝑟1, 5),

where 𝑟0 is set to be the maximum number of rounds that can
be attacked by differential and linear cryptanalysis, higher-order
differentials and interpolation attacks; 𝑟1 is said to be the instance-
specific number of rounds that can be attacked by a Gröbner basis
attack. Five is the sanity factor that protects the cipher against
redundant optimization attempts weakening it. As a result, any
Marvellous instance is set with a minimum of 10 rounds.

Vision. Vision is a Marvellous family operating on binary fields
with its native field F2𝑛 . Most aspects of Vision are directly derived
from the Marvellous design strategy. The Vision-specific design
decisions are limited to the S-box layer which consists of an inver-
sion (with 0 mapped to 0) followed by an affine transformation. It
is constructed by first choosing a 4𝑡ℎ degree F2-linearized affine
polynomial 𝐵(𝑥). Then,

𝜃1 : F2𝑛 ↦→ F2𝑛 : 𝑥 ↦→ 𝐵(𝑥−1),

and

𝜃0 : F2𝑛 ↦→ F2𝑛 : 𝑥 ↦→ 𝐵−1 (𝑥−1).

Rescue. Rescue is another Marvellous family, this time operating
on F𝑝 where 𝑝 is an odd prime instead of a power of 2. Same
as Vision, most aspects of Rescue are directly derived from the
Marvellous design strategy. The S-box layer of Rescue consists of
a power map only. It is constructed by first finding the smallest
prime 𝛼 such that gcd(𝑝 − 1, 𝛼) = 1. Then,

𝜃0 : F𝑝 ↦→ F𝑝 : 𝑥 ↦→ 𝑥1/𝛼 ,

and

𝜃1 : F𝑝 ↦→ F𝑝 : 𝑥 ↦→ 𝑥𝛼 .
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Rescue-Prime. Rescue-Prime [34] is an algebraic hash function in-
spired by Rescue. In Rescue-Prime the derivation of round constants
is changed, the security margin is reduced from 100% to 50%, and
the order of S-Boxes is swapped. Since we propose an algebraic
cipher operating on a binary field, algorithm specific properties
of Rescue-Prime are omitted in this paper. Interested readers are
referred to [34] for the complete description of the algorithm.

2.2 Fully Homomorphic Encryption (FHE)

Fully homomorphic encryption (FHE) is an advanced cryptographic
protocol that allows users to evaluate any circuit on encrypted data
without first decrypting it. FHE is an effective solution to securely
outsourcing computations. However, depending on the size of the
computation, the data might be drastically expanded when en-
crypted under an FHE algorithm. In this case, recalling the example
given in Section 1, transciphering combining FHE and symmetric
encryption allows an efficient encrypted data communication and
computation outsourcing.

2.2.1 Brakerski-Gentry-Vaikuntanathan (BGV) Scheme. BGV is a
leveled FHE scheme proposed by Brakerski, Gentry and Vaikun-
tanathan [5]. Leveled FHE is more restricted than FHE in that the
depth of circuits it can evaluate is bounded by the parameters of
the scheme. BGV uses modulus-switching introduced by Brakerski
and Vaikuntanathan [6] to keep the noise under a threshold. Mod-
ulus switching is proposed in [6] to be applied once to obtain a
ciphertext with less noise. However, it is iteratively applied in BGV
to keep the noise under a certain threshold.

In this work we use a BGV variant proposed by Gentry, Halevi
and Smart [16] where both ciphertexts and secret keys are rep-
resented as vectors over a polynomial ring A, and the plaintext
space is all polynomials over A𝑝 for 𝑝 ≥ 2 defined by cyclotomic
polynomials Φ𝑚 (𝑋 ). Additionally, at any point during the homo-
morphic evaluation, there are current integer modulus q and current

secret key s that evolve as the homomorphic operations are applied.
Decryption is done by taking the inner product of the ciphertext
𝑐 and the current secret key 𝑠 over A𝑞 . Then the result is reduced
modulo 𝑝:

𝑎 ← [ [ ⟨𝑐, 𝑠⟩ mod Φ𝑚 (𝑋 )] 𝑞︸                         ︷︷                         ︸
noise

] 𝑝 . (1)

Addition, multiplication and automorphism are used to eval-
uate circuits and therefore, alter the data encrypted under these
ciphertexts. Key-switching and modulus-switching are used to
control the complexity of the evaluation and therefore, do not affect
the underlying data.

Addition. Homomorphic addition is simply performed bymeans
of a vector addition over A𝑞 (with respect to the same secret key
and modulus 𝑞). This operation slightly increases the noise of the
ciphertext, and does not change the current secret key and the
current modulus.

Multiplication. Homomorphic multiplication is performed by
means of a tensor product over A𝑞 . If the two arguments of this
operation have dimension𝑛 overA𝑞 , the output then has dimension
𝑛2. The change in the dimension of the ciphertext consequently
results in a change in the dimension of the secret key. This is

because the output ciphertext would then be valid with respect to
the secret key 𝑠 ′ of dimension 𝑛2. Therefore, the operation changes
the current secret key, but not the current modulus. Homomorphic
multiplication significantly increases the noise of the ciphertext.

Automorphism. Automorphism maps a polynomial 𝑎(𝑋 ) ∈ A to
𝑎 (𝑖) (𝑋 ) = 𝑎(𝑋 𝑖 ) mod Φ𝑚 (𝑋 ). The set of transformations {𝑎 ↦→
𝑎𝑖 : 𝑖 ∈ (Z/𝑚Z)∗} forms a group under the composition operation,
and this group is isomorphic to (Z/𝑚Z)∗. Let 𝑐 be a valid cipher-
text encrypting 𝑎 with respect to 𝑠 and 𝑞. Then the output of the
automorphism operation 𝑐 (𝑖) is a valid ciphertext encrypting 𝑎 (𝑖)

with respect to 𝑠 (𝑖) and 𝑞. Different than the addition and the
multiplication, this operation does not increase the noise of the
ciphertext.1

Key-switching and modulus-switching. Key-switching is used
after the operations increasing the dimension of the secret key and
Modulus-switching is applied to reduce the noise of the ciphertext.

Packed ciphertexts. This FHE scheme allows performing opera-
tions on packed ciphertexts. Smart and Vercauteren [33] proposed
using the Chinese Remainder Theorem to represent the plain-
text space A𝑝 as a vector of plaintext slots. This applies when
Φ𝑚 (𝑋 ) factors modulo 𝑝 into 𝑙 irreducible polynomials such that
Φ𝑚 (𝑋 ) =

∏𝑙
𝑗=1 𝐹 𝑗 (𝑋 ) mod 𝑝 . Then, a plaintext polynomial 𝑎(𝑋 ) ∈

A𝑝 can be represented as encoding 𝑙 different plaintext polyno-
mials with 𝑎 𝑗 = 𝑎 mod 𝐹 𝑗 . Addition and multiplication opera-
tions are then performed slot-wise. However, this is not the case
for automorphism. If 𝑖 is a power of two, then the transformation
𝑎 ↦→ 𝑎 (𝑖) can be realized for each slot separately, and this transfor-
mation is called a Frobenius automorphism. Conversely, if 𝑖 is not
a power of two, then the transformation acts as a shift operation
between the different slot elements.

2.3 Non-procedural Computation

Procedures simply consist of a series of computational steps. In
procedural computation, the system’s state at any point in time is a
function of the system’s state at a previous point in time. However,
the algebraic operations employed by the advanced cryptographic
protocols are better interpreted with respect to an alternative time-
line. This interpretation is said to be a non-procedural computation.
For instance, masked operations in MPC offer non-procedural prop-
erties by referring certain computations to an offline phase.

Non-procedural computations allow constant-time execution
in operations that would otherwise have resulted in variable run-
ning time when the size of the native field changes. Therefore,
exploiting non-procedural computation can improve the efficiency
of advanced cryptographic protocols. In addition to efficiency, em-
ploying non-procedural computations can offer security properties
without the need to increase the number of rounds.

3 DESIGN RATIONALE

In this section we explain and motivate the design decisions made
for Chaghri in accordance with the discussion in Section 2.

1Each automorphism requires a key-switching operation, which increases the noise in
principle but is practically insignificant and is therefore ignored in this work.
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3.1 Motivation of Chaghri

Chaghri takes Vision as a starting point, and improves it with
respect to the efficiency metrics specific to BGV rather than ZK-
STARK. FHE/BGV-specific efficiency metrics are stated in [35] rea-
soned by a comparative analysis of Vision, Rescue, and AES.

Our starting point is the comparative analysis performed in [35]
for 128-bit security in terms of latency (i.e. the time it takes the
encryption function to finish).

