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Abstract. We propose homomorphic algorithms for privacy-preserving applications where we are given
an encrypted dataset and we want to compute the number of elements that share a common property.
We consider a two party scenario between a client and a server, where the storage and computation
is outsourced to the server. We present two new efficient methods to solve this problem by homomor-
phically evaluating a selection function encoding the desired property, and counting the number of
elements which evaluates to the same value. Our first method programs the homomorphic computation
in the style of the the functional bootstrapping of TFHE and can be instantiated with essentially any
homomorphic encryption scheme that operates on polynomials, like FV or BGV. Our second method
relies on new homomorphic operations and ciphertext formats, and it is more suitable for applications
where the number of possible inputs is much larger than the number of possible values for the prop-
erty. We illustrate the feasibility of our methods by presenting a publicly available proof-of-concept
implementation in C++ and using it to evaluate a heatmap function over encrypted geographic points.
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1 Introduction

The need of selecting and counting objects occurs in many security protocols. Counting objects with
a same property is a task that occurs in many security protocols and machine learning applications.
A typical example is that of the heatmap computation, in which a 2-dimensional map is divided
into a grid of cells and the property of interest is the cell in which a point lies in. Thus, counting how
many points share the same property, i.e., lie in the same cell, provides a graphical representation
of the distribution of the points. The heatmap itself has several applications and can be used, for
example, in algorithms designed to count the number of objects in a certain area in order to prevent
future congestion or people with a certain behavior.

The goal of this work is to design efficient solutions for selecting and counting dataset elements
while preserving the privacy of the inputs. We investigate privacy preserving techniques based on
fully homomorphic encryption (FHE) to solve this problem. We show two general approaches and
demonstrate how they work with a heatmap example. Before going through our techniques, let us
first describe our target scenario.

Scenario. Given an encrypted dataset X = {x1, · · · ,xn} with n inputs, where each input has m
variables, i.e., xi ∈ Zm and a function f : Zm → Z, we want to homomorphically count how many
inputs evaluate to the same value in the image of f . In other words, by defining Xi := {x ∈ X :
f(x) = i}, we want to obtain ciphertexts encrypting |Xi| for each i ∈ img(f). By viewing f as some
property over dataset elements, we want to know how many points have the same property.



For example, X could contain medical data of n people and we would like to know how many of
them have a high risk of developing some disease. Then, the function f can be defined as f(x) = 1
if a patient with data input labeled as x has a risk of developing the disease and 0 otherwise. At
the end, we get a final output of the form (0, n0), (1, n1) where n0 (resp. n1) is the number low risk
(resp. of high risk) patients.

We can imagine more complex functions, like f defined as f(x) = k if the estimated probability
px of developing the disease belongs to [k/10, (k+1)/10[ for 0 ≤ k < 10, for example. Then, the final
output, after decryption, would be of the form (0, n0), · · · , (9, n9), where ni indicates the number
of people having a risk with probability between i

10 and i+1
10 . For instance, (9, 6) would tell us that

six people are estimated to have a risk larger than 90% of having the disease.

1.1 Computation challenges

Homomorphically selecting and counting requires the evaluation of a function f on each input of
the dataset, then somehow grouping values that are equal and counting how many elements each
group has. It seems hard to use fully homomorphic encryption (FHE) schemes like BGV [BGV12]
and FV [FV12] for this task, since even simple non-algebraic functions, like f(x) = bx/5e, are hard
to compute with them. Moreover, the “scoring” step, where we count the equal values, seems highly
non-trivial with such schemes.

By using FHE schemes of the so-called third generation, like FHEW [DM15], TFHE [CGGI20],
GAHE [Per21], or FINAL [BIP+22], we can express f as a lookup table and efficiently evaluate f(x),
which is an advantage over BGV/FV when f cannot be easily represented by polynomials. However,
the size of the lookup tables that can be supported by the current techniques with reasonable timing
— either in leveled and bootstapped mode — is typically very small, say with 6-bit inputs and
outputs. Moreover, the additional aggregation step to count how many f(x) have the same image
remains hard with TFHE-like schemes.

Essentially, we need a way to represent bins for each possible value in the set of the image of the
function f , img(f), for instance, one ciphertext for each bin. Then, after computing an encryption
of y ∈ img(f), we have to homomorphically add 1 only to the correct bin.

To solve this, instead of evaluating the function as usual to obtain encryption of f(m), which we
denote Encsk(f(m)), and then counting homomorphically, we propose the following general strategy,
which exploits the fact that most existing FHE schemes can encrypt polynomials: we evaluate f in
the exponent of the monomial X, generating thus Encsk(X

f(m)). Hence, the counting step reduces to
simply adding the ciphertexts. Namely, messages that are evaluated to the same value will produce
encryptions of the same power Xy; then adding all the ciphertexts will produce an encryption of a
polynomial a0+a1X

1+· · ·+aI−1X
I−1, where I := |img(f)| and each coefficient ai tells us how many

messages m satisfy f(m) = i. For example, if ten different messages mi satisfy f(mi) = 7, then,
we will obtain ten encryptions of X7 and adding all of them will produce a ciphertext encrypting
a polynomial a(X) =

∑I−1
i=0 aiX

i such that a7 = 10. This is illustrated in Figure 1.

We extend this technique to compute functions on several variables. Namely, for a function
g(x1, ..., xn) := α1 · f1(x1) + ... + αn · fn(xn), we first obtain Xfi(xi), then we use automorphisms
to multiply the exponents by some constant αi and add all of them by using homomorphic mul-
tiplications. After this, we can proceed as before and simply add all the ciphertexts to obtain a
polynomial whose coefficients count how many points (x1, ..., xn) evaluate to the same value in the
image of g.
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Overall, we present two different ways of implementing this general strategy and as an applica-
tion, we propose the evaluation of a heatmap over encrypted points. We provide a proof-of-concept
implementation to support the correctness of our two techniques and we obtain that for a square
grid with 210 × 210 cells, the evaluation of one point with our first method takes around 0.174 sec-
onds and 0.507 seconds with our second method. For a larger number of cells, the second method
becomes faster than the first method: for a square grid with 214 × 214 cells for example, the evalu-
ation of one point with our second method takes around 0.635 seconds, while the first one requires
1.061 s. Note that the timing can be easily amortized as the number of points grows, since the first
computation step Eval in Figure 1 can be done in parallel for each point, only the homomorphic
sum at the end involves several different points.

Related art for private heatmap computation. Bampoulidis et al. [BBH+20] show how to build the
heatmap of an infection desease spread using cell phone location data. To protect the privacy of cell
phone owners, they use a combination of homomorphic encryption, zero-knowledge proof techniques
and differential privacy. However, the authors assume that location-sensitive data aggregation is
performed by a cellular network provider in the clear. In our work, we assume that data of individual
users or objects is encrypted before aggregation.

Melis et al. [MDD16] show how to produce a heatmap of San Francisco cabs. In [DPP17],
Dahl et al. showed a protocol computing a heatmap of popular shops in New York City districts
according to Foursquare users. In both papers, it is assumed that users preprocess their input such
that the aggregation stage boils down to summation. In our work, we assume that users send a
‘raw’ data, i.e. they have no prior knowledge of how their input will be aggregated. Our use case
can be considered as a special type of private database queries. Namely, we query the number of
values satisfying different input conditions.

