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Abstract. The paper concerns several theoretical aspects of oriented supersingular `-isogeny volcanoes

and their relationship to closed walks in the supersingular `-isogeny graph. Our main result is a bijection
between the rims of the union of all oriented supersingular `-isogeny volcanoes over Fp (up to conjugation of

the orientations), and isogeny cycles (non-backtracking closed walks which are not powers of smaller walks)

of the supersingular `-isogeny graph over Fp. The exact proof and statement of this bijection are made
more intricate by special behaviours arising from extra automorphisms and the ramification of p in certain

quadratic orders. We use the bijection to count isogeny cycles of given length in the supersingular `-isogeny

graph exactly as a sum of class numbers of these orders, and also give an explicit upper bound by estimating
the class numbers.

1. Introduction

Fix primes ` < p. The supersingular `-isogeny graph G` is the directed graph whose vertices are the Fp-
isomorphism classes of supersingular elliptic curves, and whose edges are isogenies, up to post-composition
by an automorphism. The graph is (`+ 1)-regular, has around p/12 vertices, and consists of one connected
component. However, it has few obvious symmetries: its structure more closely resembles that of a random
regular graph in its statistical behaviour, including its graph spectrum. It is a Ramanujan graph.

The graph G` was introduced into cryptography in 2006 in [15], where the hard problem of finding
paths in the graph was proposed. In the cryptographic setting, p is always taken to be a large prime of
cryptographic size and ` is a small prime like ` = 2 or 3. A key exchange protocol called SIDH based
on the path-finding problem in G` was proposed in [21] and was considered for standardization in the
NIST Post-Quantum Cryptography process (2017–2022). Although SIDH has been broken [11, 40, 47], so
far there do not exist polynomial time algorithms (polynomial in log p) to solve either the path finding
problem (to find a path joining two given supersingular curves), or the endomorphism ring problem (to
compute the endomorphism ring, either as a maximal order in a quaternion algebra or by giving a basis of
endomorphisms) of a supersingular curve. These problems are closely related to one another [24,57], and to
other cryptographic protocols such as CSIDH [13] and SQISign [22].

The graph G`, like any superhero worth its salt, has an ‘alter ego,’ which is as the graph of maximal orders
in a quaternion algebra Bp,∞ ramified at p and ∞. For each elliptic curve vertex, the endomorphism ring
of the curve is such a maximal order. However, even viewed in this way, the graph is still its apparently
disordered self. To reveal some familiar structure with which to navigate the graph, one can focus, one at a
time, on the quadratic rings embedded in the quaternion algebra.

The aforementioned structure recalls to mind the analogous graph for ordinary elliptic curves, whose
endomorphism rings are merely quadratic orders. One can form an ordinary `-isogeny graph just as one does
a supersingular one: vertices are isomorphism classes of ordinary elliptic curves, and edges are `-isogenies
[26] [52]. In this case, the endomorphism rings of the curves in a connected component are all orders in the
same quadratic field. Stratifying the graph according to the conductors of these orders, with larger orders at
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Figure 1. An oriented 3-isogeny volcano. The rim is comprised of the five black vertices.
These vertices are primitively oriented by a 3-fundamental order O. The grey vertices at
altitude 1 of the volcano are primitively oriented by the suborder of O of index 3. The five
thick dotted edges along the rim indicate horizontal oriented 3-isogenies, and the remaining
black edges are ascending/descending.

higher ‘altitude,’ we see at the top a cycle, or ‘rim,’ from which trees descend down the sides of the ‘volcano’
(see Figure 1). This simple, organized picture is in contrast to the complexity of the supersingular graph.

The storyline of the present paper is that the (finite) supersingular graph G` can be understood as the result
of superimposing infinitely many volcanoes, each obtained by focusing on a single quadratic field embedded
inside the quaternion algebra Bp,∞ and its intersection with the various maximal orders. The volcanoes in
this case are not the volcanoes of the ordinary `-isogeny graph, but rather the connected components of
the oriented supersingular `-isogeny graph associated to a quadratic field K, denoted by GK,`. This graph
has recently been studied by Colò-Kohel [17] and Onuki [42] in the cryptographic context. The vertices of
GK,` are pairs (E, ι) consisting of an isomorphism class of supersingular curves, together with an embedding

ι : K → End0(E) of a quadratic field into the endomorphism algebra of the curve, called a K-orientation.
Edges are again `-isogenies. (For the precise definitions, see Section 2.)

