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Abstract. With the large amount of data generated nowadays, analysis of this data has become eminent. Since a
vast amount of this data is private, it is also important that the analysis is done in a secure manner. Comparison-based
functions are commonly used in data analysis. These functions use the comparison operation as the basis. Secure
computation of such functions have been discussed for median by Aggarwal et al. (EUROCRYPT’04) and for convex
hull by Shelat and Venkitasubramaniam (ASIACRYPT’15).
In this paper, we present a generic protocol for the secure computation of comparison-based functions. In order
to scale to a large number of participants, we propose this protocol in a star topology with an aim to reduce the
communication complexity. We also present a protocol for one specific comparison-based function, the kth ranked
element. The construction of one of our protocols leaks some intermediate values but does not reveal information
about an individual party’s inputs. We demonstrate that our protocol offers better performance than the protocol for
kth ranked element by Tueno et. al. (FC’20) by providing an implementation.
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1 Introduction

Data is being constantly generated by organisations as well as individuals. To leverage this massive volume of
unstructured data, organisations seek to use data analysis techniques. Data analysis can benefit organisations in
various ways. For example, businesses can learn more about their target group by running analysis on the consumers
trends, multiple companies can run analysis on their combined data to compare various data points such as salaries of
employees, the key performance indicator, etc., hospitals and healthcare companies analyse their data using artificial
intelligence and machine learning to obtain faster and more accurate diagnosis. In addition to using the data for
analytics, these organisations, at times, wish to keep the data private as it contains sensitive information. In all the
above mentioned examples the data being analysed is sensitive. In cases such as that of healthcare companies, the
sharing of patient’s data is forbidden by law. The analysis therefore has to be done in a manner which does not reveal
the inputs. This is where secure Multiparty Computation (MPC) comes into play.
For the past couple of decades, MPC has been a prominent field of research. Starting with the seminal works
of [Yao82,GMW87,BMR90] it is still a widely researched topic with recent works like [LPSY15,WRK17,CCG+20].
The problem of secure MPC focuses on a group of parties that do not trust each other, but still wish to compute a
function f of their inputs while keeping their inputs private. Namely, it allows a set of mutually distrusting parties
to securely compute a function on their joint inputs without revealing anything about their inputs except what can
be inferred by the output. In the real world, there are adversaries present that may act maliciously to gain more
information than they are supposed to. Semi-honest adversaries follow the protocol as it is but try to learn more
information from the messages. In cases where companies or organisations run the protocol, semi-honest security is
a realistic assumption, as the organisations would not deviate from the protocol for their reputation’s sake. Another
factor that is considered for the construction of an MPC protocol is the number of parties that are corrupted by
the adversary. In our work, we consider semi-honest adversaries and a dishonest majority, i.e., n−1 parties can be
corrupted by the adversary.
One of the standard approaches to implement constant round MPC used in [BMR90,BNP08,KSS09,LPSY15,LSS16]
is by using Garbled Circuits proposed by Yao [Yao82], by converting the function to be computed to a boolean circuit
and privately evaluating the gates. Alternatively, the MPC protocol by Goldreich, Micali and Wigderson [GMW87],
which also uses a boolean representation, works by secret sharing the wire values amongst the parties. This protocol
has been improved and implemented in [CHK+12,BGIN21]. All the aforementioned protocols are generic MPC
protocols which can be used to implement any function f by converting it to a boolean circuit.
Another line of works considers the development of protocols for specific functions to achieve improved efficiency
by exploiting the properties of the underlying function and optimising the concrete protocols accordingly. Several



works have proposed protocols for specific functions such as private set-intersection [HV17,IOP18,PSZ18,RT21]
for finding the intersection of multiple sets, secure pattern matching [HL08,HT10,YSK+13,FHV13] for finding
matching patterns in texts and RSA key generation [FLOP18,HMR+19,CHI+21] for generation of the RSA modulus.
Relevant to our work, in [GSV07,DGK07,DGK08,KSS09,Cou16], protocols for the secure comparison of integers
have been proposed using various techniques.
The computation of these specific functions can be optimised by reducing the function f to the computation of
smaller/easier computable primitives. One method is to reduce the secure computation of f into the secure evaluation
of a boolean circuit. Another technique is to reduce the function f to multiple instances of a smaller function and
perform a secure computation of this primitive. The latter reduction technique is used in [SV15] to reduce f to the
comparison function, which takes two integer inputs and returns 1 if the first input is smaller than the second and 0
otherwise. Here the authors present a two-party protocol for the computation of a class of functions, where the parties
only interact for implementing the comparison function. This reduction results in a much more efficient protocol, as
the parties only communicate to evaluate the comparison function. The output of these functions is a tuple, hence
the total communication depends on the number of elements in the output tuple, in comparison to a circuit-based
approach, where the communication depends on the number of inputs of both parties. In most cases, the number of
elements in the output tuple is considerably less than the number of elements in the input set.
The comparison-based functions considered in [SV15] are widely used for various data analytic purposes. They
include functions such as finding the convex hull, finding the median, job scheduling problems, matroid optimisations
and many more optimisation problems. One of the functions that we discuss in detail in our work is the convex hull.
The convex hull of a set of points is the smallest convex set which contains all the points in that set. Another function
that we consider is the median of a set, which is the element that is in the middle of an ordered set. We also discuss
job scheduling, which is an optimisation algorithm where multiple parties have jobs that require the use of a common
resource and these jobs are assigned to the resource at a particular time.
These functions have important real world applications. For instance, the secure computation of the convex hull of a
set is useful in tracking a disease epidemic, where the extent of the spread of a disease can be monitored without
revealing all the locations of the infected patients. A two-party variant of this problem is discussed in [SV15] where
the authors use the Gift Wrapping Algorithm for computing the convex hull. Another function that is highly applicable
in data analysis, especially in financial analysis, is finding the median. The secure computation of computing the
median of the union of multiple sorted sets is essential in cases where the elements in the set are sensitive, for
example finding the median of the salary of employees of various companies without actually revealing the salaries.
Secure computation of the median has been studied intensely, some of the notable works being [AMP04,SV15].
Scheduling problems, such as job scheduling, have many applications in settings where the resources are limited and
more than one user wishes to use them. Secure job scheduling can be used in applications where the details of the
job (e.g. duration, amount of resource used etc.) are to be kept private, for instance in booking appointments at a
doctor’s, where the time taken is kept private.
A generalisation of the median functionality is finding the kth ranked element of the union of multiple sorted sets.
This function has similar applications to that of the median in financial and medical analysis. [AMP04] present a
secure protocol for the computation of the kth ranked element, where the kth ranked element is computed using the
binary search algorithm. Following that, a constant round protocol for this function is presented in [TKK+20], where
the protocol is presented in a star topology with all the parties communicating only with a dedicated server.
In instances where multiple organisations wish to jointly analyse their data, often the communication occurs via
WAN connections, making communication the bottleneck for running the protocol, as most organisations have high
computational power. Therefore, protocols with low communication complexity are crucial. One method to achieve
this is by constructing the protocols in a star network topology. The parties would then only need to communicate
to one central party. The central party has its own input for the computation and also interacts with all the other
parties in a series of secure two-party computations. This eliminates the need for broadcast channels, thus reducing
the communication complexity. One drawback of this topology is that the central party has about n times more
communication than the other parties. This overhead can be balanced by letting any party take the role of the central
party when multiple instantiations of the protocol are carried out. To compensate for the additional computational
overhead on the central party, it would suffice to increase its computational power.

