
Efficient Lifting for Shorter Zero-Knowledge
Proofs and Post-Quantum Signatures

Daniel Kales
Graz University of Technology

daniel.kales@iaik.tugraz.at

Greg Zaverucha
Microsoft Research
gregz@microsoft.com

May 12, 2022

Abstract
MPC-in-the-head based zero-knowledge proofs allow one to prove

knowledge of a preimage for a circuit defined over a finite field F. In recent
proofs the soundness depends on the size F, and small fields require more
parallel repetitions, and therefore produce larger proofs. In this paper we
develop and systematically apply lifting strategies to such proof protocols
in order to increase soundness and reduce proof size. The strategies are
(i) lifting parts of the protocol to extension fields of F, (ii) using reverse-
multiplication friendly embeddings to pack elements of F into a larger field
and (iii) to use an alternative circuit representation. Using a combination
of these strategies at different points in the protocol, we design two new
proof systems well suited to small circuits defined over small fields.

As a case study we consider efficient constructions of post-quantum
signatures, where a signature is a proof of knowledge of a one-way function
preimage, and two commonly used one-way functions are defined over
small fields (AES and LowMC). We find that carefully applying these
lifting strategies gives shorter signatures than the state-of-the-art: our
AES-based signatures are 1.3x shorter than Banquet (PKC 2021) and our
LowMC-based signatures are almost 2x shorter than the NIST-candidate
algorithm Picnic3. We implement our schemes and provide benchmarks.
Finally, we also give other optimizations: some generally applicable to this
class of proofs, and some specific to the circuits we focused on.

1 Introduction
An efficient class of zero-knowledge (ZK) proof systems can be constructed
from multi-party computation (MPC) protocols, using the MPC-in-the-head
(MPCitH) paradigm. The name refers to the key idea of the construction, having
the prover simulate an MPC protocol “in their head” as part of the proof. As
MPC protocols exist for arbitrary circuits, and can be customized for specific
circuits, this paradigm is very flexible. The theoretical framework for MPCitH
proofs was given in [IKOS07], and a first practical instantiation was presented in
ZKBoo [GMO16] and its improved version ZKB++ [CDG+17]. Since then, the
area of MPCitH proof systems has seen multiple new instantiations with different
improvements and tradeoffs. For example, the KKW proof system [KKW18] uses

1

an MPC protocol with a preprocessing phase, allowing for a more communication-
efficient online phase and a variable number of parties.

A major application of MPCitH proof systems are post-quantum signatures.
The most well-known example is Picnic [CDG+17, ZCD+20] a family of signature
schemes built using ZKB++ and KKW and an alternate candidate in the
third round of the NIST Post-Quantum Standardization Project.1 During key-
generation, a one-way function (OWF) is used to generate a keypair: the input
to the one-way function is the secret key and the output is the public key. A
Picnic signature is a non-interactive ZK proof of knowledge of the secret input
to the one-way function corresponding to the public output, with the message
to be signed included in the generation of the challenge for the proof. The OWF
in Picnic is based on the block cipher LowMC [ARS+15].

While ZKB++ and KKW focus on binary circuits, the MPCitH framework
also allows for arithmetic circuits over larger fields. This was used, for example,
in constructions focusing on signatures with (variants of) AES as the OWF,
such as BBQ [dDOS19], Banquet [BdK+21] and Rainier [DKR+21]. The latter
two protocols use a key idea from Baum and Nof [BN20]: instead of calculating
nonlinear operations (e.g., the AES S-boxes) in the MPC protocol, shares of the
result are injected by the prover as additional input. Then, a circuit-independent
checking protocol is executed to verify that the injected values are indeed correct.
In the BN proof system [BN20], which supports generic arithmetic circuits, but
has very large proof sizes for circuits defined over small fields (such as the OWFs
of interest for PQ signatures). The reason is that the soundness error of the
checking protocol is 1/|F|, where F is the field where the circuit is defined (mainly
because a random field element is chosen as a challenge). Therefore the protocol
requires a large number of parallel repetitions for small fields like F2. To get
around this issue for AES, the Banquet checking protocol lifts elements from F28

to a larger field F28λ , thereby increasing soundness. However, this also increases
the size of the proof, since it now includes elements of the larger field. The Limbo
proof system [dOT21] also uses lifting, and in [DKR+21] the authors explore
alternative OWFs that are defined over large fields natively, so that lifting can be
avoided. The latter approach is by far the most efficient to date (in the context
of signature schemes), but does not apply to existing OWFs defined over small
fields, such as AES and LowMC.

We dub this the lifting problem, and our goal is solve it in a more efficient
way. If we apply the lifting map used in Banquet to binary circuits like LowMC
we could for example lift each bit to a byte. But the lift is somewhat trivial, and
the overhead, we will refer to as the rate, is high (eight in this example), and F28

is still not as large as we’d like from a soundness perspective. For comparison,
the rate in Banquet was 4 or 6 and the larger field was 32 or 48 bits. While this
simple lifting approach has proven useful, a natural question is whether we can
do better.

One of the strategies we will explore in this paper is to use a reverse multi-
plication friendly embedding (RMFE). An RMFE allows us to encode multiple
field elements into an element in a field extension with better rate. RMFEs
were introduced by Cascudo et al. [CCXY18] in their work on the amortized
communication complexity of MPC protocols for binary circuits. The power of
the embedding is that coordinate-wise products in the base field are mapped

1See https://csrc.nist.gov/projects/post-quantum-cryptography.

2

https://csrc.nist.gov/projects/post-quantum-cryptography

to multiplications in the extension field. For example, the (3, 5)2–RMFE allows
us to lift a batch of 3 elements of F2 into F25 , with rate 5/3 = 1.6. Once we
have encoded groups of bits (x1, x2, x3) and (y1, y2, y3) we can multiply the
encoded values in F25 , then decode to get the three ANDs (x1 ·y1, x2 ·y2, x3 ·y3).
Importantly, the encoding and decoding operations are linear, meaning parties in
the MPC protocol can compute the maps on their shares locally to obtain shares
of the encoded value. There are somewhat strict limitations on the arithmetic
operations one can perform on encoded values such that the decoded values are
correct, but we show that an efficient checking protocol is possible.

1.1 Contributions
In this paper we make the following contributions.

Lifting strategies After reviewing some known strategies for lifting, such as
the simple lifting technique described above, we show how to lift with RMFEs.
This it not straightforward due to the limitations of RMFEs, and we find that
they cannot be directly applied to existing protocols without modification. We
then discuss alternative circuit representations, and how representation can lead
to shorter proofs. We give two concrete examples for our case study circuits AES
and LowMC. The AES example is well-known but illustrative in our context, and
our alternate representation of LowMC is a novel way to evaluate the three-bit
S-box with one F23 multiplication, as opposed to three F2 multiplications.

New proof systems We present two new proof systems in this paper. The
first is called BN++, and can be seen as an optimized version of the checking
protocol from [BN20] (where it is called the sacrificing-based proof protocol).
BN++ improves on the proof sizes of [BN20] by roughly 2.5x depending on the
circuit and field size, and is also the best choice for signature schemes (without
lifting) for certain OWFs. (As secondary case study explained below, we use BN++

to reduce the size and CPU costs of the Rainier [DKR+21] signature scheme.)
BN++ also supports RMFE-based checking, and is less sensitive to the lifting
problem, since it can efficiently repeat the checking protocol many times when
the field size is small.

We then present Helium, a proof system optimized for small fields based on the
proof systems Banquet [BdK+21] and Rainier [DKR+21]. The communication
efficiency of Helium comes from carefully selecting the point in the protocol where
elements are lifted to larger fields, using simple lifting, RMFEs or a combination
of both (the best combination of strategies depends on the circuit). By lifting
later in the protocol, more of the communication is in the base field as opposed
to the extension field, significantly reducing proof sizes.

We also provide a soundness analysis and concrete parameters for both BN++

and Helium.

Shorter OWF-based signatures Our main motivation for designing BN++

and Helium is for use in Picnic-like signature schemes with post-quantum security.
The designs are flexible enough to use many OWFs from the literature and we
investigate instantiations of our signatures with three OWFs: LowMC [ARS+15]

3

the OWF used in Picnic, AES-128 as the most conservative choice, and Rain
[DKR+21], a new cipher optimized for MPCitH-based signatures. 2

For LowMC-based signatures, we select suitable RMFEs and give concrete
parameters for BN++ and Helium-based signatures. Our new designs offer better
size-speed tradeoffs than the current state-of-the-art, i.e., for a fixed running
time or size budget, one of our schemes will be shorter, or faster. We can obtain
signatures of 6 582 bytes (at the 128-bit security level); these are 1.9x shorter than
the 12.5 KB signatures of Picnic3 (the most recent version of Picnic [KZ20b]),
while maintaining practical running times (below 20ms @ 3.6GHz) with our
initial implementation of Helium+LowMC. When matching Picnic3 on running
time, our current BN++LowMC implementation has 11 KB signatures, still about
14% shorter.

Our AES-based signatures are below 10 KB, and are the shortest in the
literature being 1.36x shorter than Banquet [BdK+21] (the previous shortest,
across a range of parameters), while simultaneously having more than 2x faster
singing and verification times. With the Rain OWF we improve on the size
and performance numbers in [DKR+21] by about 15–20%, giving the shortest
MPCitH-based signatures (for any OWF) to date.

We also provide a comparison to other PQ signature schemes that are
candidates in the third round of the NIST PQC process. The schemes making
structured hardness assumptions (e.g., the lattice or multivariate-based schemes)
have lower running times, though our new schemes have (sometimes much) shorter
keys and more conservative assumptions. SPHINCS+ is the other candidate
besides Picnic making limited assumptions, and comparison here generally favors
Helium, except for verify times. For example, signatures with Helium+LowMC
can be 1.2x shorter, 6x faster to create (compared to the small SPHINCS+
parameters). Alternatively, Helium+AES signatures are 1.2x larger, with a similar
improvement in signing time.

1.2 Related Work
Originally, reverse multiplication friendly embeddings were introduced in the
MPC literature in [CCXY18] and independently in [BMN18]. RMFEs were then
used in later works ([DLN19, DLS20, CG20, ACE+21], amongst others), mostly
to reduce the soundness errors of various checks. One difficulty in the application
of RMFEs in MPC protocols is that the parties have to compute the input values
for multiplication gates on the fly. For zero-knowledge proofs, the prover knows
the value for each wire in the circuit beforehand and can use this knowledge to
more efficiently batch values using RMFEs, which is not always possible in MPC
protocols, where RMFEs are mainly used to amortize the computation of the
same circuit with different input values.

The BN++ protocol bears some similarity to Limbo [dOT21], which also uses
a sacrificing-based protocol to check multiplications. Our protocol is somewhat
simpler, and admits a lower soundness error – we comment more on why in
Section 2.6. Limbo first uses randomization to compress many multiplications
into a dot-product. This dot-product is then checked using a recursive proof
protocol. While this strategy leads to efficient proofs for large circuits, for the

2Our implementations are available at https://github.com/IAIK/bnpp_helium_
signatures.

4

https://github.com/IAIK/bnpp_helium_signatures
https://github.com/IAIK/bnpp_helium_signatures

circuits we are focusing on in this work in the context of signature schemes,
our protocol can produce much smaller signatures. The Limbo authors also
discuss using RMFEs in a different way to ours [dOT21, Appendix A]. They
propose batching proofs in the “multi-instance case” when the prover is proving
C(w1), . . . , C(wh) (same circuit with multiple witnesses). This is more in line with
the amortization in traditional MPC and does not seem applicable to Picnic-like
signatures.

The TurboIKOS proof system [GHS+21] presents a series of optimizations to
the BN protocol, applying ideas originating in the Turbospeedz MPC protocol
[BNO19]. The base TurboIKOS protocol has communication cost slightly higher
than BN++ and Helium, at 3 vs. about 2 field elements per gate. The first two
optimizations made by BN++ are also used in a similar fashion in TurboIKOS
(where they appeared first), and TurboIKOS has an optimization that is equiva-
lent to the third in BN++ in terms of performance (i.e., both optimizations reduce
the number of field elements broadcast for the checking protocol by one). For
completeness we present BN++ as a series of optimizations starting from BN
in Section 2.7. A further optimization of TurboIKOS can reduce size when the
number of parties is small relative to the circuit size. We describe this technique
in more detail in Appendix B.3, as it can be applied to BN++. However, we find
that since the number of parties is the limiting factor for soundness, it is almost
always better to increase the number of parties and forgo this optimization.

Outside the category of MPCitH-based proofs, multiple works also design
circuit-based ZK proof systems with PQ security, like Ligero [AHIV17, BFH+20]
and Aurora [BCR+19]. Recently, Cascudo and Giunta [CG21] introduced a
way to utilize reverse multiplication friendly embeddings in Aurora and Ligero,
improving their argument sizes by a factor of up to 1.65x and 3.71x, respectively.
As the size of the circuit increases, these systems will quickly outperform our
proof systems, since their proof size is sublinear in the circuit size. However, for
the OWFs we are interested in, our proofs are much shorter.

1.3 Notation
In Table 1 we define some of the notation we use frequently. Additionally, in
the MPC protocols we discuss, the prover will create secret shares of a value
x by having each party sample their share of x from their random tape. If x
must be a uniform random value, this is sufficient, but to create a sharing of a
given value, the prover additionally computes a “delta value” or “offset value”
to correct the sharing:

∆x = x−
N∑
i=1

x(i) .

The value ∆x is public, and the first party updates their share with it: x(1) =
x(1) + ∆x.

2 The BN++ Zero-Knowledge Proof System
In this section, we first review the Baum-Nof zero-knowledge protocol, as pre-
sented in [BN20], then give a series of four optimizations, all aimed at reducing
the proof size that make up the BN++ proof system.

5

κ Security parameter
[x] The set {1, . . . , x}
N Number of parties
τ Number of parallel repetitions
e Index of repetition e = 1, . . . , τ
i Index of party Pi, i = 1, . . . , N
ī, īe Index of unopened party, in repetition e
a(i) Party i’s share of a; sharing is additive a =

∑N
i=1 a

(i)

C, C An arithmetic circuit C with C multiplication gates
M Number of executed multiplication checks
F Field where C is defined
K Extension field of F, output of RMFE encoding
k Number of F-elements encoded to one K-element
φ RMFE encoding function φ : Fk → K
ψ RMFE decoding function ψ : K→ Fk

Table 1: Frequently used notation.

2.1 The Baum-Nof Zero-Knowledge Proof
In [BN20], Baum and Nof presented a zero-knowledge argument of knowledge
based on the MPC-in-the-head approach by Ishai et al. [IKOS07], following
Katz, Kolesnikov and Wang [KKW18] by using an MPC protocol with pre-
processing. The protocol in [BN20] uses standard multiplication triples (or
Beaver triples [Bea92]), but instead of revealing the pre-processing phase of some
iterations in a cut-and-choose fashion, they instead use a common technique
from traditional MPC and show that a triple is correct by “sacrificing” another
one. A random challenge is jointly generated, or provided by a special verifier
party, which is natural in the context of MPCitH proofs.

This procedure is repeated below, checking a triple (x, y, z) using a second
triple (a, b, c).

1. The verifier provides a random ε ∈ F.
2. The parties locally set α(i) = ε · x(i) + a(i), β(i) = y(i) + b(i).
3. The parties open α and β by broadcasting their shares.
4. The parties locally set v(i) = ε · z(i) − c(i) + α · b(i) + β · a(i) − α · β.
5. The parties open v by broadcasting their shares and check that v = 0.

In the context of an MPCitH proof, the first triple (x, y, z) comes from the
circuit evaluation (with shares of z being injected by the prover), and the second
triple (a, b, c) is a random triple, whose main job is to hide the first triple in the
broadcast values α and β.

A signature scheme based on the BN proof protocol [BN20] is depicted in
Figure 1. The circuit is assumed to be a one-way function, with input sk and
output pk (sk is the signing key and pk is the public key, consisting of the circuit
output ct and optional public parameters). For soundness, the base protocol
is repeated τ times in parallel. Several hash functions: Commit, H1 and H2 are
required; as well as the two pseudorandom generators: Expand and ExpandTape.
All of these functions can be instantiated with the SHAKE128 extendable output

6

function (or SHAKE256 for larger security levels), with different constants added
for domain separation. The helper function Sample(t) samples elements from
a random tape t that was output by ExpandTape, keeping track of the current
position on the tape. The way the per-party seeds in each parallel repetition
are derived from a root seed in a binary tree is the same technique (originating
in [KKW18]) used in Picnic, Banquet, Rainier and other MPCitH-based proofs.

2.2 Optimized Proof Size Overview
Here we quantify the proof size of the BN protocol without optimizations, then
summarize how each of the optimizations that make up BN++, described in this
section, reduce the proof size.

The total proof size of the protocol in Figure 1 is

3κ+ τ · (4κ+ κ · dlog2(N)e+M(C)) ,

where M(C) = 5C log2(|F|) is the size of the checking protocol to ensure the
multiplications are correct. Referring to Figure 1, the five field elements per
multiplication are (∆ce,`,∆ze,`, α(̄ie)

e,` , β
(̄ie)
e,` , v

(̄ie)
e,`). Also note that this assumes

that the output of C is κ bits (as will be the case for the signature schemes we
consider). After Optimization 1, the proof size will be

3κ+ τ · (3κ+ κ · dlog2(N)e+M(C)) . (1)

Optimizations 2,3,4 will each reduceM(C), as summarized in Table 2. In Table 2
we also include M(C) for BN++RMFE, the protocol where RMFEs are used
with BN++ to improve performance in small fields. The sizes of the additional
parameters for BN++ and BN++RMFE are given in Section 3.3. As mentioned
above, optimizations 1 and 2 were first used in [GHS+21].

