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Abstract

We prove strong security guarantees for a wide array of computational and decisional prob-
lems, both in hidden-order groups and in bilinear groups, within the algebraic group model
(AGM) of Fuchsbauer, Kiltz and Loss (CRYPTO ’18). As our first contribution, we put forth a
new fine-grained variant of the Uber family of assumptions in hidden-order groups. This family
includes in particular the repeated squaring function of Rivest, Shamir and Wagner, which un-
derlies their time-lock puzzle as well as the main known candidates for verifiable delay functions;
and a computational variant of the generalized BBS problem, which underlies the timed com-
mitments of Boneh and Naor (CRYPTO ’00). We then provide two results within a variant of
the AGM, which show that the hardness of solving problems in this family in a less-than-trivial
number of steps is implied by well-studied assumptions. The first reduction may be applied
in any group (and in particular, class groups), and is to the RSA assumption; and our second
reduction is in RSA groups with a modulus which is the product of two safe primes, and is to
the factoring assumption.

Additionally, we prove that the hardness of any computational problem in the Uber family
of problems in bilinear groups is implied by the hardness of the q-discrete logarithm problem.
The parameter q in our reduction is the maximal degree in which a variable appears in the
polynomials which define the specific problem within the Uber family. This improves upon a
recent result of Bauer, Fuchsbauer and Loss (CRYPTO ’20), who obtained a similar implication
but for a parameter q which is lower bounded by the maximal total degree of one of the above
polynomials. We discuss the implications of this improvement to prominent group key-exchange
protocols.
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1 Introduction

The algebraic group model (the AGM) was introduced by Fuchsbauer, Kiltz and Loss1 [FKL18] with
the aim of striking a middle ground between the generic group model (the GGM) and the standard
model. In contrast to the GGM, algorithms within the AGM (also known as algebraic algorithms) do
receive the representation of group elements and may use it in any way they see fit. The restriction,
however, is that whenever an algebraic algorithm outputs a group element, it must provide alongside
it a representation of it in the basis of its input group elements. This representation serves as an
explanation as to how the output element was computed from the input elements in an algebraic
manner. Given the less restrictive nature of the AGM when compared to the GGM,2 a central line of
research over the last couple of years has focused on establishing the security of cryptographic schemes
and assumptions within the AGM; see for example [FKL18, MTT19, MBK+19, ABB+20, AGK20,
BDF+20, BFL20, CHM+20, CH20, FPS20, GRW+20, KLX20, RS20a, ABK+21, GT21, KLX22].

The sequentiality of repeated squaring. The “repeated squaring” function in hidden-order
groups, first suggested by Rivest, Shamir and Wagner [RSW96], serves as the basis for the main
candidate constructions of both time-lock puzzles and of verifiable delay functions [BBB+18, Pie19,
Wes19]. For years, however, the sequentiality of this function remained purely as an assumption,
and there was no known reduction (in idealized models or otherwise) relating it to the hardness of
a better-established assumptions. Recently, Katz, Loss and Xu [KLX20] presented a strengthened
version of the AGM (the strong AGM) and provided evidence for the sequentiality of repeated
squaring within this model.3 Concretely, they showed that any strongly-algebraic algorithm which
manages to speed-up the repeated squaring function in the group QRN of quadratic residues modulo
N (where N is the product of two safe primes), can be used in order to factor the modulus N . Their
result provides a novel and important corroboration for the sequentiality of repeated squaring in
the group QRN . However, it is limited in two respects: Firstly, it inherently relies on the algebraic
structure of QRN and does not apply to other hidden-order groups of interest, such as RSA groups
or the class group of imaginary quadratic number fields [BH01, BBH+02, BBF18, Wes19]. Secondly,
it addresses only the repeated squaring function, and leaves out other possible fine-grained problems
in hidden-order groups.

The Uber problem in bilinear groups. The Uber family of problems in bilinear groups was
introduced by Boneh, Boyen and Goh [BBG05, Boy08] as a unified framework for reasoning about
computational problems in such groups. A problem in the family is parameterized by three tuples of
multivariate polynomials ~F , ~H, ~K and three polynomials Q1, Q2, QT and is defined by the following
task: Given the group elements {gFi(~x)

1 }i, {gHi(~x)
2 }i, {gKi(~x)

T }i for a random vector ~x, compute gQ1(~x)
1 ,

g
Q2(~x)
2 and gQT (~x)

T , where g1, g2 and gT are the generators of the source groups and the target group,
respectively. Bauer, Fuchsbauer and Loss [BFL20] recently showed that in the AGM, the hardness
of any problem in this family, as long as it does not admit a trivial solution, is implied by the

1Following Abdalla, Benhamouda and Mackenzie [ABM15] and Bernhard, Fischlin and Warinschi [BFW16]. Ad-
ditionally, the earlier works of Boneh and Venkatesan [BV98] and Paillier and Vergnaud [PV05] considered algebraic
reductions, rather than algebraic adversaries.

2The AGM may also be instantiated in the standard model from falsifiable assumptions, as demonstrated by the
elegant work of Agrikola, Hofheinz and Kastner [AHK20]. This is in contrast to the GGM [Den02].

3Another recent result [RS20b], proving the equivalence of speeding-up repeated squaring and factoring within the
generic ring model is discussed in Section 1.2.
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hardness of the q-DLOG problem in one of the source groups.4 Their result provides a clean and
succinct characterization of the Uber family, reducing its hardness to that of a seemingly simpler and
better-understood family of problems. However, the parameter q in their result is lower bounded
by the maximal total degree of the polynomials in ~F , ~H, ~K, which may not be optimal. To see
why that is, consider the following toy problem for any integer n: Given a generator g and a tuple
(gx1 , gx2 , gx3 , gx1x3 , gx2x3) of group elements for randomly-chosen x1, x2, x3, compute gx1x2x3 . On the
one hand, the result of Bauer et al. can be used to conclude that the hardness of this problem in the
AGM is implied by the hardness of the 2-DLOG problem. On the other hand, it is not hard to see
that this problem is actually equivalent to the Computational Diffie-Hellman (CDH) problem. The
CDH problem was proven equivalent to the DLOG problem (i.e., 1-DLOG) in the AGM [FKL18],
suggesting that the bound of Bauer et al. might not be optimal with respect to the parameter q.5

1.1 Our Results

In this work, we provide stronger hardness results within the AGM, both for a new fine-grained Uber
family of problems in hidden-order groups that we put forth, and for the Uber family of problems in
bilinear groups.

1.1.1 Our Results for Fine-Grained Computations in Hidden-Order Groups

A fine-grained Uber family. As our first contribution, we present a univariate and fine-grained
variant of the Uber family of problems in hidden-order groups. Our family of problems generalizes the
repeated squaring function [RSW96], as well as well as a computational variant6 of the generalized
BBS problem underlying Boneh and Naor’s timed commitments [BBS86, BN00] and refinements
thereof [GMP+06] (see also [GJ02, GP03]). A problem in this family is parameterized by integers
u1, . . . , u` and an integer w, and requires that the adversary computes xw for a uniformly-chosen
group element x, given (xu1 , . . . , xu`) as input. Of course, if one can efficiently express w as a
linear combination of u1, . . . , u` with integer coefficients, then one can trivially compute xw from
(xu1 , . . . , xu`) using a polynomial number of group operations. Therefore, we carefully define what
it means for a strongly-algebraic algorithm to non-trivially solve a problem in our new Uber family,
also accounting for the possibility of parallel computations. Looking ahead, the repeated squaring
function is obtained by setting u1 = 1 and w = 2T , whereas the generalized BBS problem is obtained
by setting u1 = 0, ui = 22i−2 for i = 2, . . . , k + 2 and w = 22k+1 . Moreover, the repeated squaring
function cannot be trivially solved (according to our triviality notion) in less than T steps, whereas
the generalized BBS problem cannot be trivially solved is less than 2k steps.

The algebraic hardness of the fine-grained Uber problem. Within the strong AGM of Katz,
Loss and Xu [KLX20], we provide evidence for the hardness of our new family of problems. Firstly,
we present a general hardness result which may be applied in any cryptographic group, and prove
that the hardness of any problem in the fine-grained Uber family in a group G (i.e., the hardness

4The q-DLOG problem in a cyclic group G is defined as: Given a generator g and the q group elements gx, . . . , gx
q

for a randomly chosen x, compute x. Actually, in type 3 bilinear groups (see Section 2), Bauer et al. considered the
related (q1, q2)-DLOG problem (which we formally define in Section 5).

5Though in the specific case of the toy problem considered above, the result of Fuchsbauer, Kiltz and Loss [FKL18]
already shows it to be equivalent to the DLOG problem, this is not the case for general instances of the Uber family
in bilinear groups, motivating Theorem 1.3 below.

6In practice, one can always achieve pseudorandomness from this computational variant heuristically by applying
a cryptographic hash function (e.g., SHA) onto the output of the problem [BR93].
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of computing the target group element xw in a less-than-trivial number of steps), is implied by the
RSA assumption in the same group.

Theorem 1.1 (informal). Let G be a group, let ` ∈ N and let u1, . . . , u`, w ∈ Z. Let A be a strongly-
algebraic algorithm for the (u1, . . . , u`, w)-univariate fine-grained Uber problem in the group G, which
makes a less-than-trivial number of steps. Then, there exists an algorithm B for the RSA problem in
G whose running time and success probability are polynomially-related to those of A.

Theorem 1.1 immediately implies that any strongly-algebraic algorithm that computes the re-
peated squaring function in less than T steps in some group G, or solves the generalized BBS problem
in less than 2k steps, can be used in order to solve the RSA problem in the group. Note that Theorem
1.1 assumes nothing about the group G, and in particular can be applied in any group in which the
RSA assumption is believed to hold, such as RSA groups, class groups of imaginary quadratic num-
ber fields, and the group QRN with respect to arbitrary bi-prime moduli. Importantly, Theorem 1.1
provides evidence for the sequentiality of repeated squaring in class groups, as the RSA problem has
been considered and studied in these groups for a while now (see for example [BH01, BBH+02, DK02]
and the references therein), whereas the sequentiality of repeated squaring in these groups is a much
newer assumption [BBF18, Wes19]. As far as we are aware, this is the first result supporting the
sequentiality of repeated squaring in class groups.

Our second hardness result for the fine-grained Uber problem considers RSA groups with a
modulus N which is the product of two safe primes. Informally, within the strong AGM, we prove
that in such groups, the hardness of any problem in the fine-grained Uber family is implied by the
hardness of factoring N .

Theorem 1.2 (informal). Let N be the product of two safe primes and let ` ∈ N and let u1, . . . , u`, w ∈
Z. Let A be a strongly-algebraic algorithm for the (u1, . . . , u`, w)-univariate fine-grained Uber prob-
lem in Z∗N which makes a less-than-trivial number of steps. Then, there exists an algorithm B for
factoring N whose running time and success probability are polynomially-related to those of A.

Observe that Theorem 1.2 strictly strengthens the result of Katz, Loss and Xu [KLX20] in two
respects. Firstly, by considering our new fine-grained Uber family, which captures in particular
the sequentiality of the repeated squaring function (considered by Katz, Loss and Xu), but also
other problems, such as the generalized BBS problem [BN00]. Secondly, Theorem 1.2 considers RSA
groups with respect to moduli which are the product of two safe primes, whereas Katz, Loss and
Xu consider the group QRN with respect to the same family of moduli. Since a uniformly-random
element in Z∗N is in QRN with probability 1/4, the hardness of any problem within the fine-grained
Uber family with respect to Z∗N implies in particular its hardness with respect to QRN .

Interestingly, to the best of our knowledge, Theorems 1.1 and 1.2 are the first applications of
the algebraic group model (or a variant thereof) in non-cyclic groups. As far as we are aware, all
previous reductions in the AGM were either in cyclic groups of prime order or in the cyclic group
QRN where N is the product of two safe primes. Hence, our work exemplifies for the first time the
applicability of the AGM beyond cyclic groups.

1.1.2 Our Results for Bilinear Groups

The Algebraic Hardness of the Uber problem in bilinear groups. We strengthen the
characterization of Bauer, Fuchsbauer and Loss [BFL20] of the Uber family framework in bilinear
groups. Concretely, let ~F , ~H, ~K be vectors of polynomials and let Q1, Q2, QT be polynomials. We
prove that within the AGM, as long as these polynomials do not admit a trivial solution, the hardness
of their respective problem in the Uber family is implied by the q-DLOG assumption, where q is
lower bounded by the maximal degree in which a variable appears in ~F , ~H, ~K.
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Theorem 1.3 (informal). Let G be a bilinear group, let ~F , ~H, ~K be vectors of m-variate poly-
nomials and let Q1, Q2, QT be m-variate polynomials that do not admit a trivial solution to the
(~F , ~H, ~K,Q1, Q2, QT )-Uber problem. Let q be the maximal degree in which a variable appears in
~F , ~H, ~K. Then, for any algebraic algorithm A for the (~F , ~H, ~K,Q1, Q2, QT )-Uber problem in G,
there exists an algorithm B for the q-DLOG problem in one of the source groups, whose running time
and success probability are polynomially-related to those of A.

Theorem 1.3 strengthens the result by Bauer, Fuchsbauer and Loss, since the total degree of a
polynomial is always at least the degree of each variable in it, and in many typical cases it is indeed
strictly greater. For example, consider again our toy example from before: Given g, gx1 , gx2 , gx3 , gx1x3
and gx2x3 , compute gx1x2x3 . Since the polynomials defining the input elements of this problem are
all multilinear,7 Theorem 1.3 implies that within the AGM, its hardness is implied by the hardness
of the discrete logarithm problem. Recall that the result of Bauer et al. bases the hardness of the
aforesaid problem only on the hardness of the seemingly easier 2-DLOG problem.

Application: Group Key Exchange. The toy-problem example might seem contrived at first
sight, but it is actually a special case of the Group Computational Diffie-Hellman (G-CDH) prob-
lem, which underlies the highly-influential group key-exchange protocols of Bresson, Chevassut,
Pointcheval and Quisquater [BCP+01b, BCP01a, BCP07]. This problem is parameterized by an
integer n (which in group key-exchange applications represents the number of users in the group)
and a collection Γ of subsets of {1, . . . , n}. The adversary is given a generator g of the group, along-
side the group elements

{
g
∏
i∈S xi

}
S∈Γ

for uniformly-chosen x1, . . . , xn, and is asked to compute
gx1···xn . Typically, in group key-exchange protocols Γ includes at least one subset of size n − 1. In
such cases, Theorem 1.3 reduces the hardness of the (n,Γ)-G-CDH problem to the hardness of the
discrete logarithm problem, whereas the previous bound of Bauer et al. reduces it to the hardness
of the (n − 1)-DLOG problem, where n may be a very large integer and perhaps not even a-priori
bounded.

