
Finding One Common Item, Privately

Tyler Beauregard∗ Janabel Xia† Mike Rosulek‡

July 4, 2022

Abstract

Private set intersection (PSI) allows two parties, who each hold a set of items, to learn
which items they have in common, without revealing anything about their other items. Some
applications of PSI would be better served by revealing only one common item, rather than
the entire set of all common items. In this work we develop simple special-purpose protocols
for privately finding one common item (FOCI) from the intersection of two sets. The protocols
differ in how that item is chosen — e.g., uniformly at random from the intersection; the “best”
item in the intersection according to one party’s ranking; or the “best” item in the intersection
according to the sum of both party’s scores. All of our protocols are proven secure against
semi-honest adversaries, under the Decisional Diffie-Hellman (DDH) assumption and assuming
a random oracle. All of our protocols leak a small amount of information (e.g., the cardinality
of the intersection), which we precisely quantify.

1 Introduction

Suppose Alice and Bob want to schedule a meeting, without sharing their entire calendars with
each other. One method they might use is private set intersection (PSI). If they run a PSI
protocol, with each party using the set of available time slots as their input, then they will learn
only the set of common available times — i.e., the intersection of those sets — and nothing else
about their calendars.

However, for the application of scheduling a meeting, it is not necessary for them to learn the
entire intersection of their availabilities. Instead, it is enough that they learn just a single item from
the intersection. We refer to this problem as (privately) finding one common item (FOCI). We
may consider different ways that that single item may be chosen. The parties may want to simply
learn a random common item. Alternatively, one or both parties may have preferences about the
items (e.g., “I am free at these times but prefer Tuesdays/Thursdays and prefer mornings.”) and
they want to learn the “best” item in the intersection according to those preferences.

1.1 Related Work

To the best of our knowledge, there has not been work studying this particular variant of PSI. We
briefly recall the state of the art for plain PSI, and also discuss secure multi-party computation
methods that could be used to achieve FOCI.

∗Truman State University, trb4137@truman.edu
†Massachusetts Institute of Technology, janabel@mit.edu
‡Oregon State University, rosulekm@eecs.oregonstate.edu

1

Plain PSI. The first PSI protocols date back to the classic Diffie-Hellman-based PSI of Huber-
man, Franklin, and Hogg [HFH99]. Their protocol has roots dating back to Meadows [Mea86]. Our
protocols take inspiration from the protocol of Huberman, Franklin, and Hogg; we elaborate on this
connection later. Many other protocols have built on this paradigm, improving its efficiency [JL10,
RT21] and extending it to achieve security against malicious adversaries [DMRY09,DKT10,RT21].
Besides the Diffie-Hellman paradigm, there are other approaches for PSI — most notably, oblivi-
ous polynomial evaluation [FNP04,KS05,Haz15] and oblivious transfer [PSZ14,PSSZ15,KKRT16,
RR17,PRTY19,CM20,PRTY20,RR22].

PSI based on oblivious transfer is the most efficient for large sets, and the fastest PSI protocol
in that paradigm is due to to Rindal and Raghuraman [RR22]. For small sets, PSI based on
the Diffie-Hellman approach is more efficient, and the fastest protocol in that paradigm is due to
Rosulek and Trieu [RT21]. In their work, they found that the Diffie-Hellman approach was faster
for sets of around 500 items or fewer.

Computing on the intersection. Finding one common item is a special case of computing
arbitrary functions of the intersection. There is a line of work on this problem, where some PSI
techniques are used but the intersection is fed into a generic secure multi-party computation pro-
tocol [HEK12,PSSZ15,PSWW18,PSTY19,GMR+21].

1.2 Our Results

It is possible to privately find one common item, using the approaches just listed above (for com-
puting arbitrary functions of the intersection).1 However, we point out two issues with these
approaches:

1. They all use techniques from oblivious-transfer-based PSI. These techniques are the most
scalable for large sets, but they have certain inherent fixed costs (base OTs). In the case of
plain PSI, these fixed costs are a significant fraction of the entire protocol cost for small sets.
For this reason, Diffie-Hellman techniques are more efficient on small sets (in practice, several
hundred items for each party).

Our motivating application to calendar scheduling is indeed in this regime of set sizes, with
∼360 half-hour time slots in one month of business hours.

2. They all use general-purpose MPC (e.g., garbled circuits or GMW protocol) to compute the
function of the intersection. This adds an inherent level of complexity to the protocol. On the
other hand, Diffie-Hellman PSI techniques are relatively simple. While describing a real-world
and large-scale deployment of PSI, Ion et al. [IKN+19] explicitly listed protocol simplicity as
a major design constraint, motivating simplicity as follows:

It is difficult to overstate the importance of simplicity in a practical deployment,
especially one involving multiple businesses. A simple protocol is easier to explain
to the multiple stakeholders involved, and greatly eases the decision to use a new
technology. It is also easier to implement without errors, test, audit for correctness,
and modify. It is also often easier to optimize by parallelizing or performing in a
distributed manner. Simplicity further helps long-term maintenance, since, as time
passes, a constantly increasing group of people needs to understand the details of
how a solution works.

1All protocols for computing functions of the intersection can be readily augmented to support data associated
with the items, e.g., scores/ranks.