Proof protocol M(C)
BN 5C log2(|F|)
BN + Opt. 2 4C log2(|F|)
BN + Opt. 2,3 3C log2(|F|)
BN++ (BN + Opt. 2,3,4) (2C + 1) log2(|F|)
BN++-Simple Lifting C log2(|F|) + (C + 1) log2(|K|)
BN++RMFE (2 dC/ke+ 1) · (log2(|K|))

Table 2: Summary of proof sizes after successive optimizations building up to
the BN++ zero-knowledge proofs. Here we give the size of the checking protocol,
M(C), only, for the full proof size see Equation (1).

2.3 Optimization 1: Removing the Output Broadcast
In [BN20], the authors describe an optimization that uses a random linear
combination of all output shares ct(i)

e to reduce communication to a single field
element. We now give an optimization that saves all communication with regards
to the output shares.

7

Sign(sk,msg):
Phase 1: Committing to the seeds and views of the parties.
1: Sample a random salt salt $← {0, 1}2κ.
2: for each parallel repetition e do
3: Sample a root seed: seede

$← {0, 1}κ.
4: Derive seed(1)

e , . . . , seed(N)
e as leaves of binary tree from seede.

5: for each party i do
6: Commit to seed: com(i)

e ← Commit(salt, e, i, seed(i)
e).

7: Expand random tape: tape(i)
e ← ExpandTape(salt, e, i, seed(i)

e)
8: Sample witness share: sk(i)

e ← Sample(tape(i)
e).

9: Compute witness offset: ∆ske ← sk−
∑

i
sk(i)
e .

10: Adjust first share: sk(1)
e ← sk(1)

e + ∆ske.
11: for each multiplication gate with index ` ∈ [C] do
12: For each party i, set (a(i)

e,`, b
(i)
e,`, c

(i)
e,`)← Sample(tape(i)

e).
13: Compute ae,` =

∑N

i=1 a
(i)
e,`, be,` =

∑N

i=1 b
(i)
e,`, ce,` =

∑N

i=1 c
(i)
e,`.

14: Compute offset ∆ce,` = ae,` · be,` − ce,`.
15: Adjust first share: c(1)

e,` ← c
(1)
e,` + ∆ce,`

16: for each gate g in C with index ` do
17: if g is an addition gate with inputs (x, y) then
18: The parties locally compute the output share:
19: z(i) = x(i) + y(i)

20: if g is a multiplication gate with inputs (xe,`, ye,`) then
21: Compute output shares z(i)

e,` = Sample(tape(i)
e).

22: Compute offset ∆ze,` = xe,` · ye,` −
∑N

i=1 z
(i)
e,`.

23: Adjust first share z(1)
e,` ← z

(1)
e,` + ∆ze,`.

24: Let ct(i)
e be the output shares of online simulation.

25: Set σ1 to:
26: (salt, ((com(i)

e)i∈[N], (ct(i)
e)i∈[N],∆ske, (∆ce,`,∆ze,`)`∈[C])e∈[τ].

Phase 2: Challenging the checking protocol.
1: Compute challenge hash: h1 ← H1(salt,msg, σ1).
2: Expand hash: ((εe,`)`∈[C])e∈[τ] ← Expand(h1) where εe,` ∈ F.

Phase 3: Commit to simulation of checking protocol.
1: for each multiplication gate with index ` ∈ [C] do

2:
Simulate the triple checking protocol as defined above. Let α(i)

e,` and β
(i)
e,`

be the two broadcast values and let v(i)
e,` be the output of the checking

protocol, for all parties i ∈ [N].
3: Set σ2 ← (salt, (((α(i)

e,`, β
(i)
e,`, v

(i)
e,`)i∈[N])`∈[C])e∈[τ].

Phase 4: Challenging the views of the MPC protocol.
1: Compute challenge hash: h2 ← H2(h1, σ2).
2: Expand hash: (̄ie)e∈[τ] ← Expand(h2) where īe ∈ [N].

Phase 5: Opening the views of the checking protocol.
1: for each repetition e do
2: seedse ← {log2(N) nodes to compute seede,i for i ∈ [N] \ {̄ie}}.

3:
Output σ ← (salt, h1, h2, (seedse, com(̄ie)

e ,∆ske, ct(̄ie)
e , (∆ce,`,∆ze,`,

α
(̄ie)
e,` , β

(̄ie)
e,` , v

(̄ie)
e,`)`∈[C])e∈[τ]).

Figure 1: Signature scheme based on the Baum-Nof MPCitH proof protocol
[BN20], signing algorithm.

8

Note that in the setting of the proof, the output of the circuit ct is public, so
it is known to the verifier. Furthermore, from the N − 1 seeds revealed to the
verifier, the verifier can recompute ct(i)

e for all opened parties of a repetition and
then recalculate the missing share

ct(̄ie)
e = ct−

N∑
i=1
i 6=īe

ct(i)
e .

Intuitively, since all ct(i)
e are input to the hash function in Phase 2, this ensures

that the verifier is using the same shares of ct as the prover. This optimization
saves including the unopened party’s output broadcast message ct(̄ie)

e in the
proof, saving one output value per repetition. The proof size formula is given in
Equation (1). The concrete size of the savings depends on the output size of C.
For LowMC at security level L1, this amounts to 129 bits, and once our other
parameters are chosen we use 18 repetitions so the total savings is about 290
bytes.

2.4 Optimization 2: Removing the Final Checking Proto-
col Broadcast

In [BN20], the authors describe another optimization that again uses a random
linear combination of all C output shares of the multiplications check v(i)

e,` to
reduce communication to a single field element. We now show how to reduce
this communication entirely.

As before, the verifier knows the plain output of the multiplications check,
as an accepting check should output ve,` = 0. Again, N − 1 seeds are revealed to
the verifier, meaning he can recompute v(i)

e,` for all opened parties of a repetition
and then re-calculate the missing share

v
(̄ie)
e,` = 0−

N∑
i=1
i 6=īe

v
(i)
e,` .

This optimization saves including v(̄ie)
e,` in the signature, saving another field

element per multiplication gate compared to the base protocol (or one field
element per repetition compared to the optimization in [BN20]).

After Optimization 2,M(C) = 4C log2(|F|), and together with Equation (1)
we get the total proof size.

2.5 Optimization 3: Remove the Broadcast of β

In the standard triple verification procedure from Section 2.1 the parties need
to broadcast both α and β. This is needed in general, so that one can verify
arbitrary triple pairs using this procedure. But consider two triples that are
related as follows: (x, y, z) and (a,−y, c). Due to the structure of the proof, we
can easily create the second multiplication triple by the parties locally computing
−y(i) = −(y(i)), randomly sampling a(i) and c(i) locally and the prover then
injects ∆c as before to fix the shares of c. If we now execute the same checking

9

protocol, we have β = y+(−y), so β = 0, removing the need for a broadcast. One
can also think of this optimization as performing circuit-dependent preprocessing.
For simplicity we’ll compute β = y − b, so that b = y (rather than −y) and
modify the computation of v accordingly.

1. The verifier provides a random challenge ε ∈ F.
2. The parties locally set α(i) = εx(i) + a(i).
3. The parties open α by broadcasting their shares.
4. The parties locally set v(i) = αy(i) − εz(i) − c(i).
5. The parties open v by broadcasting their shares and output acc iff v = 0.

The security of this protocol can be analyzed in a similar fashion to [BN20,
Lemma 2], however, we will add an additional optimization step in the following
section, then analyze the security of the resulting protocol.

After combining optimizations 1, 2 and 3, we must communicate the values
(α(̄i)
e,`,∆ce,`,∆ze,`) for each of the C multiplication gates, so the size of the

checking protocol isM(C) = 3C log2(|F|)which we can plug into the proof size
formula given in Equation (1).

2.6 Optimization 4: Dot-Product Checking
In this optimization we again modify the checking protocol. We observe that the
protocol is proving that both (x, y, z) and (a, b, c) are valid multiplication triples.
However, for correctness of the circuit, we only need to prove that (x, y, z) is
a valid multiplication triple, and for (a, b, c) we only require that a and b are
random, so that x and y are hidden in the computation of α and β, and that c
is correlated to (a, b) in a way that allows us to create a checking protocol. We
can batch verification of all C triples, (x`, y`, z`)C`=1 given a random dot product,
((a`, b`)C`=1, c) where c =

∑C
`=1 a`b`, as follows.

For simplicity we start our description of the protocol from Optimization 3
(when b = y), but this optimization can be applied independently (i.e., when
b 6= y). Here all ` = 1, . . . , C multiplication gates are checked at once, the input
is (x`, y`, z`)C`=1 and ((a`, b`)C`=1, c), values that are secret-shared amongst the
parties.

1. The verifier provides a random challenge (ε1, . . . , εC) ∈ FC .
2. The parties locally set α(i)

` = εx
(i)
` + a

(i)
` .

3. The parties open (α1, . . . , αC) by broadcasting their shares.
4. The parties locally set

v(i) = ε1z
(i)
1 − α1b

(i)
1

+ . . .

+ εC · z(i)
C − αC · b

(i)
C

− c(i)

Note that each of the C lines above is basically one instance of the non-
batched multiplication check, except that the C values of c` = a`b` are
summed together on the last line.

10

5. The parties open v by broadcasting v(i) and output acc iff v = 0.

The security of this protocol can be analyzed with a combination of related
ideas from [BN20, Lemma 2], and [dOT21, Lemma 4.1]. When compared to
the multiplication check protocol in [dOT21], our protocol uses independent
random challenges εi, rather than (R,R2, . . . , RC−1) for a single random R ∈ F.
Therefore, we can apply the Schwartz-Zippel lemma to a degree 1, multivariate
polynomial, rather than a degree C − 1 univariate polynomial. This decreases
the soundness error by a factor of C − 1, which is especially significant when the
field size is small.3

First we recall the multivariate version of the Schwartz-Zippel lemma [DL77,
Zip79, Sch80].

Lemma 1 (General Schwartz-Zippel lemma). Let P (x1, . . . , xn) be a non-zero
polynomial of n variables with total degree d over F. For any finite subset S of
F, with at least d elements in it,

Pr[(r1, . . . , rn) $← Sn : P (r1, . . . , rn) = 0] ≤ d

|S|
.

The total degree of P is the largest sum of the exponents in a term of P . For
example, P (x1, x2) = 4x1

2x2
3+x1x2

2+1 has degree 5, and P (x1, x2) = 7x1+3x2
has degree 1.

Now we prove security of our dot-product based checking protocol, which
also covers Optimization 3 a special case when C = 1.

Lemma 2. If the secret-shared input (x`, y`, z`)C`=1 contains an incorrect multi-
plication triple, or if the shares of ((a`, y`)C`=1, c) form an incorrect dot product,
then the parties output acc in the sub-protocol with probability at most 1/|F|.

Proof. Let ∆z` = z` − x` · y` and ∆c = c−
∑
a` · y`. If the parties output acc,

then v = 0, leading to:

v = −c+
∑

ε` · z` − α` · y`

= −c+
∑

ε` · (∆z` + x` · y`)− (ε` · x` − a`) · y`

= −c+
∑

ε`∆z` + ε` · z` − ε` · z` + a` · y`

= −c+
∑

a` · y` +
∑

ε`∆z`

= ε1∆z1 + ε2∆z2 + . . .+ εC∆zC −∆c = 0

Define a multivariate polynomial

Q(X1, . . . , XC) = X1 ·∆z1 + · · ·+XC ·∆zC −∆c

in F[X1, . . . , XC] and note that v = 0 iff Q(ε1, . . . , εC) = 0. When Q is the zero
polynomial, then all ∆z` = 0 and ∆c = 0 are zero, implying z` = x` · y` and
c =

∑
a` · b`, so v = 0 is the correct result.

3Whether Limbo [dOT21] can use independent challenges and also have improved analysis
along the lines of our Lemma 2 is an interesting question. For the simpler MultCheck protocol
in [dOT21], it appears possible, but the final Limbo ZK proof uses the CompressedMC checking
protocol, which seems to rely on univariate polynomials and a single challenge.

11

In the case of a cheating prover, Q is nonzero, and by the multivariate
version of the Schwartz-Zippel lemma (see Lemma 1), the probability that
Q(ε1, . . . , εC) = 0 is at most 1/|F|, since Q has total degree 1 and (ε1, . . . , εC) is
chosen uniformly at random.

Privacy We show that the above checking protocol is (N − 1)-private, by
defining a simulator S that obtains shares {z(i)

` , b(i)` , c(i)` }`∈[C] for all parties
i ∈ [N] except for one, denoted ī. Simulator S chooses α(i)

` at random for all
parties. Then using the shares (z(i)

` , b(i)` , c(i)`), S computes v(i) honestly for the
N − 1 parties excluding party ī. For party ī’s share, since S knows that v = 0
in an accepting run of the protocol, it can solve for v(̄i) = 0−

∑
i6=ī v

(i) exactly
as in Optimization 2. Now we argue that S’s output is correctly distributed.
First we note that in a real execution α` = ε`x` + a` is uniformly distributed
in F since a` is a uniform random value, and the simulated value of α` is also
uniformly random in F. Next, the N − 1 shares of v computed honestly are
correctly distributed, and there is only one choice for party ī’s share that makes
the parties accept, making it the same in both simulated and real transcripts.

BN++ Signature size With optimizations 1,2,3 and 4, we must communi-
cate (∆ze,`, α(̄i)

e,`) once for each of the C multiplication gates, and one ∆ce per
repetition. The size is

M(C) = (2C + 1) · log2(|F|) ,

for the checking protocol, which together with Equation (1) gives the total proof
size.

2.7 BN++: New Protocol with all Optimizations
In Figure 2 we describe the new signing algorithm using optimizations 1, 2, 3,
and 4. In Figure 3 we describe the corresponding verification algorithm. The
setup, keypair, and hash functions are the same as in our description of the
original BN protocol in Section 2.1.

2.7.1 Soundness

Now we analyze the soundness error of the protocol, informally, in order to select
the parameters τ (number of parallel repetitions) and N (number of parties
per MPC execution). A more formal analysis is given in Lemma 5, where we
give an extractor and analyze its success probability to prove unforgeability of
the BN++ signature scheme. Since the non-interactive BN++ proof is a canonical
5-round protocol constructed with the Fiat-Shamir transform, we can apply the
existing analysis in [KZ20a, §4.1], similar to Banquet [BdK+21] (though it is
seven rounds) and Rainier [DKR+21].

We provide an attack strategy that minimizes the attack cost, where we cheat
τ1 times for the first challenge and τ2 = τ − τ1 times for the second challenge. To
cheat in the first challenge the attacker must pass the multiplication check, and
this happens with probability 1/|F|, by Lemma 2. For the remaining τ2 instances
he must cheat in the MPC computation of one party, and hope that the selected
party remains unopened.

12

Sign(sk,msg):
Phase 1: Committing to the seeds and views of the parties.
1: Sample a random salt: salt $← {0, 1}2κ.
2: for each parallel repetition e do
3: Sample a root seed: seede

$← {0, 1}κ.
4: Derive seed(1)

e , . . . , seed(N)
e as leaves of a binary tree from seede.

5: for each party i do
6: Commit to seed: com(i)

e ← Commit(salt, e, i, seed(i)
e).

7: Expand random tape: tape(i)
e ← ExpandTape(salt, e, i, seed(i)

e)
8: Sample witness share: sk(i)

e ← Sample(tape(i)
e).

9: Compute witness offset: ∆ske ← sk−
∑

i
sk(i)
e .

10: Adjust first share: sk(1)
e ← sk(1)

e + ∆ske.
11: for each gate g in C with index ` do
12: if g is an addition gate with inputs (x, y) then
13: Party i locally computes the output share z(i) = x(i) + y(i).
14: if g is a multiplication gate with inputs (xe,`, ye,`) then
15: Compute output shares z(i)

e,` = Sample(tape(i)
e).

16: Compute offset ∆ze,` = xe,` · ye,` −
∑N

i=1 z
(i)
e,`.

17: Adjust first share z(1)
e,` ← z

(1)
e,` + ∆ze,`.

18: For each party i, set a(i)
e,` ← Sample(tape(i)

e).
19: Compute ae,` =

∑N

i=1 a
(i)
e,` and set be,` = ye,`.

20: Compute c(i)e ← Sample(tape(i)
e).

21: Compute offset ∆ce =
(∑|C|

`=1 ae,` · be,`
)
− ce.

22: Adjust first share: c(1)
e ← c

(1)
e + ∆ce

23: Let ct(i)
e be the output shares of online simulation.

24: Set σ1 ← (salt, ((com(i)
e , ct(i)

e)i∈[N],∆ske,∆ce, (∆ze,`)`∈[C])e∈[τ].
Phase 2: Challenging the checking protocol.
1: Compute challenge hash: h1 ← H1(salt,msg, σ1).
2: Expand hash: ((εe,`)`∈[C])e∈[τ] ← Expand(h1) where εe,` ∈ F.

Phase 3: Commit to simulation of the checking protocol.
1: for each repetition e do

2:
For the set of multiplication gates in C, simulate the triple checking protocol
as defined in §2.6 for all parties with challenge (εe,`)`∈[C]. The inputs are
(x(i)
e,`, y

(i)
e,`, z

(i)
e,`, a

(i)
e,`, b

(i)
e,`, c

(i)
e), and let α(i)

e,` and v
(i)
e be the broadcast values.

3: Set σ2 ← (salt, (((α(i)
e,`)`∈[C], v

(i)
e)i∈[N])e∈[τ].

Phase 4: Challenging the views of the MPC protocol.
1: Compute challenge hash: h2 ← H2(h1, σ2).
2: Expand hash: (̄ie)e∈[τ] ← Expand(h2) where īe ∈ [N].

Phase 5: Opening the views of the MPC and checking protocols.
1: for each repetition e do
2: seedse ← {log2(N) nodes to compute seed(i)

e for i ∈ [N] \ {̄ie}}.
3: Output σ ← (salt, h1, h2, (seedse, com(̄ie)

e ,∆ske,∆ce, (∆ze,`, α(̄ie)
e,`)`∈[C])e∈[τ]) .