Benchmarking with a 128-bit state. It is stated in [35] that AES
performs 88% faster than Vision, and 96% faster than Rescue. The
reason Vision and Rescue are slower than AES is that they require
deeper circuits which in turn require a larger cyclotomic polynomial
Φ(𝑚) to evaluate. Therefore, apart from requiring more primitive
operations (i.e.,multiplications, additions, and automorphisms), the
running time of each primitive operation is longer due to the larger
Φ(𝑚).

Benchmarking with larger state sizes. [35] also describes a bench-
mark for higher throughputs. The motivation behind this is that by
increasing the number of state elements in Vision its throughput
increases while keeping latency constant; whereas for AES the in-
crease in throughput forces a linear increase in latency. However,
even though Vision’s latency asymptotically grows slower than
that of AES for a higher throughput, the latter still outperforms the
former by 45% for a 2048-bit state.

This comparative analysis concludes that the computation of the
inversion and the dense affine polynomial are the most expensive
operations for larger extensions of the base field. Even though Vi-

sion and Rescue achieve a compact algebraic description in ZK and
MPC, they do not seem to perform well in BGV. This is because
both Vision and Rescue make heavy use of ZK and MPC specific
non-procedural operations. For instance, inversion is efficiently
computed in MPC by means of masking and offloading the heavy
operations to the offline phase. However, in FHE this is being un-
available; the number of operations required to compute inversion
increases as the degree of the field extension increases. It follows
that, different considerations are involved in FHE applications such
as circuit depth, suggesting that a novel instance ofMarvellous may
be appropriate.

3.2 Frobenius Automorphism as a

Non-procedural Computation

In the variant of the BGV cryptosystem [16] used in this work, con-
verting the polynomial𝑎(𝑋 ) ∈ A to𝑎 (𝑖) (𝑋 ) def= 𝑎(𝑋 𝑖 ) mod Φ𝑚 (𝑋 )
where m is a cyclotomic polynomial is another primitive operation.
When 𝑖 is in the form 𝑝𝑖 , the automorphism is applied to each slot
separately and said to be a Frobenius automorphism. The Frobenius
automorphisms increase the noise by a negligible amount when
compared to other primitive operations.

We identify Frobenius automorphism as a non-procedural com-
putation since it computes an exponentiation of the form 𝑋𝑝𝑖 over
F𝑝𝑛 while the running time of this operation is independent of the
exponent.

3.3 Non-linearity

Power maps are widely used in S-box layers owing to their cryptan-
alytic properties [32]. In Vision, inversion is used to construct the
S-box. Algorithm 4 describes the pseudo-code for implementing
inversion over F2𝑛 . This algorithm requires log𝑛 Frobenius auto-
morphisms and 2(log𝑛 − 1) multiplications arranged in a depth-
log𝑛 circuit. Therefore, the running time of the inversion operation
grows logarithmically as the degree of the field extension increases.

To choose a power map that can be computed more efficiently in
FHE, we reviewed some other well studied power maps: 𝑥 ↦→ 𝑥2

𝑘+1

(Gold exponents) [32], 𝑥 ↦→ 𝑥2
2𝑚−2𝑚+1 (Kasami exponents) [22],

and 𝑥 ↦→ 𝑥2
𝑚−2𝑚/2−1 (Niho exponents) [11]. In BGV computation

of a Gold exponent requires one Frobenius automorphism and one
multiplication, a Kasami exponent requires𝑚 Frobenius automor-
phisms and𝑚 multiplications, and a Niho exponent requires𝑚 − 2
Frobenius automorphism and𝑚 − 2 multiplications. A Gold expo-
nent is clearly the most efficient power map to be implemented in
this setting.

3.4 Affine Polynomials

F2-linearized affine polynomials (i.e. 𝐴(𝑋 ) = 𝑎0 +
∑𝑛−1
𝑖=0 𝑎𝑖 · 𝑋 2𝑖

over F2𝑛 ) are an efficient way to increase the complexity of the
polynomial description of Chaghri because they are efficient to
compute with respect to the normal basis. There exists an element
𝛼 ∈ F2𝑛 such that the set {𝛼, 𝛼2, ..., 𝛼2𝑛−1 } constitutes a basis of
F2𝑛 over F2 which is said to be a normal basis. Then, any element
𝑥 ∈ F2𝑛 can be represented as a vector (𝑎0, 𝑎1, ..., 𝑎𝑛−1) as follows:

𝑥 =

𝑛−1∑
𝑖=0

𝑎𝑖𝛼
2𝑖 ,

such that squaring is simply a right cyclic shift in this representa-
tion.

In ZK, to compute 𝑥2
𝑘
, the intermediate value 𝑥2

𝑘−1
must be com-

puted first, and this motivates the choice of a dense F2-linearized
affine polynomial in Vision. However, this is not the case in BGV
as 𝑥2

𝑘
can be directly computed by a Frobenius automorphism.

Therefore, a sparse F2-linearized affine polynomial is a natural
choice for Chaghri. To ensure that this polynomial is a permuta-
tion, we choose coefficients such that the associated Dickson matrix
is non-singular [? ].

4 DESCRIPTION OF CHAGHRI

Following the discussion on its design rationale, we now describe
Chaghri. Chaghri is a substitution-permutation (SP) network
that has a vector state of three field elements 𝑥0, 𝑥1, 𝑥2. A single
Chaghri round consists of two identical steps. Each step employs
three layers: S-box, linear and subkey injection. The S-box layer
applies an S-box 𝜋 to each of the three state elements, the linear
layer is a multiplication of the output vector of the S-box layer by
an MDS matrix𝑀 of size 3×3, and the subkey injection layer is an
XOR operation between the state and the corresponding subkey.

4.1 Primitive Operations

We now describe the primitive operations used in Chaghri.
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Gold exponent. A Gold exponent is employed in the S-box. Con-
versely to inversion, a Gold exponent can be computed via a single
Frobenius automorphism independently of the degree of the field
extension. The security properties of Gold exponents were analyzed
in [32] where it was shown to be highly non-linear and safe against
differential- and linear-cryptanalysis. Nevertheless, their low alge-
braic degree pose a problem which we mitigate in the same way
as AES and Vision by employing a carefully chosen F2-linearized
affine polynomial.

Since the cost of implementing a Gold exponent 𝑥2
𝑘+1 is inde-

pendent of 𝑘 we would like to maximize its security benefits. For
𝑠 = gcd(𝑘, 𝑛) where 𝑛 is the degree of the field extension 𝑥2

𝑘+1 is
a permutation if and only if 𝑛

𝑠 is odd. Moreover, if 𝑛 is odd, and
co-prime to 𝑘 the Gold exponent is a differentially 2-uniform per-
mutation which may influence the choice of 𝑛. A larger 𝑛 increases
the throughput for a fixed number of elements. As 𝑛 = 64 does
not satisfy that 𝑛

𝑠 is odd we set 𝑛 = 63 and 𝑘 = 32 which in com-
bination with the F2-linearized affine polynomial provides a high
polynomial degree.

S-Box. The S-box of a Chaghri round, 𝜋 , is a power map 𝑥𝛼
composed with an affine transformation. Following the design ra-
tionale explained in Sections 3.3 and 3.4, the S-box 𝜋 is described
as

𝜋 : F263 ↦→ F263 : 𝑥 ↦→ 𝐵(𝐺 (𝑥)) .
where 𝐺 : F𝑛2 → F

𝑛
2 is given by 𝐺 (𝑥) ↦→ 𝑥2

32+1 and 𝐵 : F𝑛2 → F
𝑛
2 is

an F2-linearized affine polynomial whose coefficients are listed in
Appendix C. 2

Linear Layer. The linear layer diffuses local properties to the
entire state. This is realized by a matrix multiplication with an MDS
matrix. We follow the same strategy to create our MDS matrices as
explained in Section 2.1. Any MDS matrix having the right dimen-
sion can be used in the linear layer as the choice of a specific MDS
matrix does not contribute to the security arguments.

4.2 Number of Rounds

Let 𝜆 be the largest number of rounds that can be attacked using
the approaches described in Section 5. Then the safe number of
rounds is determined by the following relation:

𝑁 = 1.5max(𝜆, 5),
where the constant 5 is a sanity factor suggested by the Marvellous

designers [3], and 1.5 is a safety margin proposed in [34]. In Table 1,
the number of rounds 𝜆 that can be attacked using different methods
is analyzed.