2

We propose simple protocols for the following variants of privately finding one common item:

• Alice learns the cardinality of the intersection and Bob learns one item chosen uniformly
from the intersection. This variant is a simple (and likely folklore) modification of the classic
Diffie-Hellman-based PSI protocol of [HFH99]

• Bob has assigned ranks to each of his items, and he learns the item in the intersection with
the highest rank. Alice learns the cardinality of the intersection, but nothing about the
contents of the intersection, and nothing about Bob’s ranks. For example, Alice would not
learn whether item x was in the intersection, and she would not learn whether Bob’s favorite
or least favorite item is in the intersection.

• Both parties have assigned scores to each of the items, and for every item in the intersection
we define its combined score as the sum of Alice’s and Bob’s scores for that item. Bob learns
the item in the intersection with the highest combined score. Alice learns the cardinality of
the intersection and the (unordered) set of combined scores for items in the intersection —
i.e., she does not learn which scores are associated with specific items, and she does not learn
the individual contributions of Alice’s/Bob’s scores to the combined scores. For example, if
Alice ranks the item x with score 3 and Bob ranks it with score 7, then Alice will learn that
there is some item of combined rank 10 in the intersection.2

All of our protocols are conceptually simple and practical. Each is proven secure against semi-
honest adversaries, under the standard DDH assumption, and in the random oracle model. The
second protocol (with only Bob ranking the items) requires an order-revealing encryption [BLR+15],
but there exist compact ORE schemes based only the minimal assumption of a PRF [LW16].

Our protocols reveal more than the minimum amount of information — i.e., more than just the
identity of one common item. All three protocols leak the cardinality of the intersection to Alice, for
example. However, each protocol hides non-trivial information about the sets; each protocol reveals
nothing about items not in the intersection; and leakage about the intersection is disassociated from
specific items.

2 Preliminaries

2.1 Decisional Diffie-Hellman Assumption

Definition 1. Let G be a cyclic group with generator g and order q. The decisional Diffie-
Hellman (DDH) assumption is that the following two distributions are indistinguishable:

DH1,G:

a, b← Zq
return (ga, gb, gab)

Rand1,G:

a, b, c← Zq
return (ga, gb, gc)

Using a standard and straight-forward rerandomization technique ([Bon98]), the DDH assump-
tion is equivalent to the following:

2There are some situations where Alice could use this leakage to to deduce some information about the intersection
and about Bob’s ranks. For example, suppose Alice assigns ranks r1 < r2 < · · · to her items x1, x2, . . ., respectively,
and then she later learns that the intersection contains an item with combined rank r∗. If r∗ < r2 (and all ranks are
nonnegative), she can deduce that item x1 is in the intersection, and that Bob must have assigned rank r∗ − r1 to
that item.

3

Proposition 2. Let G be a cyclic group with generator g and order q. The DDH assumption is
equivalent to the assumption that, for all n (polynomially bounded by the security parameter), the
following two distributions are indistinguishable:

DHn,G:

a1, . . . , an, b← Zq
return (ga1 , . . . , gan , gb, ga1b, . . . , ganb)

Randn,G:

a1, . . . , an, b, c1, . . . , cn ← Zq
return (ga1 , . . . , gan , gb, gc1 , . . . , gcn)

2.2 Secure Two-Party Computation

In this work we consider secure two-party computation in the presence of semi-honest adversaries.
Let the two parties be denoted P1 and P2, and let their private inputs be x1 and x2, respectively.
Let f(x1, x2) = (f1(x1, x2), f2(x1, x2)) denote an ideal functionality, which receives x1, x2 from the
parties and gives output fi(x1, x2) to party Pi.

Let viewπi (x1, x2) denote the view of party Pi (consisting of internal randomness and protocol
messages received) when the parties run protocol π honestly, on respective inputs x1 and x2.

Definition 3. A protocol π securely realizes a functionality f = (f1, f2) if, for i ∈ {1, 2} there
exists a simulator Si such that for all x1, x2, the distributions viewπi (x1, x2) and Si(xi, fi(x1, x2))
are indistinguishable.

In other words, the view of party Pi can be simulated given only their input xi and ideal output
fi(x1, x2).

2.3 Symmetric-Key Encryption

We require a simple one-time, symmetric-key encryption scheme, where decryption fails if the wrong
(independently random) key is used. Let K be the set of keys and let M be the set of plaintexts.
Specifically, we require the following properties:

• Correctness: Dec(k,Enc(k,m)) = m with probability 1 for all k ∈ K and m ∈M.

• One-time security: For all m0,m1 ∈ M, the distributions E0 and E1 are indistinguishable,
where:

Eb:
k ← K
return Enc(k,mb)

• Robust decryption: For all m ∈ M, the following process outputs true with negligible
probability:

k, k′ ← K
c← Enc(k,m)
return ⊥ 6= Dec(k′,m)

2.4 Order-Revealing Encryption

Order-revealing encryption (ORE) is a symmetric-key encryption scheme that reveals no more than
the ordering of the plaintexts. See [BLR+15,LW16] for example constructions.

We specialize the notation of ORE for later convenience.

4

• Syntax: An ORE consists of algorithms Enc,Dec,Argmax. The set of keys is K and the set
of plaintexts is M. Without loss of generality, M = ZN for some integer N , and we use the
natural total ordering of ZN .

• Correctness: Dec(k,Enc(k,m)) = m with probability 1 for all k ∈ K and m ∈M.

• Order-revealing: Argmax(Enc(k,m1), . . . ,Enc(k,mn)) = arg maxjmj , with probability 1 for
all k ∈ K and m1, . . . ,mn ∈M.