Our Contribution and Outline

In this paper, we explore the concrete efficiency of comparison-based functions, i.e. a class of functions that can
be reduced to a secure computation of comparison of integers. We present two different protocols for this class of
functions. The first is a generic protocol (see §3) for secure computation of a class of functions called the Greedy
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Compatible functions (see §2.3) where we extend the two-party protocol from [SV15]. We implement a reduction
technique to reduce the computation of the function to a multi-party computation of the minimum of n integers and
propose an efficient new method for computing the minimum. Instead of using garbled circuits to compute the entire
function altogether, we use garbled circuits for implementing the comparisons. We chain the garbled circuits together
to implement a series of two-party comparisons, with the final output being the minimum of n integers.
Next, we give concrete instantiations (see §3.2) of a few functions demonstrating the practical applications of our
protocol. The only concrete multi-party protocol for computing the median was proposed in [AMP04]. To the best of
our knowledge, there have not been any previous works on specific multi-party protocols for the other two problems,
i.e. convex hull and job scheduling. We show that our multi-party protocol can be used for the computation of these
functions and that it has better performance compared to specific approaches, such as [AMP04] for the median, and
to generic MPC protocols that can be used for any of these functions.
Lastly, we present an alternative way of computing the kth ranked element (see §4) by using reduction techniques
similar to the generic protocol. Our protocol is the first that uses these reduction techniques to compute this function
in a star topology. If the protocol is instantiated in a star topology, the computation of this function can be reduced
to a secure computation of a summation function. Then communication only occurs during the computation of the
summations, and the remaining computations are done locally by the parties and the comparisons are done locally
by the central party. In particular, we reduce the computation of the kth ranked element to a computation of secure
summation which is instantiated using a threshold homomorphic encryption scheme and is implemented in a star
topology where one of the participating parties plays the central party which interacts with the rest of the parties.
We note that our protocol for the kth ranked element leaks the intermediate result of the summations to the central
party. This leakage can reveal the distribution of the data in the union of sets. For some applications, revealing
the distribution of data is a tolerable leakage. A potential approach for protecting this leakage can be by using
differential privacy by revealing only the differentially private leakage. Combining MPC with differentially private
tools has been used previously in [GRR19] to achieve cheaper private set intersection by allowing differentially
private leakage. In [HMFS17] the problem of private record linkage with differentially private leakage is studied.
Sometimes, allowing some leakage can result in a more efficient protocol. There have been many works that discuss
this trade-off on privacy for better performance. In [CJJ+13,PKV+14] some information related to the search queries
is leaked in order to achieve more efficient database search functionalities. We leave the idea of using differentially
private leakage for future work.

[FH96] [GSV07] [DGK07,DGK08] [Cou16] [ABJ+19] This work
Offline comm. — O(κnd/logκ) — O(κd/logκ) — O(κd)
Online comm. O(n2) O(nd) O(nd(d +κ)) O(nd) O(κnd logn logd) O(κnd)

Rounds O(logn) O(logn logd) O(logn) O(logn log logd) 2 O(logn)
Assumption DDH OT DGK OT LWE OT

Table 1: Comparison of complexities for the computation of minimum function for n par-
ties, using generic multi-party protocols ([FH96,ABJ+19]) or two-party comparison protocols
([GSV07,DGK07,DGK08,Cou16]) with our garbled circuit-based approach. Here, κ is the security
parameter, d is the length of the input and n is the number of parties.

Related Work

Here, we mention several closely related works. The development of general-purpose MPC started with [GMW87]
and is still a major area of research with seminal works like [FH96,CDN01,BLO16,LSS16,ABJ+19]. These
protocols can be used to instantiate the function for finding the minimum integer, which is one of the major
underlying computations of our generic protocol. If we use the multi-party protocol in [ABJ+19] to instantiate the
computation of minimum function, the resulting communication complexity is O(κnd logn logd) with 2 rounds,
where κ is the security parameter, n is the number of parties, and d is the input size. This protocol uses functional
encryption combiners to achieve a constant round multi-party computation protocol, and although introducing good
asymptotic results, it is not practical enough for an implementation.
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[AMP04] [TKK+20] This work
YGC AHE1 AHE2

Comm. O(n2 logS) O(κn2) O(κn2dt) O(κn2dt) O(n logS)
Rounds logS 4 4 4 logS

Table 2: Comparison of protocols for secure computation of the kth ranked element. We compare
our protocol with the one in [AMP04] and the three protocols presented in [TKK+20] that are based
on Yao’s garbled circuit (YGC) and additively homomorphic encryption(AHE). n is the number of
parties, κ is the security parameter, d is the bit-length of the input, t is the threshold of the additive
homomorphic scheme, and S is the range of elements in the database.

Often specific purpose protocols are developed to replace the use of generic MPC and improve the performance.
There has been abundant work done to develop protocols specifically for the secure comparison of two integers.
In [DGK07,DGK08], homomorphic encryption is used to build a protocol for the two-party comparison of integers.
Using either of these protocols for computing the minimum, a communication complexity of O(nd(d + κ)) is
achieved with O(logn) rounds. In [GSV07], a two-party protocol for the comparison of integers is presented
using the encryption scheme of [CDN01]. Using this protocol to implement the minimum function the online
communication complexity is O(nd) with a round complexity of O(logn logd). In [Cou16], the authors use a block
decomposition technique to compare the blocks of the integer and execute the comparison with Oblivious Transfer as
a building block. By implementing the minimum function using [Cou16], an online communication complexity of
O(nd) is achieved with a round complexity of O(logn log logd). We compare the efficiency of our implementation
of the minimum function with that of instantiating it with any of the above protocols in Tab. 1.

In [TKK+20], a constant round protocol for the computation of the kth ranked element is presented. The protocol is
presented in a star network topology where the clients interact with a server. Unlike this setup, the central party in
our protocol is one of the parties participating in the protocol and also provides input. Tueno et al. present several
protocols in [TKK+20], using different building blocks. The protocol using the garbled circuit approach has a total
communication complexity of O(κn2), while the protocol using an additively homomorphic encryption scheme has
a communication complexity of O(κn2dt), where t is the threshold of the homomorphic encryption scheme. Our
work achieves a communication complexity of O(κn logS), where S is the range of elements in the database, and
a round complexity of O(logS) rounds. We provide a comparison of our work and the previous works on the kth

ranked element in Tab. 2.

2 Preliminaries

In this section we define some basic cryptographic primitives that are used in our protocols.
Basic notations. We denote a security parameter by κ. We say that a function µ : N→ N is negligible if for every
positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) . We use the abbreviation PPT to
denote probabilistic polynomial-time and denote by [n] the set of elements {1, . . . ,n} for some n ∈ N.

2.1 Computational Indistinguishability

We specify next the definition of computational indistinguishability.

Definition 1 Let X = {X(a,κ)}a∈{0,1}∗,κ∈N and Y = {Y (a,κ)}a∈{0,1}∗,κ∈N be two distribution ensembles. We say

that X and Y are computationally indistinguishable, denoted X
c
≈ Y , if for every PPT machine D, there exists a

negligible function negl such that:

|Pr
[
D(X(a,κ),1κ) = 1

]
− Pr

[
D(Y (a,κ),1κ) = 1

]
| ≤ negl(κ).
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2.2 Decisional Diffie-Hellman Problem

Let G be a group generation algorithm, which outputs (p,G,G1,g) given 1κ, where G,G1 are descriptions of groups
of prime order p and g is a generator.

Definition 2 (DDH) We say that the decisional Diffie-Hellman (DDH) problem is hard relative to G if for any PPT
distinguisher D, there exists a negligible function negl such that:

|Pr[D(G, p,g,gx,gy,gz) = 1]− Pr[D(G, p,g,gx,gy,gxy) = 1]| ≤ negl(κ)

where (G, p,g)← G(1κ).