The decisional Uber problem in bilinear groups. As our second contribution in bilinear
groups, we extend Theorem 1.3 to the decisional setting. Within the decisional algebraic group model
(DAGM) of Rotem and Segev [RS20a] which we extend to accommodate analysis in asymmetric
bilinear groups, we prove that the hardness of the decisional Uber problem in bilinear groups is
implied by the hardness of the q-DLOG problem. Again, the parameter q in our results is the
maximal degree in which some variable appears in polynomials defining the problem.

Theorem 1.4 (informal). Let G be a bilinear group, let ~F , ~H, ~K be vectors of m-variate polynomials
and let QT be an m-variate polynomial which does not admit a trivial solution to the (~F , ~H, ~K,QT )-
Uber problem. Let q be the maximal degree in which a variable appears in ~F , ~H, ~K,QT . Then, for
any algorithm A for the decisional (~F , ~H, ~K,QT )-Uber problem in G, there exists an algorithm B for
the q-DLOG problem in one of the source groups, whose running time and success probability that
are polynomially-related to those of A.

The parameters ~F , ~H, ~K,QT play a similar role in the decisional setting to their role in the
computational setting; for a formal definition of the decisional Uber problem, see Appendix B.1.
Theorem 1.4 improves upon a result of Rotem and Segev [RS20a], who showed a similar result, but
in their work the parameter q is strictly greater than the maximal total degree of the polynomials
defining the problem.

7These are the polynomials X1, X2, X3, X1X3 and X2X3.
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1.2 Additional Related Work

Bauer, Fuchsbauer and Loss [BFL20] also considered additional variants of the (computational) Uber
problem in bilinear groups. Concretely, they proved that their result extends to: The flexible Uber
problem, in which the adversary can choose the target polynomials Q1, Q2, QT ; the Uber problem
for rational functions, in which the polynomials ~F , ~H, ~K,Q1, Q2 and QT are replaced by rational
functions; the Uber problem with decisional oracles, in which the adversary is given access to an
oracle for checking whether tuples of group elements satisfy a polynomial relation in the exponent;
and the flexible “GeGenUber” problem in which the adversary may choose the generators with respect
to which the problem is defined. It seems that the techniques used by Bauer et al. to extend their
results to all of the aforesaid variants can be used essentially as is in order to extend our results
(Theorems 1.3 and 1.4) to accommodate these variants as well, but we leave this task to future work.
We refer the reader to [BFL20] for a formal definition of these variants of the Uber problem and for
the techniques used by Bauer et al. in order to extend their result to these variants.

The concurrent work of van Baarsen and Stevens [vBS21] also considered reductions supporting
the sequentiality of repeated squaring in hidden-order groups. They propose a strengthening of the
strong algebraic group model and within it, they reduce the task of speeding up repeated squaring to
that of finding a multiple of the group’s order. It seems that the results of van Baarsen and Stevens are
incomparable to our results in hidden-order groups. On the one hand, we consider the more general
fine-grained Uber problem, which we put forth, while they only consider the repeated squaring
problem. Additionally, the model of van Baarsen and Stevens seems more restrictive for general
hidden-order groups. It assumes that either every algorithm receives as input a set of generators or
the ability to uniformly sample group elements (as discussed in their paper, the two assumptions
are essentially equivalent). This is essentially the case for Z∗N , but in general groups, this poses an
additional assumption. In contrast, our reduction from the RSA problem is algebraic and does not
require the ability to publicly sample uniformly-random group elements. It also works if the group
element x specifying the fine-grained Uber problem instance is sampled uniformly by the challenger
in a private-coin manner, or if it comes from a non-uniform distribution. In the latter case, we solve
that RSA problem for the same distribution. Finally, the reduction of van Baarsen and Stevens loses
a factor of n in running time, where n is an upper bound on the number of generators of the group.
Potentially, n can be as large as logarithmic in the order of the group. In comparison, our reductions
are essentially tight. On the other hand, the reduction of van Baarsen and Steve is from the problem
of finding the group’s order, which is harder than the RSA problem we consider in general groups.
In particular, their result establishes the equivalence, within the strong AGM (which is equivalent to
their strengthened model in Z∗N , where sampling is easy), of speeding up repeated squaring in RSA
groups and factoring the RSA modulus, for general bi-prime moduli (whereas we only establish this
equivalence when the modulus is the product of two safe primes).

Rotem and Segev [RS20b] put forth the notion of generic-ring delay functions within the generic
ring model of Aggarwal and Maurer [AM09], and the notion of a sequentiality depth of such functions.
Informally, they proved that in the ring ZN where N is an RSA modulus, generically computing a
generic-ring delay function in a number of steps which is less than its sequentiality depth is equivalent
to factoring the modulus N . In particular, they showed that this implies that within the generic ring
model, computing the repeated squaring function [RSW96] in ZN with respect to delay parameter T
in less than T sequential steps is equivalent to factoring. Their results are incomparable to ours for
several reasons. First, the generic ring model is incomparable to the strong AGM: On the one hand,
the generic ring model withholds the elements’ representation from the adversary (which the strong
AGM does not do); but on the other hand, it allows the adversary to apply all of the ring operation
onto pairs of ring elements, whereas the strong AGM requires that the adversary explains how its
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output was computed solely using the group operation. Secondly, Rotem and Segev only consider
RSA groups (within the ring ZN ), whereas Theorem 1.1 may be applied in any group. Finally, when
considering the specific case of RSA groups, our result (Theorem 1.2) is restricted to RSA groups
with respect to a modulus N which is the product of two safe primes, whereas the result of Rotem
and Segev is not.

1.3 Overview of Our Contributions

In this section we provide an informal overview of the main technical ideas underlying our contribu-
tions. We start by presenting the techniques we use to derive Theorems 1.1 and 1.2 in hidden-order
groups, and then move on to describe our techniques in bilinear groups for deriving Theorem 1.3.
For brevity, we do not discuss here how we extend Theorem 1.3 to the decisional setting to obtain
Theorem 1.4, and the reader is referred to Appendices A and B for details.

1.3.1 Our Reductions in Hidden-Order Groups

For simplicity of presentation in this informal overview, when presenting our reduction from the
factoring problem to the fine-grained Uber problem in RSA group (Theorem 1.2), and our reduction
from the RSA problem to the fine-grained Uber problem in general groups (Theorem 1.1), we restrict
our attention to the problem of speeding-up the repeated squaring function of Rivest, Shamir and
Wagner [RSW96]. The reader is referred to Section 4 for a formal definition of the fine-grained
Uber problem, and for our theorem statements and reductions in their full generality (applying to
all problems within the fine-grained Uber family, and not just to speeding-up repeated squaring).

The strong AGM. We prove our results for the fine-grained Uber problem in hidden-order groups
in the strong algebraic group model (the SAGM) put forth by Katz, Loss and Xu [KLX20]. Infor-
mally speaking, the SAGM strengthens the AGM, by requiring that whenever a strongly-algebraic
algorithm A outputs a group element y, it outputs alongside it not only a representation of it in the
basis of the input group elements, but also the entire sequence of group operations used to derive this
representation. An important feature of this model, is that the length of this sequence is dominated
by the running time of the algorithm. Hence, if we view the input elements to a strongly-algebraic
algorithm A as polynomials of degree at most d in some underlying indeterminates, then the output
y can be viewed as a polynomial of degree at most d2t in these indeterminates, where t is the running
time of A. This is the case since each group operation at most doubles the degree of the highest
degree polynomial in the computation up to it. Note that this observation remains true even if A
runs in time t on many processors that may perform group operations in parallel. See Section 3.2
for a formal definition of the model.

The reduction of Katz, Loss and Xu in QRN . Recall the reduction of Katz et al. from the
factoring problem to the problem of speeding-up the repeated squaring. They focused on the group
QRN of quadratic residues modulo N , for a modulus N which is the product of two safe primes;
that is N = (2p+ 1) · (2q+ 1), where p, q, 2p+ 1 and 2q+ 1 are all primes. Let T ∈ N and consider a
strongly-algebraic algorithm A, that given a uniformly random group element x ← QRN computes
x2T in time t < T . The reduction samples such an element x and invokes A on it. Since A is
strongly-algebraic, it produces alongside its output y an integer α ≤ 2t such that y = xα. Whenever
A succeeds in computing x2T , it means that xα = x2T , or equivalently, x2T−α = 1 (all equalities are
in the group QRN ). Since α ≤ 2t < 2T , this implies that ω = 2T − α is a non-zero multiple of the
order of x in QRN . The analysis of Katz et al. proceeds by observing that when N is the product
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of two safe primes, then almost all elements in the group are generators, and that the order of the
group is ϕ(N)/4 = p ·q, where ϕ(·) is Euler’s totient function. Thus, if A succeeds, then 4ω is almost
surely a multiple of ϕ(N), and the reduction is completed by invoking a well-known algorithm for
factoring N given a multiple of ϕ(N) (e.g., [KL14, Theorem 8.50]).

Our reduction in RSA groups (Theorem 1.2). Unlike in the group QRN , when moving to
consider the RSA group Z∗N , the group is no longer cyclic and hence a random element in the group
is never a generator. However, our generalization of the result of Katz et al. to the RSA group Z∗N
is based on the observation that their reduction actually does not rely on the fact that the sampled
x is a generator of QRN . Instead, it only uses the fact that with overwhelming probability over the
choice of x, its order satisfies a certain relation with ϕ(N). We use this observation to prove that the
reduction of Katz et al. can be applied not only in QRN when N is the product of two safe primes,
but also in Z∗N when N is of this form. Concretely, denoting N = (2p + 1) · (2q + 1), we use the
isomorphism of Z∗N to the product group Z2

2 ×Zp ×Zq in order to argue that almost all elements in
Z∗N have order either p · q = ϕ(N)/4 or order 2p · q = ϕ(N)/2. Therefore, it is still the case that
that whenever A succeeds in computing x2T , it must be that 4ω = 4(2T − α) is a multiple of ϕ(N)
and the correctness of the reduction follows.

Our reduction in general groups (Theorem 1.1). Let G be an abelian group. The goal of
our reduction is to solve the RSA problem in G, where the problem is parameterized by an integer
e which is coprime to the order of G. That is, given a uniformly random u ∈ G, we need to find a
group element w ∈ G such that we = u (meaning, w is the eth root of u). Let T ∈ N and consider a
strongly-algebraic algorithm A, that given a uniformly random group element x← G computes x2T

in time t < T . Our reduction starts by invoking A on input u (the input to the RSA problem). As
before, since A is strongly-algebraic, it produces alongside its output y an integer α ≤ 2t such that
y = uα. Following a similar argument as in the previous reduction, if y is indeed equal to u2T , then
ω = 2T − α is a non-zero multiple of the order of u in G. The new idea underlying our reduction
from the RSA problem, is that we can use this information about the order of u to find its eth root.
Suppose that we could find an inverse d of e modulo ω; i.e., an integer d satisfying ed = n ·ω+ 1 for
some integer n. Then, we would be done, since ud would be the eth root of u:(

ud
)e

= ued = un·ω+1 = (uω)n · u = 1 · u = u, (1.1)

where uω = 1 because ω is a multiple of u’s order. The problem is that e might not have an inverse
modulo ω, as the two integers might not be relatively prime. To remedy this situation, we factor
out from ω any common divisors that it shares with e, by computing ω′ = ω/gcd(ω, e). On the one
hand, we are now guaranteed that ω′ and e are coprime, and we can find an inverse d′ of e modulo
ω′. On the other hand, the key observation is that ω′ must still be a multiple of u’s order in G. This
is because e is coprime to the order of G and thus, by Lagrange’s theorem, it is also coprime to the
order of u. This means that if we write ω = order(u) · c for some integer c, then

ω′ =
ω

gcd(ω, e)
=

order(u) · c
gcd(order(u) · c, e)

= order(u) · c

gcd(c, e)

and ω′ is indeed a multiple of order(u). Hence, our reduction may simply output ud′ , and the same
analysis from Eq. (1.1) still applies, replacing ω and d with ω′ and d′ respectively.
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1.3.2 Our Reduction in Bilinear Groups

For simplicity of presentation, we focus here on the case of symmetric bilinear groups. In this setting,
we consider a single source group G of prime order p ∈ N that is equipped with a bilinear map e,
mapping pairs of elements in G2 to elements in a target group GT . We also restrict our attention
to a simple problem within the Uber family, referred to below as the (f, h)-Uber problem, as the
reduction in this case already captures the gist of the techniques used in our proof of Theorem 1.3.
In the (f, h)-Uber problem the adversary is given g and gf(~x) and is required to compute gh(~x)

T , where
g is a generator of G, gT = e(g, g) is a generator of GT , f and h are polynomials parameterizing the
problem, and ~x = (x1, . . . , xm) is a m-tuple of elements in Zp chosen independently and uniformly
at random. We assume that there are no integers α, β, γ ∈ Zp such that h = α + β · f + γ · f2 over
Zp, as otherwise the problem is trivial to solve and we cannot hope to reduce the q-DLOG problem
(or any other problem which we believe to be hard) to it.8 We start by recalling the reduction of
Bauer et al. [BFL20] and then move to describe our reduction and how it improves upon it.

The reduction of Bauer, Fucshbauer and Loss. Let A be an algebraic algorithm for the
(f, h)-Uber problem. The reduction receives as input g, gx, . . . , gxq for a uniformly sampled x← Zp,
and its goal is to find x. The idea of Bauer et al. was to have the reduction “plant” m independent
randomized versions of the secret exponent x as the m secret exponents in a random instance of the
(f, h)-Uber problem and then invoke A on this instance. This is done by sampling αi, βi ← Zp for
each i ∈ [m] and invoking A on input (g, gf(~x′)) where ~x′ = (α1 · x + β1, . . . , αm · x + βm). Since A
is an algebraic algorithm, it provides alongside its output y ∈ GT three integers α, β, γ ∈ Zp such

that y = e(g, g)α · e(g, gf(~x′))β · e(gf(~x′), gf(~x′))γ . Whenever A succeeds, it means that y = g
h(~x′)
T , and

hence, since gT is a generator of GT , we obtain that

h(~x′) = α+ β · f(~x′) + γ ·
(
f(~x′)

)2
. (1.2)

Observe that Eq. (1.2) is a univariate equation over the finite field Fp. Roughly speaking, the non-
triviality of the (f, h)-Uber problem guarantees that with overwhelming probability, Eq. (1.2) is
not the trivial equation. Therefore, the reduction simply uses any efficient polynomial factorization
algorithm (e.g., Berlekamp’s algorithm [Ber70, Rab80]) to find all solutions to Eq. (1.2) and then
checks each of them to see if it is the secret exponent x. Note that in order to compute gf(~x′) given
as input to A, the reduction needs access to g, gx, . . . , gxq for q that is the total degree of f .