• Security: for all distinct m1, . . . ,mn ∈M, the following distributions are indistinguishable:

D0:

k ← K
for i = 1 to n:
ci = Enc(k, mi)

return shuffle({c1, . . . , cn})

D1:

k ← K
for i = 1 to n:

ci = Enc(k, i)
return shuffle({c1, . . . , cn})

In other words, encryptions of distinct plaintexts are indistinguishable from encryptions of the
sequence 1, . . . , n.

3 Finding a Random Item of the Intersection

Our first simple protocol allows Bob to learn a single, randomly chosen, item from the intersection,
while Alice learns only the cardinality of the intersection. For simplicity, we present our protocols
for the case where both parties have n items, but all of the protocols are easily generalized for the
case where the parties have sets of different sizes.

3.1 Warmup: Cardinality-Only Protocol & Blind Exponentiation

We start by recalling the classic protocol of Huberman, Franklin, and Hogg [HFH99], which allows
Alice & Bob to learn the cardinality of their intersection. The heart of the protocol is a blind
exponentiation subprotocol, in which Alice has a set of items that get raised to a secret exponent
known to Bob. Alice learns only the unordered set of resulting values. The subprotocol is shown
in Figure 1.

Our convention when writing protocols and proving security is that sets are unordered. So
when Alice/Bob send each other a set during the protocol, that set is assumed to be randomly
permuted (equivalently, the set can be sorted).

Lemma 4. Alice’s output is (the unordered set) {mb | m ∈ M}. Furthermore, if Alice is semi-
honest, then her view in Figure 1 can be simulated given only this output.

Proof. Correctness follows from the fact that

{(m′′)1/a | m′′ ∈M ′′} = {((m′)b)1/a | m′ ∈M ′} = {((ma)b)1/a | m ∈M}.

Alice’s view consists of M ′′ and random exponent a. This can be simulated by a simulator choosing
random a and then raising every item of the output to the a power.

Lemma 5. If Bob is semi-honest, and Alice’s inputs have the form mi = H(xi), for distinct xi
values (chosen by the adversary), then Bob’s view in Figure 1 is indistinguishable from random
(assuming the DDH assumption, and with H a random oracle).

5

Parameters: cyclic group G = 〈g〉 with prime order q

Alice: Bob:
M = {m1, . . . ,mn} b ∈ Zq

1. a← Zq
2. M ′ = {ma | m ∈M}

M ′

3. M ′′ = {(m′)b | m′ ∈M ′}
M ′′

4. output {(m′′)1/a | m′′ ∈M ′′}

Figure 1: Blind Exponentiation subprotocol.

Proof. Consider the following reduction algorithm. Given α1, . . . , αn, β1, . . . , βn: Simulate a ran-
dom oracle while programming it as H(xi) = αi — this is possible since the xi’s are distinct. Then
simulate Alice’s message M ′ as M ′ = {β1, . . . , βn}. If each βi = αai then Bob’s view is exactly as
in the protocol. If the βi values are independently random, then Bob’s view is of a random set M ′.
The two cases are indistinguishable from the DDH assumption (Section 2.1).

Cardinality-only protocol. In the cardinality protocol of [HFH99], the parties first perform
blind exponentiation. If Alice’s input set is X, then her input to blind exponentiation subprotocol
is {H(xi) | xi ∈ X}. She learns X ′ = {H(xi)

b | xi ∈ X} where b is a random exponent chosen by
Bob. Bob also sends Y ′ = {H(yi)

b | yi ∈ Y }, where Y is his input set. The cardinality |X ′ ∩ Y ′|
corresponds to the cardinality |X∩Y |. The protocol corresponds to all but the last protocol message
of Figure 3.

Since the outputs of the blind exponentiation subprotocol are randomly permuted, Alice does
not know the correspondence betwen matching H(z)b values and her original xi values.

3.2 Choosing a random item

After performing the basic cardinality protocol, Alice can simply identify a random element from
the intersection according to its H(z)b value. In this way, Bob will learn a single item from the
intersection, while Alice learns only the cardinality of intersection. For the sake of completeness,
we describe the ideal functionality for this FOCI variant in Figure 2, and the protocol in Figure 3.

1. receive input X from Alice and Y from Bob.
2. give |X ∩ Y | to Alice.
3. sample z∗ ← X ∩ Y uniformly; set z∗ = ⊥ if X ∩ Y = ∅.
4. give z∗ to Bob.

Figure 2: Ideal functionality for sampling a random item from the intersection.

Lemma 6. The protocol in Figure 3 is correct.

6

Parameters: cyclic group G = 〈g〉 with prime order q

Alice: Bob:
X = {x1, . . . , xn} Y = {y1, . . . , yn}

0. randomly permute X randomly permute Y
1. A = {H(xi) | i ∈ [n]} b← Zq

2. BlindExp
A

A′

b

3. for i ∈ [n]:
Ki = H(yi)

b

K1, . . . ,Kn

4. J = {j ∈ [n] : Kj ∈ A′}
j∗ ← J (or j∗ = ⊥ if J = ∅)

5.
j∗

6. output |J | output yj∗ (or ⊥ if j∗ = ⊥)

Figure 3: Protocol for identifying a random item from the intersection.

Proof. If z ∈ X ∩ Y then H(z)b will surely be included in A′ and also as one of the Ki values. For
all other items x 6= y, Pr[H(x)b = H(y)b] = Pr[H(x) = H(y)] — i.e., these items contribute to the
intersection only in the case of a collision under the random oracle.

Lemma 7. The protocol in Figure 3 securely realizes Figure 2 against a semi-honest Bob.

Proof. Simulation for Bob is trivial. Bob’s view consists only of his view from BlindExp (which is
indistinguishable from random), and the final protocol message j∗, which is trivially computable
from his ideal output.