2.3 Greedy Compatible Functions

A function f is said to be Greedy Compatible [SV15], if f on the union of given sets can be defined using two
functions FMIN and FUPT, such that these functions have a few specific properties as specified in definition 3.

Definition 3 (Greedy Compatible Functions) The necessary and sufficient conditions for a function f to be Greedy
Compatible are:

1. Unique solution: Given inputs Xi, i = [1,n] there is a unique solution.
2. Unique order: The output (c1, ...cl) is released in a unique order, i.e.,

f (X1, ...,Xn) = (c1, ...cl)

where c1 = FUPT(⊥,
⋃

Xi) and ci+1 = FUPT((c1, ...,c j),
⋃

Xi) for i = [1, l−1].
3. Local updatability: The function FUPT on the union of all sets can be computed by computing the function FUPT

on each set individually and then computing FMIN on its result. Namely,

FUPT((c1, ...,c j),
⋃

Xi) = FMIN(FUPT((c1, ...,c j),X1), ...,FUPT((c1, ...,c j),Xn)).

2.4 Oblivious Transfer

1-out-of-2 Oblivious Transfer (OT) is a two-party protocol run between a sender S and a receiver R. The sender S
inputs a pair of l-bit strings s0,s1 ∈ {0,1}l and R inputs a choice bit b ∈ {0,1}. At the end of the protocol, R learns
the chosen string sb, but nothing about the unchosen string s1−b, whereas S learns nothing about the choice bit b.

Oblivious Transfer Extension. OT protocols require costly public-key cryptography, but their performance can be
improved using OT extension [IKNP03,ALSZ13]. OT extension allows extending a few public key-based base OTs
using only symmetric cryptography and a constant number of rounds.

2.5 Garbled Circuits

An efficient way to evaluate a boolean circuit C in a constant number of rounds is Yao’s garbled circuit [Yao86,LP04].
In this approach, the circuit constructor S creates a garbled circuit C̃ as follows: for each wire Wi of the circuit, S
randomly chooses two garbled values w̃0

i , w̃
1
i , where w̃ j

i represents the value j of Wi. Further, for each gate Gi, S
creates a garbled table T̃i with the following property: given a set of garbled values of Gi’s inputs, T̃i allows to recover
the garbled value of the corresponding Gi’s output, but nothing else. S sends these garbled tables, called garbled
circuit C̃ to the evaluator C. Additionally, C obliviously (via OT) obtains the garbled inputs w̃i corresponding to
the inputs of both parties. Now C can evaluate the garbled circuit by evaluating C̃ gate by gate, using the garbled
tables T̃i. Finally, C translates the garbled output into the output values given for the respective parties.

2.6 Secure Multi-Party Computation

The aim of MPC is to compute an agreed upon function correctly on the private inputs and not reveal anything
beyond the result. The security of MPC is defined using the real/ideal paradigm which is the conceptual core
of the definition.
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The Real/Ideal Paradigm The real/ideal paradigm introduces an ideal world that implicitly captures all security
properties and security is defined with respect to this ideal world. This avoids the need to list out all the attacks that
constitute violations of security, which is tedious and error-prone.

Ideal World. In the ideal world, the parties securely compute a function F by sending their inputs privately to a
trusted third party T. Each party Pi sends its input xi to T. T simply computes F(x1, ...,xn) and returns the output
to all parties. An adversary in the ideal world can corrupt any party Pi but not T. The adversary learns nothing
other than F(x1, ...,xn) since that is the only message it receives. The ideal world is used as a security benchmark
compared to an actual protocol. Specifically, an adversary in the real world should not be able to achieve anything
more than it does in the ideal world.

Real World. In the real world, there is no trusted party. All parties use a protocol to communicate with each other. A
real world protocol π is considered secure if anything an adversary can achieve in the real world can also be achieved
by an adversary in the ideal world.

Semi-Honest Security A semi-honest adversary never deviates from the protocol but tries to gain information
about the honest parties’ inputs by observing the execution of the protocol.
A party’s view consists of its inputs, its random tape and the list of messages that it receives during the protocol
execution. An adversary’s view consists of the views of all corrupted parties. A protocol is said to be secure against
semi-honest adversaries if the corrupted parties in the real world have views that are indistinguishable to their views
in the ideal world. Such an adversary in an ideal world is called a simulator. The existence of such a simulator that
can simulate the view of an adversary proves that an adversary cannot learn any additional information in the real
world that cannot be achieved in an ideal world.
More formally, consider a protocol π and a functionality F. We denote by C the set of corrupted parties and by Sim a
simulator algorithm. Then, two distributions of random variables are defined as:

– REALπ(κ,I;x1, ...,xn): each party Pi runs the protocol honestly using its private input xi and security parameter
κ. Let Vi be the final view of party Pi, and let yi be its final output.
Output {Vi|i ∈ I},(y1, ...,yn).

– IDEALF,Sim(κ,I;x1, ...,xn):
Compute (y1, ...,yn)← F(x1, ...,xn).
Output Sim(C,{(xi,yi)|i ∈ I}),{yi|i 6∈ I}.

A protocol is said to be secure against semi-honest adversaries if the adversary’s view in the real world is indistin-
guishable from its view in the ideal world.

Definition 4 A protocol π securely realises a functionality F in the presence of semi-honest adversaries if there exists
a simulator Sim such that for every subset of C and for all inputs x1, ...,xn, the two distributions are computationally
indistinguishable, i.e.,

REALπ(κ,C;x1, ...,xn)
c
≈ IDEALF,Sim(κ,I;x1, ...,xn).

2.7 Gift-Wrapping Algorithm

The Gift Wrapping algorithm [Jar73] for finding the convex hull of a set works as follows: the first point in the
convex hull is the leftmost point of the set. From this point a vertical line is considered. Then this line is rotated in a
clockwise direction until it touches another point in the set. The first point that touches this line is the second point of
the convex hull. Then a vertical line is considered from this point and again rotated in a clockwise direction. This
process continues till the last point that falls on the rotation line is the first point of the convex hull.

3 Comparison-Based Functions

Here we propose an extension to the two-party protocol in [SV15], where a secure protocol to compute a class of
functions called Greedy Compatible functions(cf. §2.3) is discussed. We extend their protocol to the multi-party
setting and propose optimisations for the multi-party computation of the minimum function.
The Greedy Compatible functions can be defined in an iterative manner with all the computations done locally by
each party except for computing the minimum. After each iteration, the output is slowly released so that the final
output of the computation is the tuple of outputs from each iteration. Furthermore, the output of each iteration is
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given as the input for the next iteration. The only step where the parties interact with each other is for computing
the minimum. We propose to reduce the communication between the parties by constructing the protocol in a star
topology. Thus the parties only communicate with one central party which eliminates the need for broadcast channels.
As discussed above, the parties first compute a part of the function locally and then the minimum together. Conse-
quently, the protocol πGP (Fig. 3) for computing the function f involves instantiating two sub-functionalities: first, the
local update function FUPT (Fig. 1) and second, the minimum function FMIN (Fig. 2). The functionality FUPT updates
the input of each party for the computation of the minimum functionality. The output of FUPT is the input of FMIN for
the next iteration of the protocol. FUPT is computed locally by each party, where its inputs are the party Pi’s set of
elements Xi and the output of FMIN. The output of FUPT is the pair (xi,δi). FMIN takes (xi,δi) as input and computes
the minimum of all values δi and then returns the xi corresponding to the smallest δi.
Now, combining these two functionalities we describe the protocol πGP for securely computing f . In the initialisation
step, the parties locally compute their first input pair by calling the functionality FUPT on the set Xi. Then the iteration
begins; for the first iteration, the parties send their input pair (x1

i ,δ
1
i ) to the functionality FMIN, which computes

min{δ1
1,δ

1
2, ...,δ

1
n} and returns some c1 = x1

t corresponding to the smallest δ1
t . Then the parties update their inputs

for the next iteration by calling FUPT on c1 and Xi. The protocol runs for j = 1, ..., l iterations, with l depending on
the computed function. As mentioned earlier, the protocol releases the output slowly, i.e., after each iteration, the
parties receive c j, which is a part of the final output (c1,c2, ...,cl).