Our improved reduction (Theorem 1.3). In order to reduce the parameter q needed by the
reduction, our idea is to plant the secret exponent x in place of just one of the exponents x1, . . . , xm
in a random instance of the (f, h)-Uber problem, and sample the rest of the exponents uniformly
at random. Concretely, our reduction samples a random index i∗ ← [m] and plants x instead of
xi∗ : It samples m − 1 additional values x1, . . . , xi∗−1, xi∗+1, . . . , xm ← Zp and invokes A on input
(g, gf( ~x′′)) where ~x′′ = (x1, . . . , xi∗−1, x, xi∗+1, . . . , xm). Observe that indeed, in order to compute
the group element gf( ~x′′) given as input to A, all the reduction needs is access to g, gx, . . . , gxq for a
parameter q which is at least the degree of xi∗ in f . In particular, the reduction can be efficiently
implemented as long as q is at least the maximal degree in which some variable appears in f . As
before, since A is algebraic, it outputs alongside its output y ∈ GT three integers α, β, γ ∈ Zp such

8If such integers existed, the adversary could simply compute and output e(g, g)α · e(g, gf(~x))β · e(gf(~x), gf(~x))γ .
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that y = e(g, g)α · e(g, gf( ~x′′))β · e(gf( ~x′′), gf( ~x′′))γ , and whenever y = g
h( ~x′′)
T , it holds that

h( ~x′′) = α+ β · f( ~x′′) + γ ·
(
f( ~x′′)

)2
. (1.3)

Alas, we can no longer simply solve Eq. (1.3) for x. The problem is that for our choice of
x1, . . . , xi∗−1, xi∗+1, . . . , xm, Eq. (1.3) might be a trivial equation, yielding no information about x.
Worse still, this situation may arise with high probability over the choice of i∗ and of x1, . . . , xi∗−1,
xi∗+1, . . . , xm. So instead, our reduction uses the following observation by Rotem and Segev [RS20a],
which in turn generalizes the previous work of Fuchsbauer, Kiltz and Loss [FKL18]. For a non-zero
polynomial `(X1, . . . , Xm) in the indeterminates X1, . . . , Xm, we define a cascade of multivariate
polynomials recursively: We set `1 = `; and for every i ∈ {2, . . . ,m}, we let `i(Xi, . . . , Xm) be the
first non-zero coefficient of `i−1(Xi−1, . . . , Xm), when `i−1 is written as a univariate polynomial in
the indeterminate Xi−1 with coefficients which are polynomials in Xi, . . . , Xm. Rotem and Segev
proved that for every vector ~z = (z1, . . . , zm) ∈ Zmp such that `(~z) = 0, there exists t∗ ∈ [m]
such that: The univariate polynomial v(X) = `t∗(X, zt∗+1, . . . , zm) is not the zero polynomial and
additionally v(zt∗) = 0.9 Using this observation, our reduction considers the m-variate polynomial

`( ~X) = α+ β · f( ~X) + γ ·
(
f( ~X)

)2
− h(X), and computes the polynomial `i∗(Xi∗+1, . . . , Xm) from

it as described by the above recursive procedure, where i∗ is the index sampled by the reduction
when preparing the (f, h)-Uber instance to A. It then factors the univariate polynomial v(X) =
`i∗(X,xi∗+1, . . . , xm) to find all of its roots, where xi∗+1, . . . , xm are the random Zp values chosen by
the reduction for generating the (f, h)-Uber instance. As for the success probability of the reduction,

whenever A succeeds in computing the gh( ~x′′)
T , it holds that ~x′′ is a root of the m-variate polynomial

`. By the observation of Rotem and Segev, this means that there is an index t∗ ∈ [m] such that
if the index i∗ guessed by the reduction matches it, then v(X) = `i∗(X,xi∗+1, . . . , xm) is not the
zero polynomial, and x is a root of it. Hence, if A succeeds and i∗ = t∗, then the reduction will
successfully retrieve the secret exponent x of the q-DLOG problem.

1.4 Paper Organization

The remainder of this paper is organized as follows. First, in Section 2 we present the basic notation
and algebraic background that are used throughout the paper. In Section 3 we present the algebraic
group model and its extension to bilinear groups and to the strong AGM. In Section 4 we present
our fine-grained Uber problem in hidden-order groups, and present and prove our security reductions
for it; and in Section 5 we present and prove our security reduction for the Uber problem in bilinear
groups. Our extension of the decisional AGM to asymmetric bilinear groups and our security reduc-
tion for the decisional Uber problem within this extension, can be found in Appendices A and B,
respectively.

2 Preliminaries

In this section we briefly review the basic notions and definitions that are used in this work. For
a distribution X we denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x from the uniform
distribution over X . For an integer n ∈ N, we use the notation [n] to denote the set {1, . . . , n}.

9Fuchsbauer, Kiltz and Loss [FKL18] essentially observed that this holds for bi-linear polynomials to reduce the
hardness of the Computational Diffie-Hellman (CDH) problem to that of the discrete log problem within the AGM.
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Group notation. For a group G we denote by order(G) the order of the group. As all groups
considered in this paper are finite, this is simply the number of elements in the group. We will
assume (often without noting it explicitily) that in all groups considered in this paper, the group
operation can be implemented in time polylogarithmic in order(G). We also abuse notation and for
a group element X ∈ G, we denote by order(X) the order of X in G; that is, order(X) is the minimal
integer m such that Xm = 1G where 1G is the identity of the group.

2.1 Bilinear Groups

In considering bilinear groups we follow the notation [BFL20]. A description of a bilinear group G
consists of a tuple (G1,G2,GT , g1, g2, e, φ, ψ, p) such that

• G1,G2 and GT are all cyclic groups of prime order p ∈ N.

• g1 is a generator of G1 and g2 is a generator of G2.

• e is a non-degenerate bilinear map from G1×G2 to GT : For every g ∈ G1, h ∈ G2 and x, y ∈ Zp,
it holds that e(gx, hy) = e(g, h)xy. Moreover, if g generates G1 and h generates G2, then e(g, h)
generates GT .

• φ is an isomorphism from G1 to G2, and ψ is an isomorphism from G2 to G1.

We always assume that the group operations in G1,G2 and in GT are computable in time polylog-
arithmic in p, and so is the bilinear map e. As is standard, we differentiate between three types of
bilinear groups according to whether the isomorphisms between the two source groups are efficiently-
computable (i.e., in time polylogarithmic in p) or not:

• Type 1: In this case, both φ : G1 → G2 and ψ : G2 → G1 are efficiently-computable. Note
that this type includes in particular the case of symmetric bilinear groups, in which G1 = G2.

• Type 2: The isomorphism ψ : G2 → G1 is efficiently-computable, but it is assumed that there
is no efficiently computable isomorphism from G1 to G2. In this case φ = ⊥ in the description
G.

• Type 3: It is assumed that there are no efficiently computable isomorphisms from G1 to G2

and vice versa. In this case φ = ψ = ⊥ in the description G.

In actual instantiation of cryptographic primitives that rely on cyclic groups, a description G of a
bilinear group is usually generated via a group-generation algorithm GroupGen(1λ), where λ ∈ N
is the security parameter that determines the bit-length of the prime p. However, we will abstract
this fact away in the paper, since our reductions hold even when underlying group is fixed. We will
only assume that in cases where we consider groups of type 1 or 2 it is the case that g1 = ψ(g2).
Throughout the paper, we will also use the notation gT = e(g1, g2).

2.2 RSA Groups and Factoring

The description of the RSA group Z∗N for a bi-prime modulus N is comprised solely of the modulus
N . We will use the following formalization in order to reason about ensembles of RSA moduli and the
hardness of finding their factorizations. Let ModGen be a probabilistic polynomial-time algorithm,
which takes as input the security parameter λ ∈ N, and outputs a bi-prime modulus N = p · q.
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Definition 2.1. The factoring assumption holds with respect to modulus generation algorithm
ModGen if for every probabilistic polynomial time algorithm A, there exists a negligible function ν(·)
such that

Pr

[
p′ · q′ = N
p′, q′ ∈ {2, . . . , N − 1}

∣∣∣∣ N ← ModGen(1λ)
(p′, q′)← A(N)

]
≤ ν(λ),

for all sufficiently large λ ∈ N.

Our reductions will work per modulus, and hence we will abstract away the generation of the
modulus via ModGen. For a bi-prime integer N and an algorithm A we will use the notation

AdvFactorN
A

def
= Pr

[
p′ · q′ = N
p′, q′ ∈ {2, . . . , N − 1}

∣∣∣∣ (p′, q′)← A(N)

]
.

A useful lemma. The order of an RSA group Z∗N is ϕ(N) where ϕ(·) is Euler’s totient function.
Lemma 2.2 formalizes a well-known result, stating that N can be efficiently factored given any
positive multiple of ϕ(N) (see for example [KL14, Theorem 8.50]).

Lemma 2.2. There exists an algorithm F such that for every primes p, q and N = p ·q, and for every
α ∈ Z+, it holds that when invoked on input (N,α ·ϕ(N)), F runs in time O(logα · poly(logN)) and
outputs the factorization of N with probability at least 1/2.

Using safe primes. We will focus on the case in which the RSA modulus N is the product of two
safe primes. That is, N = p′ · q′, such that p′ and q′ are primes and there exist primes p and q for
which p′ = 2p+ 1 and q′ = 2q + 1. In this case, the order of the RSA group Z∗N is ϕ(N) = 4 · p · q.
Looking ahead, this fact imposes a relatively simple subgroup structure on the group Z∗N ; a fact that
will prove useful in Section 4.3.

3 The Algebraic Group Model

In this Section we define the algebraic group model. We begin with the simplest definition of
Fuchsbauer, Kiltz and Loss [FKL18], and then move on to consider a generalization of the model
to bilinear groups [MTT19, BFL20], and a strengthening of the model which allows one to reason
about fine-grained complexity [KLX20].

Algebraic security games. Notions of security within the algebraic-group model are formalized
using “security games”, following the classic framework of Bellare and Rogaway [BR06]. A game G is
parameterized by a set par of public parameters, and is comprised of an adversary A interacting with
a challenger via oracle access. Such a game is described by a main procedure and possibly additional
oracle procedures, which describe the manner in which the challenger replies to oracle queries issued
by the adversary. We denote by Gpar a game G with public parameters par, and we denote by
GA
par the output of Gpar when executed with an adversary A (note that GA

par is a random variable
defined over the randomness of both A and the challenger). We emphasize that the parameters par
are always given to the adversary as input, and we will not note this explicitly in the games we
will consider. For example, if the parameters par include generators g1, g2 of the source groups of a
bilinear group, then the adversary is always given these generators as input, even when this is not
noted explicitly. We denote by Time

Gpar

A the worst-case running time of Gpar when executed with
an adversary A. An adversary A participating in a game Gpar is said to win whenever GA

par = 1,

and the advantage of A in Gpar is defined as Adv
Gpar

A
def
= Pr

[
GA
par = 1

]
.

11



All security games in this paper are algebraic, which means that their public parameters consist
of a cryptographic group G, and potentially additional parameters. We already covered what G
consists of in the case of bilinear groups and RSA groups, but in Section 4.2 we will not restrict
ourselves to any particular group. In these sections, as in the case of bilinear groups and RSA groups,
our reductions will work per group, and hence we will not consider the group generation algorithm
explicitly.

Similarly to Fuchsbauer et al. we use boldface upper-case letters (e.g., Z) to denote group elements
in algebraic games, in order to distinguish them from other variables in the game. Figure 1 exemplifies
the notion of an algebraic game by describing the games associated with the RSA problem and with
the q-Discrete Logarithm problem that we consider in subsequent sections.

RSAA
G,e

1. Y ← G
2. X← A(Y)

3. If Xe = Y output 1, and oth-
erwise output 0

q-DLOGA
G

1. x← Zp
2. Xi := gx

i

for all i ∈ [q]

3. x′ ← A(g,X1, . . . ,Xq)

4. If x′ = x output 1, and otherwise
output 0

Figure 1: Examples of algebraic games relative to an adversary A. The game RSAA
G,e (on the left) captures the RSA

problem relative to a group G and a public exponent e. The game q-DLOGA
G (on the right) captures the q-Discrete

Logarithm problem in a cyclic group G whose description G = (G, g, p) is comprised of a description of the group itself,
a generator g and the group’s order p.

Algebraic algorithms. Fuchsbauer et al. [FKL18] presented the following notion of algebraic
algorithms. Roughly speaking, an algorithm A is algebraic if whenever it outputs a group element
Z, it also outputs a representation of this element in the basis comprised of all group elements A has
observed (i.e., received as input or as an incoming message from the challenger) so far.

Definition 3.1 ([FKL18]). Let G be a group. An algorithm A participating in an algebraic game
relative to G is said to be algebraic if whenever A outputs a group element Z ∈ G, it also outputs a
vector ~z = (z1, . . . , zk) ∈ Nk such that Z =

∏k
i=1 X

zi
i , where X1, . . . ,Xk are the group elements that

A has received so far.

Observe that when working over groups with publicly-known order p (i.e., p is included in the
description of the group), then we can assume without loss of generality that all integers in the vector
~z are in fact in Zp. We will sometimes implicitly make this assumption when discussing our results
within the bilinear algebraic group model. This assumption is indeed without loss of generality since
by basic group theory, if ~z satisfies the condition in Definition 3.1, then it would also satisfy it when
reducing all elements of z modulo p.