Upon forgetting orientations, each of these volcanoes covers the supersingular `-isogeny graph. In partic-
ular, each rim maps to a closed walk in the `-isogeny graph.

We concern ourselves with a particular type of closed walk in G`: one with no backtracking and which is
not a repeat of a smaller closed walk. We keep its direction (traversed ‘forward’ or ‘backward’), but forget
any choice of basepoint, and call this an isogeny cycle (Definition 3.1). The main result of this paper is
that each isogeny cycle is obtained, by forgetting orientations, from exactly one oriented volcano rim (up to
conjugation of the rim; see Section 3.1 for definitions).

Theorem 1 (See precise version in Theorem 3.2). Fix distinct primes ` < p. Let r > 2. The isogeny cycles
of length r in G` are in bijection with the rims of length r of the union of all oriented supersingular `-isogeny
volcanoes over Fp, up to conjugation of the orientations.

The exact statement is discussed in Section 3.1, and a detailed example is given in Section 6. At the highest
level, the bijection is given by a simple process. Given a rim, one can forget the orientation information to
obtain an isogeny cycle in the supersingular graph. Conversely, given an isogeny cycle, one can compose the
sequence of isogenies it comprises, to obtain an endomorphism. This endomorphism induces an orientation,
placing the initial curve on a rim. The proof, however, spans around a third of the paper, in large part because
of the existence of special cases and issues spawned by extra automorphisms and quadratic fields in which
p ramifies. In particular, the bijection is not canonical due to these considerations. See also Remark 2.17,
where we make some philosophical comments on the obstacles presented by extra automorphisms in the
supersingular isogeny graph.

We use the bijection of Theorem 1 to count isogeny cycles of length r in G`. The essential ingredient is
that the rims of K-oriented `-isogeny volcanoes correspond to cycles of length r in the permutation on the
oriented rim vertices arising from the action of an element of order r in the class group of an order of K.
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Theorem 2 (See precise versions in Theorem 7.1, Corollary 7.3 and Corollary 7.7). The number of isogeny
cycles of length r in G` is given by

(1)
1

r

∑
O∈Ir

εO,`hO,

where Ir is a set of quadratic orders satisfying certain splitting properties for ` and p specified in Section 5,
and εO,r is defined in Theorem 5.1, and satisfies 1 ≤ εO,r ≤ 2, with εO,r = 2 whenever p is unramified in O.
The quantity (1) is bounded above by

2πe0.578 log(4`)

3
`r(log r + c) +O(`3r/4 log r)

as r → ∞, where the constant c is explicit, and the implied constant in the big O notation can be made
explicit using Corollary 7.7. For p ≡ 1 (mod 12), the quantity (1) asymptotically approaches `r

2r as r →∞.

The asymptotic for the number of isogeny cycles is as expected for Ramanujan graphs (see Section 7.1)
and we give a standard but self-contained proof for expander graphs. However, the class number formula and
the explicit upper bound are consequences of the main bijection between rims and isogeny cycles. Figure 7
and Section 6 contain experimental data confirming our results.

Our strategy for counting isogeny cycles leads immediately to an algorithm to list all isogeny cycles of
length r in G`. In particular, the discriminants of elements of Ir are bounded by `r. The j-invariants of
the isogeny cycles are roots of the Hilbert class polynomials of the orders O ∈ Ir. The cycle in G` can
be determined by use of the modular polynomial Φ`. This generalizes a simple congruence condition check
on p used in [15, Section 5.3.4] to rule out the existence of small cycles for the Charles-Goren-Lauter hash
function. The exact value of εO,r in the ramified cases depends upon the theory of the ring class field of K,
and is given in terms of the class number and genus number (Section 4).