Functionality FUPT

This functionality is computed locally by each party Pi.
Input: The set of elements Xi and the outputs (c1, ...,c j) obtained by the previous iterations.

– In the initial step, given input (⊥,Xi), FUPT computes party Pi’s input for FMIN for the
first iteration denoted by (x1

i ,δ
1
i ).

– In the jth iteration, given input ((c1, ...,c j),Xi), FUPT computes party Pi’s input for FMIN

for the ( j+1)th iteration denoted by (x j+1
i ,δ

j+1
i ).

Output: (x j+1
i ,δ

j+1
i ) where x j+1

i ∈ Xi and δ
j+1
i is the associated index.

Fig. 1: Local update function.

Functionality FMIN

Parties P1, . . . ,Pn participate in this computation.
Input: Each party Pi sends the pair (xi,δi), where δi is an integer.

– Compute δt = min{δ1, ...,δn}.
– Sets c = xt , where xt has the corresponding index δt .

Output: c.

Fig. 2: Minimum function.

Security. We state and prove the security of this protocol next.

Theorem 1 The class of Greedy Compatible functions (cf. definition 3) is securely computed by protocol πGP (Fig. 3)
in the presence of semi-honest adversaries for n≥ 2 in the FMIN-hybrid.
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Protocol πGP

Input: Each party Pi has a set of distinct elements Xi.
The protocol:

1. Each party Pi locally computes (x1
i ,δ

1
i )← FUPT(⊥,Xi).

2. For j = [1, l] :
(a) The parties call functionality FMIN for inputs (x j

i ,δ
j
i ) to obtain output c j.

(b) Each party Pi locally applies functionality FUPT on its input ((c1, ...,c j),Xi), com-
puting the output (x j+1

i ,δ
j+1
i ), which will serve as its input in the next iteration.

Output: c1, ...,cl .

Fig. 3: Semi-honest protocol for a greedy compatible function f .

Proof. We prove the security of the protocol in a hybrid model, where the function FMIN is computed by a trusted
third party. Consider A to be an adversary that corrupts a subset I of the parties. Let (c1, ...cl) be the final output
of the computation. We construct a simulator S that generates the view of Pi, i ∈ I. S is given Pi’s input Xi and the
output (c1, ...,cl), then S works as follows:

1. Given Xi, i ∈ I and (c1, ...,cl), the simulator S invokes the corrupted parties on their corresponding inputs.
2. S plays the honest parties’ role against the corrupted parties on arbitrary sets of inputs.
3. In the jth iteration, given the inputs {(x j

i ,δ
j
i )}i∈I to FMIN, S simulates c j as the output of FMIN.

In this case, the view of the corrupted party in the simulation is identical to that in the real execution of the protocol.
From the unique ordering property of the solution, the two views are identical. Hence, the protocol πGP securely
computes any function f in the presence of semi-honest adversaries.

Complexity. In protocol πGP, communication occurs only during the execution of FMIN. Let O(C) be the communica-
tion complexity of FMIN and l be the number of rounds of the protocol. Since the parties execute FMIN once per round,
the total communication complexity is O(lC). We discuss the total complexity of the protocol in §3.1.

3.1 Realising FMIN

Recall that during the execution of πGP, communication between the parties only occurs during the instantiation of
FMIN. To reduce this communication, we propose an efficient way of computing the minimum function by splitting
the multi-party computation of FMIN into a series of two-party computations. We achieve this by performing the
comparisons pairwise. Thus, we implement FMIN in a star network topology where all the parties interact with one
central party (say P1) and not with any other party. This implies that the protocol πGP can be implemented in a star
topology as well. We define the pairwise computation of FMIN in Fig. 4.

Correctness. The correctness follows directly from a linear search algorithm. Nevertheless, we prove that the
protocol F2

MIN (Fig. 4) correctly computes the functionality FMIN.
Assume that δt is the smallest element in {δ1,δ2, ...,δn} and t ∈ [1,n]. Now, if δt ∈ {δ1,δ2} then (a1,b1) = (xt ,δt)
and at each round i = 2, ...,n−1, the variables (ai,bi) will be set to (xt ,δt). If δt ∈ {δ3, ...,δn}, then at round i = t−1,
the variables (ai,bi) are set to be (xt ,δt) and for all i≥ t, (ai,bi) = (xt ,δt). Hence, the output is an−1 = xt .
Conversely, let the output be c = xt , i.e. (an−1,bn−1) = (xt ,δt). Then two cases arise: either δt = δn or δt = bn−2. If
δt = δn, then we get that δt is the smallest element in {δ1, ...,δn}, because δn < bn−2 and bn−2 = min{δ1, ...,δn−1}.
If δt = bn−2, then we know that bn−2 = min{δ1, ...,δn−1} and δt < δn, therefore, δt is the smallest element in
{δ1, ...,δn}. Hence, the protocol F2

MIN correctly computes FMIN.

Instantiation. We instantiate the pairwise comparisons using garbled circuits and construct the protocol in a star
topology. Therefore, all communications between the parties happen via party P1.
Our protocol is based on the idea of mobile agents [CCKM00] that chains together multiple garbled circuit computa-
tions. We consider party P1 to be the originator of the mobile agents protocol. Then the remaining parties are the hosts.
The protocol works as follows: P1 generates the message for n−1 parallel OTs. The next party, i.e., P2 constructs a

8



Protocol F2
MIN

Parties P1, . . . ,Pn participate in this computation.
Input: Each party Pi sends the pair (xi,δi), where δi is an integer.

Let a and b be variables.

– (a,b) = (x1,δ1).
– For i = [2,n],

(a,b) = (xi,δi), i f δi < b

– c = a

Output: Each party receives c = xt such that δt = min{δ1, ...,δn} for t ∈ [1,n].

Fig. 4: Protocol for minimum function using pairwise comparisons

circuit using the output of P1 and sends it to P3 via P1. P3 then generates a circuit using P2’s output and sends it to P4
via P1. The parties continue similarly till the last party Pn sends the circuit to P1 and P1 evaluates the final circuit
to obtain the final output. This construction can be modified to a binary tree based structure, where parties P2i, for
i = 1, ...,bn/2c can parallely run the second step and send the circuits to P2i+1, for i = 1, ...,b(n−1)/2c. In the third
step, parties P2i+1 construct their circuits based on the received circuits and send it to party P4i+1, for i = 1, ...,bn/4c.
We can also view this communication pattern as an evaluation of a hypercube, as presented in [IOP18], where each
party represents a vertex of the cube.