Lemma 8. The protocol in Figure 3 securely realizes Figure 2 against a semi-honest Alice.

Proof. Alice’s view consists mainly of her output A′ from the blind exponentiation subprotocol and
the Ki values from Bob. Using a standard reduction from DDH (which programs the H(xi) and
H(yi) values in the random oracle), all values of the form H(z)b are indistinguishable from random.
For z ∈ X ∩ Y , such H(z)b value appears in A′ and as one of the Ki values. For y ∈ Y \X, the
corresponding H(y)b appears only as one of the Ki values. Since the A′ set is unordered, and Bob’s
set is randomly permuted, then Alice’s view can be simulated knowing only |X∩Y |— i.e., knowing
how many values repeat between A′ and the set of Ki values.

4 Finding the Best Item According to a Unilateral Rank

In this section we consider the following variant. Alice holds a set of xi values, and Bob holds a set
of (yi, vi) pairs. The value vi denotes Bob’s rank of the item yi — i.e., a number between 1 and n.
We consider the problem of identifying the common item with highest rank. We assume that Bob
has assigned distinct ranks to each of the items in his set.

7

In this variant, Alice learns only how many common items they have (i.e., the cardinality of
the intersection). In particular, she does not learn anything about the relative rankings of items
in the intersection vs items outside of the intersection (e.g., she cannot learn that the intersection
contains only Bob’s least favorite items). Bob learns only the identity of the item with highest
rank.

In Figure 4 we formally define the ideal functionality for this variant of sampling from the
intersection. In the case that there are no common items, V will be empty. We use the following
notational conventions for that case: if V = ∅ then max(V) = ⊥; if the value of j∗ = ⊥ then
yj∗ = ⊥.

1. receive input X from Alice and Y from Bob.
2. define K(Y) = {y | ∃v : (y, v) ∈ Y }
3. compute V = {v | ∃y : y ∈ X ∧ (y, v) ∈ Y }
4. give |V | to Alice.
5. compute v∗ = max(V) and find y∗ such that (y∗, v∗) ∈ Y
6. give y∗ to Bob.

Figure 4: Ideal functionality for sampling the best item from the intersection, according to a
unilateral rank.

4.1 Intersection Protocol

The high-level idea behind the protocol is as follows. The parties can first perform the basic PSI-
cardinality protocol from Section 3. This protocol computes a key Kz = H(z)b associated to each
item z. Alice learns the key corresponding to every item in her set, but all other keys appear
random to her.

Hence, Bob can use these keys to encrypt some information about his items’ ranks. What
should be the payload / associated data that Bob encrypts with each key? It should be enough to
allow Alice to determine the highest ranked item in the intersection, without revealing that rank,
and without revealing anything also about the relative ranks of items in the intersection.

The appropriate tool for the job is order-revealing encryption (ORE; Section 2.4). If Bob has
item y with rank v, then he can use the PSI key Kv to encrypt an ORE encryption of v. Alice can
therefore decrypt the outer ciphertexts to obtain ORE encryptions of the ranks of all items in the
intersection. These ORE ciphertexts allow Alice to identify the item with highest rank, but they
leak nothing else about the ranks.

Lemma 9. The protocol in Figure 5 is correct.

Proof. If (yi, vi) ∈ Y and yi ∈ X then A′ will contain H(yi)
b, and we will also have Ei =

Enc(H(yi)
b, Oi). As such, Alice will eventually decrypt this Ei to obtain Oi, an ORE encryp-

tion of vi. If yi 6∈ X then Alice will decrypt Ei with only independently generated keys, which
will fail with overwhelming probability (cf. robust decryption Section 2.3). She will later com-
pute Argmax({Oj}) which by the ORE correctness is the index j∗ of the maximum vj rank in the
intersection.

Lemma 10. The protocol in Figure 5 securely realizes Figure 4 against a semi-honest Bob.

Proof. Simulation for Bob is trivial. Bob’s view consists only of his view from BlindExp (which is
indistinguishable from random), and the final protocol message j∗, which can be easily computed
from his ideal output.

8

Parameters: cyclic group G = 〈g〉 with prime order q

Alice: Bob:
X = {x1, . . . , xn} Y = {(y1, v1) . . . , (yn, vn)}

0. randomly permute X randomly permute Y
1. A = {H(xi) | i ∈ [n]} b← Zq

2. BlindExp
A

A′

b

3. k ← ORE.K
for i ∈ [n]:
Oi = ORE.Enc(k, vi)
Ki = H(yi)

b

Ei = Sym.Enc(Ki, Oi)

E1, . . . , En

4. for i ∈ [n]:
if ∃K ′ ∈ A′ : Sym.Dec(K ′, Ei) 6= ⊥:
O′i = Sym.Dec(K ′, Ei)

5. j∗ = ORE.Argmax({Oj})
j∗

6. output |{i | ∃K ′ ∈ A′ : Sym.Dec(K ′, Ei) 6= ⊥}| output yj∗

Figure 5: Protocol for identifying the best item according to a unilateral rank.

Lemma 11. The protocol in Figure 5 securely realizes Figure 4 against a semi-honest Alice (as-
suming the DDH assumption).

Proof. Alice’s view consists of received protocol messages A′, E1, . . . , En, and her view of the ran-
dom oracle. These values are computed as in Hybrid 0 in Figure 6. Here A denotes the adversary
that receives Alice’s view along with oracle access to the random oracle H. For convenience in
Hybrid 0 we have named values H(z)b as K∗z — if both Alice and Bob have a common element z
then they will both refer to the same K∗z .