3.1 The Bilinear Algebraic Group Model

Bauer, Fuchsbauer and Loss [BFL20] extended the algebraic group model to algebraic algorithms
which are executed in algebraic games with respect to bilinear groups (following Mizuide, Takayasu
and Takagi who considered symmetric bilinear groups [MTT19]). Informally, an algorithm in such
games is said to be algebraic, if whenever it outputs a group element Z (in either one of the source
groups or in the target group), it also outputs a representation of this element in terms of group
elements which it received so far in the game, explaining how Z was computed via the group operation
and possibly the bilinear map e.
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Definition 3.2. Let τ ∈ {1, 2, 3}, and let G = (G1,G2,GT , g1, g2, e, φ, ψ, p) be a description of a
bilinear group. An algorithm A participating in an algebraic game G with parameters G is said to
be algebraic if whenever A outputs a group element Z ∈ G1 ∪G2 ∪GT , it also provides an additional
output as follows. Let X1, . . . ,X` ∈ G1, Y1, . . . ,Ym ∈ G2 and W1, . . . ,Wt ∈ GT be the group
elements received by A in G so far. Then, A also outputs vectors ~v, ~w, ~u,~s, ~r ∈ Z∗p and matrices
A = (ai,j), B = (bi,j) and C = (ci,j) such that:

• If Z ∈ G1:

– If τ ∈ {1, 2}, then Z =
∏
iX

vi
i ·
∏
i ψ(Yi)

wi .

– If τ = 3, then Z =
∏
iX

vi
i .

• If Z ∈ G2:

– If τ = 1, then Z =
∏
i φ(Xi)

ui ·
∏
iY

si
i .

– If τ ∈ {2, 3}, then Z =
∏
iY

si
i .

• If Z ∈ GT :

– If τ = 1, then Z =
∏
i,j e(Xi,Yj)

ai,j ·
∏
i,j e(Xi, φ(Xj))

bi,j ·
∏
i,j e(ψ(Yi),Yj)

ci,j ·
∏
iW

ri
i .

– If τ = 2, then Z =
∏
i,j e(Xi,Yj)

ai,j ·
∏
i,j e(ψ(Yi),Yj)

ci,j ·
∏
iW

ri
i .

– If τ = 3, then Z =
∏
i,j e(Xi,Yj)

ai,j ·
∏
iW

ri
i .

3.2 The Strong Algebraic Group Model

In order to reason about fine-grained computations, Katz, Loss and Xu [KLX20] introduced the
strong algebraic group model. This model strengthens the standard algebraic group model by re-
quiring that whenever a strongly-algebraic algorithm outputs a group element Z, it outputs alongside
it a complete account of how this element was algebraically computed from the input elements. The
definition also accounts for the possibility of algorithms with parallel processors in order to reason
about the sequentiality of fine-grained computations.

Definition 3.3. Let G be a group and let p ∈ N. An algorithm A participating in an algebraic
game relative to G is said to be strongly algebraic with parallelism p if whenever A outputs a group
element Z ∈ G, it also outputs an ordered list U = ( ~u1, . . . , ~ut) such that the following holds:

1. For each i ∈ [t], the vector ~ui contains at most p tuples of the following form:
(a) (X,X1,X2) ∈ G3, where X = X1 ·X2 and each of X1 and X2 was either given as input

to A, or appeared in a tuple in ~uj for some j < i.
(b) (X,X1) ∈ G2, where X = X−1

1 and X1 was either given as input to A, or appeared in a
tuple in ~uj for some j < i.

2. ~ut contains a tuple of the form (Z,X1,X2) or (Z,X1).

Running time in the strong algebraic group model. Following Katz, Loss and Xu, we will
refer to the length of the list U outputted by a strongly-Algebraic algorithm (the integer t in Definition
3.3) as the number of sequential algebraic “steps” that it makes. We differentiate between the number
of algebraic steps and any additional computation that the algorithm might make, measured in some
underlying computational model. To this end, we will express the running time of such algorithms
as a pair, and say that a strongly-algebraic algorithm runs in time (tA, tC) if it makes at most
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tA algebraic steps, and runs in time at most tC measured in the underlying computational model.
For a strongly-algebraic algorithm A participating in a game G with respect to a group G, we will
denote this by (tA, tC) = TimeGG

A . In some of the security games that we consider, an adversary
will be comprised of two algorithms – a preprocessing algorithm and an online algorithm. In such
cases, for an adversary A = (A0,A1), we will use the notation (tA, tC) = TimeGG

A to imply that
tA is the total number of algebraic steps that A0 and A1 make in the game, and tC is the total
running time of A0 and A1 in the underlying computational model. Since in all of these cases, the
preprocessing algorithm A0 will not receive group elements as input, tA will actually measure the
number of algebraic steps made solely by A1.

4 A Fine-Grained Uber Assumption in Hidden-Order Groups

In this section we present our fine-grained variant of the uber assumption in groups of hidden order.
We then discuss how this assumption generalizes the repeated squaring assumption of Rivest, Shamir
and Wagner [RSW96], and the generalized BBS assumption put forth by Boneh and Naor [BN00].
Then, we show that within the strong algebraic group model, this general and strong assumption is
in fact implied by the RSA assumption; and that in the specific case of certain RSA groups, it is
implied by the hardness of factoring.

4.1 The Univariate Fine-Grained Uber Problem

The univariate fine-grained Uber problem is parameterized by a vector ~u ∈ Zn (which correspond to
the input elements) and an integer w ∈ Z (which corresponds to the target element). Informally, the
adversary is comprised of two algorithms: A preprocessing algorithm and an online algorithm. The
preprocessing algorithm receives the public parameters (which include the group’s representation)
and outputs some state st. The online algorithm receives as input the state st and n group elements
of the form Xui (for i = 1, . . . , n) and her goal is to compute Xw. The problem is formally defined
in Figure 2.

(~u,w)-UFGUBERA
G

1. st← A0

2. X← G
3. For i = 1, . . . , n, Yi = Xui

4. Z = Xw

5. Z′ ← A1(st,Y1, . . . ,Yn)

6. If Z′ = Z output 1, and otherwise output 0

Figure 2: The game (~u,w)-UFGUBERA
G which captues the univariate fine-grained uber problem. The game is

defined with respect to a group G and a pair A = (A0,A1) of algorithms, where A0 is the preprocessing algorithm and
A1 is the online algorithm.

We emphasize that ~u and w are publicly known as part of the public parameters of the problem.
Hence, there are choices of ~u and of w for which the adversary can always compute the target element
from the input elements (indeed, these will be the cases of interest in this section). However, we will
be interested in the exact time (or, more precisely, the number of algebraic steps) that the adversary
makes in order to compute the target element. What we wish to show is that an adversary that
computes the target element in less than the “trivial” time in which this can be done, can be turned
into an adversary for breaking the RSA assumption in the group. So we first have to define what we
mean by “trivial”.
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Intuitively, for integers w, p and t and a vector ~u of integers, we will say that the pair (~u,w) is
(p, t)-trivial, if it is possible to obtain w from ~u in depth t with parallelism p, using binary addition
and unitary sign change operations. This is formally captured by Definition 4.1.

Definition 4.1. Let ~u ∈ Zn and w ∈ Z and let p, t ∈ N. We say that the pair (~u,w) is (p, t)-trivial
if there exists an ordered list V = (~v1, . . . , ~vt) such that the following holds:

1. For each i ∈ [t], the vector ~vi contains at most p tuples of the following form:
(a) (a, a1, a2) ∈ Z3, where a = a1 + a2 and each of a1 and a2 is either equal to uj for some

j ∈ [n], or appeared in a tuple in ~vm for some m < i.
(b) (a, a1) ∈ Z2, where a = −a1 and a1 is either equal to uj for some j ∈ [k], or appeared in

a tuple in ~vm for some m < i.
2. ~vt contains a tuple of the form (w, a1, a2) or (w, a1).

We say that the game (~u,w)-UFGUBER is (p, t)-trivial if (~u,w) is (p, t)-trivial. Roughly
speaking, with this terminology in mind, the univariate fine-grained uber assumption with respect to
some group G is that no t-time algorithm with parallelism p can win in the game (~u,w)-UFGUBER
if (~u,w) is not (p, t)-trivial.

Relation to other fine-grained problems. In Figure 3 we define the games T -RSW and T -
BBS which capture the repeated squaring problem of Rivest, Shamir and Wagner [RSW96], and
a strengthening thereof considerd by Boneh and Naor [BN00], respectively. In both games, the
adversary consists of a preprocessing algorithm who receives the group representation and outputs
some state st, as well as an online algorithm. In T -RSW the online algorithm receives the state st
and a uniformly sampled group element X and needs to compute X2T . Observe that this is indeed
a special case of (~u,w)-UFGUBER, in which ~u = (1) and w = 2T . Further note that the T -RSW
problem is (1, T )-trivial per Definition 4.1; but for every p ∈ N, T -RSW is not (p, t)-trivial for any
t < T .

In T -BBS, the online adversary receives the state st and T+1 group elementsX,X2,X4, . . . ,X22
i

,

. . . ,X22
T

for a uniformly chosen group elementX, and her goal is to computeX22
T+1

.10 Observe that
this is indeed a special case of (~u,w)-UFGUBER, in which ~u = (1, 2, 4, . . . , 22T ) and w = 22T+1 .
Additionally, observe that the T -BBS problem is (1, 2T )-trivial per Definition 4.1; but for every
p ∈ N, T -BBS is not (p, t)-trivial for any t < 2T .

4.2 From RSA to Univariate Fine-Grained Uber in General Groups

In this section we prove that within the strong algebraic group model, the hardness of the univariate
fine-grained uber problem (for non-trivial parameters) with respect to a group G is implied by
the hardness of the RSA problem in this group (recall Figure 1). That is, given any strongly-
algebraic algorithm A which makes t algebraic steps with parallelism p and wins in the game (~u,w)-
UFGUBER (for any (~u,w) which is is not (p, t)-trivial) in a group G, we construct an algorithm
which runs in roughly the same time and wins in the game RSAG,e (for any exponent e which is
co-prime to the order of the group).

10Boneh and Naor actually considered a decisional variant of this problem, in which the adversary needs to distinguish

between X22
T+1

and the square of a uniformly-random element in the group. As mentioned in Section 1, in practice,
such indistinguishability-based hardness can be achieved heuristically from the computational variant that we consider,

by applying a cryptographic hash function onto X22
T+1

and squaring the result [BR93].
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T -RSWA
G

1. st← A0

2. X← G
3. W′ ← A1(st,X)

4. W := X2T

5. If W′ = W output 1, and
otherwise output 0

T -BBSA
G

1. st← A0

2. X← G
3. W′ ← A1(st,X2, . . . ,X22

i

, . . . ,X22
T

)

4. W := X22
T+1

5. If W′ = W output 1, and otherwise output 0

Figure 3: The games T -RSWA
G and T -BBSA

G capturing the RSW problem and the BBS problem with respect to a
parameter T , a group G and an adversary A = (A0,A1).

Theorem 4.2. Let G be a group, let e < order(G) be an integer co-prime to order(G), let n, p ∈ N, let
~u ∈ Zn and let w ∈ Z. For every pair A = (A0,A1) of strongly-algebraic algorithms with parallelism p,
there exists an algorithm B such that the following holds: If (~u,w) is not (p, tA)-trivial for (tA, tC) =

Time
(~u,w)-UFGUBERG
A , then Adv

RSAG,e
B ≥ ε and Time

RSAG,e
B = tC + tA · p · poly(log(order(G))),

where ε = Adv
(~u,w)-UFGUBERG
A .

We stress that since A0 does not take any group elements as input, tA in the statement of Theorem
4.2 is the number of sequential algebraic steps taken by A1. Before presenting the proof of Theorem
4.2, we make the following observation. Consider a strongly-algebraic algorithm A which receives as
input n group elements X1, . . . ,Xn and outputs a group element Z within tA algebraic steps. Since
A is strongly algebraic, it also outputs an ordered list V = (~v1, . . . , ~vtA), where each ~vi is a vector
of tuples as defined in Definition 3.3. The observation is that given V , one can efficiently compute
integers z1, . . . , zn ∈ Z such that Z =

∏n
i=1 X

zi
i . This is done via the following recursive process that

attributes a vector ~y ∈ Zn to every group element in every tuple in ~vi for every i ∈ [tA]:

• To every input element Xj we attribute the vector ~yj with 1 in its j-th entry and 0 everywhere
else.

• To every tuple of group elements in ~vi (for i ∈ [tA]): If the tuple is of the form (Y,Y1,Y2),
then we attribute to Y the vector ~y = ~y1 + ~y2, where ~y1 and ~y2 are the vectors attributed to
Y1 and to Y2, respectively. If the tuple is of the form (Y,Y1), then we attribute to Y the
vector ~y = −~y1, where ~y1 is the vector attributed to Y1.

Since by Definition 3.3, the vector ~vtA must contain a tuple of the form (Z,Y1,Y2) or (Z,Y1), then
we obtain a representation ~z = (z1, . . . , zn) as required (if ~vtA contains more than one tuple of these
forms, we pick the first such tuple in ~vtA). We denote the above process of extracting from V the
vector ~z for Z by ~z = Ext(Z, V ). We now turn to the proof of Theorem 4.2.

Proof. Let A = (A0,A1) be a pair of strongly-algebraic algorithms as in the statement of Theorem
4.2. Consider the algorithm B participating in RSAG,e.

Algorithm B

Input: A group elements S uniformly sampled by the challenger from G.

1. Invoke st← A0

2. For i = 1, . . . , n, compute Yi = Sui .

3. Invoke A1(st,Y1, . . . ,Yn) to obtain a group element Z and an ordered list V = (~v1, . . . , ~vt),
where each ~vi is a vector of tuples as defined in Definition 3.3. Compute ~z = Ext(Z, V ).
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4. Compute a = |w −
∑n
i=1 ui · zi|.