Cheon et al. [CKK15] provided a framework for the design of queries with equality and range
conditions using SHE/FHE. For example, this framework turns a heatmap use case to the com-
putation of four comparison functions per each pair (object, region) and then counting the results
per region. If N is the number of regions, K is the number of objects and µ is the bitsize of object
coordinates, this algorithm requires O(µNK) ciphertext-ciphertext multiplications and a circuit of
multiplicative depth logµ+ 4.

In our work, the same task can be done with (logN−1)K ciphertext-ciphertext multiplications,
(logN)2K homomorphic automorphisms and a circuit of multiplicative depth log logN . If µ ≤
logN , our approach is better in all respects.

Why we are using homomorphic encryption. Since homomorphic encryption schemes are known for
not being very efficient in practice, one could wonder if other cryptographic primitives could be used
to perform such queries that evaluate a function then count, while maintaining both the database
and the results secret. Hence, we consider a few alternatives and discuss possible advantages and
also their limitations.

– Searchable encryption (SE) allows a user to store an encrypted database in a server, then
securely retrieve elements that match some keyword. Thus, SE is not designed to evaluate the
same type of queries that we are considering in this work, because the server cannot compute
a function f on the encrypted database using SE. To overcome this, the user would have to
precompute the values f(m) for every m in the database, encrypt f(m) and include it in the
encrypted database. Then, for each k ∈ img(f), the client would perform a query using k as
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keyword, retrieving the elements that match f(m) = k. However, with this solution, the client
would be essentially downloading the whole database, thus, the communication cost would be
as bad as the one of the trivial solution, which consists in downloading the encrypted database,
decrypting all the column corresponding to f(m) and counting by itself. We stress that in our
proposed solutions, the client just downloads one ciphertext.

– CryptDB [PRZB11] is a tool that can perform search on encrypted database and is particularly
designed to support SQL queries. The architecture assumes a semi-honest proxy and is built
on the combination of property preserving encryption, additive homomorphic encryption and
searchable encryption. Because of the primitives used by CryptDB, the server cannot evaluate
a function f on the encrypted database, thus, again, the client would have to compute f(m)
beforehand, encrypt it and include it in the database. This is not ideal, since f can be hard to
compute or can even be private (e.g., f corresponds to machine learning model trained by the
server and which the server does not want to reveal). Notice that in our solution, the client just
needs to know some upper bounds on the size of the domain and the image of f . But assuming
that the client could compute f on the entire database, then, using CryptDB, they could run
select and sum queries for each k ∈ img(f) and obtain ciphertexts corresponding the number
of elements m such that f(m) = k, as desired. Such queries take less that 1 ms which is much
faster than what we obtain using our FHE-based solution. However, while we provide data
privacy as long as the underlying FHE scheme is IND-CPA secure and the server is semi-honest,
CryptDB uses order-preserving encryption (OPE) to enable these select-and-count queries, but
OPE is deterministic and does not offer the same security level as our solutions. In particular,
[NKW15] presented a series of attacks showing that sensitive information can be recovered from
the encrypted database when OPE is used.

– Private information retrieval (PIR) protocols offer the following functionality: suppose that a
server stores a database with n elements. Then, the client can choose an index i and download the
i-th element of the database without revealing the value i to the server. Also, the communication
cost is sublinear in the size of the database. It is clear that PIR does not give the server the
ability to compute a function f over encrypted data. Moreover, it is not possible for the client to
select elements based on the value of any chosen column, just based on the index. In particular,
the client would not be able to select elements m that satisfy f(m) = k.

Since we want the server to compute f and we do not want to leak information about the data or
the results of the queries, homomorphic encryption is a natural solution. Nevertheless, simply using
FHE schemes in a black box manner would not produce efficient solutions as previously discussed
in this section. As a concrete example, in Appendix A, we show how schemes like BGV and FV
could be used to evaluate a homomorphic heatmap and argue that the running times one would
obtain would be between 57 and 219 times slowers than the timings we obtain with our solutions.

1.2 Summary of our techniques

In both methods, instead of simply encrypting the inputs denoted as zi, we actually encrypt the
inputs in the exponent as Xzi , as this allows us to homomorphically evaluate f(zi) and obtain
directly encryption of Xf(zi). If the final function we want to evaluate is simply f , then we can add
all the obtained ciphertexts Xf(zi) for all the possible inputs zi’s to obtain an encryption of the
desired polynomial whose coefficients count the elements.

First method: the general idea is to use the so-called “test-vector polynomials” akin to the ones
employed in the TFHE bootstrapping [CGGI20] to obtain encryptions of the binary decomposition
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Fig. 1: General strategy to perform the homomorphic counting, where Encsk(m) denotes the homo-
morphic encryption of m under secret key sk. The function f is evaluated in each of the n elements
of the dataset, then the counting step is performed by a simple addition. Each coefficient ai of the
output is equal to number of elements z such that f(z) = i.

of f(z), then, use these encryptions to construct an encryption Encsk(X
f(z)). In more details,

consider a function f with `-bit output. Then for 0 ≤ i ≤ `− 1, we define a polynomial Ti(X) that
encodes the i-th bits of all target outputs of f . In particular, we define Ti(X) such that the constant
term of Ti(X) ·Xz is equal to the i-th bit of f(z). We show that given Ti(X) and an encryption of
Xz, we can homomorphically compute the encryption of the i-th bit of f(z), which we denote by
f(z)[i].

Then, since b(X2i − 1) + 1 = Xb·2i for any bit b, we can obtain encryptions of X2i·f(z)[i].
Multiplying all these ciphertexts homomorphically, we finally obtain the encryption ofX

∑
2i·f(z)[i] =

Xf(z). If we want to compute more complex functions like g(x0, · · · , xm−1) =
∑m−1

i=0 αifi(xi), we
just need to repeat this process to obtain encryptions of Xfi(xi), then use the automorphisms
and multiplications in order to obtain the homomorphic encryption of αifi(xi) and

∑m−1
i=0 αifi(xi)

encoded in the exponent.
In this approach, the parameter N defining the “degree” of the polynomial ring R := Z[x]/〈XN+

1〉 used in the FHE scheme, has to be larger than or equal to the size of all the domains and images
of fi and g. However, sometimes they have very different sizes and it would be desirable to work
with a smaller N for some of the functions, since all the homomorphic operations become more
expensive as N increases. In particular, it may happen that |dom(f)| � |img(f)| and thus, it would
be better to choose N as the size of the image instead of the domain.

Second method: with this approach, we are able to work with different rings. This method is
specially suitable for the cases where the domain is larger than the image. It starts with the following
observation: for a power Xz ∈ R, consider the indicator vector φ(Xz) := (0, · · · , 0, 1, 0, · · · , 0) ∈
{0, 1}N with a single 1 at position z + 1, i.e., a vector indicating the position of the corresponding
exponent. Also, for a given function f , define

uf := (Xf(0), Xf(1), · · · , Xf(N−1)).