Complexity. We first discuss the complexity for computing FMIN and then compute the total complexity of the
protocol πGP.
The number of rounds required for the computation of the minimum is O(logn). To increase the computation
efficiency, we use OT extensions instead of plain OTs. As the precomputation for the OT extensions can be done
in parallel, the communication complexity of the precomputation is O(κd), where d is the size of the input. The
total number of comparisons performed for each minimum function is n− 1, hence the total communication
complexity is O(κnd).
We can instantiate the minimum functionality using either specific two-party protocols, or specific multi-party
protocol or even using generic multi-party protocols. We now compare our results with those of using existing
protocols. If we instantiate the pairwise comparisons using a two-party protocol for integer comparison [Cou16],
it would require O(logn log logd) rounds and would have a communication complexity of O(nd). Using a generic
MPC protocol [ABJ+19], we can compute the minimum value in a constant number of rounds, with a communication
complexity of O(κnd logn logd). In Tab. 1, we give a detailed comparison of the protocols.
Thus, we see that our garbled circuit-based approach gives the most efficient instantiation of F2

MIN in terms of
communication complexity.

3.2 Concrete Instantiations of f

As discussed in §3, the protocol πGP computes a class of functions f . The main challenge in implementing πGP is
to define the functionalities FUPT and FMIN, such that correctness still holds. For each function f , the definition of
these functionalities changes according to f . Now we discuss some examples of f in detail and show how we can
define FUPT and FMIN to realise the functions. Specifically, we consider the following functions: median of a set of
elements, convex hull of a set and job scheduling. Two-party protocols for computation of median and convex hull
have been given in [SV15]. We give the multi-party protocols for these functions and also present a new protocol for
secure job scheduling.

Median The median of a set of N elements is the element that is in the middle of the ordered set. Consider n parties
where each party Pi has a set of elements Xi. The objective is to find the median of the union of all the sets. We
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assume that the number of elements in the union of the sets is public, let it be N. Then if N is odd, the median is
at position M = (N +1)/2 and if N is even, the median is at position M = N/2+1. The range of the elements in
the union is also known and is denoted by [a,b]. We use the binary search algorithm to compute the median. In the
jth iteration, let s j be the midpoint of the current range, l j

i be the number of elements in Xi less than s j, g j
i be the

number of elements in Xi greater than s j , and m j
i be the element in Xi which is nearest to s j . Let the associated index

be defined as δ
j
i = |s j−m j

i |. Then, FMIN is defined as follows: FMIN((l
j
i ,g

j
i ,m

j
i ),δ

j
i ) = c j, where c j = (L j,G j,m j

t )

such that t = argmin{δ j
1, ...,δ

j
n}, L j =

n
∑

i=1
l j
i and G j =

n
∑

i=1
g j

i .

The function FUPT is defined as follows:
– For j = 1, FUPT(⊥,Xi) = ((l1

i ,g
1
i ,m

1
i ),δ

1
i ), where l1

i ,g
1
i ,m

1
i ,δ

1
i are all computed with respect to s1 = [b+a/2].

– For j > 1, if L j = G j, then the parties send terminate to FMIN. Else, if L j < G j, then FUPT sets b = s j−1. If
L j > G j, then FUPT sets a = s j−1. FUPT((c1, ...,c j),Xi) = ((l j

i ,g
j
i ,m

j
i ),δ

j
i ), where s j = [a+b/2].

The median will be m j
t , t ∈ [1,n]. The final output of the computation is c j = (L j,G j,m j

t ). The median of the union
of sets is the output of the last iteration, i.e., cl . The maximum number of iterations of the protocol is logN.

Convex Hull The convex hull of a set of points is the smallest convex set, which contains all the points in that
set. Suppose there are n parties, each having a set of points. Then the convex hull of the union of these sets is the
smallest convex set that contains all the points of all the sets. There are various algorithms that are used to find the
convex hull of a set. Here we consider the Gift Wrapping algorithm [Jar73] (see §2.7) which is the most efficient
algorithm for this function.
Now, consider n parties and suppose each party Pi has a set Xi, then our objective is to compute the convex hull of
the union of these sets. Each element in Xi is a point on a plane which is represented as pi = (xi,yi) where xi and yi
are the X and Y coordinate of the point, respectively. Now we apply the Gift Wrapping Algorithm and define the
functionality FUPT.

– For j = 1, FUPT(⊥,Xi) = (p1
i ,δ

1
i ), where p1

i is the leftmost point in the set Xi (i.e., the point with the smallest
X-coordinate) and δ1

i is the X-coordinate of p1
i .

– For j > 1, if pi ∈ {c1, ...,c j−1}, then Pi sends terminate to FMIN. Else, FUPT((c1, ..,c j−1),Xi) = (p j
i ,δ

j
i ), where

p j
i is the point that makes the smallest clockwise angle (larger than zero) with the vertical dropped from c j−1

and δ
j
i is the magnitude of the angle between the line joining c j−1 and p j

i and the vertical from c j−1. (The next
point in the convex hull is the point that makes the least clockwise angle with the point p j−1. Hence, each party
sets its input for the next iteration by comparing the angles.)

The functionality FMIN is defined exactly as in Fig. 2. Thus, the final output is (c1, ...,cl), where each c j is a point of
the convex hull. The number of iterations of the protocol is equal to the number of points on the convex hull.
If there are three collinear points in

⋃
Xi, the rotation line will touch two points at the same time, which will give the

same angle δi for two points pi. This will create a conflict in the computation as the outputs may not be in unique
order, which does not satisfy the properties of f in definition 3. Hence, we assume that no three points in the set
are collinear.

Job Scheduling Job scheduling is an optimisation algorithm where multiple parties have jobs that require the use
of a common resource and these jobs are assigned to the resource at a particular time. Secure job scheduling can be
used in applications where the details of the job (e.g., duration, amount of resource used, etc.) are to be kept private,
for example in a car-sharing service where the clients would like to protect the information about the usage of the car.
Here we consider a job scheduling problem with one shared resource and multiple jobs. Consider n parties, each
party Pi having a set of jobs Ji = {b1

i , ...,b
t
i}. The goal is to find the order in which to assign these jobs to a common

resource R. We consider the Shortest Job First (SJF) algorithm for the scheduling as this algorithm gives the best
average waiting time for the parties. We instantiate the generic protocol in Fig. 3 to realise the function. The
functionality FMIN runs exactly like in Fig. 2 and we define the functionality FUPT as follows:

– For j = 1, FUPT(⊥,Xi) = (bi,δi), where bi is the shortest job in Ji and δi is the completion time for bi.
– For j > 1, if Ji ⊆ {c1, ...c j−1}, then FUPT((c1, ...c j−1),Ji) = (⊥,δi) where δi = ∞. If bt

i ∈ {c1, ...c j−1}, then
FUPT((c1, ...c j−1),Ji) = (bi,δi) where bi ∈ Ji \{bt

i} is the smallest job with completion time δi. Else if jbt
i ∈

{c1, ...c j−1}, then FUPT((c1, ...c j−1),Ji) = (bi,δi) where bi ∈ Ji is the shortest job and its completion time is δi.
The final output is (c1, ...,c j), which gives the order in which to assign the jobs to the resource R. The protocol runs
for N = ∑

i
|Ji| iterations.

10



4 Leaky kth Ranked Element

Now we focus on one specific comparison-based function, namely finding the kth ranked element of a set.
Recalling that protocol πGP (in §3) computes comparison-based functions that possess the properties specified
in definition 3, it can therefore be implemented for computing the kth ranked element of a union of sets. In this
section, we construct a special protocol for the computation of the kth ranked element. The protocol discussed
here has a smaller communication complexity than a generic protocol computing this function, as well as previous
protocols for the computation of this function. We also see that using this specific protocol is more efficient than
πGP (from §3) for computing the kth ranked element.
The functionality for finding the kth ranked element for N parties is defined by Fk(D1, ...DN) 7→ (xk, ...,xk), where xk
is the kth element of the union over all input sets Di. We present a Leaky kth Ranked Element protocol π

Leaky
k (Fig. 7)

that securely realises functionality F
Leaky
k (Fig. 6). We use the binary search algorithm for finding the kth element.