Concretely, the analysis results in 1.5max(𝜆, 5) = 7.5 and since
both steps in a Chaghri round are identical, there is no issue with
using a non-integral number of rounds. However, for compliance

2A preprint version of this paper used 𝐵 (𝑥) = 𝛼1𝑥
8 + 𝛼2 . However, as was shown

by Liu et al. in [27] this choice of 𝐵 results in a linear increase of the algebraic
degree rather than the desired exponential increase. This in turn enables a practical
higher order differential attack. In the same work, Liu et al. show that using 𝐵 (𝑥) =
𝑐′1𝑥

256 + 𝑐′2𝑥4 + 𝑐′3𝑥 + 𝑐′4 , results in exponential increasing of the algebraic degree.
The coefficients (𝑐′1, 𝑐′2, 𝑐′3, 𝑐′4) should be selected in a way that 𝐵 is a permutation. To
avoid confusion, the definite version of Chaghri is the one published in CCS 2022
after the issue has been fixed.

Table 1: This table describes for each attack (left column) the

lower boundwe obtained on its complexity (middle column)

and derive a safe number of rounds (right column).

Method Attack complexity Safe number of rounds

Differential cryptanalysis 24·62𝑁 𝑁 ≥ 1
Linear Cryptanalysis 28·31𝑁 𝑁 ≥ 1

Higher-order differentials [27] 𝑁 ≥ 4
Gröbner basis attack Appendix B 𝑁 ≥ 3

with the Mavellous design strategy we round up and set 𝑁 = 8 as
the total number of rounds.

4.3 Decryption

Recalling the transciphering example in Section 1, encryption hap-
pens on the client side and decryption is realized homomorphically
on the server side and is the part we are aiming to optimize. We
therefore first describe the decryption algorithm using the BGV-
friendly operations we identified, then describe the encryption
algorithm using their (heavier) inverses.

Chaghri decryption applies the round function 8 times. A key
injection takes place before the first round, between every two
steps and after the last round. Figure 2 depicts a Chaghri round in
a decryption flow. The ciphertext and the master key are the inputs
to the first round function, and the plaintext is the output of the
last round function. Pseudo-code of Chaghri decryption function
is listed in Algorithm 1.

Figure 2: A Chaghri decryption round function

Algorithm 1: Chaghri𝑑𝑒𝑐

Input : Ciphertext C, subkeys 𝐾𝑠 for 0 ≤ 𝑠 ≤ 2𝑁
Output: Chaghri𝑑𝑒𝑐 (K, C)

𝑆0 = 𝐶 + 𝐾0
for 𝑗 ← 1 to 𝑁 do

for 𝑖 ← 0 to 2 do
𝐼𝑛𝑡𝑒𝑟 𝑗 [𝑖] = 𝐺 (𝑆 𝑗−1 [𝑖])
𝐼𝑛𝑡𝑒𝑟 𝑗 [𝑖] = 𝐵(𝐼𝑛𝑡𝑒𝑟 𝑗 [𝑖])

for 𝑖 ← 0 to 2 do
𝑆 𝑗 [𝑖] =

∑2
𝑘=0𝑀 [𝑖, 𝑘]𝐼𝑛𝑡𝑒𝑟 𝑗 [𝑘] + 𝐾2𝑗−1 [𝑖]

for 𝑖 ← 0 to 2 do
𝐼𝑛𝑡𝑒𝑟 𝑗 [𝑖] = 𝐺 (𝑆 𝑗 [𝑖])
𝐼𝑛𝑡𝑒𝑟 𝑗 [𝑖] = 𝐵(𝐼𝑛𝑡𝑒𝑟 𝑗 [𝑖])

for 𝑖 ← 0 to 2 do
𝑆 𝑗 [𝑖] =

∑2
𝑘=0𝑀 [𝑖, 𝑘]𝐼𝑛𝑡𝑒𝑟 𝑗 [𝑘] + 𝐾2𝑗 [𝑖]

return 𝑆𝑁
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4.4 Encryption

The S-box flow in the encryption function is described as

𝜋 : F263 ↦→ F263 : 𝑥 ↦→ 𝐺−1 (𝐵−1 (𝑥)) .

where 𝐺−1 (𝑥) = 𝑥𝑙 , 𝑙 = 22048 − 1
264 − 1

and 𝐵−1 (𝑥) is given in Appen-
dix C. Figure 3 depicts the a round of the encryption function.

Figure 3: A Chaghri encryption round function

4.5 Key Schedule

The key schedule algorithm is indeed the iteratively applied Chaghri
decryption round function. In order to generate the subkeys, the
round function takes the master key instead of the ciphertext input,
and takes additional round constants instead of the subkeys in-
jected. The intermediate state after the round constant injection is
provided as a subkey. Round constants are used to prevent possible
symmetries and self-similarities in the algorithm to thwart certain
type of attacks (e.g., rotational cryptanalysis). The round constants
should be chosen such that they are not rotational-invariant and
they do not belong to any subfield of F𝑞 . The round constants used
in Chaghri are given in Appendix D.

5 SECURITY ANALYSIS

In this section we analyze the security of Chaghri against appli-
cable statistical and structural attacks. Chaghri is secure against
statistical attacks due to the large field size and the properties of
its Sbox. Each round consists of two polynomial transformations
having specific properties to assure the resistance against structural
and algebraic attacks. The high degree Gold exponent combined
with the affine linearized polynomial ensure that the description is
dense and has high degree across all possible polynomial descrip-
tions. In the rest of this section we show that this is indeed the
case.

5.1 Statistical Attacks

The most common way to argue the security of a block cipher
against differential and linear cryptanalysis is the wide trail strat-
egy [10]. A Chaghri round involves two maps: a linearized affine
transformation 𝐵, and a power map 𝐺 which is non-linear; whose
linear and differential properties were studied in [32]. For an 𝑛-
bit Boolean function 𝑓 , the difference propagation probability 𝛿 is
defined as

𝛿 = 2−𝑛 max
𝑖, 𝑗
|{𝑥 |𝑓 (𝑥) ⊕ 𝑓 (𝑥 ⊕ 𝑖) = 𝑗}| ,

and the maximum absolute correlation between any pair of linear
combinations of 𝑛 input bits and 𝑛 output bits is defined as

𝜔 = max
𝛼,𝛽∈F𝑛2

(
2 Pr
𝑥 ∈F𝑛2

[𝛼𝑥 ⊕ 𝛽 𝑓 (𝑥) = 0] − 1
)
.

Chaghri has 𝛿 = 2−62 and 𝜔 = 2−31, see [32] for the details. Since
the MDS matrix activates at least𝑚 + 1 = 4 Sboxes in each round
(2 steps), the differential transition probability over 𝑁 rounds is at
most

2(4) (−62)𝑁

and the absolute correlation for any 𝑁 -round linear trail is at most

2(4) (−31)𝑁 .

The necessary number of rounds to achieve 128 bits of security
is 𝑁 = 2 and attacking more rounds of Chaghri using statistical
attacks is unlikely due to the safety margins we use.

5.2 Structural and Algebraic Attacks

5.2.1 Invariant Subfield Attacks. Chaghri operates over the binary
field F263 with subfields of the form F2𝑘 such that 2𝑘 − 1 divides
263 − 1. An example of such subfields are F23 or F27 . Chaghri may
be vulnerable to the invariant subfield attack [3] if there exists two
subfields F𝑞1 ⊂ F263 and F𝑞2 ⊂ F263 such that for any input to the
round function 𝑥 ∈ F𝑞1, the corresponding output 𝑦 lies in F𝑞2. In
order to ensure the security of Chaghri against this attack, we
chose the coefficients of the polynomial 𝐵 and the constants used
in the key schedule so that they do not lie in any subfield of F263 .

5.2.2 Higher-Order Differential Attacks. A higher-order differen-
tial attack [25] is an attack targeting the low algebraic degree of
transformations used in block ciphers over binary fields. The alge-
braic degree of a function f is the degree of the monomial with the
highest degree when 𝑓 is given in algebraic normal form. Using the
Coefficient Grouping method [27], Chaghri achieves the security
of 128 bits in 𝑁 = 4 rounds.

5.2.3 Interpolation Attacks. The interpolation attack [23] targets
the low degree of the polynomial description of a block cipher.
The attacker reconstructs the polynomial description using plain-
text/ciphertext pairs by means of Lagrange interpolation. The com-
plexity of the interpolation is 𝑂 (𝑑 log𝑑) where 𝑑 is the degree of
the polynomial. In Chaghri, the degree of the power map 𝐺 is
232 + 1 and the degree of polynomial 𝐵 is 8. The composition of
𝐵 and 𝐺 makes the interpolation attack impractical even after a
single round.

5.2.4 Gröbner basis attack. Gröbner basis attacks is believed to be a
threatening attack in the literature against algebraic ciphers because
their complexity is analogous to the efficiency of the cipher itself.
In the Gröbner basis attack, a primitive like a block cipher or a hash
function is modeled using a multivariate system of polynomials
such that the set of solutions jeopardizes the security claims about
the primitive. If the system of polynomials that describes it is easy
to solve, the primitive is vulnerable to the attack.