Then, if we want to obtain f(z) for some 0 ≤ z ≤ N − 1, it is clear we can compute Xf(z) =
φ(Xz) ·uf . Thus encrypting all the monomials Xzi for each possible dataset input zi and somehow
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multiplying each ciphertext by uf gives us encryptions of Xf(zi), and it remains to sum all the
encryptions to count the number of inputs with the same property.

However, ideally, we would like to evaluate more general functions, such as multivariate functions
of the form g(z0, · · · , zd−1) =

∑d−1
i=0 αifi(zi). In order to do so, we need to multiply the encryptions

of Xfi(zi), but after multiplication by ufi , we obtain ciphertexts whose format does not allow us
to perform efficient homomorphic multiplications, because multiplication by ufi is not a native
operation in any existing FHE scheme. Thus, we propose a new key-switching procedure to obtain
again regular Ring-LWE ciphertexts encrypting Xfi(zi), allowing us also to switch the dimension
from N to a bigger N , so that we are able to perform usual homomorphic multiplications and get
an encryption of Xg(x0,...,xd−1). An example with d = 2 and α1 = α2 = 1 is shown in Figure 2.

Encsk(X
z1)

Encsk(X
z2)

RLWE
ciphertexts

uf1

uf2

Encsk′(X
f1(z1))

Encsk′(X
f1(z2))

Non
standard

ciphertexts

ffk1

ffk2

Encs̄k(X
f1(z1))

Encs̄k(X
f2(z2))

RLWE
ciphertexts

× Encs̄k(X
f1(z1)+f2(z2))

Fig. 2: Computing a function g(x1, x2) := f1(x1) + f2(x2). The ciphertexts in the first layer are
defined over R := Z[X]/〈XN + 1〉, the ones in the middle are not regular RLWE ciphertexts, and
the ones in the last layer are defined over R̄ := Z[X]/〈XN̄ + 1〉, where we can set N̄ > N if the
image of g is larger than the image of both f1 and f2. The format-fixing key-switching keys are
denoted by ffk1 and ffk2.

2 Preliminaries

2.1 Notations

We let R = Z[X]/〈XN + 1〉, where N is a power of two. We denote the quotient ring R/qR by Rq.
We denote the set of integers modulo M by ZM and its multiplicative group by Z?M . We let ζ2N

be a primitive 2N -th root of unity and we denote K = Q(ζ2N ) the 2N -th cyclotomic field, which
is a Galois extension of Q. For σd ∈ Gal(K/Q), we have σd(ζ2N ) = ζd2N , for d ∈ Z?2N . Note that the
trace function TrK/Q sends an element a ∈ K to TrK/Q(a) =

∑
d∈Z?

2N
σd(a). We will recall later how

to homomorphically evaluate the trace function.
For any c ∈ R, let φ(c) ∈ ZN be the coefficient vector of c and Φ(c) ∈ ZN×N be the anti-circulant

matrix of c, i.e. Φ(c) =
(
φ(c ·X0), · · · ,φ(c ·XN−1)

)T
. Notice that φ(c + c′) = φ(c) + φ(c′) and

φ(c · c′) = Φ(c) · φ(c′).
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For a real number x, dxe, bxc, and bxe denote the rounding up, rounding down, and the nearest
integer to x, respectively. We denote by [N ] the set of integers {0, · · · , N − 1} and by [a, b], the set
of integers {a, a + 1, · · · , b}. For an integer with bit decomposition a, let a[i] be the i-th bit of a.
For a polynomital a(X) or a vector a, we abuse notation and write ai to denote its i-th coefficient.

We denote by χerr the error distribution over R where each coefficient is sampled from a discrete
Gaussian distribution of small variance and by χkey the uniform distribution over polynomials in R
with coefficients in {−1, 0, 1}.

2.2 Ring-LWE encryption

Message encoding and RLWE encryption. We present a symmetric-key version of the RLWE
encryption scheme known as FV [FV12]. We use it as the base of our solutions. Specifically, the
method presented in Section 3 uses FV as a black-box, adding only an encoding layer before encryp-
tion, while the method presented in Section 4 proposes new homomorphic operations that generate
ciphertexts whose format no longer satisfies the FV format. It is worth noticing that the choice of
the FV scheme is somehow arbitrary and our techniques also work with the BGV scheme [BGV12]
or essentially any other RLWE-based homomorphic encryption scheme that supports additions,
multiplications, and automorphisms evaluation.

– ParamGen(1λ): given the security parameter, choose N as a power of two and some integers q
and t. Define ∆ := bq/te. Let R := Z[X]〈XN + 1〉, Rq := R/qR and Rt := R/tR. The message
and the ciphertext spaces are Rt and R2

q , respectively. Define two distributions χerr and χkey

over R. Output params := (N, q,∆, χerr, χkey).
– KeyGen(params): Sample s ← χkey and let rlk be the relinearization key with respect to s.

Output sk := s and rlk.
– KeyGenAut(params, sk, k): Interpret sk as s ∈ R. Given an odd k ∈ [N ], output a key-switching

key swtk from s(Xk) to s.
– Encsk(m): Consider m ∈ Rt. Sample a uniformly at random from Rq, and e ← χerr. Compute
b := a · sk + e+∆ ·m ∈ Rq. Output c := (a, b).

– Decsk(c): Let (a, b) := c. Compute b? := b− a · sk over R. Output bt · b?/qe mod t.

Thus, for a ciphertext (a, b)← Encsk(m), we have b = a · sk + e+∆m. Decryption is guaranteed
to be correct if the noise satisfies ‖φ(e)‖∞ < q/t.

To simplify the exposition, the homomorphic operations will be presented in a high-level way.
Consider that ci is an encryption of mi.

– Add(c0, c1): Output c := c0 + c1, which is an encryption of m0 +m1 ∈ Rt.
– Mult(c0, c1, rlk): Compute the tensor product c′ := c0 ⊗ c1 ∈ R4

q , which encrypts mmult :=

m0 ·m1 ∈ Rt under sk2, then use rlk to transform c′ into cmult ∈ R2
q , which encrypts mmult

under sk again. Output cmult.
– Aut(ci, k, swtk): Let (a, b) := ci. Interpret both a and b as polynomials in Z[X]. Substitute X

by Xk and reduce modulo 〈XN + 1, q〉, obtaining c′ := (a(Xk), b(Xk)) ∈ R2
q , which encrypts

m(Xk) under sk(Xk). Use swtk to transform c′ into a ciphertext ck under sk. Output ck.

Roughly speaking, the relinearization key is an encryption of s2 under s. It is used during the
homomorphic multiplication so that the output ciphertext is encrypted under the same key as the
input ciphertexts. The key-switching keys are used in the automorphisms for the same reason and
it is essentially an encryption of s(Xk) mod XN + 1 under s. For more details, we refer to Section
1.2 of [Zuc18].
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3 Full domain approach

In this section, we present our first approach to instantiate the general strategy shown in Figure 1.
Firstly, we present the univariate case, i.e., we consider a function f : [D]→ [I] where D and I are
integers smaller than N and show how to obtain Encsk(X

f(z)). As discussed previously, it is easy to
generalize this strategy for multivariate functions of the form g(x1, ..., xn) =

∑
αifi(xi). Any input

and output of f is encoded by a monomial Xz ∈ Rt. The main idea of this approach is to obtain
encryptions of the binary decomposition of f(z), then combine then into an encryption of Xf(z).