Figure 2: BN++ signature scheme, signing algorithm.

13

Verify(pk,msg, σ) :
1: Parse σ as (salt, h1, h2, (seedse, com(̄ie)

e ,∆ske,∆ce, (∆ze,`, α(̄ie)
e,`)`∈[C])e∈[τ]).

2: Expand hashes: (εe,`)e∈[τ],`∈[C] ← Expand(h1), and (̄ie)e∈[τ] ← Expand(h2).
3: for each repetition e do
4: Use seedse to recompute seed(i)

e for i ∈ [N] \ īe.
5: for each party i ∈ [N] \ īe do
6: Recompute com(i)

e ← Commit(salt, e, i, seed(i)
e),

7: tape(i)
e ← ExpandTape(salt, e, i, seed(i)

e), and
8: sk(i)

e ← Sample(tape(i)
e).

9: if i = 1 then adjust first share: sk(i)
e ← sk(i)

e + ∆ske.
10: for each gate g in C with index ` do
11: if g is an addition gate with inputs (x(i), y(i)) then
12: Compute the output share z(i) = x(i) + y(i)

13: if g is a mult. gate, with inputs (x(i)
e,`, y

(i)
e,`) then

14: Compute output share z(i)
e,` = Sample(tape(i)

e).
15: if i = 1 then
16: Adjust first share z(i)

e,` ← z
(i)
e,` + ∆ze,`.

17: Set a(i)
e,` ← Sample(tape(i)

e), and b(i)e,` = y
(i)
e,`

18: Set c(i)e ← Sample(tape(i)
e)

19: if i = 1 then adjust first share c(i)e ← c
(i)
e + ∆ce.

20: Let ct(i)
e be party i’s share of the circuit output.

21: Compute ct(īe)
e = ct−

∑
i 6=īe ct(i)

e

22: Set σ1 ← (salt, ((com(i)
e , ct(i)

e)i∈[N],∆ske,∆ce, (∆ze,`)`∈[C])e∈[τ]).
23: Set h′1 = H1(salt,msg, σ1)
24: for each repetition e do
25: for each party i ∈ [N] \ īe do

26:

For the set of multiplication gates in C, simulate the triple veri-
fication procedure as defined in §2.6 for party i with challenge
(εe,`)`∈[C]. The inputs are (x(i)

e,`, y
(i)
e,`, z

(i)
e,`, a

(i)
e,`, b

(i)
e,`, c

(i)
e), and let

α
(i)
e,` and v

(i)
e be the broadcast values.

27: Compute v(īe)
e = 0−

∑
i6=īe v

(i)
e

28: Set σ2 ← (salt, (((α(i)
e,`)`∈[C], v

(i)
e)i∈[N])e∈[τ].

29: Set h′2 = H2(h′1, σ2).
30: Output accept iff h′1

?= h1 and h′2
?= h2.

Figure 3: BN++ signature scheme, verification algorithm.

14

The cost of the attack is given by

Cost(κ,N, τ) = 1
SPMF(τ, τ1, 1/|F|)

+Nτ2 ,

where SPMF is the summed probability mass function,

SPMF(n, k, p) =
n∑

k′=k

(
n

k′

)
pk
′
(1− p)n−k

′
,

where each term gives the probability of guessing correctly in k′ of τ independent
trials, each with success probability p. The choice of τ1 that minimizes the attack
cost gives the optimal attack

τ1 = arg min
0≤τ ′≤τ

1
SPMF(τ, τ ′, 1/|F|) +Nτ−τ ′ .

To select secure parameters, we fix κ and N and F, then increase τ until the
cost of the best attack exceeds 2κ. A script implementing this formula was used
to generate the concrete parameters given in the next section. Similarly to other
MPCitH proofs, BN++ offers a size-speed tradeoff, as increasing N allows us to
reduce τ , which in turn reduces the proof size, but requires more computation
due to the increased number of parties.

3 Handling Small Fields Efficiently
The BN++ protocol performs well for circuits defined over large fields. For example,
the Rain block cipher is the basis for the Rainier signature scheme [DKR+21],
and its nonlinear operations are defined over GF(2128). The proof size of BN++

with Rain is slightly smaller than Rainier, and the implementation of BN++ is
arguably simpler, not requiring polynomial interpolation or arithmetic.

However, for the LowMC OWF used in Picnic, we have 516 binary AND gates,
and signatures with BN++ are estimated to be about 62 KB (τ = 202, N = 256).
The number of parallel repetitions τ is very high because the soundness of the
multiplication check in each repetition is only 1/2. This compares to 12.5 KB
for the Picnic3 parameters (based on the KKW [KKW18] proof system). As
a second example, for AES-128 we must check 200 multiplications in F28 , and
BN++ proofs are 20 KB (τ = 35, N = 256), compared to 13.2 KB for Banquet
(τ = 21, N = 255). Thus the BN++ proof system is not competitive with existing
solutions when the field size is small.

In this section we address this limitation with four strategies. The first is
called simple lifting, which lifts values from the small field to a larger field before
the multiplication check, increasing soundness. Alternatively, we can repeat the
multiplication check multiple times per repetition, leading to nearly identical
sizes when compared to simple lifting. We can also combine the two strategies,
in order to target a specific preferred field in which to perform most of the field
arithmetic, which can vary depending on the platform. The third strategy is
to lift groups of triples to a larger field using a reverse multiplication-friendly
embedding. This strategy can also be combined with the previous two.

Our last approach to lifting uses alternative, but equivalent circuit represen-
tations over a larger field. This is often the case for S-box designs, which can

15

Binary LowMC (516 ANDs): 61.7 KB without lifting
26.6 KB lifting to K = GF(28)

GF(23) LowMC (172 mults): 22.7 KB without lifting
14.0 KB lifting to K = GF(212)

AES-128 (200 F28 mults): 20.2 KB without lifting
19.5 KB lifting to K = GF(216)

Table 3: BN++ proof size estimates for LowMC and AES with the simple lifting
strategy, with N = 256 parties.

be evaluated as a binary circuit, but also have an efficient representation over a
larger field.

3.1 Simple Lifting
For BN++, we can prove circuits over small fields by first lifting them to a larger
field, as was done in Banquet [BdK+21] and Limbo [dOT21]. This lifting takes a
value in F and lifts it to an extension field K using an injective homomorphism. In
particular, we execute the circuit over F, getting the shares of the multiplication
gates, and then lift these shares to K for the multiplication checking protocol.
(The parties can lift their shares using only local operations.) The challenge ε
must be in K to improve soundness, which means that a` must also be in K to
ensure that x` is hidden in the computation of the public value α`. Because of
this, the dot product triple (a,b, c) is also in K. Recall that in BN++ we must
communicate (∆ze,`, α(̄i)

e,`) once per gate and ∆ce once per repetition. From the
discussion above, ∆ze,` ∈ F, α(̄i)

e,` and ∆ce are in K.
Then the proof/signature size formula given in Equation (1) has

M(C) = C(log2(|F|) + log2(|K|)) + log2(|K|) .

We give some examples when N = 256, in Table 3 to illustrate the size improve-
ments possible with this lifting strategy.

The improvements in the table make sense intuitively, when looking at the
“rate” of the lift, a measure of the overhead. In binary LowMC we lift each bit
to 8 bits, for a rate of 8. When moving from F2 to F23 each group of 3 bits are
lifted to one GF(23) value, for a rate of 1, giving nearly a 3x decrease in proof
size. When we lift from GF(23) to GF(212) (rate 4) we get the best signature
size, about 1.5 KB more than Picnic3.

The AES example shows that lifting is not always effective: when starting
from F28 lifting to the next smallest field, F216 we see only a small decrease
in signature size, and lifting to larger fields increases signature size. As the
number of parties increases, lifting to large fields can show a somewhat greater
improvement.

3.2 Multiple Checks Per Repetition
Another approach to handle small fields is possible in BN++ since we can instead
repeat the checking protocol M times per repetition, at the same communication

16

cost. As a lifting strategy, this can be seen as lifting to FM (the direct product
of F, M times) with rate M . For example, instead of lifting from F = F2 to
K = F2M , we can instead do M checks over F2 for the same communication cost.
The advantage of this is that the checking arithmetic is in F2, which may be
faster than any extension field depending on the platform(and when the base
field is not F2, smaller fields generally have faster arithmetic).

The description of BN++ in Figure 2 corresponds to the case M = 1. When
M > 1, the checking protocol of Section 2.6 is repeated M times. This requires
the parties compute M check values per repetition ve,m each using a fresh
challenge and broadcast values of the parties; this protocol can be seen as being
done with vectors over FM . The input triples (x`, y`, z`)`∈[C] remain in F, only
the random dot-product ((a`, b`)`∈[C], c) is in FM . Therefore the proof size with
M checks is given in Equation (1) with

M(C) = C log2(|F|) +M(C + 1) log2(|F|) .

The optimal values of M for the circuits in Table 3 are M = 8 for binary
LowMC, M = 4 for GF(23) LowMC, and M = 2 for AES-128; since these make
|FM | = |K| and we arrive at identical proof sizes.

3.3 Lifting with RMFEs
When looking at an example of the simple lifting approach, say from GF(2) to
GF(28) this means we take one bit and lift it to an 8-bit field, then run the
checking protocol the larger field. The rate of this lift is 8, since 8 bits must
be communicated in place of one. While this does help soundness, the lift is
somewhat trivial, and resulting rate is high. A natural question is if we can do
better.

A reverse multiplication friendly embedding allows us to encode multiple bits
into a field extension with better rate. For example, the (3, 5)2–RMFE allows us
to lift a batch of 3 elements of F2 into F25 , with rate 5/3 = 1.6 and there exist
RMFEs with larger base and extension fields. Once we have encoded groups
of bits (x1, x2, x3) and (y1, y2, y3) we can multiply the encoded values in F25 ,
then decode to get the three ANDs (x1 · y1, x2 · y2, x3 · y3). Importantly, the
encoding and decoding operations are linear, meaning the parties can compute
the maps on their shares locally to obtain shares of the encoded value. There
are somewhat strict limitations on the arithmetic operations one can perform on
encoded values such that the decoded values are correct, but we show that the
sacrificing check is possible.

3.3.1 RMFE Preliminaries

First a definition, adapted from [CCXY18].

Definition 3. Let k and m be positive integers and q be a prime power that
defines the field Fq. Define a pair of mappings:

• φ : (Fq)k → Fqm that maps vectors over the base field to the extension
field, and

• ψ : Fqm → (Fq)k which does the reverse.

17

We say that (φ, ψ) is a reverse multiplication friendly embedding, denoted
(k,m)q–RMFE, if

1. φ and ψ are Fq-linear, and

2. For any pair of vectors x,y ∈ (Fq)k, we have

x ∗ y = ψ(φ(x) · φ(y))

where ∗ denotes component-wise multiplication.

The rate of the RMFE is m/k. When the sizes are clear from the context, we
refer to Fq as F and Fqm as K, so that φ : Fk → K and ψ : K→ Fk.

We call out an important limitation of the RMFE property. SupposeX = φ(x)
and Y = φ(y), and x ∗ y = z. It is not guaranteed that XY = φ(z), only that
ψ(XY) = z. One way to see why is to note that the representation of z in K is
redundant; there are many Z ′ ∈ K such that ψ(Z ′) = z, and only one possible
result for φ(z).

RMFE Constructions We experimented with two constructions of RMFEs
from [CCXY18]. The first is based on interpolation codes [CCXY18, Lemma 4],
has the lowest rate, and gives the shortest proof sizes in BN++ (for the circuits over
small fields). The construction gives us a (k, 2k− 1)q–RMFE, with 1 ≤ k ≤ q+ 1.
The constraint on k means the size of K is limited by q (limiting the soundness
of the multiplication check, when q is small, where we need it the most). We can
then use the concatenation construction of [CCXY18, Lemma 5] to get larger
K, but at the expense of higher rate. Other options exist, e.g., starting from F2,
but the rates of other constructions we investigated are higher (and thus led to
larger proof sizes), starting around rate 3.

A construction with improved rate and similarly sized K would immediately
give shorter signatures (e.g., in the case of LowMC, a rate 1.6 RMFE would
reduce signature sizes by about 1 KB). Unfortunately [CCXY18, Lemma 4] is
optimal.4 That said, how we make use of this optimal RMFE may not be optimal,
and an interesting question is whether the flexibility of the MPC-in-the-head
paradigm can be used to further reduce communication. In Section 5.1.1 we show
some of the concrete RMFEs we investigated, along with resulting signature size
estimates.

In terms of implementation, once the RMFE parameters are fixed, we can
derive matrix representations for φ and ψ, then encoding and decoding can each
be done with a matrix multiplication. This is mainly done for efficiency, since the
construction of [CCXY18, Lemma 4] is using linear interpolation codes. We can
use this linearity to construct a matrix representation of the RMFE encoding
step by evaluating the RMFE encoding function on the unit basis vectors (and
repeat the same for the decoding step). This only has to be done once for a set
of RMFE parameters and both simplifies and speeds up the performance of the
RMFE operations.

4Personal communication from Ignacio Cascudo; co-author of [CCXY18].

18

3.3.2 BN++RMFE: Multiplication Checking with RMFEs

Recall the checking protocol of Section 2.6. The input is (x`, y`, z`)C`=1 such that
x` · y` = z`, and ((a`)C`=1, c) such that c =

∑
a` · y`. All of these elements are

over F, and assume for the moment that the number of triples is a multiple of k,
so that we have C/k groups of elements to map to the extension field K.

Prover operations The main change when lifting with an RMFE is how
the prover prepares the inputs to the checking protocol. Once the inputs are
prepared, the protocol happens over the extension field K. We try to use capital
letter variables for elements in K and lower case variables for elements in F.

1. The prover executes the circuit normally over F, to obtain the multiplication
gate inputs/outputs (x`, y`, z`) for ` = 1, . . . , C. We group these into vectors
from Fk, denoted (xj ,yj , zj) for j = 1, . . . , C/k.

2. Then the prover computes Xj = φ(xj) and Yj = φ(yj), then Zj = Xj · Yj .
The parties have shares of xj and yj and can compute shares of Xj and
Yj on their own because φ is linear. In BN++ the prover provides ∆zj in
order to inject the result of the multiplication gate, but in BN++RMFE the
prover will inject shares of Zj . More precisely, the prover samples shares
of Zj from the random tapes, and adjusts the first party’s share with
∆Zj = Zj−

∑N
i=1 Z

(i)
j . From their shares of Zj the parties can obtain their

shares of zj as ψ(Z(i)
j), which they need for the computation of the circuit.

3. The prover then chooses Aj at random from K, sets Bj = Yj then computes
S =

∑
AjYj and injects the sharing of S, by computing ∆S ∈ K (as she

did for ∆Z).

Now all inputs for dot-product check are in K, and the protocol proceeds as
in Section 2.6 but the computation of A = εjXj +Aj and V happen over K:

1. The verifier provides a random challenge ε ∈ KC/k.
2. The parties locally set A

(i)
j = εj ·X(i)

j +A
(i)
j .

3. The parties open (A1, . . . ,AC/k) by broadcasting their shares.
4. Party i locally computes

V (i) = −S(i) +
C/k∑
j=1

(
AjY

(i)
j − εjZ(i)

j

)

5. The parties open V by broadcasting V (i) and output acc iff V = 0

Lemma 4. If the secret shared input (xi, yi, zi)Ci=1 contains an incorrect multi-
plication triple, or the shares of ((Ai, Yi)C/ki=1 , S) form an incorrect dot product,
then the parties output acc in the sub-protocol with probability at most 1/|K|.

Proof. Lemma 2 ensures that (Xj , Yj , Zj) are all valid multiplication triples in
K, and that (Aj , Yj , S) is a valid dot product in K with probability 1/|K|. We
must show that this implies (xi, yi, zi) are all valid multiplication triples in F.

19

If (X,Y, Z) is a valid multiplication triple in K, whereX = φ(x) and Y = φ(y)
then ψ(X · Y) = x ∗ y = z by the RMFE property of the maps (φ, ψ) required
by Definition 3. Thus given that (X,Y, Z) is a valid triple in K ensures that
(x,y, z) are valid in F with probability 1, so the result follows.

Note that it is important to compute (shares of) z with ψ as we do in the
protocol, since it is not guaranteed that that φ(x) · φ(y) = φ(z) even though
z = x ∗ y. This is one of the limitations of RMFEs.

Batching inputs to RMFE encoding When C/k does not divide evenly,
we encode dC/ke groups of elements from F where the last group is padded
with zeros. In the interactive MPC setting, it can be difficult to batch all C
multiplications arbitrarily, since only some triples may be ready at a given time.
For example consider a block cipher like AES or LowMC: the multiplication
gate inputs at round i depend on the multiplication gate outputs of round i− 1.
Fortunately in the MPCitH setting, the prover can first compute the entire circuit
to get all triples. Then the checking protocol is subsequently run on the entire
batch, giving full flexibility over how the RMFE encoding is done. In MPCitH we
could even potentially have a (C,m)q–RMFE, so that all multiplication triples
are encoded as a single batch into one very large field element.

Proof size For a circuit defined over F with C multiplication gates, using an
RMFE from Fk → K, the size of a BN++ proof is given by the formula:

3κ+ τ · (3κ+ κ · dlog2(N)e+ (2 dC/ke+ 1) log2(|K|)) .

We must communicate (∆Ze,j ,A (̄i)
e,j) for each of the C/k batched multiplication

gates, and ∆Se once per repetition.
The size formula for BN++RMFE is difficult to compare to BN++ as it depends

on the concrete choice of RMFE (for the parameters K and k). We can compare
the number of bits communicated by the checking protocol for each bit of
soundness to asymptotically evaluate the impact of using an RMFE on the
size (see Appendix C.1). Since the rate m/k is constant (as shown in [CCXY18,
Theorem 5]) we can argue that BN++RMFE is asymptotically better for nontrivial
RMFEs when compared to simple lifting or no lifting. However, in our experience
with concrete small circuits, experimentation with different parameter choices is
still helpful, as different RMFEs can lead to significant changes in size.