Folklore is that the most successful method in solving a general
system of polynomials used in algebraic ciphers is Gröbner basis
algorithms such as F4 [15] and F5 [14]. In general, it is hard to
compute the exact complexity of the attack for algebraic ciphers.
Therefore, we follow the same approach used in [3], and extrapolate
the complexity of the attack against the full cipher by running the
attack for round reduced versions.
In Appendix B we provide a detailed description of our analysis
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against the Gröbner basis attack on Chaghri. The analysis shows
that after three rounds, the complexity of the attack is at least 2128.

5.2.5 Conclusion. we analyzed the security of Chaghri against
the most promising attacks and found the maximum number of
rounds they can break for 128-bit security. In the case of statistical
attacks, the largest number of rounds that can be attacked is 𝑁 = 1.
We believe other statistical attacks such as truncated differentials
attacks [24] or rebound attacks [26, 29] are thwarted by the high
safety margins.

In the case of algebraic attacks, the largest number of rounds that
can be attacked by higher-order differentials cryptanalysis is 𝑁 = 4.
The largest number of rounds that can be attacked using Gröbner
basis algorithm is 𝑁 = 3. Other kinds of algebraic attacks do not
seem to outperform this. The security against the interpolation
attack is achieved by the large polynomial degree and the security
against the invariant subfield attack is achieved by a careful choice
of constants.

6 BENCHMARK

To present the benefits of Chaghri we implemented it using HE-
lib, a software library implementing the BGV variant described
in Section 2.2.1. The library is written in C++ and uses the NTL
mathematical library. We compare this to the performance of AES-
128 using the implementation by Gentry et al. [17] that is built into
HElib and used in this work without any modification.

6.1 Implementation Details of Chaghri

The packed representation of Chaghri is as follows:

[𝛼1, 𝛼2, 𝛼3], where 𝛼𝑖 ∈ F263 .

The power map of the Chaghri S-Box requires one Frobenius
automorphism and one multiplication. The F2-linearized affine
polynomial is likewise simple and requires two Frobenius automor-
phisms and three constantmultiplication. The S-Box is implemented
via a depth-1.5 circuit and listed in Algorithm 2 and requires one
multiplication and three Frobenius automorphisms in total.

Algorithm 2: Chaghri S-Box

Input : Chaghri state: 𝑥
𝑦 = 𝑥2

32
; // Frobenius automorphism

𝑥 = 𝑦𝑥 ; // Multiplication (-1 level)
// Frobenius automorphism + constant multiplication (-0.5
levels)
𝑠𝑢𝑚 = 𝑐1 · 𝑥2

8 + 𝑐2 · 𝑥2
2 + 𝑐3 · 𝑥 + 𝑐4

return sum

The pseudo-code of the linear layer is listed in Algorithm 3.
Subkey injection is simply an addition of the ciphertexts encrypt-

ing the state and the subkey.

Expected Cost of a Chaghri Round. A Single Chaghri round
consists of two multiplications, six Frobenius automorphisms and
four rotations arranged in a depth-four circuit.

Algorithm 3: Chaghri Matrix Multiplication

Input : Preprocessed MDS Matrix Rows:𝑀𝐷𝑆, Chaghri
state: 𝑥
𝑥 ′ = 𝑀𝐷𝑆 [1] · (𝑥 ≫ 1) ; // Constant multiplication

-0.5 levels
𝑥 ′′ = 𝑀𝐷𝑆 [2] · (𝑥 ≫ 1)
𝑥 = 𝑀𝐷𝑆 [0] · 𝑥
return 𝑥 + 𝑥 ′ + 𝑥 ′′

6.2 Evaluation

We benchmarked the AES implementation built into HElib, and
our Chaghri implementation in an environment that runs Ubuntu
Server 18.04 LTS with 3 TB RAM and 4 x Intel(R) Xeon(R) Gold
6136 CPU @ 3.00GHz.

Table 2 presents the running times of AES and Chaghri.When

their running times per bit are compared, Chaghri achieves

amore compact algebraic description outperformingAES by
63%!
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A INVERSION ALGORITHM IN AES

IMPLEMENTATION

For completeness, we describe the AES inversion algorithm in algo-
rithm 4.

B DETAILED GB ANALYSIS

We first describe the details of modeling the attack, then we present
the results obtained after running it. For the implementation We
used Magma on a Linux machine with 54GB of RAM and Intel(R)
Xeon(R) CPU E3-1275 v6 running at 3.80GHz.

To argue the security of Chaghri we employ the approach
offered by the Marvellous design strategy as follows:
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Algorithm 4: Inversion over F2𝑛

Input : 𝑥 , 𝑛
𝑒𝑥𝑝 ← 2
𝑦 ← 𝑥2 ; // Frobenius automorphism

𝑧 ← 𝑥2 · 𝑥 = 𝑥3 ; // Multiplication (-1 level)

for 𝑖 ← 2 to log𝑛 do

𝑥 = (𝑧)2𝑒𝑥𝑝 ; // Frobenius automorphism

𝑦 = 𝑥 · 𝑦 ; // Multiplication (-1 level)

if 𝑖 == log𝑛 then

return 𝑦

end

𝑧 = 𝑥 · 𝑧 ; // Multiplication
𝑒𝑥𝑝 = 2 · 𝑒𝑥𝑝

end

• First, model Chaghri as a system of multivariate polynomi-
als;
• Then, compute the Gröbner basis in degrevlex order. For this
we use the F4 algorithm offered in Magma.

By the Marvellous design strategy, the algorithm is designed such
that computing the Gröbner basis in degrevlex order should already
be prohibitively expensive.

The cost is estimated using empirical data of reduced versions
that is extrapolated to the complete parameter set. In general, the
complexity of computing the Gröbner [4] basis is

𝑂

((
𝑛 + 𝑑𝑟𝑒𝑔
𝑑𝑟𝑒𝑔

)𝜔 )
Where n is the number of variables in the polynomial system, 2 <

𝜔 < 3 is the linear algebra constant, and 𝑑𝑟𝑒𝑔 is the degree of the
regularity of the system.

The attack details. We model the block cipher as depicted in Fig-
ure 4.

Let us denote the number of rounds by 𝑁 , the dimension by𝑚,
and the internal states by 𝑆𝑖 : 1 ≤ 𝑖 ≤ 2𝑁 − 1. The round keys are
denoted by 𝐾𝑖 : 0 ≤ 𝑖 ≤ 2𝑁 . Finally, variables C𝑖 : 0 ≤ 𝑖 ≤ 2𝑁 are
the round constants. The system in Figure 5 describes Chaghri.

In Figure 5, the first three lines are the equations modeling the
encryption of 𝑃 using 𝐾 resulting in 𝐶 . The last line describes the
equations of round keys. There are in total 4𝑚𝑁 equations in 4𝑚𝑁
variables. Variables are {𝑆𝑖 [ 𝑗]; 1 < 𝑖 < 2𝑁 , 𝑗 ≤ 𝑚} ∪ {𝐾𝑖 [ 𝑗]; 0 ≤
𝑖 ≤ 2𝑁 , 𝑗 ≤ 𝑚}.

One of the main challenges inmodeling Chaghri is modeling the
Gold exponent 𝐺 = 22

32+1, which is of a high degree. To overcome
this challenge, we try to model the polynomial 𝐹 using another
representation having smaller degree.

For 𝑡 a primitive element of F263 , 𝑃 (𝑡) an arbitrary polynomial
in 𝑡 , Lemma B.1 shows that𝐺 (𝑃 (𝑡)) = 𝑃 (G(𝑡)) ×𝑃 (𝑡). This implies
that if finding a low degree transformation F (𝑡) allows to model𝐺
using a low degree polynomial and solving the system more easily.

The following equality is derived from a sage program that com-
putes the result of F (𝑡) as a Frobenius automorphism.

F (𝑡) = 𝑡59 + 𝑡58 + 𝑡57 + 𝑡55 + 𝑡53 + 𝑡52 + 𝑡51 + 𝑡46 + 𝑡45 + 𝑡44

+𝑡43 + 𝑡42 + 𝑡41 + 𝑡39 + 𝑡37 + 𝑡34 + 𝑡30 + 𝑡29 + 𝑡28 + 𝑡27 + 𝑡26

+𝑡25 + 𝑡23 + 𝑡22 + 𝑡19 + 𝑡17 + 𝑡14 + 𝑡13 + 𝑡10 + 𝑡8 + 𝑡6 + 𝑡5 + 𝑡3

+𝑡2 + 𝑡

Therefore, we model 𝐺 (𝑡) as F (𝑡) × 𝑡 which is a polynomial of
degree 60 instead of degree 232 + 1.