Let’s start with a warm up example.

Example with f(x) =
⌊
x
3

⌋
and N = 8. Let R = Z[X]/

〈
X8 + 1

〉
, i.e. N = 8. For a polynomial

a ∈ R, we denote by coeff0(a) the constant term of a. We consider the following look-up table for
f(z) where z ∈ [0, 7]:

z 0 1 2 3 4 5 6 7

f(z) =
⌊
z
3

⌋
0 0 0 1 1 1 2 2

The idea is first to define test-vector polynomials that encode the bits of all possible outputs
of f . Since, f : [N ] → [3], just 2 bits are enough to describe the output of f(z), and thus, we just
need two test-vector polynomials T0(X) and T1(X).

1. We begin by defining two polynomials T0(X), T1(X), such that:
– for z ∈ [0, 7], coeff0(T0(X) ·Xz) = f(z)[0];
– for z ∈ [0, 7], coeff0(T1(X) ·Xz) = f(z)[1].

2. Hence, the next step consists of homomorphically extracting the constant terms f(z)[i] of these
two polynomials Ti(X) ·Xz by applying the trace function. This step will be detailed later in
the paper.

3. Since f(z)[i](X2i − 1) + 1 = Xf(z)[i]·2i , we then homomorphically combine the encryption of
the bits f(z)[i] in order to obtain X

∑
2i·f(z)[i] = Xf(z). Thus, we compute the products of

f(z)[i](X2i − 1) + 1 for all i in order to obtain Xf(z).
4. In order to obtain the number of elements z such that f(z) = i, we sum all the obtained

monomials together. The coefficient ai of Xi is the number of elements that are mapped to
f(z).

Now, going back to our example, let’s define the two test-vector polynomials such that the
constant term of T0(X) ·Xz (resp. T1(X) ·Xz) is equal to the first (resp. second) bit of f(z). We
thus have:

T0(X) = X−3 +X−4 +X−5,

T1(X) = X−6 +X−7.

It is clear that for any z ∈ {0, 1, 2}, we have

coeff0(T0(X)Xz) = 0 = f(z)[0],

coeff0(T1(X)Xz) = 0 = f(z)[1].
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Extracting these constant terms and then combining them we obtain

(f(z)[0](X − 1) + 1)(f(z)[1](X2 − 1) + 1) = 1 = Xf(z).

For any z ∈ {3, 4, 5}, we have

coeff0(T0(X)Xz) = 1 = f(z)[0],

coeff0(T1(X)Xz) = 0 = f(z)[1].

Extracting these constant terms and then combining them we obtain

(f(z)[0](X − 1) + 1)(f(z)[1](X2 − 1) + 1) = X = Xf(z).

For any z ∈ {6, 7}, we have

coeff0(T0(X)Xz) = 0 = f(z)[0],

coeff0(T1(X)Xz) = 1 = f(z)[1].

Extracting these constant terms and then combining them we obtain

(f(z)[0](X − 1) + 1)(f(z)[1](X2 − 1) + 1) = X2 = Xf(z).

Then, we sum all the combinations obtained in order to perform the counting step, such that the
coefficient of the monomials Xi, for 0 ≤ i ≤ 2, gives the number of elements which are mapped to
i.

3.1 Computing output bits.

The crucial idea of this solution is to compute all the possible bit outputs of f(z) inspired by a
look-up table encoding in the TFHE functional or multi-value bootstrapping. Namely, we design
the so-called ‘test vector’ polynomials Ti(X) ∈ Rq for i ∈ [0, dlog2 Ie − 1] such that the constant
term of Ti(X) ·Xz is equal to the ith bit of f(z).

Denoting the i-th bit of f(z) by f(z)[i], such polynomials Ti(X) are defined as follows

Ti(X) =
N−1∑
j=0

f(j)[i] ·X−j . (1)

Lemma 1. Let Ti(X) be defined as in Equation 1. Then, the constant term of Ti(X) ·Xz is equal
to f(z)[i].

Proof. Note that X−k = −XN−k in R as we work modulo XN + 1, thus, Ti(X) ∈ R. Furthermore,
Ti(X) satisfies the following equality

Ti(X) ·Xz = f(z)[i] +
∑
j 6=z

f(j)[i] ·Xz−j

︸ ︷︷ ︸
g(X)

Now, we want to show that the constant term of g(X) is zero. But that is easy to see, since g0 is
defined by z− j such that z− j ≡ 0 mod N , and because both z and j belong to {0, ..., N − 1}, it
is clear that −N < z − j < N and the only value congruent to 0 modulo N in this interval is the
zero itself. Therefore, for the constant term of g(X) to be different from zero, we would need z = j
to be included in the sum defining g(X).
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Algorithm 1: Trace operation
Input: a(X) ∈ Rt

Output: r(X) = Na0 where a0 is the constant term of a(X)
1 r0(X)← a(X)
2 for `← 1 to log2 N do
3 r`(X)← r`−1(X) + τi`(r`−1(X))

4 Return rlog2 N (X).

Hence, given Encsk(Ti(X) ·Xz), we can homomorphically compute Encsk(Ti(X) ·Xz) for 0 ≤ i ≤
dlog2 Ie − 1, which gives us encryptions of polynomials that have the desired bits in the coefficient
factors. This requires dlog2 Ie plaintext-ciphertext multiplications.

3.2 Extraction of bits.

In Lemma 1, we see that after multiplication by the test-vector polynomial, we obtain a Encsk(a(X))
for some polynomial a(X) whose constant term is the i-th bit of f(z), denoted by f(z)[i]. But we
are interested only in that bit, thus, we want to “remove” all the other coefficients of a(X) and
obtain Encsk(f(z)[i]). This can be done by computing the trace function Tr : Rt → Z that maps
a(X) =

∑N−1
i=0 aiX

i ∈ Rt to Na0. Since t and N are co-prime, the multiple of N can be removed
by computing N−1 · Tr(a(X)) = a0 mod t.

To describe the trace function, we need the automorphisms of Rt, which are defined as

τi : a(X) 7→ a(Xi)

where i ∈ Z?2N . It is a standard fact that the set {τi}i∈Z?
N

forms a group under the composition of
functions.

To perform an automorphism τi homomorphically, one needs to compute τi on both components
of an input RLWE ciphertext, i.e., (a, b) 7→ (τi(a), τi(b)), then perform key-switching from τi(sk)
to sk using the key-switching key swti, as described in subsection 2.2. More details can be found
in [GHS12].

Our goal now is to show that the trace operation defined in Algorithm 1 indeed extracts the
constant term of the message. For 0 ≤ ` ≤ log2N − 1, define J` as the set of integers k2` for
odd k ∈ [1, N/2` − 1]. Also, let Jlog2N := {0} and J−1 := ∅ Notice that J` ∩ J`′ = ∅ if ` 6= `′

and that [1, N − 1] = ∪log2N−1
`=0 J` with disjoint union. Furthermore, the product of any j ∈ J`

and i` := N/2` + 1 is equal to i` · j = j + kN = j + N mod 2N since k is odd. In other words,
τi`(X

j) = Xj+N = −Xj for any j ∈ J`. And for j ∈ Jlog2 N , j · i` = j mod 2N , hence Xj·i` = Xj .