This protocol works iteratively and requires two summations and two comparisons per iteration. We construct the
protocol in a star network topology, hence splitting the computations into a series of secure two-party computations.
By doing this, we reduce the communication complexity, but leak the result of the summations to the parties. This
leakage is discussed in detail in §4.1.

Functionality Fk

Functionality Fk communicates with all parties P1, ...,Pn and an adversary Sim.

– Upon receiving Di from each party, compute xk, where xk is the kth ranked element in
n⋃

i=1
Di. Send xk to the adversary Sim. If Sim responds OK, transmit xk to all parties.

Fig. 5: Functionality for computing the kth ranked element of a union of n sets.

Functionality F
Leaky
k

Functionality F
Leaky
k communicates with all parties P1, ...,Pn and an adversary Sim.

– Receives (xi,yi) from each party.
– Upon receiving m from party P1, if m = xk, where xk is the kth ranked element, the

functionality sends xk to all parties. If m > xk , then F
Leaky
k sends 1 to all the parties. Else,

if m < xk, FLeaky
k sends 0 to all parties.

Fig. 6: Leaky functionality for computing the kth ranked element of a union of n sets.

Now we present the Leaky protocol in detail. The functionality F
Leaky
k (Fig. 6) computes the kth ranked element of the

union of N sets. It takes inputs from the parties for computing the sum. The result of this addition is then returned
to all the parties. Next, the functionality receives an input from party P1. If this input is equal to the kth ranked
element, then F

Leaky
k sends xk (the kth ranked element) to all the parties. Otherwise, if the input is smaller than xk,

F
Leaky
k sends 1 to all the parties and if the input is greater, it sends 0. The functionality is called leaky as it reveals

the intermediate sum in each iteration to all the parties. This provides additional information to the parties which
otherwise an adversary could not compute from the output alone.
The protocol π

Leaky
k , which realises functionality F

Leaky
k , works in iterations and as follows: in the precomputation

phase, each party computes m = [a+b/2] and counts the number of elements in its database that are smaller than m
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(and larger than m). The parties encrypt inputs using a threshold homomorphic encryption scheme and send them to
P1. Party P1 computes the sum of these encrypted inputs and all the parties jointly decrypt the result and obtain the
plaintext. Next, P1 compares the result of the sum to conclude whether the kth ranked element is smaller than m (or
larger than m). Based on the result of the comparison, the value of m is updated for the next iteration. Note that each
party only communicates with party P1 throughout the execution. This reduces the communication cost as compared
to the multi-party protocol given in [AMP04] that computes the same functionality.

Leaky kth Ranked Element (πLeaky
k )

Input: Each party Pi has a database Di. The rank k, the range of elements in the union of
databases ([a,b]) and the size of each database (|Di|) are public.
Primitives: A homomorphic encryption scheme (Gen,Enc,Dec) having a key generation
protocol πGen.
Initial phase: Each party Pi ranks its elements in ascending order. N = Σi|Di| is the total
number of elements in

⋃
Di.

Key generation phase: The parties engage in a semi-honestly secure protocol πGen to
generate a public key pk and their respective shares of secret key ski of sk.
Local computation phase: Each party Pi does the following:

1. Computes m = b(a+b)/2c.
2. Computes the number of elements (li) less than m and the number of elements (gi)

greater than m.

Multi-party phase:

4. Each party Pi encrypts its masked inputs, ci = Encpk(li) and c′i = Encpk(gi), and sends
the ciphertexts to P1.

5. P1 computes [L] =
n
∑

i=1
ci and [G] =

n
∑

i=1
c′i.

6. The parties jointly decrypt [L] and [G] to obtain the sums L and G, respectively. Party P1
receives the decrypted values L and G.

7. P1 does the following comparisons
(a) If L < k and G≤ N− k, then m is the kth ranked element and P1sends Foundk to

all the parties.
(b) If L≥ k, then P1 sends 1 to all parties. Then each party sets b = m−1 and repeats

the protocol from the local computation phase.
(c) If G > N−k, then P1 sends 0 to all parties and each party sets a = m+1 and repeats

the protocol from the local computation phase.

Output: xk (the kth element of
⋃

Di).

Fig. 7: Leaky protocol for passively secure computation of the kth ranked element

Correctness. We prove the correctness of the protocol in the following argument. Let [a,b] be the range of elements
in the union of all the sets and N be the number of elements in the union. Let xk be the element at the kth position in
the union of the sets where the elements are arranged in ascending order. Let mi be the value of m in the ith iteration.
In the ith iteration, each party counts the number of elements smaller than mi and the number of elements greater
than mi and the sum of these values from all the parties is computed respectively. Let Li and Gi be the total number
of elements smaller than and larger than mi respectively, in the ith iteration. Then three cases arise.

– If xk < mi, then xk ∈ [a,mi−1]. Then the number of elements smaller than mi is greater than the number of

elements smaller than xk, i.e., Li > k−1. Thus, mi+1 will be computed as
[

a+mi−1
2

]
and the procedure is

repeated.
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– If xk > mi, then xk ∈ [mi +1,b]. Then, the number of elements larger than mi will be greater than the number of

elements larger than xk, i.e., Gi > N−k. Thus, mi+1 is computed as
[

mi +1+b
2

]
and the procedure is repeated

with mi+1.
– Now if Li < k and Gi ≤ N− k, then xk 6∈ [a,mi−1] and xk 6∈ [mi +1,b], which implies xk = mi.

Hence, the protocol correctly computes the kth element.

Security. The protocol π
Leaky
k securely realises FLeaky

k in the presence of semi-honest adversaries for n≥ 2. We discuss
the proof of security in detail in §B.

Instantiations of the threshold PKE. The threshold homomorphic encryption in protocol π
Leaky
k can be instantiated

using any homomorphic encryption schemes (see §A). In the implementation of our protocol, described in §4.3, we
use the threshold Paillier PKE [Pai99]. The threshold Paillier can be implemented with distributed RSA modulus
generation, as discussed in [HMR+19].

4.1 Leakage

Now we discuss the leakage mentioned above in protocol π
Leaky
k . In each iteration of π

Leaky
k , the sum of the number

of elements smaller than m (L) and the sum of the number of elements greater than m (G) is leaked to party P1.
Therefore for each m, the number of elements greater or smaller than m in the union of all databases, i.e.,

⋃
Di, is

revealed. Using this leakage from each iteration, an adversary can calculate the number of elements that lie between
two values of m. This shows the distribution of the elements in

⋃
Di and

⋃
D j , for j = [2,n]. However, this leak only

reveals a collective information about the union of the databases, and the distribution of elements in each individual
set D j cannot be computed from this leakage.
In some applications certain leakage may be tolerable as a tradeoff between privacy and efficiency. This can be
demonstrated by several works like [CJJ+13,PKV+14,KMRR15,SGB18] that leak some information in order to
obtain more efficient protocols. For instance, in [CJJ+13,PKV+14,SGB18] DBMS search protocols are presented
that allow leakage of some information to improve the efficiency of the search. [KMRR15] studies the dual-execution
paradigm [MF06] where the efficiency of two-party computation is improved by revealing a single bit of the honest
party’s input to the adversary. These works demonstrate tradeoffs between privacy and efficiency, where some leakage
may be accepted in order to achieve higher efficiency. Moreover, if the leakage is to be reduced, a potential solution
may be to use differential privacy. Then the leakage in the protocols would be the differentially private leakage as
demonstrated in [GRR19].