Lemma B.1. Let P be a polynomial with binary coefficients and

let 𝐹 (𝑡) = 𝑡232 be the Frobenius transformation on F263 . Then ∀𝑡 ∈
F263 : 𝐹 (P(𝑡)) = P(𝐹 (𝑡)).

Proof. For 𝑏𝑖 ∈ {0, 1} let P(𝑡) =
∑𝑛
𝑖=0 𝑏𝑖𝑡

𝑖 . Since the character-
istic of the field F263 is 2, then (𝑎 + 𝑏)2 = 𝑎2 + 𝑏2. We obtain the
following:

𝐹 (P(𝑡)) = (P(𝑡))2
32

(2)

⇒ 𝐹 (P(𝑡)) = (
𝑛∑
𝑖=0

𝑏𝑖𝑡
𝑖 )2

32
(3)

⇒ 𝐹 (P(𝑡)) =
𝑛∑
𝑖=0

𝑏𝑖𝑡
𝑖 (232) (4)

⇒ 𝐹 (P(𝑡)) = P(𝐹 (𝑡)) (5)

□

The next step is to compute the degree of regularity of the system
in order to estimate the complexity of the attack which is:

𝑂

((
4𝑚𝑁 + 𝑑𝑟𝑒𝑔

𝑑𝑟𝑒𝑔

)𝜔 )
.

To extrapolate the degree of the regularity, we run the Gröbner
basis algorithm and compute the degree of regularity for a small
number of rounds.

Our environment was not strong enough to support the compu-
tation and crashed before halting. However, before that it reached
a step degree of 220, which can be used to lower bound the degree
of regularity. The other observation is that the degree of regularity
grows linearly with the number of rounds. Using the lower bound
for the degree of regularity, we can compute the complexity of the
Gröbner basis attack for 𝑁 rounds using the following relation.(

4𝑚𝑁 + 𝑑𝑐𝑜𝑛.𝑙𝑏
𝑑𝑐𝑜𝑛.𝑙𝑏

)2
The number of rounds that can be attacked is calculated as

𝑙1 = min(𝑁 ) subject to
(
4𝑚𝑁 + 𝑑𝑐𝑜𝑛

𝑑𝑐𝑜𝑛

)2
≥ 2𝑠 ,

and achieves 128 bits of security when 𝑁 = 3.

C THE POLYNOMIAL 𝐵(𝑥) AND 𝐵−1(𝑥)
The F2-linearized affine polynomial used in Chaghri is:

𝐵(𝑥) = 𝑐1𝑥256 + 𝑐2𝑥4 + 𝑐3𝑥 + 𝑐4
where
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Figure 4: Decryption in Chaghri. 𝑃 ⊕ 𝐾2𝑁 is the plaintext, 𝑆𝑖 ’s are the intermediate states and 𝐶 is the ciphertext.
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𝐵(𝐺 (𝐶 [𝛽] ⊕ 𝐾0 [𝛽])) ⊕
𝑚∑
𝛼=1

𝑀−1 [𝛽, 𝛼] (𝑆1 [𝛼] ⊕ 𝐾1 [𝛼]) = 0 𝛽 ∈ [𝑚]

𝐵(𝐺 (𝑆𝑖−1 [𝛽])) ⊕
𝑚∑
𝛼=1

𝑀−1 [𝛽, 𝛼] (𝑆𝑖 [𝛼] ⊕ 𝐾𝑖 [𝛼]) = 0 1 < 𝑖 < 2𝑁, 𝛽 ∈ [𝑚]

𝐵(𝐺 (𝑆2𝑁−1 [𝛽])) ⊕
𝑚∑
𝛼=1

𝑀−1 [𝛽, 𝛼] (𝑃 [𝛼] ⊕ 𝐾2𝑁 [𝛼]) = 0 𝛽 ∈ [𝑚]

𝐾𝑖 [𝛽] ⊕ C𝑖 [𝛽] ⊕
𝑚∑
𝛼=1

𝑀 [𝛽, 𝛼] · 𝐵(𝐺 (𝐾𝑖−1)) = 0 1 ≤ 𝑖 ≤ 2𝑁 𝛽 ∈ [𝑚]


Figure 5: The system of the polynomial equationsmodeling the Chaghri block cipher.𝐾𝑖 : 0 ≤ 𝑖 ≤ 2𝑁 are the variables for the

round keys, 𝑃 and 𝐶 are the variables for the plaintext and the ciphertext, and 𝑆𝑖 : 0 < 𝑖 < 2𝑁 are the intermediate variables;

C𝑖 : 0 ≤ 𝑖 ≤ 2𝑁 are the round constants.

𝑐1 = 𝑡60 + 𝑡59 + 𝑡58 + 𝑡56 + 𝑡53 + 𝑡52 + 𝑡50 + 𝑡48 + 𝑡46 + 𝑡44 + 𝑡43 + 𝑡40 +
𝑡39 + 𝑡38 + 𝑡37 + 𝑡35 + 𝑡33 + 𝑡31 + 𝑡28 + 𝑡27 + 𝑡26 + 𝑡23 + 𝑡21 + 𝑡20 + 𝑡18 +
𝑡16 + 𝑡15 + 𝑡14 + 𝑡12 + 𝑡10 + 𝑡9 + 𝑡6 + 𝑡5 + 𝑡2 + 𝑡

𝑐2 = 𝑡62 + 𝑡61 + 𝑡60 + 𝑡57 + 𝑡56 + 𝑡51 + 𝑡50 + 𝑡49 + 𝑡48 + 𝑡46 + 𝑡45 + 𝑡44 +
𝑡43 + 𝑡40 + 𝑡37 + 𝑡33 + 𝑡32 + 𝑡31 + 𝑡30 + 𝑡29 + 𝑡25 + 𝑡22 + 𝑡20 + 𝑡18 + 𝑡17 +
𝑡15 + 𝑡14 + 𝑡12 + 𝑡11 + 𝑡10 + 𝑡5 + 𝑡 + 1

𝑐3 = 𝑡61 + 𝑡59 + 𝑡57 + 𝑡54 + 𝑡53 + 𝑡52 + 𝑡50 + 𝑡49 + 𝑡48 + 𝑡47 + 𝑡45 + 𝑡42 +
𝑡40 + 𝑡37 + 𝑡36 + 𝑡35 + 𝑡34 + 𝑡33 + 𝑡31 + 𝑡29 + 𝑡26 + 𝑡24 + 𝑡23 + 𝑡21 + 𝑡20 +
𝑡19 + 𝑡17 + 𝑡14 + 𝑡13 + 𝑡8 + 𝑡6 + 𝑡4 + 1

𝑐4 = 𝑡59 + 𝑡55 + 𝑡54 + 𝑡53 + 𝑡52 + 𝑡50 + 𝑡49 + 𝑡46 + 𝑡45 + 𝑡42 + 𝑡40 + 𝑡38 +
𝑡31 + 𝑡30 + 𝑡26 + 𝑡24 + 𝑡23 + 𝑡22 + 𝑡19 + 𝑡15 + 𝑡13 + 𝑡12 + 𝑡7 + 𝑡2 + 𝑡

The polynomial 𝐵−1 has the form

𝐵−1 (𝑥) =
62∑
𝑖=0

𝑐𝑖𝑥
2𝑖

where 𝑐𝑖 is the 𝑖𝑡ℎ element in the first row of adjugate matrix
of Dickson matrix associated to 𝐵 [36]. The code to generate the
coefficients of 𝐵−1 is available at GitHub4.