While we are explicit about the combination of RMFE and BN++ in this
section, one could also think about them as separate steps: use the RMFE to lift
a circuit over a small field to a circuit over a larger field, and use BN++ to prove
the validity of a circuit executed over a larger field K. This view will simplify
security analysis, as we will not need to treat BN++RMFE as a separate protocol.

Inverse checking with RMFEs It is also possible to check inversion gates
with BN++, which is required for the AES circuit (with the efficient representation
of S-boxes over F28 , as discussed in Section 3.4). The cost is increased by an
additional τ dC/ke elements of K. Since Helium gives much shorter proofs for
AES, we only describe inverse checking briefly in Appendix C.2.

20

3.4 Alternative Circuit Representations
While not strictly a type of lifting, for some circuits it is be possible to find an
equivalent representation over larger fields. We give two concrete examples. The
first, for the AES S-box is fairly well-known, it can be represented over F2 or
F28 . The second, for LowMC is similar but novel.

3.4.1 The AES S-Box

The best known binary circuit representation of the AES S-box optimized for
lowest AND count has 32 AND gates, given by [BP09]. Using this binary circuit
would mean that a prover would have to lift each of the 32 multiplication triples
over F2 to a larger field. However, the AES S-box can also be built using an
inversion over F28 , which can be implemented using 4 multiplications and 7
squarings (a linear operation in binary fields) in F28 . In fact, if the zero to zero
transition is forbidden, a trick originating in BBQ [dDOS19], its cost can be
reduced to a single multiplication in F28 . These alternate representations allow
us to start in a larger field (boosting soundness) and allow for more efficient
RMFEs constructions. They also reduce the number of multiplication triples
from 32 to 4 or even 1 (but over a larger field).

3.4.2 Alternative Representation of the LowMC S-box

The 3-bit S-box in LowMC is defined (over F2) as

S(a, b, c) = (a+ bc, a+ b+ ac, a+ b+ c+ ab) . (2)

We now show an alternate representation of the S-box that uses a single multi-
plication in F23 ∼= F2[X]/(X3 +X + 1) instead of 3 multiplications in F2.

Algorithm 1
LowMC S-box with a multiplication in F23 ∼= F2[X]/(X3 +X + 1)
Input: a, b, c
Output: S(a, b, c)
t1 ← aX2 + bX + c . interpret as element of F23

t2 ← (a+ b)X2 + aX + c . interpret as element of F23

t← t1 · t2 . multiplication in F23

dX2 + eX + f ← t . extract coefficients
return (d, d+ e, f) . final linear transformation

It can easily be verified that Equation (2) and Algorithm 1 are equivalent by
enumeration of the eight possible inputs. Furthermore, and importantly for its
use in an MPC protocol using linear secret sharing, all of the operations except
the multiplication are linear and therefore do not require any communication
between the parties.

The benefit of this representation is that we can use the checking protocol over
the field F23 rather than F2 which increases the soundness of the multiplication
check. In this sense we get a “free lift” to the larger field, when compared to
protocols like Banquet [BdK+21] and Limbo [dOT21] which use simple lifting
as described above.

Additionally, when we use an RMFE in BN++ and Helium to further increase
the field size (and soundness), the constructions available when the starting field

21

is F23 have significantly better rate, about 1.88, than when the starting field is
F2, where the best known rate is about 2.83 (to arrive at a similar sized K).

4 The Helium Proof System
In this section we describe the Helium proof system. The proof system is a
variant of Rainier, used in [DKR+21] (which itself is a simplified version of
Banquet [BdK+21]), with some of the lifting techniques of Section 3 applied.
To recap Rainier briefly, the prover injects the results of multiplications as
in BN++, however, the checking protocol uses polynomials, and works well for
checking inverses, namely si · ti = 1 for i ∈ [C], since the S-box in the AES
and Rain one-way functions are field inverses. The parties interpolate the points
(i, si) and (i, ti) to get polynomials S(X) and T (X) in F[X]. Then the prover
computes P = S · T and communicates shares of P to the parties. Note that
P (i) = S(i)T (i) = si · ti = 1 for i ∈ [C], so that the parties can use these
points (i, 1) with an additional C − 2 points from the prover to recover P by
interpolation. When we must check generic multiplication triples (si, ti, pi), the
parties use their shares of pi plus an C − 2 additional points from the prover to
interpolate P . As the prover is injecting the multiplication of ST , the final step
is to check that ST = P . This is done by checking P (R)− S(R)T (R) = 0 for a
randomly selected R ∈ F, an idea from traditional MPC, originating in [BFO12].

In Banquet and Rainier, given shares of polynomials (S, T, P) and a pub-
lic challenge R from the verifier, the parties can locally compute shares of
(S(R), T (R), P (R)), then broadcast to open them. To prevent the opening
step from leaking information about S and T , an additional random point
(sr, tr, pr) is included by the prover. Conversely, one could keep the shares of
(S(R), T (R), P (R)) secret, and use a checking protocol like in Section 2.1.5

The advantage of making the triple (S(R), T (R), P (R)) public is that the
checking step is very simple, and communication-efficient. On the other hand,
we must randomize S and T , and the random values must be from the field
where R is sampled from. When lifting to a large field, this means that P , and
the C points the prover must communicate are from the large field. By contrast,
if S and T are not randomized, then P may be communicated in the small field,
and the lifting can be delayed until just before the polynomials are evaluated
at R. However, this option requires makes the checking protocol nontrivial since
it must be done with shares. Another consideration is that to use M checks
requires M random values when the M triples are public, increasing the degree
of P , whereas when the triple remains shared this is not a concern.

We estimated signature sizes for both of the above options, and found that
the savings of sending the C points of P from the small field justify the more
complex checking protocol. Also, since the checking can be done in a very large
field, and the values depending on the circuit are communicated in the small
field, we found M = 1 to be preferable (i.e., checking a single triple in a field
of size O(2κ) was more efficient than checking M > 1 triples in a smaller field).
For the final check we use the checking protocol from BN++.

5This was also done in concurrent work [FJR22], together with simple lifting, M-times
checking and our dot-product optimization from Section 2.6.

22

Helium-AES Before we can use Helium with AES-128, we must make one
change: since C = 200 and degP = 398, we cannot represent P by points for
interpolation, as a list (i, P (i)) since i ∈ F28 limits us to 256 values (polynomials
of degree 255). Below we give some general approaches to working around this,
since it will often be the case that 2C > |F| when F is small. For AES we found
it most efficient to use two polynomials P1 and P2, each encoding half of the
triples. This doubles our multiplication checking costs, but keeps the O(C) part
of the prover’s communication in F28 .

Helium-LowMC For LowMC the base field F23 is too small to contain P (as
in AES). In this case, rather than using more than one polynomial, we use the
(2, 3)8–RMFE to replace our 172 triples in F23 with 86 triples in F29 . As in
Section 3.3, the parties compute φ(s) to get an element of the larger field F29 ,
then the prover injects shares of the product in F29 . At this point the parties
have shares of the triples in F29 , and the protocol proceeds, and we apply a
second lifting step, this time simple lifting, going from F29 to K = F2144 when
we compute the final triple (S(R), T (R), P (R)).

Helium with arbitrary circuits Generalizing to arbitrary circuits, we have
multiple options when using Helium. The main restriction is that the degree of
the polynomials needs to be less than the field size, so we have enough points
for the interpolation step, where the critical polynomial is P , of degree 2C − 2.
We now present three options to handle this:

1. Using a simple lift from F to an extension field F′ where deg(P) < |F′|.

2. Partitioning the multiplication triples into batches so that for each batch
and its corresponding polynomial Pi, deg(Pi) < |F|. This is a generalization
of the Helium + AES case. (Here F′ = F.)

3. Using an RMFE to lift batches of multiplication triples to F′, where
deg(P) < |F′|. In contrast to the simple lifting protocol, this also reduces
the number of multiplications in F′. This is a generalization of the Helium
+ LowMC case.

We note that this step is separate from the checking protocols, and like in the
above examples, the evaluation of the polynomial and the multiplication check
can happen in an even larger extension field to boost the soundness of these
checks.

As a concrete example, we look to circuits for AES with higher security levels.
Taking the options presented in BBQ [dDOS19], we execute two instances of AES-
192 (AES-256) with a shared key-schedule, resulting in 416 (500) multiplications.
For both security levels, splitting the multiplications in 4 batches of 104 (125)
results in deg(Pi) < |F28 |, again allowing us to keep the O(C) part of the prover’s
communication in F28 .

Signature Size The signature size is dominated by the C multiplication
outputs ∆z in F and the C − 1 values in F′ to communicate P ∈ F′[X]. The
integer np denotes the number of polynomials used, for LowMC np = 1 and for
AES-128 np = 2. The signature size can be estimated with the formula:

6κ+ τ (dlog2(N)eκ+ 3κ+ C|F|+ (C − np)|F′|+ (np + 1)|K|) .

23

Soundness and parameters We need to choose the number of parallel rep-
etitions τ for a given number of parties N , so that the noninteractive Helium
protocol provides κ bits of soundness. As a seven-round protocol, we can use the
general formula of [BdK+21, §6.1] to bound the cost of an attack on τ repetitions
where the attacker’s strategy is to guess the first challenge in τ1 repetitions, the
second in τ2 and the third in τ3 repetitions (such that τ = τ1 + τ2 + τ3). Then
for a given N we find τ such that the cost of an attack is at least 2κ, regardless
of the strategy. The probability p1, that an adversary guesses the first chal-
lenge correctly is (2L− 2)/|K| (by the univariate Schwartz-Zippel lemma) where
L = dC/npe. For the second challenge, p2 = 1/|K| and the third is p3 = 1/N .
These probabilities, together with the formula in [BdK+21, §6.1] allows us to
compute the cost of an attack given (N, τ, τ1, τ2, τ3). Using a script we exhaus-
tively check all strategies to find τ . Intuitively, since we choose |K| > 2κ, the
limiting factor for the soundness is 1/N , so we end up with (N, τ) such that
Nτ ≥ 2κ.

4.1 Helium Protocol Description
In Figures 4 and 5 we describe the signing algorithm of Helium, and Figure 6
describes verification. The hash functions, and helper functions to expand random
tapes and seeds are as in Section 2.7. We describe Helium for circuits with addition
and multiplication gates in F, but explain how inversions in F can be checked
in instead, using nearly the same protocol. This is useful as the AES circuit
uses additions and inversions, while the LowMC circuit uses additions and
multiplications. For inversion gates (s, t, 1), the prover injects shares of t, and
parties use these shares to interpolate the polynomial T . When interpolating the
polynomial P , the public value 1 is used in place of shares of the multiplication
output z, for P (i) for i ∈ [C]. Thus the communication costs and checking steps
are the same. We remark that for circuits using inversion gates, we assume that
key-generation takes care that no zero inputs to inverse gates exist, as proposed
by [dDOS19].

5 Using BN++ and Helium in Signature Schemes
In this section we demonstrate the performance of using BN++ and Helium to
construct signature schemes with different OWFs. All benchmarks given in the
paper were computed on an Intel Xeon W-2133 @ 3.6 GHz. We prove that BN++

is a secure signature in the ROM, assuming the OWF used for key generation is
secure in Section 5.5. To keep the scope of this section manageable we restrict
our attention to the 128-bit security level (NIST level L1) and focus on three
particular one-way function designs used in previous works: AES-128, LowMC
[ARS+15] and Rain [DKR+21].

Other OWFs. In [DGH+21], Dinur et al. give a OWF construction based
on mixed moduli circuits. Simplified, their construction first performs a matrix
multiplication modulo 2, interprets the output as elements of Z3 and performs a
second matrix multiplication modulo 3. This mixture of different fields provides
resistance against cryptanalytic attacks while keeping the resulting construction
simple and efficient. However, it is not obvious how to support an efficient

24

Sign(sk,msg): Phase 1: Committing to the seeds, the execution views
and interpolated polynomials of the parties.
1: Sample a random salt: salt $← {0, 1}2κ.
2: for each parallel repetition e do
3: Sample a root seed: seede

$← {0, 1}κ.
4: Derive seed(1)

e , . . . , seed(N)
e as leaves of a binary tree from seede.

5: for each party i do
6: Commit to seed: com(i)

e ← Commit(salt, e, i, seed(i)
e).

7: Expand random tape: tape(i)
e ← ExpandTape(salt, e, i, seed(i)

e)
8: Sample witness share: sk(i)

e ← Sample(tape(i)
e).

9: Compute witness offset: ∆ske ← sk−
∑
i sk(i)

e .
10: Adjust first share: sk(1)

e ← sk(1)
e + ∆ske.

11: for each gate g in C with index ` do
12: if g is an addition gate with inputs (x, y) then
13: Party i locally computes the output share z(i) = x(i) + y(i).
14: if g is a multiplication gate with inputs (xe,`, ye,`) then
15: Compute output shares z(i)

e,` = Sample(tape(i)
e).

16: Compute offset ∆ze,` = xe,` · ye,` −
∑N
i=1 z

(i)
e,`.

17: Adjust first share z(1)
e,` ← z

(1)
e,` + ∆ze,`.

18: Let ct(i)
e denote each party’s share of the output.

19: for each party i do
20: Define S(i)

e (`) = x
(i)
e,` and T

(i)
e (`) = y

(i)
e,` for ` ∈ [0, C − 1]

21: Interpolate shares of polynomials S(i)
e (·) and T

(i)
e (·) of degree

C − 1 using the C points.
22: Compute the product polynomial: Pe ←

∑
S

(i)
e ·

∑
T

(i)
e .

23: for each party i do

24: For k ∈ [0, C − 1]: P (i)
e (k) =

{
1 if i = 1
0 if i 6= 1

25: For k ∈ [C, 2C − 2], sample P (i)
e (k)← Sample(tape(i)

e).
26: for k ∈ [C, 2C − 2] do
27: Compute offset: ∆Pe(k) = Pe(k)−

∑
i P

(i)
e (k).

28: Adjust first share: P (1)
e (k)← P

(1)
e (k) + ∆Pe(k).

29: For each party i, interpolate P (i)
e using the defined 2C − 2 points.

30: Set σ1 ← (salt, ((com(i)
e)i∈[N], (ct(i)

e)i∈[N],∆ske,
((∆ze,`)`∈[0,C−1],∆Pe(k))k∈[C,2C−2])e∈[τ]).

Figure 4: Helium signature scheme, Phase 1. Commitment to executions of Helium
and the interpolated polynomials. We use e to index the τ parallel repetitions, i
to index the N parties, and ` to index the C multiplications.

25

Phase 2: Challenging the checking polynomials.
1: Compute challenge hash: h1 ← H1(msg, pk, σ1).
2: Expand h1: (Re)e∈[τ] ← Expand(h1) with Re ∈ K.
Phase 3: Commit to ∆c-value for multiplication check.
1: for each repetition e do
2: for each party i do
3: Sample shares (a(i)

e , c
(i)
e)← Sample(tape(i)

e).
4: Compute ye = Te(Re) and ae =

∑N
i=1 a

(i)
e

5: Compute ∆ce = ae · ye −
∑N
i=1 c

(i)
e

6: Adjust first share: c(1)
e = c

(1)
e + ∆ce.

7: Set σ2 ← (∆ce)e∈[τ].
Phase 4: Challenging the views of the checking protocol.
1: Compute challenge hash: h2 ← H2(salt, h1, σ2).
2: Expand hash: (εe)e∈[τ] ← Expand(h2) where εe ∈ K.
Phase 5: Committing to the views of the checking protocol.
1: Compute (xe, ye, ze) = (Se(Re), Te(Re), Pe(Re)); note that shares of this

triple can be computed with the shares of (S, T, P) from Phase 1.
2: for each repetition e, and party i do
3: Compute α(i)

e = εe · x(i)
e + a

(i)
e , and αe =

∑
α

(i)
e

4: Compute v(i)
e = αe · y(i)

e − εe · z(i) − c(i)

5: Set σ3 ← ((α(i)
e , v

(i)
e)e∈[τ],i∈[N]).

Phase 6: Challenging the views of the checking protocol.
1: Compute challenge hash: h3 ← H3(salt, h2, σ3).
2: Expand hash: (̄ie)e∈[τ] ← Expand(h3) where īe ∈ [N].
Phase 7: Opening the views of the checking protocol.
1: for each repetition e do
2: seedse ← {log2(N) nodes to compute seed(i)

e for i ∈ [N] \ {̄ie}}.
3: Output σ ← (salt, h1, h3, (seedse, com(̄ie)

e ,∆ske,
(∆ze,`)`∈[0,C−1], (∆Pe(k))k∈[C,2C−2], αe,∆ce)e∈[τ]).

Figure 5: Helium signature Scheme, Phases 2-7. Computation of the checking
protocol, challenging and opening of the views of the checking protocol.

26

Verify(pk,msg, σ) :
1: Parse σ ← (salt, h1, h3, (seedse, com(̄ie)

e ,∆ske, (∆ze,`)`∈[C],
(∆Pe(k))k∈[C,2C−2], αe,∆ce)e∈[τ]).

2: Set h2 ← H2
(
salt, h1, (∆ce)e∈[τ]

)
.

3: Expand hashes as (Re)e∈[τ] ← Expand(h1), (εe)e∈[τ] ← Expand(h2) and
(̄ie)e∈[τ] ← Expand(h3).

4: for each repetition e do
5: Use seedse to recompute seed(i)

e for i ∈ [N] \ īe.
6: for each party i ∈ [N] \ īe do
7: Recompute com(i)

e ← Commit(salt, e, i, seed(i)
e), tape(i)

e ←
ExpandTape(salt, e, i, seed(i)

e) and sk(i)
e ← Sample(tape(i)

e).
8: If i ?= 1, set sk(i)

e ← sk(i)
e + ∆ske.