Lemma 2. Algorithm 1 outputs Na0 mod t.

Proof. Let r`(X) ∈ Rt be the polynomial obtained at the `-th iteration for ` ∈ [0, log2N ]. We have
r0(X) = a(X) and I = [0, N − 1]. We prove by induction that at the `-th iteration:

r`(X) = 2` ·
∑

j∈I\∪k<`Jk

a[j]Xj mod t

10



Indeed, for the base case ` = 0, r0(X) = 2`
∑

j∈I\J−1
a[j]Xj , i.e r0(X) = a(X). By induction,

the following holds modulo t:

r`−1(X) = 2`−1 ·
∑

j∈I\∪k<`Jk

a[j]Xj

+ 2`−1 ·
∑

j∈J`−1

a[j]Xj
(2)

Applying τi` gives:

τi` (r`−1(X)) = 2`−1 ·
∑

j∈I\∪k<`Jk

a[j]Xj

− 2`−1 ·
∑

j∈J`−1

a[j]Xj mod t
(3)

Summing (2) and (3) gives :

r`(X) = 2` ·
∑

j∈I\∪k<`Jk

a[j]Xj mod t

At the end of Algorithm 1, we obtain rlog2N = 2log2N ·
∑

j∈I\∪k<log2 NJk
a[j]Xj mod t, i.e

rlog2N = N ·
∑

j∈Jlog2 N
a[j]Xj = Na0 mod t.

Hence, performing the trace function homomorphically on Encsk(Ti(X) · Xz) and multiply-
ing by N−1 mod t, we obtain Encsk(f(z)[i]) for all i ∈ [0, dlog2 Ie − 1]. Since the trace function
needs log2N automorphisms to be performed, the running time complexity of this step is equal to
(log2N)(dlog2 Ie) automorphisms. Multiplications by N−1 mod t are very fast and thus ignored
in this analysis.

3.3 Combining output bits.

It remains to combine the encrypted bits f(z)[i] via tree-based homomorphic multiplication. The
following lemma shows how to perform the computation:

Lemma 3. Let bi = Encsk(f(z)[i]) for i ∈ [0, dlog2 Ie− 1]. The following product is a valid encryp-
tion of Xf(z):

dlog2 Ie−1∏
i=0

bi · (X2i − 1) + 1.

Proof. Notice that bi · (X2i−1)+1 is a valid encryption of Xf(z)[i]·2i as f(z)[i] ∈ {0, 1}. As a result,

the above product is a valid encryption of X
∑dlog2 Ie−1

i=0 f(z)[i]·2i = Xf(z) under key sk.

This step needs dlog2 Ie plaintext-ciphertext multiplications by powers of X, which boil down
to negacyclic shifts of polynomial coefficients and thus they are extremely fast and noise free. In
addition, it requires dlog2 Ie − 1 ciphertext-ciphertext multiplications that result in a circuit of
depth dlog2 dlog2 Iee.

11



Complexity of the full domain approach. The method we present in this section com-
putes Xf(z) with dlog2 Ie plaintext-ciphertext multiplications, (log2N)(dlog2 Ie) automorphisms
and dlog2 Ie−1 ciphertext-ciphertext multiplications. Its multiplicative depth in ciphertext-ciphertext
multiplications is dlog2 dlog2 Iee. For any known RLWE-based leveled FHE scheme [FV12,BGV12],
the functional requirement is that log q ∈ O(L(log t + logN)) where L is the multiplicative depth
of computation. This implies that in this method one ciphertext needs O(NL(log t+logN)) bits of
memory where L ∈ O(log log I) and the public key material including various key-switching keys
amounts to O(NL2(log t+logN)2). The running time complexity of ciphertext-ciphertext multipli-
cation or time complexity of an automorphism in such schemes is bounded byO(N ·logN ·polylog(q))
basic operations. Hence, this approach requires running time O(N ·(logN)2 · log I ·polylog(L(log t+
logN))).

4 Split domain approach

In this section, we propose another method to homomorphically compute encryptions ofXg(x1,··· ,xn),
where g(x1, ..., xn) =

∑n
i=0 αifi(xi) for known integers αi’s and functions fi’s, as discussed in

Section 1.2. We first show how to evaluate univariate functions in the exponent, then we proceed
showing how to combine them to obtain g(x1, · · · , xn). This method is specially suitable for the
cases where |dom(f)| > |img(f)|, as it allows us to choose the parameter N of the RLWE scheme
equal to |img(f)|.

4.1 Computing univariate functions

For two positive integers D and I, where D ≥ I, consider a function f : [D]→ [I]. Let N be a power
of two larger than or equal to I and define k = dD/Ne. The idea here is to split the domain of f to
reduce the degree N that we need to use when we instantiate the RLWE problem. Then, basically,
the client sends k ciphertexts instead of one and the server repeats the same computation k times,
using different ciphertexts as inputs. Notice that the size of a ciphertext is linear in the degree N ,
hence, using N ≈ D and sending one single ciphertext or using N ≈ D/k and sending k ciphertexts
represents the same communication complexity for the client. However, the computation executed
by the server is super linear in N , therefore, it takes less time to execute it k times with smaller N
than one single time with a large N .

Thus, for 1 ≤ i ≤ k, let Pi := [(i− 1)N, iN ]. Notice that |Pi| = N for all i, |Pi ∩Pj | = 0 if i 6= j,
and dom(f) ⊂ [kN ] = P1 ∪ P2 ∪ · · · ∪ Pk. Thus, we can use the sets Pi as a partition of [D].

Then, for each message m ∈ dom(f), the client produces k ciphertexts ci’s as follows: if m ∈ Pi,
then we can write m as m = (i − 1) · N + j for some 0 ≤ j < N and encrypt Xj , i.e., define
ci := Encsk(X

j). If m 6∈ Pi, let ci := Encsk(0), i.e., an encryption of zero. Thus, for every message,
we have k ciphertexts.

Now, the server defines k vectors ui’s as

ui := (Xf((i−1)N), Xf((i−1)N+1), · · · , Xf(iN−1)) ∈ Z[X]N

and it computes

(a′, b′) :=
k∑
i=1

ui · φ(ci) ∈ Zq[X]N+1
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=
k∑
i=1

(
ui ·Φ(ai),ui · φ(bi)

)
(4)

where (ai, bi) = ci, φ denotes the coefficient vector, and Φ the anti-circulant matrix, as explained in
Section 2.1. Notice that no reduction modulo XN +1 is done, since all monomials in ui have degree
smaller than N and they are multiplied only by integers. Now we want to prove that, although not
being a normal RLWE ciphertext, (a′, b′) is a valid encryption of Xf(m).

Lemma 4. Let (a, b) be an RLWE encryption of zero under the secret key s ∈ R with noise e. Then
(a′i, b

′
i) := (ui ·Φ(a), ui · φ(b)) is of the form (a′i, b

′
i = a′i · φ(s) + e′i). Moreover, ‖e′i‖∞ ≤ N ‖e‖∞.