The coefficients of the polynomial 𝐵(𝑥) = 𝛼1𝑥8 + 𝛼2 used in the
preprint version of Chaghri is as follow:

𝛼1 = 𝑡61 + 𝑡57 + 𝑡56 + 𝑡55 + 𝑡54 + 𝑡52 + 𝑡50 + 𝑡49 + 𝑡45 + 𝑡44 + 𝑡41 + 𝑡37 +
𝑡34 + 𝑡32 + 𝑡31 + 𝑡30 + 𝑡29 + 𝑡27 + 𝑡26 + 𝑡25 + 𝑡24 + 𝑡23 + 𝑡22 + 𝑡19 + 𝑡16 +
𝑡12 + 𝑡11 + 𝑡10 + 𝑡8 + 𝑡6 + 𝑡5 + 𝑡4 + 𝑡3 + 1

4https://gist.github.com/mahzoun/915b13826c23a4450ec266a889106bfb

𝛼2 = 𝑡𝑡60+𝑡57+𝑡52+𝑡47+𝑡44+𝑡41+𝑡39+𝑡37+𝑡35+𝑡34+𝑡31+𝑡30+𝑡29+
𝑡28+𝑡24+𝑡23+𝑡21+𝑡20+𝑡19+𝑡18+𝑡14+𝑡13+𝑡11+𝑡10+𝑡8+𝑡6+𝑡5+𝑡3+𝑡2+1

D ROUND CONSTANTS

Round 1:

𝑡61+𝑡60+𝑡57+𝑡56+𝑡55+𝑡54+𝑡51+𝑡49+𝑡47+𝑡45+𝑡44+𝑡43+𝑡41+𝑡39+𝑡36+
𝑡35+𝑡34+𝑡33+𝑡29+𝑡27+𝑡26+𝑡25+𝑡23+𝑡21+𝑡16+𝑡14+𝑡12+𝑡8+𝑡3+𝑡2+𝑡+1,

𝑡62 + 𝑡59 + 𝑡54 + 𝑡53 + 𝑡52 + 𝑡51 + 𝑡49 + 𝑡47 + 𝑡45 + 𝑡44 + 𝑡42 + 𝑡41 + 𝑡38 +
𝑡37 + 𝑡35 + 𝑡34 + 𝑡32 + 𝑡31 + 𝑡30 + 𝑡29 + 𝑡28 + 𝑡22 + 𝑡21 + 𝑡19 + 𝑡14 + 𝑡12 +
𝑡10 + 𝑡8 + 𝑡7 + 𝑡6 + 𝑡3 + 1,

𝑡61 + 𝑡60 + 𝑡57 + 𝑡56 + 𝑡52 + 𝑡51 + 𝑡46 + 𝑡44 + 𝑡43 + 𝑡42 + 𝑡41 + 𝑡37 + 𝑡35 +
𝑡31 + 𝑡28 + 𝑡26 + 𝑡22 + 𝑡21 + 𝑡19 + 𝑡15 + 𝑡2 + 𝑡 + 1;

𝑡56 + 𝑡54 + 𝑡52 + 𝑡51 + 𝑡48 + 𝑡45 + 𝑡41 + 𝑡39 + 𝑡36 + 𝑡33 + 𝑡28 + 𝑡27 + 𝑡25 +
𝑡23 + 𝑡19 + 𝑡15 + 𝑡13 + 𝑡12 + 𝑡11 + 𝑡9 + 𝑡8 + 𝑡6 + 𝑡4 + 𝑡2 + 𝑡 ,

𝑡62+𝑡61+𝑡58+𝑡54+𝑡51+𝑡50+𝑡49+𝑡47+𝑡46+𝑡42+𝑡41+𝑡40+𝑡39+𝑡34+
𝑡33+𝑡32+𝑡27+𝑡25+𝑡24+𝑡23+𝑡21+𝑡19+𝑡17+𝑡16+𝑡14+𝑡8+𝑡7+𝑡5+𝑡+1,

𝑡62+𝑡61+𝑡58+𝑡54+𝑡53+𝑡52+𝑡49+𝑡44+𝑡39+𝑡37+𝑡35+𝑡33+𝑡32+𝑡29+
𝑡27+𝑡21+𝑡20+𝑡18+𝑡17+𝑡16+𝑡13+𝑡12+𝑡10+𝑡9+𝑡8+𝑡7+𝑡5+𝑡3+𝑡 +1;

Round 2:

𝑡61 + 𝑡60 + 𝑡59 + 𝑡58 + 𝑡57 + 𝑡54 + 𝑡53 + 𝑡51 + 𝑡50 + 𝑡49 + 𝑡47 + 𝑡45 + 𝑡44 +
𝑡40 + 𝑡39 + 𝑡38 + 𝑡36 + 𝑡32 + 𝑡30 + 𝑡28 + 𝑡27 + 𝑡26 + 𝑡25 + 𝑡22 + 𝑡21 + 𝑡20 +

https://gist.github.com/mahzoun/915b13826c23a4450ec266a889106bfb
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𝑡19 + 𝑡17 + 𝑡16 + 𝑡14 + 𝑡13 + 𝑡9 + 𝑡7 + 𝑡6 + 𝑡5 + 𝑡4 + 𝑡 ,

𝑡62 + 𝑡60 + 𝑡59 + 𝑡58 + 𝑡57 + 𝑡56 + 𝑡55 + 𝑡54 + 𝑡53 + 𝑡50 + 𝑡47 + 𝑡45 + 𝑡44 +
𝑡41+𝑡40+𝑡39+𝑡38+𝑡37+𝑡35+𝑡31+𝑡28+𝑡26+𝑡25+𝑡24+𝑡22+𝑡19+𝑡3+1,

𝑡61 + 𝑡59 + 𝑡56 + 𝑡53 + 𝑡52 + 𝑡49 + 𝑡48 + 𝑡47 + 𝑡44 + 𝑡43 + 𝑡42 + 𝑡40 + 𝑡39 +
𝑡38 + 𝑡36 + 𝑡34 + 𝑡33 + 𝑡32 + 𝑡31 + 𝑡30 + 𝑡29 + 𝑡26 + 𝑡25 + 𝑡24 + 𝑡23 + 𝑡22 +
𝑡21 + 𝑡18 + 𝑡16 + 𝑡14 + 𝑡12 + 𝑡10 + 𝑡8 + 𝑡6 + 𝑡5 + 1;

𝑡61 + 𝑡59 + 𝑡54 + 𝑡51 + 𝑡50 + 𝑡48 + 𝑡47 + 𝑡46 + 𝑡45 + 𝑡44 + 𝑡42 + 𝑡40 + 𝑡39 +
𝑡38 + 𝑡37 + 𝑡36 + 𝑡33 + 𝑡31 + 𝑡26 + 𝑡24 + 𝑡13 + 𝑡11 + 𝑡6 + 𝑡 + 1,

𝑡62 + 𝑡61 + 𝑡60 + 𝑡58 + 𝑡52 + 𝑡51 + 𝑡49 + 𝑡48 + 𝑡46 + 𝑡45 + 𝑡43 + 𝑡41 +
𝑡40+𝑡39+𝑡36+𝑡32+𝑡28+𝑡19+𝑡17+𝑡16+𝑡15+𝑡14+𝑡10+𝑡8+𝑡6+𝑡2+1,

𝑡62 + 𝑡61 + 𝑡60 + 𝑡57 + 𝑡56 + 𝑡54 + 𝑡53 + 𝑡52 + 𝑡47 + 𝑡45 + 𝑡38 + 𝑡37 + 𝑡35 +
𝑡34 + 𝑡33 + 𝑡30 + 𝑡29 + 𝑡23 + 𝑡19 + 𝑡12 + 𝑡11 + 𝑡8 + 𝑡6 + 𝑡4 + 𝑡2 + 1;

Round 3:

𝑡62 + 𝑡61 + 𝑡60 + 𝑡53 + 𝑡52 + 𝑡51 + 𝑡48 + 𝑡46 + 𝑡43 + 𝑡42 + 𝑡39 + 𝑡38 + 𝑡36 +
𝑡29 + 𝑡27 + 𝑡23 + 𝑡22 + 𝑡19 + 𝑡17 + 𝑡16 + 𝑡15 + 𝑡14 + 𝑡11 + 𝑡8 + 𝑡6 + 𝑡 + 1,

𝑡60+𝑡58+𝑡57+𝑡54+𝑡52+𝑡50+𝑡46+𝑡45+𝑡42+𝑡40+𝑡38+𝑡37+𝑡36+𝑡35+
𝑡34+𝑡33+𝑡29+𝑡27+𝑡25+𝑡23+𝑡22+𝑡20+𝑡17+𝑡16+𝑡15+𝑡14+𝑡10+𝑡5+𝑡3+𝑡 ,

𝑡62+𝑡61+𝑡58+𝑡57+𝑡56+𝑡55+𝑡48+𝑡47+𝑡45+𝑡43+𝑡41+𝑡39+𝑡37+𝑡34+
𝑡30+𝑡29+𝑡25+𝑡24+𝑡23+𝑡21+𝑡19+𝑡16+𝑡14+𝑡13+𝑡10+𝑡9+𝑡8+𝑡3+1;

𝑡62 + 𝑡61 + 𝑡60 + 𝑡59 + 𝑡58 + 𝑡57 + 𝑡53 + 𝑡52 + 𝑡50 + 𝑡49 + 𝑡48 + 𝑡45 + 𝑡43 +
𝑡42 + 𝑡41 + 𝑡37 + 𝑡36 + 𝑡35 + 𝑡34 + 𝑡31 + 𝑡30 + 𝑡29 + 𝑡28 + 𝑡27 + 𝑡26 + 𝑡24 +
𝑡23 + 𝑡21 + 𝑡19 + 𝑡18 + 𝑡14 + 𝑡10 + 𝑡4,