9: for each gate g ∈ C with index ` do
10: if g is an addition gate with inputs (x, y) then
11: Party i locally computes the output share z(i) = x(i) + y(i).
12: if g is a mult. gate with inputs (xe,`, ye,`) then
13: Compute output shares z(i)

e,` = Sample(tape(i)
e).

14: If i ?= 1, set z(i)
e,` ← z

(i)
e,` + ∆ze,`.

15: Let ct(i)
e be party i’s share of the circuit output.

16: Do as in Phase 1, Lines 19–21 to interpolate S(i)
e , T

(i)
e .

17: for ` from 0 to C − 1 do
18: Set P (i)

e (`) = z
(i)
e,`.

19: for k from C to 2C − 2 do
20: Sample share: P (i)

e (k)← Sample(tape(i)
e).

21: If i ?= 1, set P (i)
e (k)← P

(i)
e (k) + ∆Pe(k).

22: Interpolate P (i)
e from the shares of the 2C − 2 points.

23: Compute (x(i)
e , y

(i)
e , z

(i)
e) = (S(i)

e (Re), T (i)
e (Re), P (i)

e (Re)).
24: Compute c(i)e = Sample(tape(i)

e)
25: If i ?= 1, set c(i)e ← c

(i)
e + ∆ce.

26: Compute α(i)
e = εe · x(i)

e + a
(i)
e and v(i)

e = αe · y(i)
e − εe · z(i)

e − c(i)e .
27: Compute missing shares ct(̄ie)

e = ct −
∑
i 6=īe ct(i)

e , α(̄ie)
e ← αe −∑

i6=īe α
(i)
e , and v(̄ie)

e ← 0−
∑
i 6=īe v

(i)
e .

28: Set h′1 ← H1

(
msg, pk, salt, ((com(i)

e)i∈[N], (ct(i)
e)i∈[N],

∆ske, (∆ze,`)`∈[C], (∆Pe(k))k∈[C,2C−2])e∈[τ]

)
.

29: Set h′3 ← H3

(
salt, h′2, (α

(i)
e , v

(i)
e)e∈[τ],i∈[N]

)
.

30: Output accept iff h′1
?= h1 and h′3

?= h3.

Figure 6: Helium verification algorithm.

27

conversion function from Z2 to Z3 in our proof systems. In [DGH+21], the
authors design a custom MPC protocol based on KKW [KKW18] to use this
OWF in a signature construction. We aim to investigate the suitability of mixed
moduli constructions for our proof system in future work.

The LegRoast signature scheme [Bd20] is using a PRF based on the Legendre
symbol or its generalized power residue form. It uses the BN [BN20] proof system
internally, and proves the correctness of a linear combination of the multiplication
triples to reduce the proof size. We can still apply our optimizations in Section 2.5
to save one field item per repetition and reduce their sizes further, although the
gains are minor, at about 0.5 KB.

Some AES-based OWFs are introduced in [DKR+21] with the goal of reducing
signature sizes. The EM one-way functions reduces the number of S-boxes required
by using the block cipher in single-key Even-Mansour (EM) mode, which does
not need the key schedule (this can be applied to AES and LowMC, denoted
EM-AES and EM-LowMC). LSAES is a modified version of AES, which replaces
the 8-bit S-boxes with 32-bit S-boxes, also defined as field inversion, but in
F232 instead of F28 . From the perspective of BN++, this is like lifting four 8-bit
multiplications to one 32-bit multiplication, with rate 1 – better than the rate
1.8 of the (5, 9)256–RMFE we used for AES. We will give some size estimates for
Helium with these OWFs.

The EM mode can also be used with LowMC, reducing the cost of computing
the circuit by saving the (relatively expensive) key schedule. For Picnic3 EM-
LowMC is not significantly faster due to the optimizations of [KZ20b], which
make circuit evaluation costs independent of N . The circuit evaluation costs in
BN++ and Helium do depend on N , and based on our benchmarking we estimate
that using EM mode would reduce signing and verification times for BN++ given in
Table 5 by about 7% in our current implementation when N = 256, and by about
28% for the variant of LowMC using partial S-box layers. With EM-LowMC the
size optimization of Appendix B.1.2 may also be applied, reducing signature size
slightly (e.g, by 574 bytes when N = 256).

5.1 BN++LowMC
This section describes how the BN++ proof system can be used to instantiate
a signature scheme using the LowMC block cipher as a one-way function. We
use the alternate representation of the LowMC S-box that is better suited to
BN++, and investigate the choice of RMFE. A description of LowMC is given
in Appendix D. At a high level, the circuit is divided into rounds, and each
round has a linear layer and a nonlinear layer that are applied to the state. The
nonlinear layer can be either partial or full, depending on how much of the state
is transformed by S-boxes. To simplify presentation, we focus on the case of a
full nonlinear layer, and use the same parameters as in Picnic [CDG+20b] for
our implementation and size estimates.

5.1.1 Concrete Parameters and Signature Size

We estimated signature sizes with multiple RMFE constructions, and show some
of the options in Table 4 for the L1 security level with the full S-box layer LowMC
parameters. The construction with the lowest rate is [CCXY18, Lemma 4], but
the size of K is somewhat limited. The construction gives us a (k, 2k−1)q–RMFE,

28

RMFE Rate F K M dC/ke N τ Size
None 1 F2 F2 8 516 256 35 26 609
(3, 5)2 1.6 F2 F25 3 172 246 25 15 258
(30, 95)2 3.16 F2 F295 1 18 256 17 10 534
(30, 95)2 3.16 F2 F295 1 18 1535 13 8 697
(18, 51)2 2.83 F2 F251 1 29 246 18 10 009
(18, 51)2 2.83 F2 F251 1 29 1535 14 8 473
(3, 5)8 1.6 F23 F215 1 58 256 25 9 981
(8, 15)8 1.88 F23 F245 1 22 254 19 8 250
(9, 17)8 1.88 F23 F251 1 20 57 24 9 849
(9, 17)8 1.88 F23 F251 1 20 256 18 7 987
(9, 17)8 1.88 F23 F251 1 20 1626 14 6 906
(9, 17)8 1.88 F23 F251 1 20 216 10 5 760

Table 4: Parameter options for BN++LowMC, using LowMC with a full S-box
layer (as used in Picnic3) which require 516 AND gates, or 172 GF(23) multiplies.
Sizes in bytes.

with 1 ≤ k ≤ q + 1. So when q = 2 (binary LowMC) we get the (3, 5)2–RMFE
mentioned above, and K = F25 . The rate is very small but so is K, forcing us
to use a relatively large number of parallel repetitions and the signature size is
about 15 KB (when N = 256). This RMFE saves us about 10 KB against the
baseline of M = 8 checks (equivalent to simple lifting to K = F28).

We can then use the concatenation construction of [CCXY18, Lemma 5] to
get larger K, but at the expense of higher rate. With the (30, 95)2–RMFE from
[CCXY18, Remark 7] we get about 10 KB signatures with rate 3.16 and since
K is quite large, we can increase N to 1535 to decrease signatures to 8.7 KB.
Another option from the concatenation construction is (18, 51)2–RMFE with
rate 2.8 but smaller K. This ends up being slightly better than the rate 3.16
option, and K fits in a 64-bit word.

Next we have the RMFE options with the GF(23) representation of the S-box.
The [CCXY18, Lemma 4] construction can achieve larger K when F is larger
and going from 2 to 8 lets us increase our largest |K| from 5 bits to 51 bits
while keeping the rate low at 1.88 (as we do not need to use the concatenation
construction). The second half of Table 4 shows that larger fields are better,
and we show a range of options with the largest possible field given by the
(9, 17)8–RMFE. The signature size is just under 8 KB with N = 256, this is
about 4.5 KB shorter than Picnic3. As the number of parties increases the
signature size decreases, to 5.7 KB when N = 216 and 5 KB at N = 232. Such
large number of parties are currently not practical due to the high CPU costs of
signing and verification (e.g., 3s when N = 216 in our implementation), and we
mention them only to show the limits of the construction.

We also considered using the concatenation construction with q = 23 in order
to have K be larger than 51 bits, but the increased rate (2.7 or greater) offset
the increased soundness of larger K and gave strictly larger signatures.

Finally, we note that with an additional circuit-specific optimization, see
Appendix B.1, the sizes in the first half of Table 4 can be reduced slightly, but
the parameters in the second half of the table still give shorter signatures.

29

Implementation Aspects During the implementation we are working with
field elements whose sizes are not a multiple of a full byte (e.g., 51 bits). To
optimize the concrete signature sizes, we densely pack these field elements
together using shifts and bit operations during serialization. However, this might
still lead to the blob of all packed elements not being a byte multiple, in which
case we pad it with zero bits. However, during the deserialization we have to
take care to verify that these bits are indeed zero to prevent the signature from
being malleable which is an undesirable property. In Section 3.3, we discuss
representing the RMFE en- and decoding as a matrix multiplication in F2. Since
the decoding part is applied right after the S-box layer in LowMC, which is
followed by the linear layer (a multiplication with a dense matrix in F2), we
can combine the two matrix multiplications into a single one once the RMFE
parameters are fixed. However, our implementation does not use this strategy at
this point.

5.2 Helium+LowMC
To use LowMC with Helium, we again first use the alternative S-box representation
of Section 3.4.2. However, for Helium, we need to work with polynomials of degrees
of up to 2C − 2. To achieve this, we use the strategy outlined in Section 4, using
RMFEs to first lift to F29 and then perform the final check in F2144 .

In Table 5, we present benchmarks of our implementation of Helium+LowMC
and compare them to the BN++LowMC variant and existing Picnic signatures.
We can observe that the additional interpolation required in Helium as well
as the usage of a smaller RMFE is contributing to larger computational cost
compared to BN++. However, increasing the number of parties has a larger impact
on signature size in Helium, since we require fewer repetitions due to the smaller
soundness error and more of the field elements in the signature are from smaller
fields compared to BN++.

In particular, when N = 256, both schemes have nearly identical performance,
however the signature of Helium is ≈ 20% smaller than BN++. When compared to
existing Picnic3 signatures, both variants can provide much smaller signatures but
with longer signing and verification times. Our Helium variant can have signatures
that are 1.9x smaller with a ≈ 4.4 increase in signing times. We remark that our
implementations are not as well optimized as the Picnic3 implementation, but
we can still instantiate parameter sets that are strictly better than Picnic3 in
both size and signing speed.

5.3 Helium+AES
When using AES-128 with Helium, we split the 200 S-boxes into two polynomials,
as described in Section 4, and perform the two checks in F2144 . In contrast
to combining BN++ and AES, our Helium+AES variant leads to much smaller
signatures, 30% smaller than the previously best AES-based signatures of Banquet
and Limbo. We implemented Helium+AES and give benchmarks in Table 6. We
see that our Helium+AES variant offers both smaller and faster signatures than
both Banquet and Limbo especially when the number of parties N increases. At
N = 256, Helium+AES results in the first AES-based signatures below 10KB,
being 2.4x (1.7x) faster and 25% (32%) smaller than Banquet (Limbo) instances
with the same number of parties, respectively.

30

Scheme N τ Sign Verify Size
16 34 2.11 2.05 12 825
57 24 5.03 4.96 9 849

BN++LowMC 107 21 8.41 8.46 8 966
256 18 17.40 17.91 7 987
1626 14 88.55 91.56 6 906
11 36 5.30 5.03 12 386
57 22 7.15 7.08 8 311

Helium+LowMC 107 19 9.93 10.32 7 495
256 16 17.38 17.14 6 582
1625 12 76.94 76.97 5 537

Picnic1-full 0.86 0.69 30 821
Picnic3 4.01 2.98 12 595

Table 5: Benchmarks for BN++ and Helium with LowMC, with various choices of
N and current versions of Picnic for reference. Times are in ms and sizes are in
bytes. All Picnic instances use the LowMC parameters with a full S-box layer.
BN++ instances use the (9, 17)8–RMFE from Table 4, while Helium instances use
the (2, 3)8–RMFE.

We briefly mention Helium coupled with the other AES-based OWFs (EM-
AES and (EM-)LSAES) when N = 256. For EM-AES, LSAES, and EM-LSAES
signature sizes are 8 608, 9 632 and 8 352 bytes respectively. The options using
LSAES provide only a small improvement (EM-LSAES) or none at all (LSAES)
when compared to EM-AES, and even AES. An interesting combination is EM-
AES with N = 107 since it matches the size of AES with N = 256 from Table 6
but would be almost twice as fast (since N is halved).

Implementation Aspects The cost of polynomial interpolation is significant
for a standard implementation of Helium. However, since the x-values of the
interpolations are fixed once a concrete circuit is chosen, we can precompute the
Lagrange interpolation polynomials Li(x) for these given x-values. Furthermore,
we need to evaluate the polynomials at a given point R for each party. Instead
of interpolating the shares of the polynomials for each party, we can evaluate
the Lagrange polynomials at R once, and then just evaluate the expression
P (R) =

∑
i Li(R) ·yi, reducing the per-party work required for interpolation and

evaluation to a single dot-product of the evaluated Lagrange polynomials and
the parties shares of the y-values. We apply this optimization for both the AES
and LowMC-based Helium implementations. We also investigated the choice of
using F2128 as used by AES-GCM as the big field where we perform our checks.
However, even though the field arithmetic is faster in F2128 compared to F2144 ,
the lower soundness leads to a larger number of parallel repetitions, leading to
larger signatures at the cost of only slightly improved runtimes. In our tests,
we observed that instances using F2144 , but using a lower number of parties N ,
produced both faster and smaller signatures than using F2128 and a larger N .

31

Scheme N τ Sign Verify Size
17 31 6.36 5.78 17 580

Helium+AES 57 22 7.54 7.17 12 856
107 19 9.87 9.60 11 420
256 16 16.53 16.47 9 888
16 41 5.98 4.50 19 776

Banquet [BdK+21] 57 31 13.08 11.35 15 968
107 24 19.38 17.43 14 784
255 21 40.6 37.96 13 284
16 40 2.70 2.00 21 520

Limbo [dOT21] 57 29 7.30 6.70 16 574
107 28 11.10 10.00 15 216
255 24 29.00 27.00 14 512

Table 6: Benchmarks for Helium+AES with various choices of N and other AES-
based signatures for reference. Times are in ms and sizes are in bytes. Limbo
numbers are taken directly from [dOT21], since no public implementation is
available.

5.4 BN++Rain
We can improve the Rainier [DKR+21] signature scheme by replacing the proof
system with BN++. The OWF of Rainier, called Rain, uses a blockcipher-based
design, where the S-boxes are inversion in the field F2κ , for κ = 128, 192 and
256. Therefore, when combining it with BN++, no lifting is necessary and we
can directly work in F2κ . We use Rain4, the recommended 4-round instance of
Rain from [DKR+21], described in Appendix D. Based on the publicly available
implementation in [DKR+21] we have implemented our BN++Rain instance
and give a performance comparison to Rainier in Table 7. We see that our
BN++Rain instance produces both smaller and faster signatures than Rainier
for the same proof system parameters. Additionally, we present some circuit-
specific optimizations that allow us to reduce the proof size for the Rain block
cipher further in Appendix B.2 and Appendix B.1.2. Combining all of these
optimizations, we can reduce the signature sizes of Rainier by about 15%, while
also reducing signing and verification times by about the same amount.

We remark that using Helium for Rain is also possible, however, the opti-
mization in Appendix B.1.2 is only applicable to BN++, which also does not
require polynomial interpolation, making BN++ preferable in terms of both size
and performance.

5.5 Signature Scheme Security
In Appendix A we prove unforgeability of BN++ signatures. Since the general
structure of BN++ is similar to previous MPCitH-based signatures (such as
Picnic [CDG+20a], Banquet [BdK+21] and Rainier [DKR+21]) the analysis is
similar, and identical in parts. The main difference is the way that BN++ checks
multiplication triples, which is largely covered by Lemma 2 and the simulation-
based argument for (N − 1)-privacy of the checking protocol in Section 2.6.

32

Instance N τ Sign Verify Size
Rainier4 57 23 1.94 1.87 7 456
Rainier4 107 20 2.85 2.73 6 816
Rainier4 256 17 5.68 5.67 6 080
Rainier4 1625 13 28.07 28.07 5 296
BN++Rain4 57 23 1.49 1.43 6 720
BN++Rain4 107 20 2.50 2.38 6 176
BN++Rain4 256 17 5.15 4.89 5 536
BN++Rain4 1615 13 25.24 24.30 4 880
BN++Rain4 + §B.2, B.1.2 57 23 1.59 1.49 5 984
BN++Rain4 + §B.2, B.1.2 107 20 2.52 2.36 5 536
BN++Rain4 + §B.2, B.1.2 256 17 4.79 4.53 4 992
BN++Rain4 + §B.2, B.1.2 1615 13 25.26 24.36 4 464

Table 7: Comparison of Rainier4 [DKR+21] and BN++Rain at the 128-bit security
level. Times in ms, sizes in bytes.

Security reduces to the difficulty of inverting the OWF used for key generation.
The reduction is given a OWF output as input. Signatures can be simulated
without the corresponding private key, in the standard way (for schemes based
on the Fiat-Shamir transform). The reduction first chooses a random challenge,
then programs the random oracle so that signature verification passes on the
simulated signature. Then, once a valid signature is output by the adversary,
by the soundness of the proof protocol, the hash queries for one of the parallel
repetitions must have sufficient information to extract the secret key. In particular,
since the per-party seeds are committed to using a hash function, the reduction
obtains the seeds from the list of RO queries made by the adversary. From the
seeds it is straightforward to compute the key shares of all N parties and recover
the key. We give the full EUF-CMA security proof for BN++ in Appendix A.

As the structure of Helium is inherited from Banquet, it also admits a similar
security analysis, with the main differences being: Helium uses a simplified
polynomial encoding of triples, and the checking protocol from BN++. As this
analysis is very repetitive of BN++, we omit it.