4.2 Complexity

Let S = b−a+1, where [a,b] is the range of elements in
⋃

Di. Then, the maximum number of rounds is logS. The
communication occurs at the setup phase for generating correlated randomness and the multi-party phase for finding
the kth element. The communication complexity of the key generation phase is O(κ · n2) where n is the number
of parties participating. In the multi-party phase, in each round, the communication occurs for: n encryptions, 1
decryption and 1 broadcast by P1. Hence, the communication complexity of the online phase protocol is O(κnd logS),
where d is the length of the inputs.
The protocol in [AMP04] also uses the binary search algorithm and requires logS rounds. The circuit consists
of two summations and two integer comparisons, therefore the circuit size is O(n logS). Hence, using an effi-
cient MPC protocol [ABJ+19] for the computation of the circuit, the total complexity for the protocol becomes
O(κnd logn logd logS).
The protocol in [TKK+20] uses a star topology to achieve a constant round protocol. Using the additively homomor-
phic encryption as the basis, they obtain a 4 round protocol. They compute the rank of the element by comparing
each element with every other element. The communication complexity of their protocol is therefore quadratic in the
number of participating parties, i.e., O(κn2d). We give the comparison of the complexities of the above protocols
with our work in Tab. 2.

4.3 Implementation

We implemented the protocol π
Leaky
k in the Rust programming language and instantiated the threshold homomorphic

encryption with the threshold Paillier PKE using 2048 and 3072 bit modulus N. The implementation of the
threshold encryption is based on the C library libhcs [Tie18] and the Java library Paillier Threshold Encryption
Toolbox [UTD10].
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4.4 Benchmarks

Benchmark environment: We ran our benchmarks on a server with 2× Intel Xeon Gold 6144 @ 3.5 GHz (8
physical cores) and 16× 32 = 512 GB DDR4 RAM. We created 20 containers, each with 32 GB RAM and one
core. The containers, running Arch Linux, were connected via a simulated WAN with a bandwidth of 100 Mbits and
latency of 100 ms.
For our benchmarks, we consider the worst-case scenario for our protocol, i.e., when k = 1. We assume that each
party holds a set of elements and the range of the elements in the union of these sets is S. Therefore, the protocol
runs for logS rounds. We benchmark values of S from 104 to 1014. We benchmark the total communication of the
protocol execution for 3 to 19 parties, where each party’s database has a size of 1 GB (Figs. 8c and 8d). To emulate
the setting of [TKK+20], we also evaluate the runtime for 20 to 200 parties with a single element each (Figs. 8a
and 8b). The results are averaged over 10 runs for each configuration.

(a) Runtime (N = 2048) (b) Runtime (N = 3072)

(c) Communication (N = 2048) (d) Communication (N = 3072)

Fig. 8: Experimental analysis of protocol π
Leaky
k (Fig. 7), which computes the kth ranked element of the

union of n sets, for varying number of parties n. The plots show the results for different ranges of
values in the database. N is the RSA modulus for Paillier threshold encryption.
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[TKK+20] (no leakage) This work (leaky)
(N = 2048) (N = 3072)

YGC AHE1 AHE2 S = 104 S = 1014 S = 104 S = 1014

Time (s) 197 1749 441 16.6 59.19 112.6 222.2
Comm. (MB) 0.31 1.11 0.32 0.027 0.096 0.040 0.143

Table 3: Performance comparison of our protocol π
Leaky
k (Fig. 7) for computing the kth ranked element

among 100 parties connected via WAN with the numbers reported in [TKK+20] based on Yao’s
garbled circuit (YGC) and additively homomorphic encryption (AHE). Comm. is the communication
from the client to the server in MB. S is the range of elements in the database. N is the RSA modulus
for Paillier threshold encryption.

Results Our experimental results match with the expected asymptotic complexities. We see that the total communi-
cation scales linearly with the number of parties, and increasing the number of parties does not affect the individual
communication. Moreover, the communication increases logarithmically with the range of the database.
The outliers in Fig. 8b are due to thread scheduling issues on the container executing party P1.

Comparison: We compare our results with the experimental results of the previous work in [TKK+20]. The
comparison of results for 100 parties with a database range of either 104 or 1014 is given in Tab. 3. In the case of
S = 1014, our protocol reduces the client communication by more than a factor of two compared to the best protocol
of [TKK+20].

5 Conclusion and Future Work

In this paper, we have presented two multi-party protocols, one for computing a class of comparison-based functions
and the second for computing the kth ranked element. The protocols that we constructed have better communication
complexities as compared to the previous works on these specific functions, and to generic multi-party protocols that
can be used for these functions. We reduce the functions to a computation of some high-level primitives and perform
the computations in a star network topology, where one party communicates with every other party to execute a series
of two-party computations. We show that such a design improves the efficiency of the protocols as the communication
between parties during the execution are reduced to a minimum. Our protocols have communication complexities
linear in the number of parties, which makes it easily scalable.
An interesting future direction would be to hide the leakage in the second protocol without losing the efficiency.
A potential technique to reduce the leakage is to use differential privacy where the differentially private leakage
will be revealed.
Another future direction would be to extend these protocols to a malicious setting by adding additional consistency
check without compromising much on the efficiency.
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DGK07. Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. Efficient and secure comparison for on-line auctions.

In ACISP, 2007.
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A Additively Homomorphic PKE

A public key encryption scheme is said to be additively homomorphic if for two ciphertexts c1 = Encpk(m1;r1) and
c2 = Encpk(m2;r2), we can efficiently compute Encpk(m1+m2;r) with an independent r and without the knowledge
of the secret key sk.
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To formalize the definition, we assume that both the plaintext space(M) and the ciphertext space(C) are groups (with
operations + and ·, respectively). We use the notation Encpk(m) instead of Encpk(m;r) to denote the random variable
induced by the latter, where r is chosen uniformly at random. Then, we have the following definition:

Definition 5 (Homomorphic PKE) A public key encryption scheme (Gen,Enc,Dec) is said to be homomorphic
if ∀κ and all (pk,sk) output by Gen(1κ), it is possible to define two groups M,C such that:

– For all m ∈M, the value Encpk(m) is an element of C.3

– For every m1,m2 ∈M it holds that

{pk,c1 = Encpk(m1),c1 ·Encpk(m2)} ≡ {pk,Encpk(m1),Encpk(m1 +m2)} (1)

where the group operations are carried out in the respective groups i.e., C and M, and the randomness for the
distinct ciphertexts are independent.

Note that multiplication of a plaintext by a scalar is supported by any such scheme. We implicitly assume that each
homomorphic operation on a set of ciphertexts is concluded with a refresh operation, where the party multiplies the
result ciphertext with an independently generated ciphertext that encrypts zero. This is required in order to ensure
that the randomness of the outcome ciphertext is not related to the randomness of the original set of ciphertexts.

A.1 Threshold PKE

In a distributed scheme, shares of the secret key are held by the parties so that the combined key remains secret.
In order to decrypt, the parties use their shares to compute intermediate values, which are combined eventually to
form the decrypted plaintext. To formalize this notion, we consider two multi-party functionalities: FGEN securely
generates secret key shares for all parties (Fig. 9), and FDEC jointly decrypts a given ciphertext (Fig. 10).

Functionality FGEN

Functionality FGEN communicates with parties P1, . . . ,Pn and an adversary Sim, and is param-
eterized by a computational security parameter κ.

– Upon receiving (KeyGen, 1κ) from all parties Pj , invoke (pk,sk)← Gen(1κ). Send the
corrupted parties’ output messages (keys, pk, sk j) to Sim. If Sim responds OK, transmit
(pk, sk j) to the remaining parties.