𝑡62 + 𝑡57 + 𝑡54 + 𝑡52 + 𝑡51 + 𝑡50 + 𝑡47 + 𝑡44 + 𝑡43 + 𝑡40 + 𝑡37 + 𝑡36 + 𝑡35 +
𝑡33 + 𝑡25 + 𝑡23 + 𝑡20 + 𝑡19 + 𝑡18 + 𝑡12 + 𝑡8 + 𝑡6 + 𝑡5 + 𝑡2,

𝑡60 + 𝑡58 + 𝑡57 + 𝑡56 + 𝑡54 + 𝑡49 + 𝑡48 + 𝑡47 + 𝑡45 + 𝑡41 + 𝑡39 + 𝑡38 +
𝑡37+𝑡34+𝑡31+𝑡27+𝑡25+𝑡24+𝑡21+𝑡20+𝑡18+𝑡13+𝑡9+𝑡8+𝑡6+𝑡3+𝑡 +1;

Round 4:

𝑡62 + 𝑡61 + 𝑡59 + 𝑡52 + 𝑡48 + 𝑡45 + 𝑡43 + 𝑡40 + 𝑡35 + 𝑡34 + 𝑡29 + 𝑡26 + 𝑡23 +
𝑡20 + 𝑡19 + 𝑡18 + 𝑡17 + 𝑡15 + 𝑡14 + 𝑡11 + 𝑡9 + 𝑡8 + 𝑡5 + 𝑡4 + 𝑡3,

𝑡62+𝑡61+𝑡60+𝑡56+𝑡55+𝑡53+𝑡52+𝑡49+𝑡48+𝑡47+𝑡41+𝑡38+𝑡35+𝑡34+
𝑡32+𝑡31+𝑡24+𝑡23+𝑡20+𝑡19+𝑡17+𝑡16+𝑡15+𝑡14+𝑡11+𝑡8+𝑡5+𝑡3+𝑡2,

𝑡61+𝑡60+𝑡58+𝑡57+𝑡56+𝑡55+𝑡53+𝑡50+𝑡49+𝑡44+𝑡39+𝑡37+𝑡36+𝑡35+
𝑡34+𝑡31+𝑡30+𝑡25+𝑡24+𝑡23+𝑡19+𝑡18+𝑡15+𝑡14+𝑡13+𝑡7+𝑡5+𝑡3+𝑡2+1;

𝑡60+𝑡58+𝑡57+𝑡56+𝑡52+𝑡50+𝑡49+𝑡44+𝑡40+𝑡39+𝑡37+𝑡35+𝑡32+𝑡31+
𝑡30+𝑡26+𝑡23+𝑡20+𝑡19+𝑡18+𝑡17+𝑡16+𝑡15+𝑡14+𝑡11+𝑡10+𝑡8+𝑡4+𝑡 ,

𝑡61 + 𝑡60 + 𝑡59 + 𝑡58 + 𝑡50 + 𝑡43 + 𝑡41 + 𝑡38 + 𝑡37 + 𝑡34 + 𝑡32 + 𝑡31 + 𝑡28 +
𝑡26 + 𝑡25 + 𝑡24 + 𝑡23 + 𝑡22 + 𝑡19 + 𝑡17 + 𝑡14 + 𝑡12 + 𝑡5 + 𝑡 ,

𝑡62 + 𝑡61 + 𝑡58 + 𝑡57 + 𝑡51 + 𝑡50 + 𝑡48 + 𝑡46 + 𝑡44 + 𝑡42 + 𝑡41 + 𝑡40 +
𝑡35+𝑡32+𝑡26+𝑡25+𝑡21+𝑡18+𝑡17+𝑡16+𝑡15+𝑡14+𝑡12+𝑡10+𝑡8+𝑡5+𝑡2;

Round 5:

𝑡62 + 𝑡58 + 𝑡57 + 𝑡54 + 𝑡53 + 𝑡52 + 𝑡50 + 𝑡49 + 𝑡48 + 𝑡46 + 𝑡40 + 𝑡38 + 𝑡37 +
𝑡35 + 𝑡34 + 𝑡33 + 𝑡28 + 𝑡27 + 𝑡26 + 𝑡25 + 𝑡24 + 𝑡23 + 𝑡22 + 𝑡21 + 𝑡18 + 𝑡15 +
𝑡14 + 𝑡12 + 𝑡11 + 𝑡10 + 𝑡9 + 𝑡8 + 𝑡7 + 𝑡6 + 𝑡5 + 𝑡 + 1,

𝑡62 + 𝑡61 + 𝑡60 + 𝑡59 + 𝑡58 + 𝑡56 + 𝑡54 + 𝑡53 + 𝑡51 + 𝑡49 + 𝑡48 + 𝑡47 + 𝑡42 +
𝑡41 + 𝑡39 + 𝑡37 + 𝑡36 + 𝑡35 + 𝑡33 + 𝑡32 + 𝑡26 + 𝑡24 + 𝑡22 + 𝑡20 + 𝑡19 + 𝑡18 +
𝑡14 + 𝑡13 + 𝑡9 + 𝑡8 + 𝑡7 + 𝑡5 + 𝑡2 + 1,

𝑡61 + 𝑡60 + 𝑡56 + 𝑡55 + 𝑡54 + 𝑡53 + 𝑡52 + 𝑡51 + 𝑡47 + 𝑡42 + 𝑡41 + 𝑡40 + 𝑡37 +
𝑡36 + 𝑡35 + 𝑡33 + 𝑡29 + 𝑡28 + 𝑡27 + 𝑡24 + 𝑡23 + 𝑡21 + 𝑡20 + 𝑡18 + 𝑡16 + 𝑡15 +
𝑡12 + 𝑡11 + 𝑡8 + 𝑡6 + 𝑡4 + 𝑡2 + 𝑡 + 1;

𝑡62+𝑡60+𝑡57+𝑡56+𝑡55+𝑡54+𝑡53+𝑡49+𝑡48+𝑡46+𝑡45+𝑡42+𝑡40+𝑡39+
𝑡34+𝑡33+𝑡31+𝑡25+𝑡24+𝑡23+𝑡21+𝑡19+𝑡17+𝑡14+𝑡13+𝑡11+𝑡10+𝑡9+𝑡4,

𝑡61 + 𝑡59 + 𝑡58 + 𝑡57 + 𝑡56 + 𝑡54 + 𝑡53 + 𝑡51 + 𝑡50 + 𝑡46 + 𝑡42 + 𝑡41 + 𝑡40 +
𝑡39 + 𝑡38 + 𝑡37 + 𝑡35 + 𝑡34 + 𝑡32 + 𝑡31 + 𝑡29 + 𝑡27 + 𝑡26 + 𝑡25 + 𝑡22 + 𝑡20 +
𝑡19 + 𝑡17 + 𝑡13 + 𝑡5 + 𝑡3 + 𝑡2 + 𝑡 + 1,

𝑡62 + 𝑡53 + 𝑡50 + 𝑡48 + 𝑡47 + 𝑡46 + 𝑡44 + 𝑡42 + 𝑡41 + 𝑡40 + 𝑡38 + 𝑡36 +
𝑡34+𝑡25+𝑡24+𝑡22+𝑡20+𝑡19+𝑡18+𝑡16+𝑡11+𝑡10+𝑡9+𝑡8+𝑡7+𝑡5+𝑡3+𝑡 ;

Round 6:

𝑡62 + 𝑡59 + 𝑡57 + 𝑡54 + 𝑡51 + 𝑡47 + 𝑡46 + 𝑡44 + 𝑡43 + 𝑡41 + 𝑡40 + 𝑡39 + 𝑡38 +
𝑡36 + 𝑡31 + 𝑡29 + 𝑡27 + 𝑡26 + 𝑡25 + 𝑡23 + 𝑡22 + 𝑡21 + 𝑡19 + 𝑡15 + 𝑡13 + 𝑡10 +
𝑡9 + 𝑡8 + 𝑡6 + 𝑡5 + 𝑡4 + 𝑡3 + 𝑡2 + 𝑡 ,

𝑡61 + 𝑡60 + 𝑡59 + 𝑡52 + 𝑡49 + 𝑡48 + 𝑡42 + 𝑡40 + 𝑡36 + 𝑡31 + 𝑡22 + 𝑡21 + 𝑡20 +
𝑡19 + 𝑡18 + 𝑡16 + 𝑡15 + 𝑡14 + 𝑡12 + 𝑡10 + 𝑡9 + 𝑡4 + 𝑡2 + 𝑡 + 1,