In Hybrid 3 we present a simulator for Alice’s view. Although this hybrid is written to take
both parties’ sets as input, it uses these inputs only to calculate the size m of the intersection. It
then uses m to compute the remainder of the view. The hybrid also uses permutations µ, π — µ is
used to index into elements of A′, and π is used to randomly choose which m values are simulated
as part of the intersection. Note that A′ is given to Alice only as an unordered set — i.e., indices
of these items are not meaningful.

It suffices show that adjacent hybrids in Figure 6 are indistinguishable.

Hybrids 0 & 1: The only difference is that K∗z values are chosen uniformly. The hybrids are indis-
tinguishable via a reduction to the DDH problem. Specifically, consider a reduction algorithm that
receives (α1, . . . , αm, B, β1, . . . , βm). For each zi ∈ {x1, . . . , xn, y1, . . . , yn}, the reduction algorithm
programs H(zi) = αi and sets K∗zi = βi. Otherwise, the reduction algorithm runs the code of
Hybrid 1. If the input is from the DH distribution — i.e., if B = gb and βi = αbi — then the output

9

of the reduction algorithm is exactly that of Hybrid 0. If the input is from the random distribution,
then the reduction algorithm is exactly as Hybrid 1.

Hybrids 1 & 2: Consider a value yi that is distinct from all {xj} values — i.e., an item not in
common to the two parties. Then the only place K∗yi is used in Hybrid 1 is as the value Ki, when
the ciphertext Ei = Enc(Ki, Si) is generated. Hence, a straight-forward reduction to the one-time
security of Enc (Section 2.3) shows that Ei is indistinguishable from an encryption of a dummy
value 0. Performing such a reduction for each such yi yields Hybrid 2.

Hybrids 2 & 3: Instead of sampling all K∗i values upfront, they are sampled later, as needed. In
the second for-loop of Hybrid 2, m of the ciphertexts (m = the cardinality of the intersection) are
encrypted with keys appearing in A′. Furthermore, since the yi values are randomly shuffled (and
the ordering of A′ is not meaningful), the choice of m common keys is random. The same is true
of Hybrid 3, which uses the random permutations µ and π to select which m keys are common.

The only other difference is that the Oi values in Hybrid 2 are encryptions of vi plaintexts,
whereas in Hybrid 3 they are encryptions of {1, . . . ,m} plaintexts. By a straightforward reduction
to the ORE security property (Section 2.4), the two hybrids are indistinguishable.

5 Finding the Best Item According to a Combined Score

In this section we consider the following variant. Alice holds a set of (xi, ui) pairs, and Bob holds
a set of (yi, vi) pairs. If Alice and Bob hold a common item, say z = xi = yj , then define that
item’s score as ui + vj . In other words, an item’s score is the sum of its scores from both parties.
We consider the problem of identifying the common item with highest score.

In this variant, Alice will learn (1) how many common items they have (i.e., the cardinality of
the intersection), and (2) the set of combined scores for all common items. Alice does not learn
the individual contributions of the parties (i.e., the ui and vj value that are added to give an
item’s score), nor does she learn which scores correspond to which items, or which items are in the
intersection. Bob learns only the identity of the item with highest combined score.

In Figure 7 we formally define the ideal functionality for this variant of sampling from the inter-
section. Alice receives a vector (w1, . . . , wn), such that if k items are common to the parties, then
all but k entries in the vector will be ⊥. The remaining k entries will contain the combined scores
of the common items. The vector w is uniformly permuted, and so Alice learns only the cardinality
of the intersection and the (unordered) set of combined scores for items in the intersection.

In the case that there are no common items, all wi values will be ⊥. We use the following
notational conventions for that case: if every wi = ⊥ then arg maxiwi = ⊥; if the value of j∗ = ⊥
then yj∗ = ⊥.

In our protocol Alice will learn a value of the form Dwi and will need to compute dlogD(Dwi) =
wi. Our protocol therefore supports inputs where the scores (wi values) have polynomial
magnitude.

5.1 2-Blind Exponentiation

Our protocol requires a variant of the blind exponentiation subprotocol from Section 3.1. See
Figure 8.

In this variant, Alice has a set of pairs. For each such pair (`, r) Alice wants to learn (`b, rd)
where b, d are exponents chosen by Bob. The two components of each pair are kept together, but
the set of pairs is randomly shuffled. Alice learns only the unordered set of (`b, rd) values.

10

Hybrid 0 (Real)

inputs {xi | i ∈ [n]}
and {(yi, vi) | i ∈ [n]}

shuffle {(yi, vi)}
H ← random oracle
b← Zq
k ← ORE.K

for z ∈ {x1, . . . , xn}
∪ {y1, . . . , yn}:

K∗z = H(z)b

A′ = {K∗xi}i∈[n]

for i ∈ [n]:
Ki = K∗yib

Oi = ORE.Enc(k, vi)
Ei = Enc(Ki, Oi)

ret AH(A′, E1, . . . , En)

Hybrid 1

inputs {xi | i ∈ [n]}
and {(yi, vi) | i ∈ [n]}

shuffle {(yi, vi)}
H ← random oracle
k ← ORE.K

for z ∈ {x1, . . . , xn}
∪ {y1, . . . , yn}:

K∗z ← G

A′ = {K∗xi}i∈[n]

for i ∈ [n]:
Ki = K∗yi
Oi = ORE.Enc(k, vi)
Ei = Enc(Ki, Oi)

ret AH(A′, E1, . . . , En)