5. Compute b = gcd(a, e) and a′ = a/b.

6. Compute d = e−1 mod a′.
[that is, d is the inverse of e modulo a′; meaning d · e = 1 mod a′]

7. Output X = Sd.

Let ε = Adv
(~u,w)-UFGUBERG
A and (tA, tC) = Time

(~u,w)-UFGUBERG
A . By definition of B, when-

ever A1 succeeds in outputting Z which is equal to Sw (in the simulated instance of the (~u,w)-
UFGUBERG problem), it holds that

Sw =
n∏
i=1

Yzi
i =

n∏
i=1

(Sui)zi = S
∑n
i=1 ui·zi . (4.1)

Rearranging equality (4.1), we get that

Sw−
∑n
i=1 ui·zi = 1G, (4.2)

where 1G is the identity element of G. By assumption, (~u,w) is not (p, tA)-trivial, and hence it holds
that w 6=

∑n
i=1 ui · zi. Assume without loss of generality that w >

∑n
i=1 ui · zi (the proof in case

that
∑n

i=1 ui · zi > w is symmetric). Then, a = w −
∑n

i=1 ui · zi (where a is as computed by B in
Step 4), and it holds that

a 6= 0 ∧ Sa = 1G. (4.3)

This means that order(S) divides a, so we can write a = c · order(S) for some positive integer c.
Since e is co-prime to order(G), by Lagrange’s theorem, it is also co-prime to order(S). Hence,
b = gcd(a, e) = gcd(c, e), and hence

a′ = a/b = order(S) · c/b = order(S) · c/gcd(c, e) = c′ · order(S) (4.4)

for some positive integer c′, where b and a′ are as computed by B in Step 5. Moreover, e is co-prime
to a′, and hence e is indeed invertible modulo a′. This means that d (as computed by B in Step 6)
is well-defined, and that there exists an integer m so that e · d = m · a′ + 1 = m · c′ · order(S) + 1.
Hence, in case A succeeds, the output X = Sd of B indeed satisfies:

Xe = Sd·e = Sd·e mod order(S) = Sm·c
′·order(S)+1 mod order(S) = S1 = S. (4.5)

We showed that whenever A wins in the simulated instance of the game (~u,w)-UFGUBERG, B
wins in RSAG,e. Observe that B perfectly simulates the game (~u,w)-UFGUBERG to A, and hence
Adv

RSAG,e
B ≥ ε, as required.

4.3 From Factoring to Univariate Fine-Grained Uber in RSA groups

In this section we restrict our attention to RSA groups of the form Z∗N where the modulus N is
the product of two safe primes p′ = 2p + 1 and q′ = 2q + 1 (recall our discussion in Section 2.2).
Concretely, we prove that within the strong algebraic group model, the hardness of the univariate
fine-grained uber problem (for non-trivial parameters) with respect to a group Z∗N is implied by the
hardness of factoring the modulus N . That is, given any strongly-algebraic algorithm A which makes
t algebraic steps with parallelism p and wins in the game (~u,w)-UFGUBER (for any (~u,w) which
is is not (p, t)-trivial) in Z∗N , we construct an algorithm which runs in roughly the same time and
factors N .
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Theorem 4.3. Let p′, q′, p, q be primes such that p′ = 2p+ 1 and q′ = 2q+ 1, and let N = p′ · q′. Let
n, k ∈ N, let ~u ∈ Zn and let w ∈ Z. For every pair A = (A0,A1) of strongly-algebraic algorithm with
parallelism k, there exists an algorithm B such that the following holds: If (~u,w) is not (k, tA)-trivial
for (tA, tC) = Time

(~u,w)-UFGUBERN

A , then AdvFactorN
B ≥ ε/2− (3p+ 3q)/8pq and TimeFactorNB =

tC + tA · k · poly(log(pq)), where ε = Adv
(~u,w)-UFGUBERN

A .

The proof of Theorem 4.3 relies on Lemma 2.2 and on Lemma 4.4 which can be found below. In
the latter, we prove that when N is the product (2p + 1) · (2q + 1) of two safe primes, almost all
elements in Z∗N have order at least p · q.

Lemma 4.4. Let p′, q′, p, q be primes such that p′ = 2p + 1 and q′ = 2q + 1, and let N = p′ · q′.
Then,

Pr
X←Z∗N

[order(X) < p · q] =
3 · p+ 3 · q − 2

4 · p · q
.

Proof. We first note that

Z∗N ∼= Z∗p′ × Z∗q′ (4.6)
∼= Z2p × Z2q (4.7)
∼= Z2 × Zp × Z2 × Zq, (4.8)

where Eq. (4.6) and Eq. (4.8) follow from the Chinese remainder theorem, and Eq. (4.7) holds since
p′ and q′ are prime; hence, the groups Z∗p′ and Z∗q′ are cyclic and therefore isomorphic to the additive
groups Zp′−1 and Zq′−1, respectively.

So in order to count the number of elements of order d ∈ N in Z∗N , we can count the number of
quadruples (x1, x2, x3, x4) ∈ Z2×Zp×Z2×Zq such that LCM(d1, d2, d3, d4) = d, where LCM stands
for the least common multiple, and for each i ∈ [4], di is the order of xi in its respective additive
group. Using this analysis, an element of order p in Z∗N must correspond to a quadruple of the form
(0, y, 0, 0) for some y ∈ Zp \ {0}. There are p − 1 such quadruples and therefore there are p − 1
elements of order p in Z∗N . Similarly an element of order 2p in Z∗N must correspond to a quadruple
of the form (1, y, 0, 0) or (0, y, 1, 0) for some y ∈ Zp \ {0}. There are 2p − 2 such quadruples and
therefore there are 2p − 2 elements of order 2p in Z∗N . The same analysis shows that Z∗N contains
q − 1 elements of order q; 2q − 2 elements of order 2q; 3 elements of order 2; 1 element of order 1;
and no elements of order 4p or 4q. By Lagrange’s theorem, all remaining elements of order at least
p · q.

Overall, we counted a total of 3p+ 3q− 2 elements of orders strictly less than p · q, out of a total
of ϕ(N) = 4 · p · q group elements in Z∗N .

Equipped with these two lemmata, we turn to prove Theorem 4.3. The reduction follows the
two-step approach of Katz, Loss and Xu [KLX20]: First extract a multiple of ϕ(N) from a successful
adversary A, and then use Lemma 2.2 to factor N . In our case, however, the analysis of the first
(and main) step is more involved and relies on Lemma 4.4, which Katz et al. do not require.

Proof of Theorem 4.3. Let A = (A0,A1) be a pair of strongly-algebraic algorithm taking part
in (U, ~w)-FGUBERN as in the statement of Theorem 4.3. Consider the following algorithm B
attempting to factor N .
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Algorithm B

Input: The integer N .

1. Sample x← ZN \ {0}.

2. If x divides N , output {x,N/x} and terminate. Otherwise, set X = x.
[in case x does not divide N it is indeed an element of the group Z∗N and so we switch to a boldface
letter to describe it]

3. Invoke st← A0

4. For i = 1, . . . , n, compute Yi = Xui .

5. Invoke A(st,Y1, . . . ,Yn) to obtain a group element Z and an ordered list V = (~v1, . . . , ~vt), where
each ~vi is a vector of tuples as defined in Definition 3.3. Compute ~z = Ext(Z, V ).

6. Compute a = 4 · |w −
∑n
i=1 ui · zi|.

7. Invoke F(N, a), where F is the algorithm guaranteed by Lemma 2.2. If F succeeds in outputting
a pair {r, s}, verify that N = r · s, and if that is the case, output {r, s}. Otherwise, output ⊥
and terminate.

Let AWin denote the event in which A1 outputs Z satisfying Z = xw (in the execution of
(~u,w)-UFGUBERN simulated to it by B). Note that whenever x (sampled by B in Step 1) is
in ZN \ (Z∗N ∪ {0}), B factors N with probability 1. Hence,

Pr
x←ZN

[
FactorBN = 1

]
≥ Pr

X←Z∗N

[
FactorBN = 1

]
≥ Pr

X←Z∗N

[
FactorBN = 1

∣∣∣∣ AWin
order(X) ≥ p · q

]
· Pr
X←Z∗N

[
AWin

order(X) ≥ p · q

]
≥ 1

2
· Pr
X←Z∗N

[
AWin

order(X) ≥ p · q

]
, (4.9)

where all probabilities are also over the randomness of A0, A1 and the randomness of F. Eq. (4.9)
holds since conditioned on AWin, it holds that

Xw = X
∑n
i=1 ui·zi . (4.10)

This in turn means that

Xw−
∑n
i=1 ui·zi = 1G. (4.11)

By assumption, (~u,w) is not (k, tA)-trivial, and hence it holds that w 6=
∑n

i=1 ui ·zi. Assume without
loss of generality that w >

∑n
i=1 ui · zi (the proof in case that

∑n
i=1 ui · zi > w is symmetric). Then,

w −
∑n

i=1 ui · zi is a multiple of the order of X. Since we also conditioned on order(X) ≥ p · q, the
order of X is either p · q or 2 · p · q. Hence, in this case it holds that a = 4 · (w −

∑n
i=1 ui · zi) (as

computed by B in Step 6) is a multiple of order(Z∗N ) = 4 · p · q. Therefore, Lemma 2.2 implies that in
this case, in Step 7 of B, the algorithm F successfully outputs the factorization of N with probability
at least 1/2, implying Eq. (4.9) above.

We are left with bounding Pr [AWin ∧ order(X) ≥ p · q] from Eq. (4.9). By total probability and
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the union bound, it holds that

Pr
X←Z∗N

[
AWin

order(X) ≥ p · q

]
≥ Pr

X←Z∗N
[AWin]− Pr

X←Z∗N
[order(X) < p · q]

≥ ε− Pr
X←Z∗N

[order(X) < p · q] (4.12)

≥ ε− 3 · p+ 3 · q − 2

4 · p · q
, (4.13)

where Eq. (4.12) follows from the fact that conditioned on X being in Z∗N , B perfectly simulates
(U, ~w)-FGUBERN to A; and Eq. (4.13) holds by Lemma 4.4. This concludes the proof the theorem.

5 The Algebraic Hardness of the Uber Problem in Bilinear Groups

In this section we present our improved bounds for the uber assumption in the bilinear algebraic
group model. We start by formally defining the uber problem in bilinear groups and then move on
to present and prove our reduction from the q-DLOG problem.

5.1 The Uber Problem in Bilinear Groups

Boneh, Boyen and Goh [BBG05] introduced the Uber family of computational assumptions in bilin-
ear groups, which was later extended by Boyen [Boy08]. We follow the more general presentation of
Bauer, Fuchsbauer and Loss [BFL20]. Roughly speaking, an assumption in the Uber family is param-
eterized by an integer m, three vectors ~F = (F1, . . . , Fk), ~H = (H1, . . . ,Hk) and ~K = (K, . . . ,Kk)
of m-variate polynomials over Zp, and target polynomials Q1, Q2 and QT . The adversary is given
g
F1(~x)
1 , . . . , g

Fk(~x)
1 , g

H1(~x)
2 , . . . , g

Hk(~x)
2 and gK1(~x)

T , . . . , g
Kk(~x)
T for a uniformly chosen ~x ← Zmp , and her

goal is to compute gQ1(~x)
1 , gQ2(~x)

2 and gQT (~x)
T . An assumption in the family is defined via the algebraic

game (~F , ~H, ~K,Q1, Q2, QT )-UBER in Figure 4.
We emphasize that throughout Section 5, even when not noting it explicitly, all polynomials are

viewed as polynomials over the ring Zp. This means that all of their coefficients can be reduced
modulo p; that polynomial arithmetic is done modulo p; and that polynomial evaluation is done
modulo p. In particular, a polynomial is said to be the zero polynomial if all of its coefficients are 0
modulo p.

Note that there are choices of (~F , ~H, ~K,Q1, Q2, QT ) for which the (~F , ~H, ~K,Q1, Q2, QT )-UBER

game can be easily won. If given access to gF1( ~X)
1 , . . . , g

Fk( ~X)
1 , g

H1( ~X)
2 , . . . , g

Hk( ~X)
2 and gK1( ~X)

T , . . . , g
Kk( ~X)
T ,

one can obtain gQ1( ~X)
1 , gQ2( ~X)

2 and gQT ( ~X)
T through a sequence of group operations and bilinear map

operations (where Xi is a indeterminate replacing xi and ~X = (X1, . . . , Xm)), then one can in par-
ticular compute the target group elements for any concrete choice of ~x. To rule out such trivial
attacks, we consider the following definitions.

Definition 5.1 captures the case in which a polynomial can be computed in the exponent of a
group element (in either the target group or one of the source groups), using only the group operation
and possibly the isomorphisms φ and ψ (if these are efficiently-computable).

Definition 5.1. Let p ∈ N be a prime, let m, k ∈ N, let ~F ∈ (Zp[X1, . . . , Xm])k be a tuple of
polynomials, and let Q ∈ Zp[X1, . . . , Xm] be a polynomial. We say that Q is linearly dependent on
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(~F , ~H, ~K,Q1, Q2, QT )-UBERA
G

1. x1, . . . , xm ← Zp
2. ~X := g

~F (x1,...,xm)
1

3. ~Y := g
~H(x1,...,xm)
2

4. ~Z := g
~K(x1,...,xm)
2

5. W1 := g
Q1(x1,...,xm)
1 , W2 := g

Q2(x1,...,xm)
1 and

WT := g
QT (x1,...,xm)
T

6. (W′
1,W

′
2,W

′
T )← A(~X, ~Y, ~Z)

7. If (W′
1,W

′
2,W

′
T ) = (W1,W2,WT ) output 1, and

otherwise output 0

Figure 4: The game (~F , ~H, ~K,Q1, Q2, QT )-UBERA
G capturing the uber problem in bilinear groups with respect

to parameters (~F , ~H, ~K,Q1, Q2, QT ), a bilinear group G = (G1,G2,GT , g1, g2, e, φ, ψ, p) and an adversary A. The
notation ~X := g

~F (x1,...,xm)
1 is a shorthand for Xi = g

Fi(x1,...,xm)
1 for each i ∈ [k] and ~X = (X1, . . . ,Xk). The vectors

~Y and ~Z are defined analogously.

~F if there exist integers α1, . . . , αk such that

Q =
k∑
i=1

αi · Fi.

If Q is not linearly dependent on ~F , then we say that Q is linearly independent of ~F .

Definition 5.2 captures the case in which a polynomial can be computed in the exponent of an
element in the target group, using the group operation and the bilinear map e (and possibly the
isomorphisms φ and ψ if these are efficiently-computable).

Definition 5.2. Let p ∈ N be a prime, let m, k ∈ N be integers, let ~F , ~H, ~K ∈ (Zp[X1, . . . , Xm])k

be tuples of polynomials, and let Q ∈ Zp[X1, . . . , Xm] be a polynomial. Let τ ∈ {1, 2, 3}. We say
that Q is type-τ dependent on (~F , ~H, ~K) if there exist integers {αi,j}i,j , {βi,j}i,j , {γi,j}i,j and {δ`}`
such that

• If τ = 1, then Q =
∑

i,j αi,j · Fi ·Hj +
∑

i,j βi,j · Fi · Fj +
∑

i,j γi,j ·Hi ·Hj +
∑

` δ` ·K`.

• If τ = 2, then Q =
∑

i,j αi,j · Fi ·Hj +
∑

i,j γi,j ·Hi ·Hj +
∑

` δ` ·K`.

• If τ = 3, then Q =
∑

i,j αi,j · Fi ·Hj +
∑

` δ` ·K`.