Proof. We know that b = a ·s+e ∈ Rq for some noise term e. Thus, φ(b) = Φ(a) ·φ(s)+φ(e) ∈ ZN .
Therefore, by defining a′i := ui · Φ(a) and b′i := ui · φ(b), we have b′i := a′i · φ(s) + e′i, where
e′i := ui · φ(e) =

∑N−1
j=0 Xf((i−1)N+j) · ei. Moreover, it is clear that

∥∥e′i∥∥∞ ≤ N−1∑
j=0

∥∥∥Xf((i−1)N+j) · ei
∥∥∥
∞
≤

N−1∑
j=0

|ei| ≤ N ‖e‖∞ .

Lemma 5. Let (a, b) be an RLWE encryption of Xj under the secret key s ∈ R. Then (a′i, b
′
i) :=

(ui ·Φ(a), ui ·φ(b)) is a valid encryption of Xf((i−1)N+j)) under key φ(s), i.e. (a′i, b
′
i) is of the form

(a′i, b
′
i = a′i · φ(s) + e′i +∆Xf((i−1)N+j)). Moreover, ‖e′i‖∞ ≤ N ‖e‖∞.

Proof. We have b = a·s+e ∈ Rq, then, similarly to Lemma 4, we have b′i := a′i·φ(s)+e′i+∆ui·φ(Xj).
Because φ(Xj) has a single one at the j-th position and zeros elsewhere, it is clear that ui ·φ(Xj)
is equal to the j-th entry of ui, which is Xf((i−1)N+j) by definition.

Corollary 1. Consider the pair (a′, b′) defined in Equation 4. It holds that b′ = a′ · φ(s) + e′ +
∆Xf(m). Moreover, if the noise of each ciphertext ci is bounded by some value B, then ‖e′‖∞ ≤
kNB.

Proof. It follows from lemmas 4 and 5 that a′ =
∑k

i=1 a′i and b′ = a′ ·φ(s)+
∑k

i=1 e
′
i+∆X

f((i−1)N+j)

for some j. But from the encryption procedure run by the client, we have m = (i− 1)N + j.

Also, we have ‖e′i‖∞ ≤ NB, thus, the bound on the noise term e′ follows.

Notice that since the client knows s, they can decrypt (a′, b′) by subtracting a′ · φ(s) from b′

then multiplying by t/q and rounding, as it is done for a normal RLWE ciphertext. Moreover, for
i ∈ [N ], given encrypted messages mi, we can obtain (a′i, b

′
i) encrypting Xf(mi) and add all of them

to get (a′, b′) that encrypts a polynomial w whose each coefficient wj is equal to the number of
messages that evaluate to j. Thus, if we just want to count considering a univariate function f ,
then the procedure presented so far is enough.

Notice that to compute ui ·Φ(ai) mod q we do not need polynomial multiplications, thus, it can be
computed with O(N2) additions on Zq (e.g., by setting an accumulator w ∈ Z[X] for each column
of Φ(ai) and simply adding an entry aj,` from Φ(ai) to the coefficient of w defined by the degree of
the `-entry of ui). Therefore, the cost of computing (a′, b′) in Equation 4 is O(kN2) additions on
Zq. If D > I, we can set N ≈ I and kN ≈ D, and obtain the final cost as O(|dom(f)| · |img(f)|).
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Algorithm 2: Format-fixing key switching

Input: (a′, b′) ∈ Z[X]N+1 with b′ = a′ · φ(s) + e′ +∆Xf(m) and ffk := (ā, b̄).
Output: An RLWE ciphertext Encs̄(Xf(m)) ∈ R̄2

q

1 b′′ ← P · b′ − a′ · b̄ ∈ R̄
2 b← bb′′/P e . Division on Q[X]
3 a← −ba′ · ā/P e . Division on Q[X]
4 Return (a, b).

4.2 Computing multivariate functions

In this section, we show how to transform encryptions of Xfi(mi) obtained in Equation 4 into
regular RLWE ciphertexts. Once we are able to do so, we can then use automorphisms to obtain
encryptions of Xαifi(mi) and homomorphic multiplications to get encryptions of Xg(m1,...,mn), where
g(m1, ...,mn) :=

∑n
i=1 αifi(mi). Notice that the image of g can be different from the image of the

fi’s, so when we perform this transformation, we want to switch to a new ring R̄ := Z[X]/〈XN̄+1〉,
defined with respect to N̄ instead of N , where N̄ ≥ |img(g)|.

Thus, we consider a second secret key s̄ ∈ R̄ and define the format-fixing key from s ∈ R to
s̄ ∈ R̄ as

ffk = [ā, b̄ := ā · s̄+ ē + Pφ(s)] ∈ R̄N×2
Pq (5)

for some integer P = Θ(q). Notice that ffk is essentially a set of N RLWE ciphertexts, each one
encrypting one coefficient of the secret key s under the key s̄. We use an extended ciphertext modulus
Pq and multiply φ(s) by P so that we can perform the key-switching similarly to [GHS12]. It is
also possible to use a gadget matrix with powers of some base B and decompose the ciphertext in
base B, as it is done in the original formulation of the key-switching presented in [BV11], however,
this multiplies both the running time and the space by a O(log q) factor.

Our key-switching procedure is described in Algorithm 2. Lemma 6 proves its correctness, i.e.,
that it outputs a valid RLWE encryption of Xf(m) and that it does not increase the noise too much.

Lemma 6. Let (a, b) ∈ R̄2
q be a pair output by Algorithm 2. Let e′ be the noise term of the input

ciphertext (a′, b′) and ē be the noise term of ffk. Then, b = a · s̄+ e+∆Xf(m) and ‖e‖ = Θ(‖e′‖+
N ‖ē‖+N ‖s̄‖).

Proof. Since Pb′ = Pa′ · φ(s) + Pe′ + P∆Xf(m) and a′ · b̄ = a′ · ā · s̄+ a′ · ē + Pa′ · φ(s), it holds
that b′′ = −a′ · ā · s̄ + Pe′ − a′ · ē + P∆Xf(m). Thus, for some polynomial ε such that ‖ε‖ ≤ 1/2,
we have

b :=
⌊
b′′/P

⌉
= b′′/P + ε

= −(a′ · ā/P ) · s̄+ e′ − (a′/P ) · ē + ε+∆Xf(m).

By writing a′ · ā/P = ba′ · ā/P e − ε′ for some ε′ ∈ R̄ such that ‖ε′‖ ≤ 1/2, we have

b = a · s̄+ ε′ · s̄+ e′ − (a′/P ) · ē + ε︸ ︷︷ ︸
e

+∆Xf(m).

Therefore, (a, b) is a valid RLWE encryption of Xf(m). Moreover, since ‖ε′ · s̄‖ ≤ (N/2) · ‖s̄‖ and
‖a′ · ē/P‖ ≤ N ·Θ(1) · ‖ē‖, we have

‖e‖ ≤
∥∥ε′ · s̄∥∥+

∥∥e′∥∥+
∥∥a′/P · ē∥∥+ ‖ε‖

= Θ(N ‖s̄‖+
∥∥e′∥∥+N ‖ē‖).
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Complexity of format-fixing procedure. The time complexity of Algorithm 2 is dominated
by the first line, in which we compute an inner product between two N -dimensional vectors, thus,
we need O(N) products on R̄Pq, and each one costs O(N̄ log N̄) multiplications on ZPq. Therefore,
the total cost is O(NN̄ log N̄ log q log(log q)) basic operations.