As for the QROM, there are generic results by Don et al. [DFM20] for multi-
round Fiat-Shamir proofs that might apply directly (or be adapted) to BN++

and Helium. Since both are commit-and-open proofs, the QROM analogue of the
strategy just described for the ROM (reading the secret key shares from the RO
query transcript), recently developed in [DFMS21, §5] for Σ-protocols, seems like
the most direct approach to a QROM analysis of BN++ and Helium (assuming
[DFMS21] can be generalized from three to five and seven round protocols).

5.6 Comparison to Other Post-Quantum Signature Schemes
Table 8 gives benchmarks for the PQ signature schemes that are candidates
in the third round of the NIST PQC process (the first section of the table;
implementations from SUPERCOP[eBA22] version 20220213, except for Pic-
nic [DGK+22] and SPHINCS+ [FNR+22].) along with three existing AES and
Rain based signatures from the literature (middle section) and our new schemes

33

(in the last section). All schemes are targeting the NIST L1 security level (128
bits of classical security6). The schemes making structured hardness assumptions
(Dilithium, Falcon, Rainbow and GeMSS) have a large performance advantage in
in running time, when compared to our new schemes, though the new schemes
have much shorter keys and rely on more conservative assumptions. SPHINCS+
is the other candidate besides Picnic (which we compared to throughout §5)
making limited assumptions, and comparison here generally favors Helium, except
for verify times, where SPHINCS+is always significantly faster. For example,
signatures with Helium+LowMC can be 1.2x shorter, and 6x faster to create
(comparing to the “small” SPHINCS+ parameters). Alternatively, Helium+AES
signatures are 1.2x larger, with similarly fast signing.

We can also compare performance to SPHINCS+ when signature length is
held constant. When compared to the small variant, Helium+LowMC (N =
57, τ = 22) is 16x faster to sign. When compared to the fast variant, (i)
BN++LowMC (with N = 8, τ = 45) is 4.6x faster to sign, and (ii) Helium+AES
(with N = 19, τ = 30) has equal signing speed.

Scheme |pk| |sig| Sign Verify
Picnic1-L1-full [ZCD+20] 32 30 821 0.86 0.69
Picnic3-L1 [ZCD+20] 32 12 468 4.01 2.98
sphincss128sha256simple [HBD+20] 32 7 856 111.57 0.19
sphincsf128sha256simple [HBD+20] 32 17 088 6.32 0.50
Dilithium2 [LDK+20] 1 312 2 420 0.06 0.03
Falcon-512 [PFH+20] 897 666 0.12 0.03
Rainbow IIIa-Classic [DCP+20] 882 080 164 0.11 0.07
GeMSS128v2 [CFM+20] 352 188 33 242.41 0.08
Banquet-AES-128 [BdK+21] 32 13 284 40.6 37.96
Limbo-Sign AES-128 [dOT21] 32 14 512 29.00 27.00
Rainier4 [DKR+21] 32 6 080 5.68 5.67
Helium+AES 32 11 420 9.87 9.60
Helium+AES 32 9 888 16.53 16.47
Helium+LowMC 32 7 495 9.93 10.32
Helium+LowMC 32 6 582 17.38 17.14
BN++LowMC 32 11 417 2.72 2.66
BN++Rain4 32 5 536 2.52 2.36
BN++Rain4 32 4 992 4.79 4.53

Table 8: Comparison of public-key and signature sizes at the 128-bit security
level for the third-round candidates of the NIST PQC standardization project
and the designs explored in this work. Size in bytes, time in ms. Limbo numbers
are taken directly from [dOT21], as no public implementation is available.

6We used the L3 parameters for Rainbow as they appear to provide L1 security [Beu22].

34

6 Conclusion
In this work, we presented various techniques to improve the concrete efficiency
of MPCitH proof systems where the soundness of the protocol is dependent on
the field size. By carefully applying lifting techniques like RMFEs at optimal
points in protocols, we produce the shortest proofs (and therefore, signatures)
for common choices of one-way functions, showing that proof systems originally
intended for use with circuits over larger fields can also be competitive for small
fields like F2 and F28 . Our methods allow for more flexibility, adding the choice
of RMFE (or overall lifting strategy), as another variable in the parameter
selection. Future improvements in the design and implementation of RMFEs can
be directly applied using our methods.

Now that the soundness error deriving from the field size is much reduced,
the number of parties N becomes a more significant bottleneck for performance.
As we’ve shown, the signature size can be reduced even further by increasing
N , motivating optimizations (either at the implementation or protocol level)
that allow efficiently scaling to more parties. A significant part of the per-party
costs are calls to SHAKE for hashing or generating random tapes, especially for
BN++Rain (≈ 65%), and less so for BN++ and Helium with LowMC and AES (≈ 20–
30%). The other per-party costs are much higher in BN++ and Helium: the linear
layer in LowMC is particularly expensive, and the polynomial interpolations in
Helium is another large part of the cost.

While our optimizations improve the concrete efficiency of proofs and signa-
tures, our multiplication checks still incur a per-gate-per-repetition communica-
tion cost, i.e., O(τC). It is an open question if some information can be shared
between repetitions to reduce the cost to O(τ + C) instead.

An interesting direction for future work is to develop a general theory about
the types of circuits that admit alternate representations over larger fields (as
discussed for AES and LowMC in Section 3.4), and also how to find these
representations in an automated way. An example question here is whether there
exists a representation of two LowMC S-boxes over F26 that could be used to
reduce signature size further.

Acknowledgments We thank Jonathan Katz for helpful comments on an
earlier draft of this work, Christian Rechberger for helpful discussions, and
Ignacio Cascudo for answering our questions about RMFEs.

References
[ACE+21] Mark Abspoel, Ronald Cramer, Daniel Escudero, Ivan Damgård, and

Chaoping Xing. Improved single-round secure multiplication using
regenerating codes. Cryptology ePrint Archive, Report 2021/253,
2021. https://eprint.iacr.org/2021/253.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan
Venkitasubramaniam. Ligero: Lightweight sublinear arguments
without a trusted setup. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 2087–2104. ACM Press, October / November 2017.

35

https://eprint.iacr.org/2021/253

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of LNCS, pages 430–454. Springer, Heidelberg,
April 2015.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Trans-
parent succinct arguments for R1CS. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 103–128. Springer, Heidelberg, May 2019.

[Bd20] Ward Beullens and Cyprien de Saint Guilhem. LegRoast: Efficient
post-quantum signatures from the Legendre PRF. In Jintai Ding
and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th
International Conference, PQCrypto 2020, pages 130–150. Springer,
Heidelberg, 2020.

[BdK+21] Carsten Baum, Cyprien de Saint Guilhem, Daniel Kales, Emmanuela
Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and fast
signatures from AES. In Juan Garay, editor, PKC 2021, Part I,
volume 12710 of LNCS, pages 266–297. Springer, Heidelberg, May
2021.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit random-
ization. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of
LNCS, pages 420–432. Springer, Heidelberg, August 1992.

[Beu22] Ward Beullens. Breaking rainbow takes a weekend on a laptop.
Cryptology ePrint Archive, Report 2022/214, 2022. https://ia.
cr/2022/214.

[BFH+20] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakr-
ishnan Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang.
Ligero++: A new optimized sublinear IOP. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020,
pages 2025–2038. ACM Press, November 2020.

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear
unconditionally-secure multiparty computation with a dishonest
minority. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 663–680. Springer,
Heidelberg, August 2012.

[BMN18] Alexander R. Block, Hemanta K. Maji, and Hai H. Nguyen. Secure
computation with constant communication overhead using multi-
plication embeddings. In Debrup Chakraborty and Tetsu Iwata,
editors, INDOCRYPT 2018, volume 11356 of LNCS, pages 375–398.
Springer, Heidelberg, December 2018.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge
arguments for arithmetic circuits and their application to lattice-
based cryptography. In Aggelos Kiayias, Markulf Kohlweiss, Petros

36

https://ia.cr/2022/214
https://ia.cr/2022/214

Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume
12110 of LNCS, pages 495–526. Springer, Heidelberg, May 2020.

[BNO19] Aner Ben-Efraim, Michael Nielsen, and Eran Omri. Turbospeedz:
Double your online SPDZ! Improving SPDZ using function depen-
dent preprocessing. In Robert H. Deng, Valérie Gauthier-Umaña,
Martín Ochoa, and Moti Yung, editors, ACNS 19, volume 11464 of
LNCS, pages 530–549. Springer, Heidelberg, June 2019.

[BP09] Joan Boyar and Rene Peralta. New logic minimization techniques
with applications to cryptology. Cryptology ePrint Archive, Report
2009/191, 2009. https://eprint.iacr.org/2009/191.

[BS20] Dan Boneh and Victor Shoup. A graduate course in applied cryp-
tography, 2020. Available online https://crypto.stanford.edu/
~dabo/cryptobook/.

[CCXY18] Ignacio Cascudo, Ronald Cramer, Chaoping Xing, and Chen Yuan.
Amortized complexity of information-theoretically secure MPC
revisited. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 395–426.
Springer, Heidelberg, August 2018.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In Bhavani M. Thuraisingham, David
Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 1825–1842. ACM Press, October / November 2017.

[CDG+20a] Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz,
Vlad Kolesnikov, Claudio Orlandi, Sebastian Ramacher, Christian
Rechberger, Daniel Slamanig, Xiao Wang, and Greg Zaverucha. The
Picnic Signature Scheme Design Document (ver 3.0), 2020.

[CDG+20b] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Daniel Kales, Jonathan Katz, Vladimir Kolesnikov, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, Xiao Wang, and
Greg Zaverucha. The Picnic Signature Algorithm Specification: Ver-
sion 3.0, April 2020. https://github.com/microsoft/Picnic/
blob/master/spec/.

[CFM+20] A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin,
L. Perret, and J. Ryckeghem. GeMSS. Technical re-
port, National Institute of Standards and Technology,
2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[CG20] Ignacio Cascudo and Jaron Skovsted Gundersen. A secret-sharing
based MPC protocol for boolean circuits with good amortized com-
plexity. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part II, volume 12551 of LNCS, pages 652–682. Springer, Heidelberg,
November 2020.

37

https://eprint.iacr.org/2009/191
https://crypto.stanford.edu/~dabo/cryptobook/
https://crypto.stanford.edu/~dabo/cryptobook/
https://github.com/microsoft/Picnic/blob/master/spec/
https://github.com/microsoft/Picnic/blob/master/spec/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

[CG21] Ignacio Cascudo and Emanuele Giunta. On interactive oracle proofs
for boolean R1CS statements. Cryptology ePrint Archive, Report
2021/694, 2021. https://eprint.iacr.org/2021/694.

[DCP+20] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt,
Bo-Yin Yang, Matthias Kannwischer, and Jacques Patarin. Rain-
bow. Technical report, National Institute of Standards and Tech-
nology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[dDOS19] Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini,
and Nigel P. Smart. BBQ: Using AES in picnic signatures. In Ken-
neth G. Paterson and Douglas Stebila, editors, SAC 2019, volume
11959 of LNCS, pages 669–692. Springer, Heidelberg, August 2019.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-
reprogram technique 2.0: Multi-round fiat-shamir and more. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part III, volume 12172 of LNCS, pages 602–631. Springer, Heidel-
berg, August 2020.

[DFMS21] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
Online-extractability in the quantum random-oracle model. Cryp-
tology ePrint Archive, Report 2021/280, 2021. https://ia.cr/
2021/280.

[DGH+21] Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna
Kelkar, Vivek Sharma, and Greg Zaverucha. MPC-friendly sym-
metric cryptography from alternating moduli: Candidates, proto-
cols, and applications. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 517–547,
Virtual Event, August 2021. Springer, Heidelberg.

[DGK+22] David Derler, Alexander Grass, Daniel Kales, Angela Promitzer,
and Sebastian Ramacher. Picnic optimized implementation, April
2022. https://github.com/IAIK/Picnic.

[DKR+21] Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus
Schofnegger, and Greg Zaverucha. Shorter signatures based on tailor-
made minimalist symmetric-key crypto. IACR Cryptol. ePrint Arch.
Report 2021/692, 2021. https://eprint.iacr.org/2021/692.

[DL77] Richard A DeMillo and Richard J Lipton. A probabilistic remark
on algebraic program testing. Technical report, Georgia Institute of
Technology, Atlanta School of Information and Computer Science,
1977.

[DLN19] Ivan Damgård, Kasper Green Larsen, and Jesper Buus Nielsen.
Communication lower bounds for statistically secure MPC, with
or without preprocessing. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS,
pages 61–84. Springer, Heidelberg, August 2019.

38

https://eprint.iacr.org/2021/694
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://ia.cr/2021/280
https://ia.cr/2021/280
https://github.com/IAIK/Picnic
https://eprint.iacr.org/2021/692

[DLS20] Anders P. K. Dalskov, Eysa Lee, and Eduardo Soria-Vazquez. Circuit
amortization friendly encodingsand their application to statistically
secure multiparty computation. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS,
pages 213–243. Springer, Heidelberg, December 2020.

[dOT21] Cyprien de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy.
Limbo: Efficient zero-knowledge MPCitH-based arguments. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages
3022–3036. ACM Press, November 2021.

[eBA22] eBACS: ECRYPT Benchmarking of Cryptographic Systems. SU-
PERCOP, Version 20220213, April 2022. https://bench.cr.yp.
to/supercop.html.

[FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome
decoding in the head: Shorter signatures from zero-knowledge proofs.
Cryptology ePrint Archive, Report 2022/188, 2022. https://ia.
cr/2022/188.

[FNR+22] Scott Fluhrer, Ruben Niederhagen, Joost Rijneveld, Peter Schwabe,
and Bas Westerbaan et al. SPHINCS+sha256-avx2 implementation,
May 2022. https://github.com/sphincs/sphincsplus.

[GHS+21] Yaron Gvili, Julie Ha, Sarah Scheffler, Mayank Varia, Ziling Yang,
and Xinyuan Zhang. TurboIKOS: Improved non-interactive zero
knowledge and post-quantum signatures. In Applied Cryptography
and Network Security, pages 365–395. Springer, 2021.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for Boolean circuits. In Thorsten Holz and
Stefan Savage, editors, USENIX Security 2016, pages 1069–1083.
USENIX Association, August 2016.

[Gol07] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic
Tools. Cambridge University Press, 2007.

[HBD+20] Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis,
Stefan Kolbl, Tanja Lange, Martin M Lauridsen, Florian Mendel,
Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter
Schwabe, Jean-Philippe Aumasson, Bas Westerbaan, and Ward
Beullens. SPHINCS+. Technical report, National Institute of Stan-
dards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In David S.
Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30.
ACM Press, June 2007.

[Kat10] Jonathan Katz. Digital signatures. Springer Science & Business
Media, 2010.

39

https://bench.cr.yp.to/supercop.html
https://bench.cr.yp.to/supercop.html
https://ia.cr/2022/188
https://ia.cr/2022/188
https://github.com/sphincs/sphincsplus
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum
signatures. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM
Press, October 2018.

[KZ20a] Daniel Kales and Greg Zaverucha. An attack on some signa-
ture schemes constructed from five-pass identification schemes. In
Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, CANS
20, volume 12579 of LNCS, pages 3–22. Springer, Heidelberg, De-
cember 2020.

[KZ20b] Daniel Kales and Greg Zaverucha. Improving the performance
of the Picnic signature scheme. IACR TCHES, 2020(4):154–188,
2020. https://tches.iacr.org/index.php/TCHES/article/
view/8680.

[LDK+20] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Pe-
ter Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Technical report, National Institute of Standards and
Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[MV04] David A. McGrew and John Viega. The security and performance
of the Galois/counter mode (GCM) of operation. In Anne Canteaut
and Kapalee Viswanathan, editors, INDOCRYPT 2004, volume
3348 of LNCS, pages 343–355. Springer, Heidelberg, December
2004.

[NIS15] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. National Institute of Standards and Technology
(NIST), FIPS PUB 202, U.S. Department of Commerce, 2015.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset,
Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON.
Technical report, National Institute of Standards and Tech-
nology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of
polynomial identities. Journal of the ACM (JACM), 27(4):701–717,
1980.

[ZCD+20] Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder,
Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel
Slamanig, Jonathan Katz, Xiao Wang, Vladmir Kolesnikov, and
Daniel Kales. Picnic. Technical report, National Institute of Stan-
dards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In
International symposium on symbolic and algebraic manipulation,
pages 216–226. Springer, 1979.

40

https://tches.iacr.org/index.php/TCHES/article/view/8680
https://tches.iacr.org/index.php/TCHES/article/view/8680
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

A Security Proof of BN++ Signatures
In Theorem 7, we prove that BN++ is an EUF-CMA secure signature scheme. Our
definition of unforgeability under chosen message attacks is the standard one,
as defined in [Kat10, Definition 1.6]. We first prove in Lemma 5 that BN++ is
EUF-KO secure, i.e., secure against forgery attacks where the attacker is only
given the public key, and no signature queries. A formal definition is obtained
from the EUF-CMA definition by removing the adversary’s access to the signing
oracle. The idea is that because the protocol is sound, if an attacker successfully
creates a forgery, then by reading the random oracle query history, we can extract
the secret key, inverting the one-way function used in key generation.

Then to show that the scheme is EUF-CMA secure in Theorem 7, we addi-
tionally show that signatures may be simulated without knowledge of the private
key, by programming the random oracles.

All adversaries in this section are assumed to be probabilistic polynomial
time (in κ) algorithms.

Lemma 5. Let Commit, H1 and H2 be modeled as random oracles, Expand be
modeled as a random function, and let (N, τ, κ,F) be parameters of the BN++

signature scheme. Let A be an adversary against the EUF-KO security of BN++

that makes a total of Q random oracle queries. Assuming that KeyGen is an
εowf-hard one-way function, then A’s advantage in the EUF-KO game is

εko ≤ εowf + (τN + 1)Q2

22κ + Pr[X + Y = τ],

where Pr[X + Y = τ] is as described in the proof.