If Q is not type-τ dependent on (~F , ~H, ~K), we say that it is type-τ independent of (~F , ~H, ~K).

The following definition captures when a problem within the Uber family cannot be trivially
solved.

Definition 5.3. Let p ∈ N be a prime, let m, k ∈ N be integers, let ~F , ~H, ~K ∈ (Zp[X1, . . . , Xm])k

be tuples of polynomials, and let Q1, Q2, QT ∈ Zp[X1, . . . , Xm] be polynomials. We say that the
parameters (~F , ~H, ~K,Q1, Q2, QT ) are non-trivial for groups of type τ for τ ∈ {1, 2, 3} if:

• If τ = 1, at least one of the following holds:
– Case (1.1): Q1 is linearly independent of (~F , ~H).
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– Case (1.2): Q2 is linearly independent of (~F , ~H).
– Case (1.T ): QT is Type-1 independent of (~F , ~H, ~K)

• If τ = 2, at least one of the following holds:
– Case (2.1): Q1 is linearly independent of (~F , ~H).
– Case (2.2): Q2 is linearly independent of ~H.
– Case (2.T ): QT is Type-2 independent of (~F , ~H, ~K)

• If τ = 3, at least one of the following holds:
– Case (3.1): Q1 is linearly independent of ~F .
– Case (3.2): Q2 is linearly independent of ~H.
– Case (3.T ): QT is Type-3 independent of (~F , ~H, ~K)

Observe, that in bilinear groups of type τ ∈ {1, 2, 3}, if (~F , ~H, ~K,Q1, Q2, QT ) is trivial for type
τ , then the induced problem can be easily solved (see [BFL20] for concrete details). Thus, within
bilinear groups of type τ , we can only hope to reduce the hardness of (~F , ~H, ~K,Q1, Q2, QT )-UBER
to the hardness of q-DLOG (or to the hardness of any other problem which we believe is hard) for
tuples (~F , ~H, ~K,Q1, Q2, QT ) which are non-trivial for type τ .

5.2 From q-DLOG to UBER

Our main result in bilinear groups is a reduction from the hardness of (~F , ~H, ~K,Q1, Q2, QT )-UBER
with non-trivial parameters to the hardness of q-DLOG or a variant thereof for certain choices
of q. This improves upon a result of Bauer, Fuchsbauer and Loss [BFL20], who showed a similar
reduction, in the following manner. Roughly speaking, in their work, the parameter q needs to be
at least the total degree of the highest degree polynomial among the polynomials in ~F , ~H, ~K. In our
result below, q only has to be the maximal degree in which a variable appears in the polynomials
in ~F , ~H, ~K. Similarly to Bauer, Fuchsbauer and Loss, when considering type-3 bilinear groups, we
consider the (q1, q2)-DLOG problem rather then the q-DLOG problem. This problem is defined in
Figure 5, and our result exhibits a similar improvement to the one discussed above over the result
of Bauer, Fuchsbauer and Loss when determining the necessary lower bound for the parameters q1

and q2.

(q1, q2)-DLOGA
G

1. x← Zp
2. Xi := gx

i

1 for all i ∈ [q1]

3. Yj := gx
j

2 for all j ∈ [q2]

4. x′ ← A(X1, . . . ,Xq1 ,Y1, . . . ,Yq2)

5. If x′ = x output 1, and otherwise output 0

Figure 5: The game (q1, q2)-DLOGA
G capturing the (q1, q2)-discrete logarithm problem in type 3 bilinear groups with

respect to parameters q1 and q2, a type 3 bilinear group G = (G1,G2,GT , g1, g2, e, φ, ψ, p) and an adversary A.

Theorem 5.4 below uses the following notation. For a polynomial F ∈ Zp[X1, . . . , Xm] and for
every i ∈ [m], we denote by degXi(F ) the degree of F in the variable Xi. For a bilinear group
G = (G1,G2,GT , p, g1, g2, e), for i ∈ {1, 2} and for a parameter q ∈ N, we denote by q-DLOGGi ,
the game q-DLOG with respect to the source group Gi (i.e., the parameters of the game are the
description Gi = (Gi, p, gi)).
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Theorem 5.4. Let G = (G1,G2,GT , p, g1, g2, e) be a description of a bilinear group of type τ ∈
{1, 2, 3} and let k,m ∈ N be integers. Let ~F , ~H, ~K ∈ (Zp[X1, . . . , Xm])k be k-tuples of polynomials, let
d~F = max{degXj (Fi)}i∈[k],j∈[m], d ~H = max{degXj (Hi)}i∈[k],j∈[m] and d ~K = max{degXj (Ki)}i∈[k],j∈[m],
and let Q1, Q2, QT ∈ Zp[X1, . . . , Xm] be polynomials. Let q ≥ max{d~F , d ~H , d ~K/2}, and let q1 ≥ d~F
and q2 ≥ d ~H such that q1 + q2 ≥ d ~K . If (~F , ~H, ~K,Q1, Q2, QT ) is non-trivial for type τ , then for any
algebraic algorithm A there exist algebraic algorithms B1,B2, B3 and B4 such that

Time
q-DLOGG
Bi

≤ Time
(~F , ~H, ~K,Q1,Q2,QT )-UBERG
A + poly(m, k, q, q1, q2, log p)

for each i ∈ {1, 2, 3, 4}, and:

• If τ = 2: Adv
q-DLOGG2
B1

≥ ε/2m;

• If τ = 1: Adv
q-DLOGG2
B2

≥ ε/2m and Adv
q-DLOGG1
B3

≥ ε/2m;

• If τ = 3: Adv
(q1,q2)-DLOGG
B4

≥ ε/2m;

where ε = Adv
(~F , ~H, ~K,Q1,Q2,QT )-UBERG
A .

The proof of Theorem 5.4 relies on an approach introduced by Rotem and Segev [RS20a] in
the context of the algebraic hardness of the k-linear problem, and generalizes it to full-fledged
Uber problem. Concretely, the proof uses the following notation: Let f be a non-zero multivariate
polynomial over Zp in the indeterminates X1, . . . , Xm. Then, we denote by S(f) the sequence
h1, . . . , hm of polynomials defined recursively by:

• h1 = f ; and
• For every i ∈ {2, . . . ,m}: If hi−1 = 0, set hi = 0. Otherwise, write hi−1 as a polynomial in

(Zp [Xi, . . . , Xm]) [Xi−1]. That is, write

hi−1 =

d∑
j=0

gj(Xi, . . . , Xm) ·Xj
i−1,

where d is the degree of Xi−1 in hi−1. Let j∗ be the minimal index for which gj∗(Xi, . . . , Xm)
is not the zero polynomial over Zp. Set hi = gj∗ . If no such index j∗ exist, set hi+1 = 0.

The proof of Theorem 5.4 relies on the following lemma, adapted from [RS20a] and proven below
for completeness.

Lemma 5.5. Let f be a non-zero m-variate polynomials in the indeterminates X1, . . . , Xm over Zp,
and let S(f) = (h1, . . . , hm). Then, the following two conditions hold:

1. hi 6= 0 for every i ∈ [m].
2. For every vector ~α = (α1, . . . , αm) ∈ Zmp such that f(~α) = 0, there exists i∗ ∈ [m] such that the

following holds:
The univariate polynomial v(Xi∗) = hi∗(Xi, αi∗+1, . . . , αm) is not the zero polynomial and
additionally v(αi∗) = 0.

Proof. The proof is by induction on the number m of variables. For m = 1, both conditions hold
trivially since by definition h1 = f . For m > 1, we can write h1 =

∑d
j=0 gj(X2, . . . , Xm) · Xj

1 .
Since h1 is not the zero polynomial (since h1 = f), there exists some index j ∈ {0, . . . , d} for which
gj(X2, . . . , Xm) is not the zero polynomial; let j∗ be the minimal such index. By construction,
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h2 = gj∗ , and hence h2 is not the zero polynomial. Since h2 is a polynomial in at most m − 1
variables, the induction hypothesis implies that h3, . . . , hm are non-zero polynomials as well. This
proves the first condition.

As for the second condition, let ~α = (α1, . . . , αm) ∈ Zp such that f(~α) = 0 and consider two
cases:

1. Case 1: If v1(X1) = h1(X1, α2, . . . , αm) is not the zero polynomial, then the second condition
is satisfied for the index i∗ = 1 since

v1(α1) = h1(~α) = f(~α) = 0.

2. Case 2: If v1(X1) = h1(X1, α2, . . . , αm) is the zero polynomial, then when we write h1 =∑d
j=0 gj(X2, . . . , Xm) ·Xj

1 , it is necessarily the case that gj(α2, . . . , αm) = 0 for every j ∈ [d].
This is true in particular for the minimal index j∗ ∈ [d] for which gj∗ is not the zero polynomial
(we already established above that such an index exists), and by definition h2 = gj∗ . Hence,
since h2 is a polynomial in at most m − 1 indices, the second condition follows from the
induction hypothesis.

We now turn to prove Theorem 5.4.

Proof of Theorem 5.4. We first prove Theorem 5.4 in type-2 bilinear groups, and then review the
necessary amendments in order to adapt the proof to groups of types 1 and 3.

Let A be an algebraic algorithm participating in (~F , ~H, ~K,Q1, Q2, QT )-UBERG . We construct
an algorithm B1 participating in q-DLOGG2 . Observe that for any x ∈ Zp, any index i∗ ∈ [m], any
values α1, . . . , αi∗−1, αi∗+1, . . . , αm, and any polynomial f(X1, . . . , Xm) such that the degree of Xi∗

in f is at most q, the following is true: Given the values α1, . . . , αi∗−1, αi∗+1, . . . , αm and the group
elements g1,S0 = g2,S1 = gx2 , . . . ,Sq = gx

q

2 , the algorithm B1 can efficiently compute the elements
g
f(α1,...,αi∗−1,x,αi∗+1,...,αm)
1 and gf(α1,...,αi∗−1,x,αi∗+1,...,αm)

2 . To compute gf(α1,...,αi∗−1,x,αi∗+1,...,αm)
2 :

1. Write the univariate polynomial u(X) = f(α1, . . . , αi∗−1, X, αi∗+1, . . . , αm) as
∑q

j=0 βj ·Xj .

2. For j = 0, . . . , q: Compute Uj = S
βj
j .

3. Compute and output
∏q
j=0 Uj .

B1 can similarly compute gf(α1,...,αi∗−1,x,αi∗+1,...,αm)
1 , by first computing gx1 = ψ(S1), . . . , gx

q

1 = ψ(Sq)
and then proceeding as above with g1, g

x
1 , . . . , g

xq
1 instead of g2, g

x
2 , . . . , g

xq
2 . Additionally, B1 can

compute gf(α1,...,αi∗−1,x,αi∗+1,...,αm)
T as long as the degree of Xi∗ in f is at most 2q, by first computing

gT = e(g1, g2), gxT = e(g1,S1), . . . , gx
q

T = e(g1,Sq), g
xq+1

T = e(ψ(S1),Sq), . . . , g
x2q

T = e(ψ(Sq),Sq), and
then proceeding as above with gT , gxT , . . . , g

x2q

T instead of g2, g
x
2 , . . . , g

xq
2 .

Observe that the fact that tuple (~F , ~H, ~K,Q1, Q2, QT ) is non-trivial for type τ = 2 needs to
rely on at least one of the conditions (2.1),(2.2) or (2.T ) of Definition 5.3. Each of these conditions
endows a different reduction. We start with assuming that condition (2.T ) holds, and consider the
algorithm B1 participating in q-DLOGG2 .

Algorithm B1

Input: q elements S1 = gx2 , . . . ,Sq = gx
q

2 in G2 for x← Zp.

1. Sample i∗ ← [m] and α1, . . . , αi∗−1, αi∗+1, . . . , αm ← Zp.
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2. For i = 1, . . . , k, compute Xi := g
Fi(~x)
1 , Yi := g

Hi(~x)
2 and Zi := g

Ki(~x)
T , where ~x =

(α1, . . . , αi∗−1, x, αi∗+1, . . . , αm).
[since the degree of Xi∗ is at most q in each polynomial in {Fi}, {Hi} and is at most 2q in each
polynomial in {Ki}, these group elements can be computed efficiently as discussed above]

3. Invoke A(X1, . . . ,Xk,Y1, . . . ,Yk,Z1, . . . ,Zk) to obtain W1 ∈ G1, W2 ∈ G2 and WT ∈ GT .
Since A is algebraic, it also outputs vectors ~v, ~w, ~u,~s, ~r and matrices A = (ai,j), B = (bi,j) and
C = (ci,j) such that:

• W1 =
∏
iX

vi
i ·
∏
i ψ(Yi)

wi .
• W2 =

∏
iY

si
i .

• WT =
∏
i,j e(Xi,Yj)

ai,j ·
∏
i,j e(ψ(Yi),Yj)

ci,j ·
∏
i Z

ri
i .

4. Define the m-variate polynomial

f~r,A,C(X1, . . . , Xm) = QT ( ~X)−
∑
i,j

ai,j ·Fi( ~X) ·Hj( ~X)−
∑
i,j

ci,j ·Hi( ~X) ·Hj( ~X)−
∑
i

ri ·Ki( ~X),

and compute the sequence of polynomials S(f~r,A,C) and denote these polynomials by f1, . . . , fm.

5. Find all roots x∗1, . . . , x∗` of the univariate polynomial hi∗(Xi∗) = fi∗(Xi∗ , αi∗+1, . . . , αm).

6. For every i = 1, . . . , `, check if gx
∗
i = X. If so, output x∗i and terminate; otherwise, continue.

7. If reached, output ⊥ and terminate.

We start by analyzing the success probability of B1. Let the vector ~r and the matrices A and
C be those outputted by A in Step 3 of B1, and let α1, . . . , αm be integers in Zp such that for each
i 6= i∗ (where i∗ is the index sampled by A in Step 1) αi is the value sampled by A in Step 1, and
αi∗ = x (where x is the Zp exponent used to generate B1’s input).

Consider the sequence of polynomials f1, . . . , fm computed by B1 in Step 4 as S(f~r,A,C). We
make following claim about f1, . . . , fm.

Claim 5.6. The following conditions hold:

1. For every i ∈ [m], fi is not the zero polynomial; and
2. If the output WT of A (when invoked in Step 3 of B1) is equal to g

QT (α1,...,αm)
T , then there exists

an index j∗ ∈ [m] such that the univariate polynomial hj∗ = fj∗(Xj∗ , αj∗+1, . . . , αm) is not the
zero polynomial and hj∗(αj∗) = 0.