Fig. 9: Threshold key generation functionality.

A.2 The Paillier PKE

A popular instantiation of the homomorphic encryption is the Paillier encryption scheme [Pai99]. The key generation
algorithm chooses two equal length primes p and q and computes N = pq. Then it selects an element g ∈ Z∗Ns+1

such that g = (1+N) jrN mod Ns+1 for a known j relatively prime to N and rN . Let λ be the least common multiple
of p− 1 and q− 1, then the algorithm chooses d such that d mod N ∈ Z∗N and d = 0 mod λ. The public key
is (N,g) and the secret key is d. Then, encryption of plaintext m ∈ ZNs is done by computing gmrNs

mod Ns+1. And
the decryption of a ciphertext c is done by first computing cd mod Ns+1 which gives (1+N) jmd mod Ns

and then
compute discrete logarithm of the result relative to (1+N). The security of the Paillier scheme is implied by the
Decisional Composite Residuosity (DCR) hardness assumption.

Damgård-Jurik PKE. Damgård and Jurik [DJ01] propose a generalization of the Paillier scheme to groups of the
form Z∗ns+1 for s > 0. In this scheme, to encrypt a message, m ∈ Z∗n, a random r ∈ Z∗n is chosen and gmrns ∈ Z∗ns+1

is computed.

3 The plaintext and ciphertext spaces may depend on pk; we leave this implicit.
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Functionality FDEC

Functionality FDEC communicates with parties P1, . . . ,Pn and an adversary Sim.

– Upon receiving (Decrypt, pk, sk j, c) from all parties Pj, compute
(DecryptOutput, m), where c = Encpk(m) and each Decsk j

(c) is an additive
share of the plaintext m =Decsk(c), i.e. ∑ j Decsk j

(c) = m. Send message (Decrypt, m)
to the adversary Sim. If Sim responds OK, transmit m to all parties.

Fig. 10: Threshold decryption functionality.

Threshold Paillier with semi-honest security. The threshold variant of Paillier PKE in the passive setting is given
in [Gil99], in which the parties generate an RSA modulus N mutually. Damgård, Jurik and Nielsen [DJN10] also
give a threshold variant for the extension of Paillier PKE.

A.3 El Gamal PKE
Another instantiation of homomorphic encryption is the El Gamal scheme [Gam85]. It has two variants of additive
and multiplicative definitions. In this work we use the additive variant. Let G be a group of prime order p in which
DDH is hard. Then the public key is a tuple pk = 〈G, p,g,h〉 and the corresponding secret key is sk = s, such
that gs = h. Encryption is performed by choosing r← Zp and computing Encpk(m;r) = 〈gr,hr ·gm〉. The decryption
of ciphertext c = 〈α,β〉 is performed by computing gm = β ·α−s and then finding m by running an exhaustive search.

Threshold El Gamal. The parties agree on a group G of prime order p and a generator g. Then each party Pi
selects si←Zp and sends hi = gsi to the other parties. Lastly, the parties computes h=∏

n
i=1 hi and set pk= 〈G, pg,h〉.

Hence, the secret key s = ∑
n
i=1 si associated with this public key is correctly shared between the parties. The

decryption of a ciphertext c = 〈c1,c2〉 works by computing c2 · (∏n
i=1 csi

1 )
−1, where each party sends c1 to the power

of its share si.

A.4 LWE-Based PKE
The standard LWE-based homomorphic encryption scheme [BV14] is constructed based on two major parameters:
the dimension n and the modulus q. First, a Secret vector S of n integers is chosen and then a set of public keys (Ai,b),
denoted as pk= {pkq,pk2, ...}, is computed using the key generation function, where Ai is an arbitrary vector of n
integers, and b is an integer computed as < Ai,S > + 2.ei; where ei is a small randomly chosen error. Now, for
every jth public key generation, a random arbitrary vector A j is chosen, and the public key pk j is computed from
secret key S as follows: pk j = (A j,b j) = (A j,< A j,S >+ 2.ei).
Given the plaintext message bit mi, the encryption algorithm computes the ciphertext Ci = (Ai,vi) using any
random jth public key pk j = (A j,b j) where vi = b j +mi( mod q ) = (< A j,S >+ 2.ei +mi( mod q )) and Ai =
A j .
Decryption takes the ciphertext Ci = (Ai,vi) and computes the plaintext message bit mi using the secret key S. The
decryption process is given as follows: mi = (vi− < Ai,S >) mod 2. The decryption eliminates two masks and
leaves the message bit as output.

B Security of π
Leaky
k

Theorem 2 (Security of π
Leaky
k ). Assume that (Gen,Enc,Dec) is an IND-CPA secure threshold homomorphic en-

cryption scheme. Then the protocol (Fig. 7) securely realises F
Leaky
k in the presence of semi-honest adversaries

for n≥ 2.

Proof. We construct a simulator S, where S is provided with the inputs of the corrupted parties and the output of the
computation. Let A be an adversary corrupting a subset of the parties, then two cases arise:
Case 1: A corrupts a strict subset I of the parties excluding P1. Let xk be the kth ranked element in the union of all
the sets. The simulator S has input Di, i ∈ I and xk, and is defined as follows:
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1. Given Di, i ∈ I and xk, the corrupted parties are invoked by S on their corresponding inputs.
2. S generates (pk,sk)← Gen(1κ) and invokes SGen for the key generation phase.
3. S plays the role of P1 on an arbitrary set of inputs, against the corrupted parties.
4. For each iteration j, let m j = [a+b/2] be the median of the range as computed by each party. If xk < m j , then S

returns 1 to all parties. If xk > m j, S returns 0 to the parties.
In this case, the view generated by the simulator is identical to the view of the honest parties in the real protocol. In
the case when xk < m, it implies that L (number of elements less than m)≥ k, then in the real execution as well as in
the simulation, b = m−1. When xk > m, it implies that G (the number of elements greater than m)≥ N−k+1, then
in the real execution and in the simulation, a = m+1. When xk = m, L (number of elements less than m)≤ k−1
and G (number of elements greater than m)≤ N−k, then in both executions m is the kth element. Hence, the view of
the honest parties in both executions are identical.
Case 2: A corrupts a strict subset I of parties including P1. Let xk be the kth ranked element of the union of all
databases D j . Here the simulator S has input sets Di, i ∈ I and xk, and is defined as follows:

1. Given Di, i ∈ I and xk, the corrupted parties are invoked by the simulator on their corresponding inputs.
2. S generates (pk,sk)← Gen(1κ) and invokes the simulator SGen(pk) for πSH

Gen in the key generation phase.
3. S plays the honest parties’ role against P1 in the protocol. For the jth iteration, let m j = [a+b/2] be computed

by S. The simulator sends encryptions of two arbitrary inputs to P1 and P1 computes two sets of sums
(a) If m j < xk, the simulator invokes SDec(r1) for the decryption of C and SDec(N− k+ r2) for the decryption

of C′, where r1,r2 ∈ Zk. Then P1 returns 0 and the simulator sets a = m j +1.
(b) If m j > xk, the simulator invokes SDec(k+ r1) for the decryption of C and SDec(r2) for the decryption of

C′, where r1,r2 ∈ Zk. Then P1 returns 1 and the simulator sets b = m j−1
(c) If m j = xk, then m j is the kth element.

In this case the difference lies in the encryptions sent to P1. In the real execution, the parties send encryptions of their
input to P1 whereas the simulator sends encryptions of arbitrary inputs to P1. Hence, the indistinguishability of the
two views follows from the privacy of the threshold homomorphic encryption scheme.
Thus, the above protocol securely computes the kth ranked element of the union of n sets.
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