Remark 6. We do not express Pr[X + Y = τ] as a closed function; we must
choose parameters (N, τ,F) for BN++ such that it is negligible in κ.

Proof. We give an algorithm B which uses the EUF-KO adversary A to compute
a pre-image for the key generation OWF.

Algorithm B simulates the EUF-KO game using the random oracles Hc
(shorthand for Commit), H1 and H2 and query lists Qc,Q1 and Q2. In addition,
B maintains two tables Tsh, Tin to store shares of the parties, inputs to the MPC
protocol and openings of the multiplication check protocol that it recovers from
A’s RO queries. B also maintains a set Bad to keep track of the outputs of all
three random oracles. We also ignore calls to Expand() in our analysis, since they
are used to expand outputs from H1 and H2 when Expand is a random function
this is equivalent to increasing the output lengths of H1 and H2.

Behavior of B. On input pk, a OWF challenge, algorithm B forwards it to
A as a BN++ public key for the EUF-KO game. It lets A run and answers its
random oracle queries in the following way. We assume (wlog.) that Algorithm 2,
Algorithm 3 and Algorithm 4 only consider queries that are correctly formed,
and ignore duplicate queries.)

• Hc: When A queries the commitment random oracle, B records the query
to learn which commitment corresponds to which seed. See Algorithm 2.

• H1: When A commits to seeds and sends the offsets for the secret key and
the inverse values, B checks whether the commitments were output by its

41

Algorithm 2 Hc(qc = (salt, e, i, seed)):

1: x
$← {0, 1}2κ.

2: if x ∈ Bad then abort. . Check if x is fresh.
3: x→ Bad.
4: (qc, x)→ Qc.
5: Return x.

simulation of Hc. If any were for some e and i, then B is able to reconstruct
the shares for party i in repetition e. If B was able to reconstruct every
party’s share for any e, then it can use the offsets included in σ1 to extract
the values used by A in that repetition. We also recover all other values
that are part of the protocol in addition to ske, however this is not strictly
necessary and only aims to make the following probability analysis of the
case Pr[A wins | B outputs ⊥] easier to follow. See Algorithm 3.

• H2: No extraction takes place during this random oracle simulation. See
Algorithm 4.

When A terminates, B checks the Tin table for any entry where the extracted
ske is consistent with pk. If a match is found, B outputs ske as a pre-image for
the OWF, otherwise B outputs ⊥.
Advantage of the reduction. Given the behavior presented above, we have the
following by the law of total probability:

Pr[A wins] = Pr[A wins ∧ B aborts] + Pr[A wins ∧ B outputs ⊥]
+ Pr[A wins ∧ B outputs sk]

≤Pr[B aborts] + Pr[A wins | B outputs ⊥]
+ Pr[B outputs sk]. (3)

Let Qcom, Q1 and Q2 denote the number of queries made by A to each
respective random oracle. Given the way in which values are added to Bad, we
have:

Pr[B aborts] = (#times an x is sampled) · Pr[B aborts at that sample]

≤ (Qcom +Q1 +Q2) · max |Bad|
22κ

= (Qcom +Q1 +Q2) · Qcom + (τN + 1)Q1 + 2Q2

22κ

≤ (τN + 1)(Qcom +Q1 +Q2)2

22κ . (4)

We now analyze the probability of A winning the EUF-KO experiment
conditioned on the event that B outputs ⊥, i.e., no pre-image to pk was found
on the query lists.
Cheating in the first round. For any query q1 ∈ Q1, and its corresponding
expanded answer h1 = ((εe,`)`∈[C])e∈[τ], let G1(q1, h1) be the set of indices
e ∈ [τ] of “good executions” where both Tin[q1, e] is non-empty and and it holds
that ve = 0. If there does not exist such a q1, let G1(q1, h1) = ∅.

42

Algorithm 3 H1(q1 = σ1):

Parse σ1 as (salt, ((com(i)
e , ct(i)

e)i∈[N],∆ske,∆ce, (∆ze,`)`∈[C])e∈[τ])
1: for e ∈ [τ], i ∈ [N] do com(i)

e → Bad.
If the committed seed is known for a certain e, i, then B records the shares of
the secret key and of the multiplication output values for that party, derived
from that seed and the offsets committed to in σ1:

2: for (e, i) ∈ [τ]× [N] : ∃ seed(i)
e : ((salt, e, i, seed(i)

e), com(i)
e) ∈ Qc do

3: sk(i)
e , (z(i)

e,`)`∈[C], (a(i)
e,`)`∈[C], c

(i)
e ← ExpandTape(salt, e, i, seed(i)

e).
4: if i ?= 1 then

5:
sk(i)
e ← sk(i)

e +∆ske, (z(i)
e,` ← z

(i)
e,`+∆ze,`)`∈[C] and c(i)e ←

c
(i)
e + ∆ce.

6: (sk(i)
e , (z(i)

e,`)`∈[C], (a(i)
e,`)`∈[C], c

(i)
e)→ Tsh[q1, e, i].

If the shares of the various elements are known for every party in that
repetition, B records the resulting secret key, multiplication inputs and
dot-product triple:

7: for each e : ∀i, Tsh[q1, e, i] 6= ∅ do

8:
ske ←

∑
i sk(i)

e , (ze,` ←
∑
i z

(i)
e,`)`∈[C], (ae,` ←

∑
i a

(i)
e,`)`∈[C] and

ce ←
∑
i c

(i)
e .

9: Using ske, execute the circuit to recover the mult. inputs (xe,`, ye,`)`∈[C].
10: (ske)→ Tin[q1, e].

11: x
$← {0, 1}2κ.

12: if x ∈ Bad then abort.
13: x→ Bad.
14: (q1, x)→ Q1.

Compute the multiplication check protocol values.
15: (εe,`)`∈[C] ← Expand(x) .
16: for each e : Tin[q1, e] 6= ∅ do
17: (αe,` ← εe,` · xe,` − ae,`)`∈[C].
18: ve ←

(∑
`∈[C] εe,` · ze,` − αe,` · ye,`

)
− ce,`.

19: Return x.

43

Algorithm 4 H2(q2 = (h1, σ2)) :
1: h1 → Bad.
2: x

$← {0, 1}2κ.
3: if x ∈ Bad then abort.
4: x→ Bad.
5: (q2, x)→ Q2.
6: Return x.

For any such good execution e ∈ G1(q1, h1), since B outputs ⊥ but A wins,
this implies that either

∀` ∈ [C] : xe,` · ye,` = ze,` and
∑
`∈[C]

ae,` · ye,` = ce

held (in which case any values of (εe,`)`∈[C] passes the check), or the challenges
(εe,`)`∈[C] were sampled such that the multiplication check presented in Section 2.6
output acc, missing the incorrect value(s). Conditioning on the first event not
happening (since then no cheating in the first round would be required), Lemma 2
gives us that the second happens with probability at most p1 := 1/|F|, given that
h1 is distributed uniformly at random (which holds assuming H1 and Expand
are random functions).

As the response h1 is uniform, each e ∈ [τ] has the same independent
probability of being in G1(q1, h1), given that B outputs ⊥. We therefore have
that #G1(q1, h1) |⊥∼ Xq1 where Xq1 = B(τ, p1), where B(τ, p1) is the binomial
distribution with τ events, each with success probability p1. Letting (qbest1 , hbest1)
denote the query-response pair which maximizes #G1(q1, h1), we then have that

#G1(qbest1 , hbest1) |⊥∼ X = max
q1∈Q1

{Xq1}.

Cheating in the second round. Each second round query q2 = (h1, σ2) that A
makes to H2 can only be used in a valid signature if there exists a corresponding
query (q1, h1) ∈ Q1. Then for each “bad” first-round execution e ∈ [τ]\G1(q1, h1),
either verification failed, in which case A couldn’t have won, or the verification
passed, despite

∑
i v

(i)
e = 0 or

∑
i ct(i)

e = pk not being satisfied. This implies that
exactly one of the parties must have cheated. At least one cheater is required
for verification to pass, but as N − 1 parties are opened, verification would
fail if more than one party cheated. Additionally, verification would also fail if
more that one party’s com(i)

e was not a valid commitment to a seed, so we also
implicitly handle the case where our reduction could not recover the shares of
all parties in Algorithm 3.

Since the expanded h2 = (̄ie)e∈[τ] ∈ [N]τ is distributed uniformly at random,
the probability that this happens for all such “bad” first-round executions e is(

1
N

)τ−#G1(q1,h1)
≤
(

1
N

)τ−#G1(qbest1 ,hbest1)
.

The probability that this happens for at least one of the Q2 queries made to H2
is

Pr[A wins | #G1(qbest1 , hbest1) = τ1] ≤ 1−
(

1−
(

1
N

)τ−τ1
)Q2

.

44

Finally conditioning on B outputting ⊥ and summing over all values of τ1, we
have that

Pr[A wins | B outputs ⊥] ≤ Pr[X + Y = τ] (5)
where X is as before, and Y = maxq2∈Q2{Yq2} where the Yq2 variables are
independently and identically distributed as B(τ −X, 1/N).
Conclusion. Bringing Equation (3), Equation (4) and Equation (5) together, we
obtain the following.

Pr[A wins] ≤ (τN + 1)(Qcom +Q1 +Q2)2

22κ + Pr[X + Y = τ]

+ Pr[B outputs sk]

Assuming KeyGen is an εowf-secure OWF and setting Q = Qcom +Q1 +Q2 gives
the required bound and concludes the proof.

We assume that ExpandTape is a secure pseudorandom generator (PRG),
again using the standard definition, see for example [BS20, Definition 3.1]. In our
implementation ExpandTape is implemented with the SHA-3 based extendable
output function SHAKE [NIS15]. The assumption related to the tree derivation
construction for random seeds is that it must be hiding. Informally, this means
that after revealing a subset of the seeds (e.g., N − 1 of N seeds), the remaining
seeds remain hidden to a computationally bounded adversary. In [CDG+20a,
Section 6.3] it is shown that this holds when the hash function used to derived
seeds is modeled as a random oracle. Secure one-way functions are defined in
[Gol07, Section 2.2].

Theorem 7. The BN++ signature scheme is EUF-CMA-secure, assuming that
Commit, H1, H2 and Expand are modeled as random oracles, ExpandTape is a
secure PRG, the seed tree construction is computationally hiding, the (N, τ,K)
parameters are appropriately chosen, and that KeyGen is a secure one-way
function.

Proof. Fix an attacker A. We define a sequence of games where the first game
corresponds to A interacting with the real signature scheme in the EUF-CMA
game. Through a series of hybrid arguments we show that this is indistinguishable
from a simulated game, under the assumptions above. Let G0 be the unmodified
EUF-CMA game and let B denote an adversary against the EUF-KO game that
acts as a simulator of the EUF-CMA game to A. As we’re in the random oracle
model: when A queries one of its random oracles, B first checks if that query
has been recorded before; if so, then it responds with the recorded answer; if
not, B forwards the query to its corresponding random oracle, records the query
and the answer it receives and forwards the answer to A. Let Gi denote the
probability that A succeeds in game Gi. At a high level, the sequence of games
is as follows:

G0: B knows a real secret key sk and can compute signatures honestly;

G1: B replaces real signatures with simulated ones which no longer use sk;

B then uses the EUF-KO challenge pk∗ in its simulation with A.

We note that A’s advantage in the EUF-CMA game is εcma = G0 = (G0−G1)+G1
and we obtain a bound on G0 by first bounding G0 − G1 and then G1

45

Hopping to Game G1. When A queries the signing oracle, B simulates a
signature by sampling a random secret key sk∗, choosing a party Pi∗ at random
and cheating in the verification phase and in the broadcast of the output shares
cte

(i) such that the circuit still outputs the correct ciphertext, and finally ensuring
that the values observed by A are sampled independently of sk∗ and with a
distribution that is computationally indistinguishable from a real signature. B
programs H1 to return the randomly sampled challenges ((εe,`)`∈[C])e∈[τ] and
H2 to return a randomly sampled challenge (̄ie)e∈[τ].

We now argue that the simulated signatures in G1 are computationally
indistinguishable from real signatures in G0. We list a series of (sub) game hops
which begins with G0, where sk is known and signatures are created honestly,
and ends with G1, where signatures are simulated without using sk. With each
change to B’s behavior, we give an argument as to why the simulation remains
indistinguishable, and quantify these below.

1. The initial B knows the real sk and can compute honest signatures as
in the protocol. It only aborts if the salt that it samples in Phase 1 has
already been queried. As its simulation is perfect, B is indistinguishable
from the real EUF-CMA game as long as it does not abort.

2. Before beginning, the next B samples h2 at random and expands it to obtain
(̄ie)e∈[τ]; these are the unopened parties, which B will use for cheating. It
proceeds as before and programs the random oracle H2 so that it outputs
h2 when queried in Phase 4. If that query has already been made, B aborts
the simulation.

3. In Phase 1, the next B replaces seed(̄i)
e (the seed of the cheating party)

in the binary tree, for each e ∈ [τ], by a randomly sampled one. This is
indistinguishable from the previous version of B assuming that the tree
structure is hiding.

4. The next B replaces the random tapes for party īe, i.e., the outputs of
ExpandTape(salt, e, īe, seed(̄ie)

e), by random outputs (independent of the
seed). This is indistinguishable from the previous reduction assuming that
ExpandTape is a secure PRG.

5. The next B replaces the commitments of the unopened parties com(̄ie)
e

with random values (i.e., without querying Commit). B aborts if A queries
x such that Commit(x) was output by B.

6. Before starting Phase 2, the next B samples h1 at random and expands it
to obtain ((εe,`)`∈[C])e∈[τ]; this will enable it to sample the checking values
at random. It then proceeds as before and programs the random oracle H1
to output h1 in Phase 2. If that query has already been made, B aborts
the simulation.

7. In Phase 3, the next B replaces α(̄ie)
e,` with a uniformly random value. Fur-

thermore, it sets v(̄ie)
e ← −

∑
i 6=īe v

(i)
e . As these were previously computed

based on uniform elements read from the random tapes, this is indistin-
guishable from the previous hop. From now on, the multiplications check
always passes, even if the inputs are not valid triples according to Lemma 2,

46

and the distribution of everything that A can observe is indistinguishable
from an honest signature and independent of hidden values.

8. In Phase 1, the next B sets ∆ze,` and ∆ce to random values. As these were
previously computed based on uniform elements read from the random
tapes, this is indistinguishable from the previous hop.

9. The final B replaces the real sk by a random key sk∗ and cheats on the
broadcast of party Pīe ’s output share ct(̄ie)

e such that it matches what
is expected, given the N − 1 other shares. As sk(̄ie)

e is independent from
the seeds A observes, the distribution of ∆ske is identical and A has no
information about sk∗. As Pīe is never opened, B’s cheating on ct(̄ie)

e can’t
be detected.

We can conclude that B’s simulation of the signing oracle is indistinguishable and
that A behaves exactly as in the real EUF-CMA game unless an abort happens.

There are four points at which B could abort: if the salt it sampled has been
used before, if the committed value it replaces is queried, or if its queries to H1
and H2 have been made previously. Let Qsalt denote the number of different salts
queried during the game (by both A and B); each time B simulates a signature, it
has a maximum probability of Qsalt/22κ of selecting an existing salt and aborting.
Let Qc denote the number of queries made to Commit by A, including those
made during signature queries. Since Commit is a random oracle, and seed(̄ie)

e is
a uniformly random κ-bit value not used by B elsewhere, each time B attempts
a new signature, it has a maximum probability of Qc/2κ of replacing an existing
commitment and aborting.

Similarly for H1, resp. H2, B has a maximum probability of Q1/22κ, resp.
Q2/22κ of aborting, where Q1 and Q2 denote the number of queries made to
each random oracle during the game. Note that B samples one salt, replaces τ
commitments and makes one query to both H1 and H2 for each signature query.

Let Qs be the total number of signature queries, therefore

G0 − G1 ≤ Qs · (τ · εprg + εtree + Pr[B aborts])

where

Pr[B aborts] ≤ Qsalt/22κ +Qc/2κ +Q1/22κ +Q2/22κ

= (Qsalt +Q1 +Q2)/22κ +Qc/2κ

≤ (Q1 +Q2)/22κ−1 +Qc/2κ (Since Qsalt ≤ Q1 +Q2) ,
≤ Q/2κ (where Q = Q1 +Q2 +Qc) .

Bounding G1. In G1, B is no longer using the witness and is instead simulating
signatures only by programming the random oracles; it therefore replaces the
honestly computed pk with an instance pk∗ of the EUF-KO game. We see that if
A wins G1, i.e. outputs a valid signature, then B outputs a valid signature in
the EUF-KO game, and so we have

G1 ≤ εko ≤ εowf + (τN + 1)Q2

22κ + Pr[X + Y = τ],

47

where the bound on the advantage εko of a EUF-KO attacker follows from
Lemma 5. By a union bound, we have that

εcma ≤ εowf + (τN + 1)Q2

22κ + Pr[X + Y = τ]

+Qs · (τ · εprg + εtree +Q/2κ) .

Assuming that ExpandTape is a secure PRG that is εprg-close to uniform, that the
seed tree construction is hiding (so that εtree is negligible), that key generation
is a one-way function and that parameters (N, τ,K) are appropriately chosen
implies that εcma is negligible in κ.

B Other Optimizations
In this section we describe some additional optimizations that we used in our
implementations to reduce signature size and improve performance. They de-
pend somewhat on the circuit or parameters of the MPCitH protocol, but are
sufficiently generic that we expect them to be of independent interest.