In the course of the proof, we need to clarify a point about the number of orientations of a curve. When
p does not split in O, Onuki [42] considered the set SSpr

O of pairs (E, ι) of a supersingular isogeny graph
together with a primitive O-orientation (meaning a K-orientation ι such that ι(K) ∩ End(E) = O), and
the set ρ(E``(O)) of pairs (E, ι) ∈ SSpr

O obtained by reducing an elliptic curve over C with normalized
complex multiplication by O (where normalized means that [α]∗ω = αω for the invariant differential ω; see
Section 2.3.) Onuki showed that these two sets are not always equal; sometimes # SSpr

O = 2#ρ(E``(O)).
This raises the natural question of when this case occurs. In this paper, we answer that it occurs if and
only if p is inert in K. (In the ramified case, # SSpr

O = #ρ(E``(O)) exactly.) We prove this using the ring
class field and the action of conjugation (Theorem 4.4), but note that the result is also proved using Deuring
lifting in [25, Lemma 3.2].

We also explicitly find the in- and out-degrees of the vertices of all possible K-oriented `-isogeny graphs.
TheK-oriented graph is (`+1)-regular except at vertices corresponding to curves with extraK-automorphisms
(i.e. automorphisms which preserve the orientation), where the out-degree may be slightly less than ` + 1.
This is made explicit in Remark 2.7 and Proposition 2.11. In connection with this, we provide a new direct
proof of the volcano structure of the graph, and the count of ascending, descending and horizontal edges
even in exceptional cases, in Proposition 2.15.

The motivation for this paper is prior work by the same authors, summarized in Section 8, in which the
oriented volcano structure is used to navigate the supersingular `-isogeny graph [5]. In particular, given
an initial vertex in the supersingular `-isogeny graph, and given an endomorphism of that curve, one asks
to navigate to a target curve (typically j = 1728). The endomorphism provides an orientation of the
initial curve, and hence a location in an oriented supersingular `-isogeny volcano. Then, using methods of
determining ascending and descending directions, one can navigate the oriented volcano. The target curve
must be given an orientation on the same volcano (algorithms are provided in [5]). From both curves, one
ascends to the rim and hopes to connect the paths. Having found a path on an oriented volcano, one takes
the image in the original supersingular `-isogeny graph.

The algorithms provided in [5] explicitly relied on heuristics about oriented volcanoes. They also implicitly
hinted at the sort of bijection given in our first theorem above. In Section 9 of the present paper, we revisit
the explicit heuristics of [5] and provide some partial results. In particular, we do the following.
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(1) We give an explicit bound on the distance from uniform of the distribution of endpoints of non-
backtracking random walks in G` from an initial set of vertices when p ≡ 1 (mod 12) (Proposi-
tion 9.1).

(2) We estimate the expected distance of any fixed vertex to a set of j-invariants of a given size (Corol-
lary 9.2).

(3) We fix an oriented volcano and bound the depth at which any j-invariant first occurs (Section 9.2).
(4) We fix a j-invariant and consider all the possible orientations by a given field, and the distribution

of this collection of oriented curves on the various oriented volcanoes (Section 9.3). We are able to
prove a result that differs slightly from the heuristic used in [5].

As an additional minor point of interest, Lemma 2.9 shows that the kernel of an endomorphism is fixed by
an extra automorphism if and only if its field of definition lies in the field of definition of the automorphism.
As a corollary, we can classify the behaviour of loops at j = 0 and j = 1728 in Corollary 2.13; this is a new
method of proof, and slight generalization, of a known result [1, 36,44].

The topic of closed walks1 in the supersingular `-isogeny graph was first studied in [15], where it was
observed that closed walks give endomorphisms, and so the splitting behaviour of p in various extensions
controlled the existence of small cycles. The endomorphisms created by closed walks were studied in the
thesis of Kohel [33], and further in [7], with the goal of understanding when such cycles are independent
and generate an endomorphism ring. These sources also discuss the computation of the trace of a cycle.
The neighbourhoods of 0 and 1728 are particularly intricate, and their loops and cycles are discussed in
[1, 35,36,44,58]. Cycles in the SIKE graph which pass through the secret key are discussed in [43].

Further back in the literature, Gross [28] considered counting endomorphisms of a fixed degree by com-
puting the traces of matrices derived from looking at certain modular forms of weight 2 for the group Γ0(N).
Thus Gross counts closed walks of a different sort, and in particular allows backtracking (which we do not).
As the degree increases, the proportion of the count due to backtracking increases as well. We provide a
comparison at the end of our extended example in Section 6.