Putting it all together. We now show the cost of computing an encryption of Xg(m1,...,mn)

where g(m1, ...,mn) :=
∑n

i=1 αifi(mi). The basic idea is to produce RLWE encryptions of Xfi(mi),
as described above, then applying the automorphism to obtain Xαi·fi(mi), then multiply all the
ciphertexts. We recall that when we apply the automorphism X 7→ Xαi to a ciphertext encrypting
some message m under a key s̄, we obtain an encryption of m(Xαi) under key s̄(Xαi), thus, a
key-switching is required to obtain again a ciphertext under the original key s̄. Moreover, the key-
switching is much more expensive than the automorphism itself. Thus, to remove this key-switching,
we propose the following:

– Let Ni be the dimension of the ring used to encrypt mi (the Ni’s are not necessarily different).

– Let si be the key under which Xfi(mi) is encrypted (the keys are not necessarily all different).

– For each αi, compute βi such that αi · βi = 1 (mod 2N̄).

– Using Equation 5, generate a format-fixing key ffki from si to s̄(Xβi) ∈ R̄.

Thus, when we apply ffki, we obtain an RLWE encryption of Xfi(mi) under the key s̄(Xβi).
Then, applying the automorphism produces an encryption of Xαi·fi(mi) under s̄(Xαi·βi) = s̄(X),
and no key-switching is needed.

To add all the exponents, n homomorphic multiplications are needed. Each one costs O(log(q))
multiplications on R̄q, and each of those products require O(N̄ log N̄) products on Zq, thus, we
need O(nN̄ log N̄ log q) products on Zq to combine the encryptions of Xαifi(mi).

Therefore, computing Encs̄(X
g(m1,...,mn)) costs

n∑
i=1

(
O(|dom(fi)| · |img(fi)|) +O(Ni · N̄ · log N̄)

)
+ O(nN̄ log N̄ log q)

operations on Zq or ZPq (they are assumed to cost the same, since P = Θ(q)).

5 Application to privacy-preserving heatmap

In this section, we show how to use our proposed methods to homomorphic evaluate heatmaps
and we present practical results obtained with our proof-of-concept C++ implementation, which
is publicly available.†

5.1 Model for homomorphic heatmap computation

In a heatmap, there is a “map”, i.e., a rectangle of dimensions xmax × ymax, and several points
(xi, yi) within this map. Then, we divide the map in cells of dimension b × h and our goal is to

† https://github.com/KULeuven-COSIC/Homomorphic-Heatmap
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logN sk σ log q λ

Full
domain

12 ternary 3.2 109 128

13 ternary 3.2 130 229

14 ternary 3.2 145 454

15 ternary 3.2 157 939

Split
domain

9 uniform 3000 32 128

12 ternary 3.2 64 232

Table 1: Parameters used to evaluate the homomorphic heatmap applications with both our meth-
ods. The security level is at least 128 bits and λ > 128 means that we can still increase log q to
support more noise (with some penalty in the performance).

count how many points lie inside each cell. In our framework, this corresponds to counting how
many points evaluate to the same integer in the image of the following function:

g(x, y) =
⌊x
b

⌋
·
⌊ymax

h
+ 1
⌋

+
⌊y
h

⌋
.

Using the notation defined above, we have g(x, y) = f1(x) · α1 + f2(y), where f1(x) :=
⌊
x
b

⌋
,

f2(y) :=
⌊ y
h

⌋
, and α1 :=

⌊ymax

h + 1
⌋
. Thus, we can compute it in “two levels”, by first computing

Xf1(x) and Xf2(y), then combining them.
We assume that a client encrypted a database of points (xi, yi) and sent it to a server, which

stores it in encrypted form. Then, at any moment, the client can send to the server a query
(xmax, ymax, b, h) defining a heatmap instance. The server computes the heatmap homomorphically
and sends to the client one ciphertext c encrypting a polynomial

∑N−1
i=0 aiX

i where each ai repre-
sents the number of points inside the i-th cell. Then, the client can decrypt c using their own secret
key sk. We assume the server to be honest-but-curious; in particular, the homomorphic computation
steps are public and we do not address circuit privacy in this work.

5.2 Implementation results

In this section, we provide practical results of the homomorphic evaluation of the heatmap with
our both methods. To instantiate the FHE schemes, we used the parameters presented in Table 1,
which provide at least 128 bits of security, according to the sieve BKZ reduction cost model of the
online LWE estimator [APS15]. For the full domain strategy, we always used ternary secret keys,
that is, coefficients in {−1, 0, 1}, and parameter σ = 3.2 for the discrete Gaussian, then for each
N ∈ {212, 213, 214, 215}, we selected log q that allows us to run our application and also gives us
λ ≥ 128. For the split domain strategy, we have one parameter set with N = 29, which is used
to compute the first level of functions, that is, encryptions of Xbxi/bc and Xbyi/hc, and another
parameter set with N̄ = 212, for the final result Xg(xi,yi).

Each heatmap instance was defined using xmax = ymax and b = h, i.e., a square map divided in
grid of squares cells of side b, then we sampled 50 random points (xi, yi), encrypted each of them
into two ciphertexts and executed both the full and the split domain strategy. In Table 2, we show
the running times per point (evaluating a homomorphic heatmap with n encrypted points takes
essentially n times the displayed time). All the experiments were run on a single core of an Intel(R)
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xmax and ymax b and h Full domain Split domain

210 26 0.174 s 0.507 s

211 27 0.174 s 0.507 s

212 28 0.174 s 0.512 s

213 29 0.394 s 0.568 s

214 29 1.0617 s 0.635 s

215 29 2.832 s 0.820 s

Table 2: Time needed for our both methods to process each point (xi, yi) of several different
heatmap instances.

xmax Xf(x) ffkx Xg(y) ffky Mult.

210 3 232 3 232 17

211 7 228 7 227 17

212 13 226 13 225 17

213 23 233 25 231 17

214 58 255 62 255 17

215 147 243 147 242 17

Table 3: Time spent in each main subrotine of the split-domain strategy, considering the running
times presented in Table 2. The time unit is millisecond. The second column refers to the homo-
morphic computation of Xf(x) given Enc(Xx). The third column corresponds to the format-fixing
key key switching applied to Enc(Xf(x)). Third and fourth column are the same as the second and
third one, but for Enc(Xy). The final column shows the time of the homomorphic multiplication
used to compute an encryption of Xf(x)+g(y).

Xeon(R) CPU E5-2630 v2 @ 2.60GHz. In all cases, the number of cells, therefore, the size of the
image of g(x, y) is smaller than or equal to 212, thus, for 210 ≤ xmax ≤ 212, we could use N = 212

for the full domain strategy. However, since xmax and ymax define the domain of f and N has to be
larger than or equal to max(|dom(f)|, |img(f)|), we have to increase N and choose it as N = xmax

for xmax ≥ 213. This explains the slowdown in the running times presented in Table 2. On the other
hand, for the split domain, we always used N = 29 and N̄ = 212. As the domain grows, only the
parameter k ≈ |dom(f)|/N grows, but it has little impact in the running time. As a result, the split
domain method is slower for small domain, but becomes faster as the size of the domain grows.