Hybrid 2

inputs {xi | i ∈ [n]}
and {(yi, vi) | i ∈ [n]}

shuffle {(yi, vi)}
H ← random oracle
k ← ORE.K

for z ∈ {x1, . . . , xn}
∪ {y1, . . . , yn}:

K∗z ← G

A′ = {K∗xi}i∈[n]

for i ∈ [n]:

if ∃j : yi = xj :
Ki = K∗yi
Oi = ORE.Enc(k, vi)
Ei = Enc(Ki, Oi)

else:
Ei = Enc(Ki, 0)

ret AH(A′, E1, . . . , En)

Hybrid 3 (Simulation):

inputs {xi | i ∈ [n]}
and {(yi, vi) | i ∈ [n]}

µ, π ← random
permutations on [n]

m = |{xi}i ∩ {yi}|
H ← random oracle
k ← ORE.K

for i ∈ [n]:
K ′i ← G

A′ = {K ′i}i∈[n]

for i ∈ [n]:
if π(i) ≤ m:
Oi = ORE.Enc(k, π(i))
Ei = Enc(K ′µ(i), Oi)

else:

K̃ ← {0, 1}λ
Ei = Enc(K̃, 0)

ret AH(A′, E1, . . . , En)

Figure 6: Hybrids in the security proof for the protocol in Figure 5

11

1. receive input X from Alice and Y from Bob.
2. assign a random ordering to Y as {(y1, v1), . . . , (yn, vn)}
2. for i ∈ [n]:
3. if ∃(x, u) ∈ X with x = yi: wi := u+ vi
5. else: wi := ⊥
6. give w1, . . . , wn to Alice
7. set j∗ := arg maxiwi, and give yj∗ to Bob (see text for conventions)

Figure 7: Ideal functionality for sampling the best item from the intersection, according to a
combined score.

Parameters: cyclic group G = 〈g〉 with prime order q

Alice: Bob:
M = {(`1, r1), . . . , (`n, rn)} b, d ∈ Zq

1. a, c← Zq
2. M ′ = {(`a, rc) | (`, r) ∈M}

M ′

3. M ′′ = {((`′)b, (r′)d) | (`′, r′) ∈M ′}
M ′′

4. output {((`′′)1/a, (r′′)1/c) | (`′′, r′′) ∈M ′′}

Figure 8: 2-Blind-Exp subprotocol.

The following lemmas are proven analogously to those in Section 3.1:

Lemma 12. Alice’s output is {(`b, rd) | (`, r) ∈ M}. Furthermore, if Alice is semi-honest and
Bob’s inputs b, d are uniform, then Alice’s view in Figure 8 can be simulated given only this output.

Lemma 13. If Bob is semi-honest, and Alice’s inputs have the form (`i, ri) = (H(xi), tiH(xi))
for distinct xi values (xi and ti values chosen by the adversary), then Bob’s view in Figure 8 is
indistinguishable from random (assuming the DDH assumption).

5.2 Intersection Protocol

We first present the high-level intuition behind the protocol. The challenge is to allow Alice to
learn the combined score ui + vj for a common item xi = yj , without revealing the individual ui
and vj terms.

The main idea is to blind Alice’s value ui with some random mask, and blind Bob’s value vj
with a complementary mask, so that the two masks can cancel out revealing only ui + vj . The
main question is: what random value shall serve as the mask? Alice and Bob must apply the same
mask if they have a common item (xi = yj), so the mask must be derived from the identity of the
item. Our approach is as follows.

• For each (xi, ui) in Alice’s set, she computes gui ·H(xi).

12

• Using a blind exponentiation protocol, Alice obtains [gui ·H(xi)]
d where d is a random expo-

nent chosen by Bob. Here the value H(xi)
d is pseudorandom from Alice’s view, so it serves

as a blinding mask to the score gui .

• For each item (yj , vj) in Bob’s set, he can compute [gvj · H(yj)
−1]d. He can encrypt these

values (similar to the previous protocol), so that Alice learns them only if she has the matching
item in her set.

Given her blinded value and the blinded value obtained from Bob, she can compute:

[gui ·H(xi)]
d · [gvj ·H(yj)

−1]d = (gd)ui+vj

If Bob also sends gd then Alice can compute the discrete log with respect to base gd to obtain ui+vj .
As mentioned above, computing the discrete log requires the combined ranks to be polynomial in
magnitude.

Parameters: cyclic group G = 〈g〉 with prime order q

Alice: Bob:
X = {(x1, u1), . . . , (xn, un)} Y = {(y1, v1) . . . , (yn, vn)}

0. randomly permute X randomly permute Y

1. A =
{(
H(xi), g

uiH(xi)
)
| i ∈ [n]

}
b, d← Zq; D = gd

2. 2BlindExp
A

A′

b, d

3. for i ∈ [n]:
Ki = H(yi)

b

Ti = [gviH(yi)
−1]d

Ei = Enc(Ki, Ti)

D;E1, . . . , En

4. for i ∈ [n]:
if ∃(K ′, S′) ∈ A′ : Dec(K ′, Ei) 6= ⊥:
wi = dlogD(S′ · Dec(K ′, Ei))

else: wi = ⊥

5. j∗ = arg maxj{wj}
j∗

6. output {w1, . . . , wn} output yj∗

Figure 9: Protocol for identifying the best item according to a combined score.

Lemma 14. The protocol in Figure 9 is correct.