Proof. We wish to use Lemma 5.5 in order to prove the two statements made in Claim 5.6. In order
to do so, we argue that:

• f~r,A,C is not the zero polynomial. This follows immediately from the definition of f~r,A,C and
the fact that QT is type-2 independent of (~F , ~H, ~K). The latter follows from our assumption
that condition (2.T ) of Definition 5.3 holds.

• If WT = g
QT (α1,...,αm)
T , then f~r,A,C(α1, . . . , αm) = 0. This is the case since by the definition of

the algebraic group model it holds that

WT = g
∑
i,j ai,j ·Fi(~α)·Hj(~α)+

∑
i,j ci,j ·Hi(~α)·Hj(~α)+

∑
i ri·Ki(~α)

T = g
QT (~α)−f~r,A,C(~α)
T ,

where ~α = (α1, . . . , αm). This implies that

g
QT (α1,...,αm)
T = g

QT (~α)−f~r,A,C(~α)
T ,
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which in turn implies that f~r,A,C(α1, . . . , αm) = 0.

Hence, Claim 5.6 follows from Lemma 5.5.

Denote by AWin the event in which the group element WT outputted by A in Step 3 of B1 is indeed
equal to gQT (α1,...,αm)

T . Since B1 perfectly simulates the game (~F , ~H, ~K,Q1, Q2, QT )-UBERA
G to A,

and since WT = g
QT (α1,...,αm)
T is a necessary condition in order for the output of this (simulated)

game to be 1, it holds that Pr [AWin] ≥ ε. Therefore,

Adv
q-DLOGG2
B1

= Pr
[
q-DLOGB1

G2 = 1
]

≥ Pr
[
q-DLOGB1

G2 = 1
∣∣∣AWin

]
· Pr [AWin]

≥ ε · Pr
[
q-DLOGB1

G2 = 1
∣∣∣AWin

]
.

Let IndexHit denote the event in which the univariate polynomial hi∗ considered by B1 in Step 5 is
not the zero polynomial, and in addition it holds that hi∗(αi∗) = 0. Observe that Claim 5.6 implies
that whenever AWin occurs, there exists an index j∗ ∈ [m] such that if i∗ = j∗ then IndexHit occurs.
We thus infer that Pr [IndexHit|AWin] ≥ 1/m. Hence,

Adv
q-DLOGG2
B1

≥ ε · Pr
[
q-DLOGB1

G2 = 1
∣∣∣IndexHit ∧ AWin

]
· Pr [IndexHit|AWin]

≥ ε

m
· Pr

[
q-DLOGB1

G2 = 1
∣∣∣IndexHit ∧ AWin

]
.

Recall that αi∗ = x. Therefore, whenever IndexHit occurs, it means that the secret exponent x is
a root of the polynomial hi∗ . The algorithm B1 can use a randomized algorithm which finds all
the roots of hi∗ – the secret exponent x included – with probability at least 1/2, and runs in time
polynomial in q and in log p (for example, the Berlekamp algorithm [Ber70, Rab80]). Overall, we
obtain that

Adv
q-DLOGG
B1

≥ ε

2m
.

This concludes the analysis assuming condition (2.T ) holds.
If condition (2.1) holds, the algorithm B1 is defined similarly, but in Step 4 it computes the

polynomials f1, . . . , fm differently. Concretely, if defines the polynomial

f~v,~w(X1, . . . , Xm) = Q1( ~X)−
∑
i

vi · Fi( ~X)−
∑
i

wi ·Hi( ~X),

and then computes f1, . . . , f2 = S(f~v,~w(X1, . . . , Xm)). Condition (2.1) guarantees that we can again
use Claim 5.6, replacing the condition WT = g

QT (α1,...,αm)
T in the second statement of the claim, with

the condition W1 = g
Q1(α1,...,αm)
1 . Condition (2.2) is handled similarly, replacing the polynomial f~v,~w

above with the polynomial f~s( ~X) = Q2( ~X)−
∑

i si ·Hi( ~X).

Type 1 groups. The reduction to q-DLOGG2 in bilinear groups of type 1 is almost identical to
the one above. The algorithm B2 is defined identically to B1 until Step 3. In this step, A now
outputs elements W1,W2,WT , alongside vectors ~v, ~w, ~u,~s, ~r and matrices A = (ai,j), B = (bi,j) and
C = (ci,j) such that:

• W1 =
∏
iX

vi
i ·
∏
i ψ(Yi)

wi .
• W2 =

∏
i φ(Xi)

ui ·
∏
iY

si
i .
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• WT =
∏
i,j e(Xi,Yj)

ai,j ·
∏
i,j e(Xi, φ(Xj))

bi,j ·
∏
i,j e(ψ(Yi),Yj)

ci,j ·
∏
iW

ri
i .

In type 1 groups, the fact that tuple (~F , ~H, ~K,Q1, Q2, QT ) is non-trivial for type τ = 1 needs to rely
on at least one of the conditions (1.1),(1.2) or (1.T ) of Definition 5.3. Step 4 of the algorithm B2 is
then modified as follows, depending on which of the aforesaid conditions hold. If condition (1.T ),
the polynomial f~r,A,C is replaced with the polynomial

f~r,A,B,C( ~X) = QT ( ~X)−
∑
i,j

ai,j · Fi( ~X) ·Hj( ~X)−
∑
i,j

bi,j · Fi( ~X) · Fj( ~X)

−
∑
i,j

ci,j ·Hi( ~X) ·Hj( ~X)−
∑
i

ri ·Ki( ~X).

If condition (1.2), then the polynomial f~s( ~X) is replaced with the polynomial f~u,~s( ~X) = Q2( ~X) −∑
i ui · Fi( ~X)−

∑
i si ·Hi( ~X).

The reduction to q-DLOGG1 is defined identically, except for the way in which B3 generates
the instance (X1, . . . ,Xk,Y1, . . . ,Yk,Z1, . . . ,Zk) of the Uber problem on which A is then invoked
in Step 3. Now, B3 is given as input gx1 , . . . , gx

q

1 instead of gx2 , . . . , gx
q

2 . Nevertheless, B3 can still
compute the Uber problem instance as explained in the beginning of the proof, while switching the
roles of G1 and G2 and using the isomorphism φ instead of ψ.

Type 3 groups. The reduction to (q1, q2)-DLOGG in groups of type 3 is also very similar, the two
differences being the way B4 computes the Uber instance in Step 2 and the way in which the polyno-
mial in Step 4 is defined. First, observe that in Step 2, B4 can still compute (X1, . . . ,Xk,Y1, . . . ,Yk,

Z1, . . . ,Zk) since for each i ∈ [k] it holds that Xi = g
Fi(α1,...,αi∗−1,x,αi∗+1,...,αm)
1 where Fi has degree

at most q1 in Xi∗ ; Yi = g
Hi(α1,...,αi∗−1,x,αi∗+1,...,αm)
2 where Hi has degree at most q2 in Xi∗ ; and

Zi = g
Ki(α1,...,αi∗−1,x,αi∗+1,...,αm)
T where Ki has degree at most q1 + q2 in Xi∗ .

Secondly, in Step 3, A outputs elements W1,W2,WT , alongside vectors ~v, ~w, ~u,~s, ~r and matrices
A = (ai,j), B = (bi,j) and C = (ci,j) such that:

• W1 =
∏
iX

vi
i .

• W2 =
∏
iY

si
i .

• WT =
∏
i,j e(Xi,Yj)

ai,j ·
∏
iW

ri
i .

Then Step 4 of B4 is changed as follows. In case condition (3.T ) holds the polynomial f~r,A,C is
replaced with polynomial f~r,A which is obtained from f~r,A,C be setting A to be the all zero matrix.
In case condition (3.1) holds, the polynomial f~v,~w is replaced with the polynomial f~v which is obtained
from f~v,~w by setting ~w to be the all zero vector. In case condition (3.2) holds, the polynomial f~s
remains unchanged.
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A Extending the Decisional Algebraic Group Model

In this section we present the decisional AGM (the DAGM for short) of Rotem and Segev [RS20a],
and then present a novel extension thereof which considers asymmetric bilinear groups.

A.1 The Basic DAGM

We review the DAGM of Rotem and Segev [RS20a] with respect to cyclic groups described by a
tuple of the form G = (G, p, g), where G is the group, p is its order, and g is a generator of the group.
Our review of the DAGM of Rotem and Segev is taken mutatis mutandis from [RS20a].

Decisional Algebraic Games. Decisional games are aimed at capturing decisional cryptographic
problems (e.g., the decisional Diffie-Hellman problem) and indistinguishability-based security prop-
erties of cryptographic primitives (e.g., semantic security of an encryption scheme). At the end of a
decisional game, the adversary outputs either the acceptance symbol Acc, in which case the output of
the game is 1, or the rejection symbol Rej, in which case the output of the game is 0. The advantage
of an adversary A in distinguishing between two decisional games Gpar and G′par′ is defined as

Adv
Gpar,G′par′
A

def
=
∣∣∣Pr
[
GA
par = 1

]
− Pr

[
G′

A
par′ = 1

]∣∣∣ .
Typically, a decisional security definition will be obtained by a single decisional game G with an
additional parameter bit b, where the adversary needs to distinguish between the cases b = 0 and
b = 1. For brevity, we will refer to the advantage of an adversary A in distinguishing between
Gpar,0 and Gpar,1 simply as the advantage of A in Gpar, and we will use the notation Adv

Gpar

A
def
=

Adv
Gpar,0,Gpar,1

A . The running time of GA
par is defined as the maximum of the running times of GA

par,0

and of GA
par,1. Figure 6 exemplifies the notion of a decisional algebraic game by presenting the game

associated with the Decisional Diffie-Hellman problem.

DDHA
G,b

1. x, y, z ← Zp
2. X := gx,Y := gy,Z := gxy+(1−b)z

3. Sym← A(X,Y,Z)

4. If Sym = Acc then output 1, and
otherwise output 0

Figure 6: An example of a decisional algebraic game relative to a cyclic group G = (G, p, g) and an adversary A. The
game DDHA

G,b captures the Decisional Diffie-Hellman problem.

Algebraic distinguishers. Roughly, a distinguisher A taking part in a decisional algebraic security
game is algebraic, if together with its decision bit it also outputs a sequence of Zp elements which
describe a zero test (in the exponent) that is passed by the group elements given as input to the
algorithm. Moreover, the definition requires that if A distinguishes between two games G0 and G1

with advantage ε, the zero test it outputs needs to be a “good separator” between the two games with
probability related to ε (where the probability is taken over the randomness of A and the random
choices of either G0 or G1).

More formally, the definition of algebraic distinguishers (i.e., algebraic algorithms participating
in decisional games) uses to following notation. For an algebraic game G, a group description G
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and an algorithm A, the notation View
GG
A denotes the random variable which is the view of A in the

game GG . The view of A consists of its randomness, its input, and all incoming messages that it
receives throughout the game. For a vector ~w of integers, we denote by

[
View

GG
A

]
supp(~w)

the random

variable obtained from View
GG
A by omitting all group elements whose corresponding entry in ~w is 0

(where the ith group element observed by A is naturally associated with the ith entry of ~w). That
is, for a fixed vector ~w, the distribution associated with

[
View

GG
A

]
supp(~w)

is defined by first sampling

a view V according to View
GG
A ; and then for each i ∈ [min{k,m}] for which wi = 0, replacing the ith

group element in V with the unique erasure symbol ⊥, where m is the number of group elements in
V . Hence, fixing ~w, the random variable

[
View

GG
A

]
supp(~w)

is defined over the randomness of A and

of the challenger in GG . For two random variables X1 and X2, we use the notation X1 6≡ X2 to
indicate that X1 and X2 are not identically distributed.

Definition A.1. Let G = (G, p, g) be a description of a cyclic group. An algorithm A participating
in an algebraic game with parameters G is said to be algebraic if it is computationally-algebraic (per
Definition 3.1) and in addition, whenever A outputs either the Acc or the Rej symbols, it also outputs
a vector ~w of elements in Zp such that the following conditions hold:

1.
∏k
i=0 X

wi
i = 1G, where X1, . . . ,Xk are the group elements that A has received so far in the

game, X0 = g and 1G is the identity element of G.

2. For any two decisional algebraic games G and G′, there exists H ∈ {G,G′} such that

Pr
~w

[[
View

GG
A

]
supp(~w)

6≡
[
View

G′G
A

]
supp(~w)

]
≥ ε

t2
,

where ε = Adv
GG ,G

′
G

A , t = Time
HG
A , and the probability is taken over the choice of ~w induced

by a random execution of HG with A.

We clarify that the probability in the second condition of Definition A.1 is over the choice of
vector ~w in a random execution of HG with A; meaning, it is taken over the randomness of A and
of the challenger in HG . The event inside the probability means that for the chosen ~w, the random
variable

[
View

GG
A

]
supp(~w)

is distributed differently than the random variable
[
View

G′G
A

]
supp(~w)

. For

a discussion on the rationale underlying the DAGM, we refer the reader to [RS20a].

A.2 The Bilinear DAGM

Our definition of algebraic distinguishers with respect to asymmetric bilinear groups extends the
intuition underlying that of Definition A.1. The main difference is the following: In cyclic groups
(which are not equipped with a bilinear map), the zero test that an algorithm describes to explain
its decision is linear in the exponents of the input elements. In contrast, in bilinear groups we permit
zero tests of degree 2, in accordance with the specific structure of the group (that is, of which type
it is).

For a vector ~r and matrices A,B,C, we denote by
[
View

GG
A

]
supp(~r,A,B,C)

the random variable

obtained from View
GG
A by omitting from it all group elements for which all corresponding entries

of ~r,A,B and C are 0. Formally, for a game G, a group G = (G1,G2,GT , p, g1, g2, e) of type
τ ∈ {1, 2, 3}, an algorithm A, a vector ~r and matrices A = (ai,j)i,j , B = (bi,j)i,j , C = (ci,j)i,j , the
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distribution of
[
View

GG
A

]
supp(~r,A,B,C)

is defined by first sampling a view V according to View
GG
A , then

erasing (replacing with ⊥) the ith GT element in V for each i for which ri = 0, and then erasing G1

elements and G2 elements according to the following rules:

• If τ = 1:
– We erase the ith G1 element in V if for every j it holds that ai,j = 0, for every ` it holds

that bi,` = 0 and for every k it holds that bk,i = 0.
– We erase the ith G2 element in V if for every j it holds that aj,i = 0, for every ` it holds

that c`,i = 0 and for every k it holds that ci,k = 0.
• If τ = 2:

– We erase the ith G1 element in V if for every j it holds that ai,j = 0.
– We erase the ith G2 element in V if for every j it holds that aj,i = 0, for every ` it holds

that c`,i = 0 and for every k it holds that ci,k = 0.
• If τ = 3:

– We erase the ith G1 element in V if for every j it holds that ai,j = 0.
– We erase the ith G2 element in V if for every j it holds that aj,i = 0.