The study of K-orientations is in some sense as old as the study of optimal embeddings in quaternion
algebras, and has naturally appeared in the study of isogeny graphs, for example in [37]. In the context of
isogeny-based cryptography, the graph GK,` was studied by Colò and Kohel in order to propose OSIDH, a
new key exchange protocol [17] (see also [14]). Onuki considered the difference between SSpr

O and ρ(E``(O))
[42]. In cryptography, the class group action on oriented curves has been used constructively [16], and the
hardness of the group action problem has been considered both classically and quantumly [12] [56]; a new
variation called the O-uber isogeny problem appears in [20] (see also [14]). The volcano structure provides
some algorithmic approaches to hard problems, which includes the recent work of the present authors [5] and
related work [56]. Recent work also asks about the number of orientable curves [34]; see also [37]. Finally,
specific orientations underlie the line of work in [23] and [20].

Outline of the paper. Section 2 contains the background on oriented and unoriented supersingular
`-isogeny graphs. In Section 3, we state and prove Theorem 1, and this section is the heart of the paper.
Section 4 settles the question of when ρ(E``(O)) = SSpr

O and discusses the action of conjugation on SSpr
O .

Section 5 specifies exactly the number of rims associated to a given quadratic order, in terms of class and
genus numbers. Section 6 provides an extended example of the main bijection of Theorem 1. Section 7
counts the number of isogeny cycles in G` asymptotically, as well as exactly in terms of class numbers, and
gives an explicit upper bound. Section 8 gives an overview of our previous work and how it motivates the
work in this paper, as well as the heuristics it depends upon. Section 9 partially addresses some of these
heuristic questions by use of methods of expander graphs.

Acknowledgements. Thank you to David Kohel, Greg Martin, Eli Orvis, Christophe Petit, Lillian B.
Pierce, Jan Vonk, and Jonathan Wise for helpful discussions and feedback. We would also like to thank the
conference Women in Numbers 5 for the opportunity to form this research group. We also appreciate the
detailed comments of our anonymous referees.

1often simply called cycles in the isogeny literature; we use the term closed walk to more accurately follow the graph theory

literature
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2. Mathematical preliminaries on oriented supersingular `-isogeny graphs and their
volcanoes

2.1. The supersingular `-isogeny graph G`. Let ` < p be distinct primes. We let G` denote the super-
singular `-isogeny graph over Fp, defined as the directed graph whose vertices are isomorphism classes of

supersingular elliptic curves over Fp, and whose directed edges are isogenies of degree ` up to post-composition

by an automorphism. The number #G` of supersingular j-invariants over Fp (see [50]) is

(2) #G` =
⌊ p

12

⌋
+


0 if p ≡ 1 (mod 12),

1 if p ≡ 5 or 7 (mod 12),

2 if p ≡ 11 (mod 12).

Supersingular elliptic curves with j-invariants equal to 0 and 1728 have extra automorphisms, beyond the
usual automorphisms [±1]. Let E0 : y2 = x3 − 1 and E1728 : y2 = x3 − x with j(E0) = 0, j(E1728) = 1728.
The curve E0/Fp is supersingular for any p ≡ 2 (mod 3), and E1728/Fp is supersingular for any p ≡ 3
(mod 4). For the sake of this discussion, we assume these curves are supersingular. We provide their explicit
endomorphism rings below, referenced from [41,51].

The automorphism group for E1728 is Aut(E1728) = {[±1], [±i]}, where [i](x, y) := (−x, iy) for i ∈ Fp2
with i2 = −1. Write πp for the p-power Frobenius endomorphism: πp(x, y) := (xp, yp). In Bp,∞ :=
End(E1728)⊗Z Q, we have:

(3) End(E1728) =

〈
1, [i],

1 + πp
2

,
[i] + [i]πp

2

〉
.

The automorphism group for E0 is Aut(E0) = {[±1], [±ζ3], [±ζ2
3 ]}, where [ζ3](x, y) := (ζ3x, y) with ζ3 a

root of T 2 + T + 1 in Fp2 . We let [
√
−3] = 2[ζ3] + 1. In Bp,∞ := End(E0)⊗Z Q, we have

(4) End(E0) =

〈
1,
−1 + [

√
−3]

2
, πp,

3 + [
√
−3] + 3πp + [

√
−3]πp

6

〉
.