Proof. If z = xj = yi for some i, j then A′ will contain a tuple
(
H(z)b, [gujH(z)]d

)
and we will also

have Ei = Enc
(
H(z)b, [gviH(z)−1]d

)
. As such, Alice will eventually decrypt this Ei and compute

wi = dlog
D

(
[gujH(z)]d · [gviH(z)−1]d

)
= dlog

D

(
Duj+vi

)
= uj + vi

13

If yi 6∈ {x1, . . . , xn} then Alice will decrypt Ei with only independently generated keys, which will
fail with overwhelming probability (cf. robust decryption Section 2.3). Hence, she sets wi = ⊥.

Overall, Alice’s vector w contains exactly the combined scores of all items in the intersection.
From this, the correctness of the last protocol message follows easily.

Lemma 15. The protocol in Figure 9 securely realizes Figure 7 against a semi-honest Bob.

Proof. Simulation for Bob is trivial. Bob’s view consists only of his view from 2BlindExp (which is
indistinguishable from random), and the final protocol message j∗, which can be easily computed
from his ideal output.

Lemma 16. The protocol in Figure 9 securely realizes Figure 7 against a semi-honest Alice.

Proof. Alice’s view consists of received protocol messages A′, D,E1, . . . , En, and her view of the
random oracle. These values are computed as in Hybrid 0 in Figure 10. Here A denotes the adver-
sary that receives Alice’s view along with oracle access to the random oracle H. For convenience
in Hybrid 0 we have given values H(z)b and H(z)d names K∗z and T ∗z , respectively — if both Alice
and Bob have a common element z then they will both refer to the same K∗z and T ∗z .

In Hybrid 3 we present a simulator for Alice’s view. Although this hybrid is written to take
both parties’ sets as input, it uses these inputs only to first compute a vector w that is Alice’s
output from the ideal functionality. It then uses w to compute the remainder of the view. The
hybrid also uses a partial permutation µ that is used to index into the elements of the set A′. This
is for notational simplicity, as A′ is given to Alice only as an unordered set — i.e., indices of these
items are not meaningful.

It suffices show that adjacent hybrids in Figure 10 are indistinguishable.

Hybrids 0 & 1: The only difference is that K∗z and T ∗z are chosen uniformly. The hybrids are
indistinguishable via two separate reductions to the DDH problem. Specifically, consider a reduc-
tion algorithm that receives (α1, . . . , αm, B, β1, . . . , βm). For each zi ∈ {x1, . . . , xn, y1, . . . , yn}, the
reduction algorithm programs H(zi) = αi and sets K∗zi = βi. Otherwise, the reduction algorithm
runs the code of Hybrid 1. If the input is from the DH distribution — i.e., if B = gb and βi = αbi
— then the output of the reduction algorithm is exactly that of Hybrid 0. If the input is from the
random distribution, then the reduction algorithm is like that of Hybrid 0 except that K∗i values
are chosen as in Hybrid 1.

With another reduction to the DDH assumption (setting D = B and T ∗zi = βi), the output of
the reduction algorithm becomes exactly that of Hybrid 1.

Hybrids 1 & 2: Consider a value yi that is distinct from all {xj} values — i.e., an item not in
common to the two parties. Then the only place K∗yi is used in Hybrid 1 is as the value Ki, when
the ciphertext Ei = Enc(Ki, Si) is generated. Hence, a straight-forward reduction to the one-time
security of Enc (Section 2.3) shows that Ei is indistinguishable from an encryption of a dummy
value 0. Performing such a reduction for each such yi yields Hybrid 2.

Hybrids 2 & 3: Instead of sampling all K∗i and T ∗i values upfront, they are sampled later, as needed.
If z = yi = xj for some i, j, then Hybrid 2 would first sample S′j = DujT ∗z and then Si = Dvi(T ∗z)−1.
Since these are the only two places where T ∗z is used, and T ∗z is uniform, this is equivalent to Hybrid
3’s behavior of setting S′j ← G and then Si = Duj+vi(S′j)

−1. If z = yi 6∈ {x1, . . . , xn} then Hybrid
2 uses K∗z only as encryption to a single ciphertext.

14

Hybrid 0 (Real)

inputs {(xi, ui) | i ∈ [n]}
and {(yi, vi) | i ∈ [n]}

H ← random oracle
b, d← Zq; D = gd

for z ∈ {x1, . . . , xn}
∪ {y1, . . . , yn}:

K∗z = H(z)b

T ∗z = H(z)d

for i ∈ [n]:
K ′i = K∗xi
S′i = DuiT ∗xi

A′ = {(K ′i, S′i)}i∈[n]

for i ∈ [n]:
Ki = K∗yi
Si = Dvi(T ∗yi)

−1

Ei = Enc(Ki, Si)

ret AH(A′, D,E1, . . . , En)

Hybrid 1

inputs {(xi, ui) | i ∈ [n]}
and {(yi, vi) | i ∈ [n]}

H ← random oracle

D ← G

for z ∈ {x1, . . . , xn}
∪ {y1, . . . , yn}:

K∗z ← G
T ∗z ← G

for i ∈ [n]:
K ′i = K∗xi
S′i = DuiT ∗xi

A′ = {(K ′i, S′i)}i∈[n]

for i ∈ [n]:
Ki = K∗yi
Si = Dvi(T ∗yi)

−1

Ei = Enc(Ki, Si)

ret AH(A′, D,E1, . . . , En)

Hybrid 2

inputs {(xi, ui) | i ∈ [n]}
and {(yi, vi) | i ∈ [n]}

H ← random oracle
D ← G

for z ∈ {x1, . . . , xn}
∪ {y1, . . . , yn}:

K∗z ← G
T ∗z ← G

for i ∈ [n]:
K ′i = K∗xi
S′i = DuiT ∗xi

A′ = {(K ′i, S′i)}i∈[n]

for i ∈ [n]:
Ki = K∗yi
Si = Dvi(T ∗yi)

−1

if ∃j : yi = xj :
Ei = Enc(Ki, Si)

else: Ei = Enc(Ki, 0)

ret AH(A′, D,E1, . . . , En)

Hybrid 3 (Simulator)

inputs {(xi, ui) | i ∈ [n]}
and {(yi, vi) | i ∈ [n]}

for i ∈ [n]:
if ∃j : xj = yi:
µ(i) := j
wi := uj + vi

else wi := ⊥

↪→

H ← random oracle
D ← G

for i ∈ [n]:
K ′i ← G
S′i ← G

A′ = {(K ′i, S′i)}i∈[n]

↪→

for i ∈ [n]:
if wi 6= ⊥:
Ki = K ′µ(i)
Si = Dwi(S′µ(i))

−1

Ei = Enc(Ki, Si)
else:
Ki ← G
Ei = Enc(Ki, 0)

ret AH(A′, D,E1, . . . , En)

Figure 10: Hybrids in the security proof for the protocol in Figure 9

15

Acknowledgements

The first two authors are supported by NSF award DMS-1757995. We are grateful to anonymous
SCN referees for the improvements they suggested to the manuscript.

References

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zim-
merman. Semantically secure order-revealing encryption: Multi-input functional en-
cryption without obfuscation. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part II, volume 9057 of LNCS, pages 563–594. Springer, Heidelberg,
April 2015.

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In Third Algorithmic Number Theory
Symposium (ANTS), volume 1423 of LNCS. Springer, Heidelberg, 1998. Invited paper.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting from
lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 34–63. Springer, Heidelberg,
August 2020.

[DKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private
set intersection protocols secure in malicious model. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 213–231. Springer, Heidelberg, December
2010.

[DMRY09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient robust
private set intersection. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque,
and Damien Vergnaud, editors, ACNS 09, volume 5536 of LNCS, pages 125–142.
Springer, Heidelberg, June 2009.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and
set intersection. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 1–19. Springer, Heidelberg, May 2004.

[GMR+21] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jas-
pal Singh. Private set operations from oblivious switching. In Juan Garay, editor,
PKC 2021, Part II, volume 12711 of LNCS, pages 591–617. Springer, Heidelberg, May
2021.

[Haz15] Carmit Hazay. Oblivious polynomial evaluation and secure set-intersection from alge-
braic PRFs. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 90–120. Springer, Heidelberg, March 2015.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS 2012. The Internet Society, February
2012.

[HFH99] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy and trust in
electronic communities. In ACM CONFERENCE ON ELECTRONIC COMMERCE.
ACM, 1999.

16

[IKN+19] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana Raykova, Shob-
hit Saxena, Karn Seth, David Shanahan, and Moti Yung. On deploying secure comput-
ing commercially: Private intersection-sum protocols and their business applications.
Cryptology ePrint Archive, Report 2019/723, 2019. https://eprint.iacr.org/2019/
723.

[JL10] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In
Juan A. Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS, pages
418–435. Springer, Heidelberg, September 2010.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 2016, pages 818–829. ACM Press, October 2016.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Vic-
tor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer,
Heidelberg, August 2005.

[LW16] Kevin Lewi and David J. Wu. Order-revealing encryption: New constructions, appli-
cations, and lower bounds. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1167–
1178. ACM Press, October 2016.

[Mea86] C. Meadows. A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In 1986 IEEE Symposium on Security
and Privacy, pages 134–134, April 1986.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight
private set intersection from sparse OT extension. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 401–431.
Springer, Heidelberg, August 2019.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast,
malicious private set intersection. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 739–767. Springer, Heidelberg,
May 2020.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
set intersection using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz,
editors, USENIX Security 2015, pages 515–530. USENIX Association, August 2015.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient
circuit-based PSI with linear communication. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 122–153. Springer,
Heidelberg, May 2019.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient circuit-
based PSI via cuckoo hashing. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 125–157. Springer, Hei-
delberg, April / May 2018.

17

https://eprint.iacr.org/2019/723
https://eprint.iacr.org/2019/723

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on OT extension. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security
2014, pages 797–812. USENIX Association, August 2014.

[RR17] Peter Rindal and Mike Rosulek. Malicious-secure private set intersection via dual
execution. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 1229–1242. ACM Press, October / November 2017.

[RR22] Peter Rindal and Srinivasan Raghuraman. Blazing fast psi from improved okvs and
subfield vole. Cryptology ePrint Archive, Report 2022/320, 2022. https://ia.cr/

2022/320.

[RT21] Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for small
sets. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1166–1181.
ACM Press, November 2021.

18

https://ia.cr/2022/320
https://ia.cr/2022/320

	Introduction
	Related Work
	Our Results

	Preliminaries
	Decisional Diffie-Hellman Assumption
	Secure Two-Party Computation
	Symmetric-Key Encryption
	Order-Revealing Encryption

	Finding a Random Item of the Intersection
	Warmup: Cardinality-Only Protocol & Blind Exponentiation
	Choosing a random item

	Finding the Best Item According to a Unilateral Rank
	Intersection Protocol

	Finding the Best Item According to a Combined Score
	2-Blind Exponentiation
	Intersection Protocol