In tables 3 and 4, we show how the running times of Table 2 are divided in the main steps of each
method. We can see that the format-fixing key switchings, which take a non-standard ciphertext
and outputs a normal RLWE ciphertext, dominates the running time of the split-domain method.
As for the full-domain strategy, the procedures taking most of the execution time are the traces to
extract the bits bi of the evaluated functions and the multiplications to group those bits and move
the values to the exponent of X.
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xmax Ti(X) ·Xx Trace Xf(x) Final mult.

210 3 60 19 5

211 3 60 19 5

212 3 60 19 5

213 6 140 42 11

214 17 383 111 23

215 45 1000 291 47

Table 4: Time spent in each main subrotine of the full-domain strategy, considering the running
times presented in Table 2. The time unit is millisecond. The second column displays the time
needed to multiply Enc(Xx) by all test polynomials Ti(X) corresponding to the i-th bit of f(x).
The third column corresponds to trace operation needed to extract the constant term. The fourth
column shows the time needed to multiply the encryptions of the bits of f(x) to obtain Enc(Xf(x)).
Notice that the same operations are computed again to obtain Enc(Xg(y)) from Enc(Xy) and they
cost essentially the same. The final column shows the time of the homomorphic multiplication used
to compute Enc(Xf(x)+g(y)).

6 Acknowledgements

This work has been supported in part by the Research Foundation – Flanders (FWO) under a Junior
Postdoctoral Fellowship, by CyberSecurity Research Flanders with reference number VR20192203,
by the Defence Advanced Research Projects Agency (DARPA) under contract No. HR0011-21-C-
0034 DARPA DPRIVE BASALISC and by the FWO under an Odysseus project with reference
number GOH9718N. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the ERC, DARPA,
and the US Government. Cyber Security Research Flanders or the FWO The U.S. Government
is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any
copyright annotation therein

References

APS15. Martin Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors. J.
Mathematical Cryptology, 2015.

BBH+20. Alexandros Bampoulidis, Alessandro Bruni, Lukas Helminger, Daniel Kales, Christian Rechberger, and
Roman Walch. Privately connecting mobility to infectious diseases via applied cryptography. arXiv preprint
arXiv:2005.02061, 2020.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully Homomorphic Encryption
Without Bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
ITCS ’12, pages 309–325, New York, NY, USA, 2012. ACM.

18



BIP+22. Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and Nigel P. Smart. Final: Faster
fhe instantiated with ntru and lwe. Cryptology ePrint Archive, Report 2022/074, 2022. https://ia.cr/

2022/074.
BV11. Zvika Brakerski and Vinod Vaikuntanathan. Fully Homomorphic Encryption from Ring-LWE and Security

for Key Dependent Messages. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, pages
505–524, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast Fully Homomorphic
Encryption Over the Torus. Journal of Cryptology, Apr 2020.

CKK15. Jung Hee Cheon, Miran Kim, and Myungsun Kim. Search-and-compute on encrypted data. In Michael
Brenner, Nicolas Christin, Benjamin Johnson, and Kurt Rohloff, editors, FC 2015 Workshops, volume 8976
of LNCS, pages 142–159. Springer, Heidelberg, January 2015.
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A Natural BGV/FV solution

Consider the BGV or the FV scheme over the cyclotomic ring Z[X]/〈Φm(X)〉. Let t = pr be the
plaintext modulus, where p is prime. Let N = ϕ(m) be the degree of the cyclotomic polynomial.
Consider a function f : J0, DJ→ J0, IJ.

Let d be the order of p modulo m and n := N/d. be the number of plaintext slots. Then,
in each ciphertext, we can encrypt n elements, (x1, . . . , xn) ∈ J0, DJn, and each homomorphic
operation applies independently to each slots. For example, if c1 := Encsk(x1, . . . , xn) and c2 :=
Encsk(x

′
1, . . . , x

′
n), then c := Mult(c1, c2) encrypts (x1 · x′1, . . . , xn · x′n). This is known as SIMD

(single-instruction multiple-data) or batching and allows us to accelerate the homomorphic evalu-
ation, by computing a function in parallel in all the slots with the same number of homomorphic
operations needed to evaluate the function one single time. It is also possible to homomorphically
rotate the slots. Namely, given an encryption of (x1, . . . , xn) and an integer k prime with m, we
can generate an encryption of (xk, xk+1, . . . , xn, x1, . . . xk−1). We refer to [HS20] for more details.
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Notice that the plaintext modulus t has to be larger than the domain, so we have the restriction
t ≥ D.

The first step then, would be to compute f (in each slot via SIMD), obtaining (f(x1), · · · , f(xn)).
This also implies t ≥ I.

Then, to count how many elements evaluate to each value in the image, we have to proceed as
follows for each 0 ≤ i < I:

– Let ei : J0, IJ→ {0, 1} be a function that outputs 1 if, and only if, its argument is equal to i.
– Compute ei homomorphically, producing then an encryption of (ei(f(x1)), ..., ei(f(xn))).
– Rotate and add all the slots, and multiply by the plaintext (1, 0, ..., 0), which yields an encryption

(
∑n

j=1 ei(f(xj)), 0, 0, ..., 0). This step requires log n rotations.

Let’s say that evaluating f is done in time Tf , each ei in time Te, and each rotation in time Tr,
then, the total cost is

Tf + I · (Te + Tr · log n).

But notice that evaluating each ei is highly non-trivial and is likely to require at least one
bootstrapping, which is very costly. In more detail, since ei implements a comparison with i, the
best methods to evaluate ei require at least blog2 tc homomorphic multiplications [INZ21], so,
considering that the bootstrapping takes time Tb and each multiplication takes time Tm, we can
write Te ≥ Tm · log2 t+ Tb. Thus, the amortized cost, or cost per each instance xi is at least

Tf + I · (Tm · log2 t+ Tb + Tr · log n)

n
(6)

For concreteness, consider that we use the HElib implementation of BGV‡ to compute the
homomorphic heatmap, as in Section 5.2. Typical parameters of BGV for 128 bits of security use N
around 215, so we can fix the set of parameters precomputed by HElib, namely N = 42799 ≈ 215.3,
ciphertext modulus with 970 bits, and plaintext modulus t = 2r for any r. With this, there are
n = 2016 slots. Moreover, on the same machine used in Section 5, we have Tm = 0.65 s and Tr = 0.37
s. To run the heatmap we can fix t = xmax. Notice that as we increase t, the bootstrapping time
also increases. Hence, even ignoring the time needed to compute f , that is, setting Tf = 0 in
Expression (6), the following holds.

– For the first row of Table 2, we have t = 210, I = 288, and Tb = 61 s. Thus, the amortized time
per point (xi, yi) is at least 10 seconds, while our full domain solution runs in 0.174 seconds,
that is, at least 57 times faster.

– For the last row of Table 2, we have t = 215, I = 4224, and Tb = 72 s. Thus, the amortized time
per point (xi, yi) is at least 3 minutes, while our split domain strategy runs in 0.820 seconds,
i.e., at least 219 times faster.

‡ https://github.com/homenc/HElib/
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