B.1 Optimization: Repeated Multipliers
When some of the multiplication triples in the batch to be verified have the
same multiplier, e.g., (x1, y, z1), (x2, y, z2) we can batch the α value in the
multiplication checking protocol. Instead of computing α1 = ε1x1 + a1 and
α2 = ε2x2 + a2 and broadcasting shares of both α1 and α2, we can instead
compute α = ε1x1 + ε2x2 + a, broadcast it and then compute

v = α · y − ε1 · z1 − ε2 · z2 − c

where c = y ·a (instead of c = y1a1 +y2a2 as in §2.6). Of course this optimization
can only be applied if the repeated multiplier is a result of the structure of the
circuit to be computed (i.e., the same wire is an input to two gates), and not
just because two wires happen to have the same value for the given input, as
this might leak information about the input.

This optimization is applicable to BN++ but not Helium, since in Helium there
is only one α-value per repetition: the checking protocol is only applied to one
multiplication triple based on the polynomial encoding of all multiplication gates.

B.1.1 Application to Binary LowMC

Recall that the LowMC S-box over F2 is computed as

S(a, b, c) = (a+ bc, a+ b+ ac, a+ b+ c+ ab) .

The input bit c is the multiplier in two of the multiplications, meaning we only
need two α values per S-box rather than three. The BN++ proof size for binary
LowMC can be reduced to

3κ+ τ · (3κ+ κ · dlog2(N)e+M(C) + log2(|K|)) .

48

where M(C) = 5
3 dC/ke · (log2(|K|)). Comparing to Table 3, when applied to

the binary circuit for LowMC, the signature size goes from 26.6 KB to 21.1 KB
when lifting to F28 . For BN++RMFE with the (18, 51)2–RMFE with N = 246
and τ = 18 (see Table 4) the signature size goes from 10 KB to 9.15 KB. In
conclusion, while useful, the optimization is not enough for binary LowMC to
be competitive with LowMC over F23 (Section 3.4.2).

B.1.2 Application to Rain and EM ciphers

Let (si, ti) denote the S-box inputs and outputs in Rain, and with the recom-
mended number of rounds we have four such pairs.

Note that s1 = p+ k+ c1 and t4 = c+ k, where c1 is the round constant, and
(p, c) are from the public key (it helps to refer to Figure 3 in the Rain paper).
We can substitute these expressions into the checks s1t1

?= 1 and s4t4
?= 1 and

arrive at the following expressions:

(p+ k + c1) · t1
?= 1 iff t1 · k

?= 1− (p+ c1)t1 ,

s4 · (k + c) ?= 1 iff s4 · k
?= 1− s4c .

The new triples on the right have the same multiplier, k, and we can make use
of the repeated multipliers optimization, saving one α per repetition, for a total
of τ |F| bits.

This generalizes to OWFs based on Even-Mansour (EM) block ciphers.
Namely, when E(k, p) = k + π(k + p) for a public permutation π, the output(s)
of the last multiplication gate(s) of π can be written as a linear combination of
k and constants, similarly the inputs to the first multiplication gate(s) depend
only on k, p and public constants.

B.2 Optimization: Multiplications with Public Output
In the BN++ protocol, for every multiplication gate we communicate a value ∆z,
to inject the output. Of course when the output z is a public value, then ∆z
does not need to be sent. We aren’t aware of many circuits where multiplication
outputs are public, one example is an RSA modulus, but none of the OWFs we
consider in this paper have this property. However, the circuits we consider have
multiplication gates where a linear function of the output is public, namely, the
public ciphertext (OWF output) is computed linearly from the last multiplication
gate(s). We show how to avoid sending ∆z in this case. We explain the idea
using the Rain OWF, since there an S-box is the width of the full state and
it’s most simple to explain, but this is also applicable to LowMC, AES and the
other AES-based OWFs considered in this paper (as well as their Even-Mansour
variants).

At the moment, for the last round of Rain4, we inject the S-box output t4
via ∆t4 and calculate the S-box input s4 from the last round. After making
sure that s4 · t4 = 1 using the multiplication check, we calculate forward using
t4 and make sure that it is indeed equal to the correct output by doing the
last key-addition and then broadcasting the internal state to compare it to the
expected ciphertext. However, we can compute shares of t4 using our shares of
the key and ciphertext, since t4 + k4 = c. First we create a (trivial) sharing of

49

the public ciphertext c as

c(i) =
{
c if i = 1 ,
0 otherwise.

Then, we can calculate shares of t4 locally: t(i)4 = c(i)− k(i)
4 . This leads to a valid

sharing of t4 without the need for the prover to inject it. We still need to check
that s4 · t4 = 1 using a multiplication check (so we must still communicate the
associated α values). For Rain, this saves τ |F| values, for LowMC with a full
nonlinear layer this saves one full round worth of z values, in each case the width
of the state (16 bytes at the 128-bit security level).

The optimization also applies to Helium, but is not compatible with BN++RMFE,
since we cannot compute shares of T ∈ K from the shares t ∈ Fk we would
compute above, due to the general limitations we have with RMFEs.

B.3 Optimization: TurboIKOS Compression
The TurboIKOS paper [GHS+21] also presents a series of optimizations to
the BN protocol, first reducing M(C) to 3C log2(|F|), then presenting a final
optimization (in Section 3.4). In this optimization (described in our notation),
we can save sending the C α values, but must instead send N elements of F
and one hash digest. Thus when this optimization is applied to BN++, we change
M(C) from (2C + 1) log2(|F|) to (C + 1 +N) log2(|F|) + 2κ.

When C is larger than N , this is smaller. However, smaller N decreases
soundness and means we must use more parallel repetitions, potentially offsetting
the benefit of this optimization. To determine whether this optimization will
be competitive, we searched the parameter space for the concrete circuits and
security levels we consider in this paper.

First, for Rain, since C = 4, this is not a useful optimization, and with Helium
we have only one or two triples to verify so we consider applying the TurboIKOS
optimization to BN++ with AES and LowMC, where C is 172–200. For LowMC,
since we can apply the (9, 17)8–RMFE, the number of multiplications we need
to check (in the larger field K) is only 20, and so we get shorter proofs without
this optimization.

For AES we see a small window where N is large enough for soundness,
but small relative to C and the BN++ with the TurboIKOS optimization has its
shortest proof sizes, and then as N increases proof sizes steadily increase (which
unfortunately means parameter choices are limited). There are some cases where
this optimization is helpful, as shown in Table 9. We show some size estimates
for AES-128, first showing the window around N = 32 where BN++TurboIKOS
is most competitive (note that we need M = 3 checks per repetition for these
sizes or a simple lift from F28 to F224). Then we compare BN++TurboIKOS’s
shortest size (14.6 KB, when N = 31) to Banquet and Helium (parameterized to
have size ≈ 14.6 KB). In applications where this size of signature is acceptable,
the CPU costs of BN++/TurboIKOS should be lower, since when compared to
Banquet and Helium, it uses fewer parties and requires no lifting to extension
fields and no polynomial arithmetic. That said, 14.6 KB is significantly larger
than the 9.9 KB of Helium+AES (obtained when N = 256, τ = 16, see Table 6).

50

Scheme N τ M Size
BN++ 8 49 3 17 491

16 38 3 15 106
31 32 3 14 688
56 28 3 15 412

Banquet 107 24 14 784
Helium 35 25 14 596

Table 9: AES-128 signature size estimates for BN++ with the TurboIKOS
optimization, compared to Banquet and Helium for signatures of approximately
the same size.

C Additional Details of RMFE Lifting
In this section we give details of the comparison of BN++RMFE and BN++ on proof
size, and also describe how to adapt BN++RMFE to inverse checking (instead of
multiplication checking).

C.1 Size Comparison
Does lifting with an RMFE always give the shortest proof sizes? As discussed
in Section 3.3, it is difficult to compare the size of BN++RMFE and BN++ as it
depends on the concrete choice of RMFE, for the parameters K and k. We can
compare the number of bits communicated by the checking protocol for each bit
of soundness to asymptotically evaluate the impact of using an RMFE on the
size (see Appendix C.1).

For BN++ we must communicate M(C)/ log2(F) = 2C + 1 bits per bit of
soundness. In BN++RMFE,

M(C) = (2 dC/ke+ 1) log2(|K|)
= (2 dC/ke+ 1) log2(|F|m)

and we must communicate

M(C)/ log2(|F|m) = 2 dC/ke+ 1 (6)

bits per bit of soundness, making this better as long as k > 1. This is always
better than plain BN++, subject to some caveats. First, we must have |Fm| < 2κ.
If this is not the case, then it might be worse in practice, as we’re paying in
communication for unnecessary additional soundness.

Second, this comparison does not consider BN++ with simple lifting, which
is a more natural baseline (but complicates comparison). For BN++ with simple
lifting, we have

M(C) = C log2(|F|) + (C + 1) log2(|K|)
= C log2(|F|) + (C + 1) log2(|F|m)
= C log2(|F|) +m(C + 1) log2(|F|)
= (C +mC +m) log2(|F|)

For simple lifting we must communicate

M(C)/ log2(|F|m) = C/m+ C + 1 (7)

51

bits per bit of soundness. So we can say as long as C/m + C > 2 dC/ke,
BN++RMFE is better than BN++ with simple lifting.

We next relate Equations (6) and (7) on r = m/k, assuming (i) k divides C
evenly, and (ii) the rate is a constant independent of C (as shown in [CCXY18,
Theorem 5]) to get

C/m+ C > 2 dC/ke
(C + Cm)/m > 2Cr/m

C + Cm > 2Cr
m+ 1 > 2r

(m+ 1)/2 > r

For our concrete choices, m = 17, r = 1.88, so this holds easily. For the smallest
possible RMFE, m = 3, k = 2, r = 1.5, this still holds, so RMFE is always better
than simple lifting in this analysis for BN++.

Another caveat remains in this comparison, since we’ve assumed that both
the RMFE and simple lifting strategies use the same parameter m, but the
optimal choices may be different. Letting m1 be the choice for BN++ with simple
lifting and m2 be the choice for BN++RMFE, using an analysis similar as above
we find that BN++RMFE is better if r < (m2 +m1m2)/(2m1). Looking at the
smallest choice of RMFE, m2 = 3 and letting m1 be larger, r must be below 1.5,
so the methods are tied. But once we allow m2 to be larger, e.g., m2 = 17, we
must have r < 8.5, which always holds by [CCXY18, Theorem 5].

C.2 Applying RMFE Lifting to Inverse Checking
The OWFs based on AES use only inversion in their nonlinear layers, and have
no multiplications. An inverse pair (s, t) such that st = 1 is a special type of
multiplication triple (s, t, 1) so we can use a multiplication checking protocol for
these OWFs. In this section we describe how to handle inversion triples (such as
those in AES of the form (s, t, 1), with st = 1) in a way that allows the RMFE
lifting technique to be used. When trying to apply the technique from Section 3.3
directly, we are faced with the following problems: The operands s and t would
be mapped to K as S = φ(s) and T = φ(t) and then the prover would compute
S′ = ST ∈ K and inject shares of the product in K. In contrast to traditional
multiplication gates where the two inputs are already known to the parties, the
prover also needs to inject shares of t, increasing the required communication.
Additionally, even though we know that the result of the multiplications should
be 1, we cannot make use of this fact and still need to communicate ∆S′.

Since s and t are the same for all repetitions of the circuit, one could try to
make S′ public, since this would save the broadcast of ∆S′ in each repetition.
However, due to the properties of the RMFE, S′ leaks some information about s
and t, and therefore we can only work with it in a secret-shared form, requiring
the use of a per-repetition ∆S′. The problem is that revealing S′ reveals more
than the fact that st = 1, since there are many S′ ∈ K such that ψ(X) = 1, and
revealing a specific one leaks information about S and T .

The protocol proceeds as follows:

1. For each batch of k inversion gates with secret shared input s = (s`, ..., s`+k−1):

52

(a) The prover computes S = φ(s).

(b) The prover injects ∆tj , so that the shares t(i)j read from the parties
random tapes fulfill sjtj = 1.

(c) The prover computes T = φ(t) = φ((t`, ..., t`+k−1)).
(d) The prover computes S′ = ST , and injects ∆S′, so that the shares

S′(i) read from the parties’ random tapes sum to S′.

2. The parties ensure the circuit output is correct:

(a) For each S′, calculate s′ = ψ(S′) and check that s′ = (1, ...,1). (This
step is free using Opt. 2 from Section 2.4)

3. Now the checking step runs, to ensure that for each RMFE-batched multi-
plication, S′ = S · T :

(a) This uses the batched checking protocol in Section 2.6. The simple
lifting and multiple check strategies can also be applied directly to
boost soundness.

In total, this protocol leads to larger signatures than alternative approaches
such as Banquet [BdK+21], Limbo [dOT21] and our Helium-based variant in
Section 5.3. When compared to checking regular multiplication triples with BN++

using RMFEs, checking inversions increases the size by an additional C field
elements per repetition, as we must communicate ∆t ∈ F per inversion gate.
For example, with AES-128, N = 256 parties and the (5, 9)256–RMFE we need
τ = 17 repetitions, and signatures are estimated to be 18 881 bytes.

D Descriptions of LowMC and Rain
In this section we review the core primitives used in the LowMC and Rain
one-way functions.

D.1 LowMC
LowMC [ARS+15] is a block cipher that is highly parameterizable, designed
to have a small number of AND gates (low multiplicative complexity), to be
suitable for MPC applications. When used as a OWF in Picnic-like signatures,
as with other block cipher-based OWFs, key generation chooses a random key k,
and a random plaintext block p, then computes c = Ek(p) and outputs k as the
secret signing key and (c, p) as the public verification key.

Let n be the block size and key size, s be the number of S-boxes per round,
and r the number of rounds. The parameters n and s may be chosen to suit the
application. The LowMC specification defines random and independent constants
for each set of parameter choices. Specifically,

• round constants Ri ∈ Fn2 ,

• linear layer matrices Li ∈ Fn×n2 (of full rank), and

• key matrices Ki ∈ Fn×n2 for the computation of round keys.

53

There are r round and linear layer constants Ri, Li, and r + 1 key matrices Ki.
Keys are sampled uniformly at random from Fn2 .

Encryption first adds a round key to the plaintext, which is followed by
r rounds. Each round key is computed by multiplying the key with the key
matrix Ki. A round is composed of an S-box layer, a linear layer, addition with
constants, and addition of the round key as shown in Algorithm 5. The S-box
layer applies the same 3-bit S-box on the first 3 · s bits of the state. The S-box is
defined as S(a, b, c) = (a⊕ bc, a⊕ b⊕ ac, a⊕ b⊕ c⊕ ab). The other layers only
consist of F2-vector space arithmetic, all local operations in our MPC setting.

Algorithm 5 LowMC encryption.
Parameters Ki, Li and Ri are as described in the text.
Input: plaintext p ∈ Fn2 and key k ∈ Fn2

state← K0 · k ⊕ p
for i ∈ [1, r] do

state← SboxLayer(state)
state← Li · state . LinearLayer
state← Ri ⊕ state . ConstantAddition
state← Ki · k ⊕ state . KeyAddition

return state

D.2 Rain
Rain is a one-way function with a block-cipher based design [DKR+21]. It has a
single large S-box per round, defined as inversion in F2n , applied to the entire
n-bit state, and the linear layer is multiplication by a randomly chosen matrix
M ∈ Fn×n2 . As Rain is a OWF and not a classical block cipher, its design assumes
that the attacker is given a single known (input, output) pair.

Rain is a keyed permutation Fk(x) with nonlinear operation S and a constant
addition over a large field F2n , and the linear layer. The S-box is S : F2n → F2n

such that

S(x) = x2n−2 =
{
x−1 if x 6= 0,
0 otherwise.

Let c(i) denote the round constant in round i, and Mi ∈ (F2)n×n denote the
linear layer matrix over F2 used in round i. The permutation can be described
by the round functions Ri, where each round function Ri, for i < r is defined as

Ri(x) = Mi

(
S
(
x+ k + c(i)

))
,

and the final round Rr is defined as

Rr(x) = k + S
(
x+ k + c(r)

)
.

A graphical overview of the construction is shown in Figure 7. For the 128-bit
security level, Rain uses r = 4 rounds, and the field is F2128 with the reduction
polynomial X128 + X7 + X2 + X + 1. This polynomial is also used in AES-
GCM [MV04]. The details of other parameters, and for the generation of the
round constants and matrices are given in [DKR+21].

54

x x−1 M1

k ⊕ c(1)

x−1 M2

k ⊕ c(2) k ⊕ c(3)

x−1

k

y

Figure 7: The Rain permutation with r = 3 rounds. Mi denotes multiplication
with the linear layer matrix over F2 in round i.

55

	Introduction
	Contributions
	Related Work
	Notation

	The BN++ Zero-Knowledge Proof System
	The Baum-Nof Zero-Knowledge Proof
	Optimized Proof Size Overview
	Optimization 1: Removing the Output Broadcast
	Optimization 2: Removing the Final Checking Protocol Broadcast
	Optimization 3: Remove the Broadcast of Beta
	Optimization 4: Dot-Product Checking
	BN++: New Protocol with all Optimizations
	Soundness

	Handling Small Fields Efficiently
	Simple Lifting
	Multiple Checks Per Repetition
	Lifting with RMFEs
	RMFE Preliminaries
	BN[4]++RMFE: Multiplication Checking with RMFEs

	Alternative Circuit Representations
	The AES S-Box
	Alternative Representation of the LowMC S-box

	The Helium Proof System
	Helium Protocol Description

	Using BN++ and Helium in Signature Schemes
	BN++LowMC
	Concrete Parameters and Signature Size

	Helium+LowMC
	Helium+AES
	BN++Rain
	Signature Scheme Security
	Comparison to Other Post-Quantum Signature Schemes

	Conclusion
	Security Proof of BN++ Signatures
	Other Optimizations
	Optimization: Repeated Multipliers
	Application to Binary LowMC
	Application to Rain and EM ciphers

	Optimization: Multiplications with Public Output
	Optimization: TurboIKOS Compression

	Additional Details of RMFE Lifting
	Size Comparison
	Applying RMFE Lifting to Inverse Checking

	Descriptions of LowMC and Rain
	LowMC
	Rain