𝑡60 + 𝑡59 + 𝑡56 + 𝑡53 + 𝑡50 + 𝑡47 + 𝑡46 + 𝑡42 + 𝑡41 + 𝑡36 + 𝑡35 + 𝑡28 + 𝑡26 +
𝑡19 + 𝑡15 + 𝑡13 + 𝑡12 + 𝑡11 + 𝑡10 + 𝑡8 + 𝑡5 + 𝑡2;

𝑡62 + 𝑡59 + 𝑡58 + 𝑡56 + 𝑡55 + 𝑡54 + 𝑡51 + 𝑡46 + 𝑡43 + 𝑡42 + 𝑡40 + 𝑡39 + 𝑡38 +
𝑡37 + 𝑡33 + 𝑡31 + 𝑡28 + 𝑡27 + 𝑡25 + 𝑡24 + 𝑡23 + 𝑡22 + 𝑡21 + 𝑡20 + 𝑡19 + 𝑡17 +
𝑡16 + 𝑡14 + 𝑡13 + 𝑡12 + 𝑡7 + 𝑡6 + 𝑡4 + 1,

𝑡59 + 𝑡57 + 𝑡54 + 𝑡49 + 𝑡47 + 𝑡46 + 𝑡45 + 𝑡44 + 𝑡41 + 𝑡29 + 𝑡26 + 𝑡22 + 𝑡13 +
𝑡11 + 𝑡9 + 𝑡7 + 𝑡6 + 𝑡5 + 𝑡4 + 𝑡3 + 𝑡2 + 𝑡 + 1,

𝑡62 + 𝑡61 + 𝑡60 + 𝑡59 + 𝑡58 + 𝑡55 + 𝑡54 + 𝑡53 + 𝑡49 + 𝑡43 + 𝑡36 + 𝑡35 + 𝑡34 +
𝑡33 + 𝑡32 + 𝑡31 + 𝑡30 + 𝑡28 + 𝑡26 + 𝑡25 + 𝑡24 + 𝑡21 + 𝑡18 + 𝑡15 + 𝑡12 + 𝑡11 +
𝑡10 + 𝑡8 + 𝑡7 + 𝑡6 + 𝑡5 + 𝑡3 + 𝑡 + 1;

Round 7:

𝑡62 + 𝑡61 + 𝑡57 + 𝑡55 + 𝑡51 + 𝑡50 + 𝑡49 + 𝑡48 + 𝑡47 + 𝑡46 + 𝑡45 + 𝑡44 + 𝑡39 +
𝑡38 + 𝑡37 + 𝑡36 + 𝑡35 + 𝑡34 + 𝑡33 + 𝑡32 + 𝑡30 + 𝑡27 + 𝑡24 + 𝑡23 + 𝑡22 + 𝑡19 +
𝑡17 + 𝑡15 + 𝑡14 + 𝑡12 + 𝑡10 + 𝑡7 + 𝑡6 + 𝑡5 + 𝑡3,
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𝑡62 + 𝑡60 + 𝑡59 + 𝑡58 + 𝑡57 + 𝑡55 + 𝑡54 + 𝑡52 + 𝑡50 + 𝑡47 + 𝑡45 + 𝑡44 + 𝑡41 +
𝑡39 + 𝑡38 + 𝑡36 + 𝑡35 + 𝑡31 + 𝑡29 + 𝑡28 + 𝑡23 + 𝑡22 + 𝑡19 + 𝑡17 + 𝑡16 + 𝑡15 +
𝑡14 + 𝑡12 + 𝑡9 + 𝑡8 + 𝑡4 + 𝑡2 + 1,

𝑡61 + 𝑡60 + 𝑡56 + 𝑡55 + 𝑡52 + 𝑡50 + 𝑡49 + 𝑡46 + 𝑡44 + 𝑡43 + 𝑡40 + 𝑡39 + 𝑡38 +
𝑡37 + 𝑡36 + 𝑡34 + 𝑡32 + 𝑡31 + 𝑡28 + 𝑡23 + 𝑡22 + 𝑡21 + 𝑡18 + 𝑡17 + 𝑡15 + 𝑡14 +
𝑡12 + 𝑡11 + 𝑡10 + 𝑡9 + 𝑡7 + 𝑡6 + 𝑡4 + 𝑡3 + 𝑡2 + 1;

𝑡59+𝑡57+𝑡56+𝑡55+𝑡54+𝑡53+𝑡52+𝑡49+𝑡47+𝑡45+𝑡41+𝑡39+𝑡38+𝑡37+
𝑡35+𝑡34+𝑡31+𝑡30+𝑡26+𝑡25+𝑡21+𝑡20+𝑡19+𝑡18+𝑡11+𝑡10+𝑡9+𝑡8+𝑡7,

𝑡62 + 𝑡60 + 𝑡58 + 𝑡57 + 𝑡56 + 𝑡54 + 𝑡51 + 𝑡47 + 𝑡43 + 𝑡42 + 𝑡41 + 𝑡38 + 𝑡36 +
𝑡32 + 𝑡31 + 𝑡29 + 𝑡28 + 𝑡25 + 𝑡22 + 𝑡15 + 𝑡14 + 𝑡7 + 𝑡6 + 𝑡5 + 𝑡4 + 𝑡3 + 𝑡 ,

𝑡61 + 𝑡58 + 𝑡57 + 𝑡56 + 𝑡55 + 𝑡54 + 𝑡52 + 𝑡51 + 𝑡49 + 𝑡48 + 𝑡46 + 𝑡37 + 𝑡31 +
𝑡27+𝑡26+𝑡23+𝑡22+𝑡20+𝑡19+𝑡17+𝑡14+𝑡13+𝑡9+𝑡8+𝑡7+𝑡6+𝑡4+𝑡 +1;

Round 8:

𝑡61 + 𝑡58 + 𝑡45 + 𝑡41 + 𝑡36 + 𝑡34 + 𝑡33 + 𝑡30 + 𝑡29 + 𝑡27 + 𝑡26 + 𝑡25 + 𝑡24 +
𝑡19 + 𝑡18 + 𝑡16 + 𝑡15 + 𝑡14 + 𝑡11 + 𝑡10 + 𝑡8 + 𝑡6 + 𝑡4 + 1,

𝑡62 + 𝑡61 + 𝑡59 + 𝑡57 + 𝑡56 + 𝑡55 + 𝑡53 + 𝑡46 + 𝑡42 + 𝑡40 + 𝑡39 + 𝑡38 + 𝑡34 +
𝑡32 + 𝑡29 + 𝑡28 + 𝑡27 + 𝑡24 + 𝑡21 + 𝑡20 + 𝑡19 + 𝑡18 + 𝑡17 + 𝑡16 + 𝑡15 + 𝑡12 +
𝑡11 + 𝑡10 + 𝑡9 + 𝑡8 + 𝑡5 + 𝑡4 + 𝑡3 + 𝑡2,

𝑡62+𝑡61+𝑡60+𝑡56+𝑡52+𝑡49+𝑡48+𝑡47+𝑡46+𝑡44+𝑡43+𝑡40+𝑡39+𝑡37+𝑡33+
𝑡32+𝑡28+𝑡26+𝑡25+𝑡24+𝑡23+𝑡20+𝑡16+𝑡15+𝑡11+𝑡9+𝑡7+𝑡6+𝑡5+𝑡2+𝑡+1;

𝑡58+𝑡57+𝑡56+𝑡54+𝑡53+𝑡52+𝑡51+𝑡47+𝑡46+𝑡43+𝑡41+𝑡37+𝑡36+𝑡34+
𝑡30+𝑡29+𝑡28+𝑡27+𝑡26+𝑡25+𝑡24+𝑡23+𝑡19+𝑡17+𝑡15+𝑡14+𝑡11+𝑡9+𝑡2+𝑡 ,

𝑡62+𝑡59+𝑡56+𝑡54+𝑡53+𝑡50+𝑡49+𝑡48+𝑡47+𝑡46+𝑡45+𝑡44+𝑡43+𝑡39+
𝑡38+𝑡35+𝑡34+𝑡33+𝑡31+𝑡30+𝑡29+𝑡28+𝑡20+𝑡18+𝑡14+𝑡11+𝑡8+𝑡2+𝑡+1,

𝑡61 + 𝑡60 + 𝑡59 + 𝑡58 + 𝑡57 + 𝑡55 + 𝑡51 + 𝑡48 + 𝑡47 + 𝑡43 + 𝑡39 + 𝑡38 + 𝑡37 +
𝑡34 + 𝑡33 + 𝑡28 + 𝑡24 + 𝑡22 + 𝑡21 + 𝑡20 + 𝑡19 + 𝑡18 + 𝑡17 + 𝑡14 + 𝑡13 + 𝑡11 +
𝑡9 + 𝑡8 + 𝑡7 + 𝑡6 + 𝑡4 + 𝑡3 + 𝑡 + 1.
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