Lemma 2.1. Let E ∈ {E0, E1728} and let ϕ ∈ Aut(E) such that ϕ 6= ±[1]. If ϕθ = θϕ for θ ∈ End(E),
then deg θ ≥ p.

Proof. Let η = [i] or η = [
√
−3] depending whether E = E1728 or E = E0, respectively. The condition

ϕθ = θϕ implies that θ must have the form θ = sπp + t(ηπp) where s, t ∈ Q.
For E = E1728, using the Z-basis for End(E1728) in (3), we have θ = mπp+n([i]πp) where m,n ∈ Z. Thus

deg θ = p(m2 + n2) ≥ p.
For E = E0, using the Z-basis for End(E0) in (4), we have θ = m

2 πp −
n
2 (ηπp) where m,n ∈ Z are of the

same parity. Thus deg θ = p
4 (m2 + 3n2). Since m2 + 3n2 ≡ 0 (mod 4), it follows that deg θ ≥ p.

�

The graph G` has regular out-degree ` + 1 (the number of subgroups of E[`] of size `) [46]. It is very
nearly an undirected graph, obtained by identifying each `-isogeny with its dual. The exception is that since
isogenies are identified under post-composition with an automorphism, at curves with extra automorphisms,
this identification may fail (see Figure 3). Nevertheless, this issue occurs for edges adjacent to at most
two vertices (j = 0, 1728), so one often considers it an ` + 1 regular undirected graph for the purposes
of spectral graph theory, without affecting the validity of the conclusions. Modulo this slight lie, or when
j = 0 and j = 1728 are ordinary and hence absent from the graph (they are absent if and only if p ≡ 1
(mod 12)), G` is an (`+ 1)-regular Ramanujan graph. In particular, if its adjacency matrix has eigenvalues
`+ 1 = λ1 ≥ λ2 ≥ · · · ≥ λn, then

(5) max
i>1
|λi| ≤ 2

√
`.

2.2. The oriented supersingular `-isogeny graph GK,`. Let ` < p be distinct primes. Fix a supersingular

elliptic curve E/Fp. Then End0(E) ∼= Bp,∞, where Bp,∞ denotes the definite quaternion algebra ramified
precisely at p and∞ (unique up to isomorphism). Let K be an imaginary quadratic field in which p does not
split. This condition on p gives the existence of an embedding of K into Bp,∞. Let O denote an order in K
and hO the class number of this order. Let ∆O denote its discriminant. An order O of K is `-fundamental
if its conductor is relatively prime to `.
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Definition 2.2 (K-orientation). A K-orientation of E is an embedding ι : K → End0(E).

Definition 2.3 (O-orientation). A K-orientation ι : K → End0(E) is an O-orientation if ι(O) ⊆ End(E).
Furthermore, we say that an O-orientation is O-primitive if ι(O) = End(E) ∩ ι(K).

Every K-orientation ι : K → End0(E) is O-primitive for a unique order O of K.
In the literature, for example [37], one will find the closely related term optimal embedding, in the context

of a maximal order O of a quaternion algebra A, for an embedding ι : K → A such that ι(K) ∩O = O. An
optimal embedding corresponds to a primitive orientation via the Deuring correspondence. For the theory
of optimal embeddings, see [55, Chapter 30].

Definition 2.4 (K-oriented elliptic curve). A K-oriented elliptic curve is a pair (E, ι), where E is an elliptic
curve and ι is a K-orientation of E.

Isogenies of elliptic curves induce isogenies of oriented elliptic curves in the following sense: if φ : E → E′

is an isogeny and ι : K → End(E) is a K-orientation of E, then we define the unique induced orientation
φ∗ι on E′ for any α ∈ K as follows:

(6) (φ∗ι)(α) :=
1

[deg φ]
φ ◦ ι(α) ◦ φ̂.

Definition 2.5 (K-oriented isogeny). If φ∗ι = ι′, then we say that φ : (E, ι) → (E′, ι′) is an isogeny of
K-oriented curves, also known as a K-oriented isogeny.