Equipped with this notation, we now present our definition for the DAGM in asymmetric bilinear
groups.

Definition A.2. Let τ ∈ {1, 2, 3}, and let G = (G1,G2,GT , p, g1, g2, e) be a description of a bilinear
group. An algorithm A participating in an algebraic game G with parameters G is said to be
algebraic if whenever A outputs either Acc or Rej, it also provides an additional output as follows.
Let X1, . . . ,X` ∈ G1, Y1, . . . ,Ym and W1, . . . ,Wt be the group elements received by A in G so far.
Then, A also outputs a vector ~r ∈ Z∗p and matrices A = (ai,j), B = (bi,j) and C = (ci,j) such that
the following conditions hold:

1. It holds that:

• If τ = 1 then
∏
i,j e(Xi,Yj)

ai,j ·
∏
i,j e(Xi, φ(Xj))

bi,j ·
∏
i,j e(ψ(Yi),Yj)

ci,j ·
∏
iW

ri
i = 1GT .

• If τ = 2 then
∏
i,j e(Xi,Yj)

ai,j ·
∏
i,j e(ψ(Yi),Yj)

ci,j ·
∏
iW

ri
i = 1GT .

• If τ = 3 then
∏
i,j e(Xi,Yj)

ai,j ·
∏
iW

ri
i = 1GT .

2. For any two decisional algebraic games G and G′, there exists H ∈ {G,G′} such that

Pr
(~r,A,B,C)

[[
View

GG
A

]
supp(~r,A,B,C)

6≡
[
View

G′G
A

]
supp(~r,A,B,C)

]
≥ ε

t2
,

where ε = Adv
GG ,G

′
G

A , t = Time
HG
A , and the probability is taken over the choice of (~r,A,B,C)

induced by a random execution of HG with A.

Intuitively, Definition A.2 considers only zero tests in the target group. This is without loss
of generality, since any zero test in one of the source groups can be converted into a zero test
in the target group using the bilinear map e. As a concrete example, consider a bilinear group
G = (G1,G2,GT , p, g1, g2, e) of type 2, group elements X1, . . . ,Xk ∈ G1 and Y1, . . . ,Ym and vectors
~v, ~w such that

∏
i∈[k] X

vi
i ·
∏
j∈[m] ψ(Yj)

wj = 1G1 . In this case, it also holds that
∏
i∈[k] e(Xi, g2)vi ·∏

j∈[m] e(g1,Yj)
wj = 1GT .
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B The Algebraic Hardness of the Decisional Uber Problem in Bilinear Groups

In this section we extend our bounds from Section 5 to the decisional Uber problem in the bilinear
groups, within the bilinear DAGM defined above. We start by formally defining the decisional Uber
problem in bilinear groups and then prove our reduction.

B.1 The Decisional Uber Problem in Bilinear Groups

Similarly to the computational case, a decisional problem in the Uber family is parameterized by
an integer m, three vectors ~F = (F1, . . . , Fk), ~H = (H1, . . . ,Hk) and ~K = (K, . . . ,Kk) of m-variate
polynomials over Zp, and a polynomial Q. The adversary is given gF1(~x)

1 , . . . , g
Fk(~x)
1 , g

H1(~x)
2 , . . . , g

Hk(~x)
2

and gK1(~x)
T , . . . , g

Kk(~x)
T for a uniformly chosen ~x ← Zmp , along with an additional challenge element

W in GT , and her goal is to distinguish between the case in which W = g
Q(~x)
T and the case in W is

a uniformly-random element of GT . An assumption in the family is defined via the algebraic game
(~F , ~H, ~K,Q)-DUBER in Figure 7.11

(~F , ~H, ~K,Q)-DUBERA
G,b

1. x1, . . . , xm, r ← Zp
2. ~X := g

~F (x1,...,xm)
1

3. ~Y := g
~H(x1,...,xm)
2

4. ~Z := g
~K(x1,...,xm)
2

5. W := g
Q(x1,...,xm)+(1−b)·r
T

6. Sym← A(~X, ~Y, ~Z,W)

7. If Sym = Acc then output 1 and otherwise output 0

Figure 7: The game (~F , ~H, ~K,Q)-DUBERA
G,b capturing the decisional Uber problem in bilinear groups with respect

to parameters (~F , ~H, ~K,Q), a bilinear group G = (G1,G2,GT , g1, g2, e, φ, ψ, p), a bit b ∈ {0, 1} and an adversary A.
The case b = 0 corresponds to the case in which W is a uniformly sampled GT element, and the case b = 1 corresponds
to the case in which W = g

Q(x1,...,xm)
T .

Note that if one can efficiently compute gQ(x1,...,xm)
T through a sequence of group operations and bi-

linear map operations, given access to gF1( ~X)
1 , . . . , g

Fk( ~X)
1 , g

H1( ~X)
2 , . . . , g

Hk( ~X)
2 and gK1( ~X)

T , . . . , g
Kk( ~X)
T ,

then the related problem can be trivially solved: The distinguisher will simply compute gQ(x1,...,xm)
T

and check if the result is equal to the challenge element W. To rule out such trivial distinguishing
attacks, we define a non-triviality condition for the parameters of a problem in the decisional Uber
family. The definition relies on Definition 5.2, which defined type-τ (bilinear) dependence.

Definition B.1. Let p ∈ N be a prime, let m, k ∈ N be integers, let ~F , ~H, ~K ∈ (Zp[X1, . . . , Xm])k

be tuples of polynomials, and let Q ∈ Zp[X1, . . . , Xm] be a polynomial. We say that the parameters
(~F , ~H, ~K,Q) are non-trivial for groups of type τ for τ ∈ {1, 2, 3} if Q is type-τ independent of
~F , ~H, ~K.

11Note that there is no reason to consider challenge elements in the source groups, since such elements can always be
mapped into challenge elements in the target group using the bilinear map. Hence, for each i ∈ {1, 2}, an assumption
about the hardness of distinguishing between g

Q(x1,...,xm)
i and a uniformly-sampled element in Gi, can always be

expressed as an assumption about the hardness of distinguishing between gQ(x1,...,xm)
T and a uniformly-sampled element

in GT .
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B.2 From q-DLOG to DUBER

Our main result in this section is that within the bilinear DAGM, the hardness of the (~F , ~H, ~K,Q)-
UBER problem with non-trivial parameters is implied by the hardness of q-DLOG. This strength-
ens a prior result by Rotem and Segev [RS20a] who proved a similar result, but only considering
symmetric bilinear groups, and for much larger values of q. In our result below, q will be lower
bounded by the maximal degree in which a variable appears in a polynomial among ~F , ~H, ~K and Q,
whereas in the work of Rotem and Segev, q even greater than the maximal total degree among these
polynomial.

We recall our notation from Section 5. For a polynomial F ∈ Zp[X1, . . . , Xm] and for every
i ∈ [m], we denote by degXi(F ) the degree of F in the variable Xi. For a bilinear group G =
(G1,G2,GT , p, g1, g2, e), for i ∈ {1, 2} and for a parameter q ∈ N, we denote by q-DLOGGi , the game
q-DLOG with respect to the source group Gi (i.e., the parameters of the game are the description
Gi = (Gi, p, gi)).

Theorem B.2. Let G = (G1,G2,GT , p, g1, g2, e) be a description of a bilinear group of type τ ∈
{1, 2, 3} and let k,m ∈ N be integers. Let ~F , ~H, ~K ∈ (Zp[X1, . . . , Xm])k be k-tuples of polynomials, let
d~F = max{degXj (Fi)}i∈[k],j∈[m], d ~H = max{degXj (Hi)}i∈[k],j∈[m] and d ~K = max{degXj (Ki)}i∈[k],j∈[m],
let Q ∈ Zp[X1, . . . , Xm] be a polynomial and let dQ = maxj∈[n]{degXj (Q)}. Let q ≥ max{d~F , d ~H , d ~K/2,
dQ/2}, and let q1 ≥ d~F and q2 ≥ d ~H such that q1 + q2 ≥ max{d ~K , dQ}. If (~F , ~H, ~K,Q) is non-trivial
for type τ , then for any algebraic algorithm A there exist algebraic algorithms B1,B2, B3 and B4 such
that Time

q-DLOGG
Bi

≤ t for each i ∈ {1, 2, 3, 4}, and:

• If τ = 2: Adv
q-DLOGG2
B1

≥ ε/4t2(m+ 1);

• If τ = 1: Adv
q-DLOGG2
B2

≥ ε/4t2(m+ 1) and Adv
q-DLOGG1
B3

≥ ε/4t2(m+ 1);

• If τ = 3: Adv
(q1,q2)-DLOGG
B4

≥ ε/4t2(m+ 1);

where t = Time
(~F , ~H, ~K,Q)-DUBERG
A + poly(m, k, q, q1, q2, log p) and

ε = Adv
(~F , ~H, ~K,Q)-DUBERG
A .

The proof of Theorem B.2 uses similar ideas as the proof of 5.4, extending them to work with
the definition of the bilinear DAGM. Hence, in the proof of Theorem B.2, we focus mainly on the
differences from the proof of Theorem 5.4.

Proof of Theorem B.2. We focus on the case of type-2 bilinear groups. The extension of the proof
to type 1 and to type 3 bilinear groups is obtained as in the proof of Theorem 5.4. Let A be an
algebraic algorithm participating in (~F , ~H, ~K,Q)-DUBERG,b, and consider the following algorithm
B1 participating in q-DLOGG2

Algorithm B1

Input: q elements S1 = gx2 , . . . ,Sq = gx
q

2 in G2 for x← Zp.

1. Sample b← {0, 1}, i∗ ← [m+ 1], and α1, . . . , αi∗−1, αi∗+1, . . . , αm+1 ← Zp.

2. Compute W = g
Q(~x)+(1−b)·αm+1

T , and for i = 1, . . . , k, compute Xi := g
Fi(~x)
1 , Yi := g

Hi(~x)
2 and

Zi := g
Ki(~x)
T , where ~x = (α1, . . . , αi∗−1, x, αi∗+1, . . . , αm).

[these elements can be computed in accordance with our discussion in the proof of Theorem 5.4]

3. Invoke A(X1, . . . ,Xk,Y1, . . . ,Yk,Z1, . . . ,Zk,W) to obtain a decision symbol Sym ∈ {Acc,Rej}.
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Since A is algebraic, it also outputs a vector ~r and matrices A = (ai,j), B = (bi,j) and C = (ci,j)
such that: ∏

i,j

e(Xi,Yj)
ai,j ·

∏
i,j

e(ψ(Yi),Yj)
ci,j ·

∏
i∈[k]

Zrii ·W
rk+1 = 1GT

.

4. Define the (m+ 1)-variate polynomial

f~r,A,C(X1, . . . , Xm+1)

= rk+1 ·
(
b ·Q( ~X) + (1− b) ·Xm+1

)
+
∑
i,j

ai,j · Fi( ~X) ·Hj( ~X)

+
∑
i,j

ci,j ·Hi( ~X) ·Hj( ~X) +
∑
i

ri ·Ki( ~X),

where ~X = (X1, . . . , Xm), compute the sequence of polynomials S(f~r,A,C) and denote these
polynomials by f1, . . . , fm+1.

5. Find all roots x∗1, . . . , x∗` of the univariate polynomial h(Xi∗) = fi∗(Xi∗ , αi∗+1, . . . , αm).

6. For every i = 1, . . . , `, check if gx
∗
i = X. If so, output x∗i and terminate; otherwise, continue.

7. If reached, output ⊥ and terminate.

Since A is an algebraic distinguisher (in accordance with Definition A.2), there exists a bit
b∗ ∈ {0, 1}, such that

Pr
(~r,A,B,C)



[
View

(~F , ~H, ~K,Q)−DUBERG,0
A

]
supp(~r,A,B,C)

6≡[
View

(~F , ~H, ~K,Q)−DUBERG,1
A

]
supp(~r,A,B,C)

 ≥
ε

t2
, (B.1)

where the probability is taken over the choice of (~r,A,B,C) induced by the randomness of A and
of the challenger in (~F , ~H, ~K,Q)-DUBERA

G,b∗ . Observe that the predicate in the probability in Eq.
(B.1) is satisfied if and only if rk+1 6= 0, and hence

Pr
(~r,A,B,C)

[rk+1 6= 0] ≥ ε

t2
, (B.2)

where again, the probability is taken over (~F , ~H, ~K,Q)-DUBERA
G,b∗ .

The probability that b = b∗, where b is the bit sampled by B1 in Step 1 is 1/2. Therefore, the
probability that A (when invokes in Step 3 of B1) outputs ~r such that rk+1 6= 0 is at least ε/2t2;
denote this event by Good. Denote ~α = (α1, . . . , αi∗−1, x, αi∗+1αm), where i∗ ∈ [m+ 1] is the index
sampled by B1 in Step 1. We wish to argue that conditioned on Good it holds that: (1) f~r,A,C(~α) = 0;
and that (2) the polynomial f~r,A,C is non zero. Claim (1) immediately follows from the fact that∏

i,j

e(Xi,Yj)
ai,j ·

∏
i,j

e(ψ(Yi),Yj)
ci,j ·

∏
i∈[k]

Zrii ·W
rk+1 = 1GT .

In order to prove claim (2), we consider two cases. If b = 0, then this holds since there is nothing
that can cancel out the term rk+1 ·Xm+1, as all other monomials are only in X1, . . . , Xm. If b = 1,
this holds since Q is 2-type independent of (~F , ~H, ~K), and hence the term

∑
i,j ai,j ·Fi( ~X) ·Hj( ~X) +∑

i,j ci,j ·Hi( ~X) ·Hj( ~X) +
∑

i ri ·Ki( ~X), cannot cancel out the term rk+1 ·Q( ~X).
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The proof continues essentially identically to the proof of Theorem 5.4, to show that conditioned
on Good, B1 outputs the correct exponent x with probability at least 1/2(m+ 1). Hence, overall, we
obtain that Adv

q-DLOGG2
B1

≥ ε/4t2(m+ 1).
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