Two K-oriented curves (E, ι), (E′, ι′) are K-isomorphic if there exists an isomorphism η : E → E′ such
that η∗ι = ι′. Two K-oriented isogenies φ : (E1, ι1) → (E2, ι2) and φ′ : (E′1, ι

′
1) → (E′2, ι

′
2) are considered

equivalent if there are K-oriented isomorphisms η and η′ so that the following diagram commutes:

(7) (E1, ι1)
φ
//

η

��

(E2, ι2)

η′

��

(E′1, ι
′
1)

φ′
// (E′2, ι

′
2)

We will frequently abuse notation by writing a representative (E, ι) or φ in place of its equivalence class.
An automorphism ϕ of E is a K-automorphism of (E, ι) if ϕ∗ι = ι. This occurs if and only if ϕ ∈ ι(K).

Definition 2.6 (GK,`). The `-isogeny graph GK,` of K-oriented supersingular elliptic curves over Fp is the
directed graph whose vertices (E, ι) are K-isomorphism classes of K-oriented supersingular elliptic curves
over Fp and whose edges are equivalence classes of K-isogenies of degree ` between the given oriented curves.

Remark 2.7. The only vertices of GK,` with automorphism group larger than {[±1]} are (E, ι) where either
(i) E has j-invariant 1728 and ι(i) ∈ End(E), or (ii) E has j-invariant 0 and ι(ζ3) ∈ End(E).

Proposition 2.8. The directed edges of GK,` can be put into equivalence classes by making an isogeny
equivalent to its dual isogeny. These classes are of size 1 or 2. The only self-dual edges are loops. By
identifying isogenies with their duals, this graph can be drawn undirected.

Proof. With reference to (7), if φ and φ′ are equivalent, then their duals are equivalent. Therefore an
equivalence class consists of one directed edge and its dual, or a single self-dual edge. �

Although the number of `-isogenies originating at a supersingular curve is always ` + 1, some of these
may be equivalent, so that in the graph GK,`, the out-degree may be strictly smaller. As usual, the culprits
are the extra automorphisms, as in Remark 2.7. Before we state and prove the exact out-degree, we need a
lemma.

Lemma 2.9. Let E be a curve with extra automorphisms. Given a non-zero isogeny φ : E → E′, its kernel
kerφ is fixed by Aut(E) \ {[±1]} if and only if E ∼= E′. If we further assume that deg φ < p then kerφ is
fixed by Aut(E) \ {[±1]} if and only if E ∼= E′ and φ (up to post-composition with an isomorphism E′ → E)
is an element in Q(Aut(E)) ∩ End(E).
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Proof. Let ϕ be a non-integer automorphism of E. First, suppose kerφ = ϕ kerφ. Then kerφ = kerφϕ, so
there exists a unique η ∈ Aut(E′) such that φϕ = ηφ by [50, III.4.11]. Then, working in End(E) ⊗Z Q ∼=
End(E′) ⊗Z Q, the element φϕ φ̂

[deg(φ)] = η ∈ Aut(E′) ⊂ End(E′) has the same minimal polynomial as

ϕ ∈ Aut(E) ⊂ End(E). The existence of non-integer elements in Aut(E) and Aut(E′) with the same
minimal polynomial gives Aut(E) ∼= Aut(E′). Since Aut(E) ∼= Aut(E′) ) {[±1]}, the automorphism group
determines the isomorphism class of the curve and we have E ∼= E′.

Next, suppose E ∼= E′ via an isomorphism λ : E′ → E. In particular, Aut(E) ∼= Aut(E′) ) {[±1]}. Then,
λφ ∈ End(E) and ker(λφ) = kerφ. By abuse of notation, we replace λφ with φ and may henceforth assume
φ ∈ End(E) in this case. The endomorphism φ has the same minimal polynomial as ϕ−1φϕ, and so up to
some automorphism η ∈ Aut(E), we have ϕ−1φϕ = ηφ, and thus kerφ = kerφϕ.

Now, assume deg φ < p and suppose E ∼= E′ and kerφ is fixed by a generator ϕ of Aut(E). Then
φ = ϕkφϕ for some integer 0 ≤ k < |Aut(E)|. By cancellation, we know φ 6= ±φϕ since ϕ 6= [±1],
hence ϕφ = φϕ or else ϕφ = φϕ. For ϕ = [ζ6] (a primitive sixth root of unity), we have k ∈ {1, 2, 4, 5}.
If k ∈ {1, 5}, then either [ζ6]φ = φ[ζ6] or [ζ6]φ = φ[ζ6]. Otherwise, if k ∈ {2, 4}, then observe that

φ = [ζ6]kφ[ζ6] = [ζ6]k([ζ6]kφ[ζ6])[ζ6] = [ζ6]2kφ[ζ6]2 = [ζ3]kφ[ζ3], so [ζ3]φ = φ[ζ3] or [ζ3]φ = φ[ζ3]. Since
deg φ < p, Lemma 2.1 rules out the case that ϕφ = φϕ. We are left to conclude that φ commutes with an
element ϕ of Aut(E) \ {[±1]}, which implies that φ ∈ Q(ϕ) ⊆ End0(E).

On the other hand, if kerφ 6= kerφϕ, then φ 6= ±ϕkφϕ for any k, so φ does not commute with ϕ, and
hence φ /∈ Q(Aut(E)). �

Definition 2.10 (Reduced Automorphism Group). Let Aut′(E) := Aut(E)/[±1] denote the reduced auto-
morphism group of the elliptic curve E.

Proposition 2.11. Let (E, ι) be an oriented curve in GK,` where ι is an O-orientation. Then (E, ι) has
out-degree ` + 1, except at the oriented curves with extra K-automorphisms (those of Remark 2.7). In that
exceptional case, the out-degree is (`+ 1− s`)/|Aut′(E)|+ s` where s` is the number of φ ∈ End(E) ∩ ι(K)
of degree ` up to post-composition by Aut(E). In particular, the out-degree at (E, ι), when (E, ι) has extra
K-automorphisms, is 

(`− 1)/2 + 2 O = Z[i] and ` splits in O (s` = 2)
(`+ 1)/2 O = Z[i] and ` is inert in O (s` = 0)
2 O = Z[i] and ` = 2 (s` = 1)
2(`− 1)/3 + 2 O = Z[ζ3] and ` splits in O (s` = 2)
2(`+ 1)/3 O = Z[ζ3] and ` is inert in O (s` = 0)
3 O = Z[ζ3] and ` = 3 (s` = 1)

Proof. With reference to diagram (7), by taking η ∈ Aut(E), the two equivalent K-oriented isogenies φ and
φ′ from (E, ι) must satisfy ι′ = η∗ι = ι and η kerφ = kerφ′. The first equality implies η ∈ ι(K). Hence (E, ι)
has out-degree (` + 1) if Aut(E) ∩ ι(K) = [±1]. If Aut(E) ∩ ι(K) ) [±1], the out-degree may be less than
(`+ 1), and we investigate this case below.

If Aut(E) ∩ ι(K) contains non-trivial automorphisms, then it contains all of them, and End(E) ∩ ι(K) =
ι(OK) ⊇ Aut(E). The ` + 1 outgoing `-isogenies fall into equivalence classes according to whether their
kernels are related by an extra automorphism. The kernel of an outgoing `-isogeny φ from E is fixed by
η ∈ Aut(E) if and only if φ ∈ End(E)∩ ι(K) (as in the proof of Lemma 2.9, we may assume that φ ∈ End(E)
by post-composing with an isomorphism; we have assumed throughout the paper that ` < p). Let S` be the
set of equivalence classes of elements in End(E)∩ ι(K) of degree ` up to pre-composition by Aut(E), and put
s` = #`. Note that End(E) ∩ ι(K) = ι(OK), so s` = 0, 1 or 2, depending on whether ` is inert, ramified or
split in OK . By the above, a degree `-isogeny φ is in S` if and only if it is fixed by all η ∈ Aut(E). Otherwise
its kernel has an orbit of size |Aut′(E)|. Thus the number of out-isogenies is (`+ 1− s`)/|Aut′(E)|+ s`. �

Remark 2.12. As an immediate corollary, we obtain a new method of proof and generalization of a known
result about the number of loops at a vertex [1,36,44]. Specifically, the previous works concerned only large p
(the last two sentences of the next corollary).
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Corollary 2.13. Let j ∈ {0, 1728} correspond to a supersingular curve over Fp. Let K = Q(ζ3),Q(i) for
j = 0, 1728 respectively. Let n represent the number of loops at the vertex of j-invariant j, in G`. Then

n = 1 +

(
∆K

`

)
+ k|Aut′(E)|,

for some k ∈ Z. If 4` < p, then the number of loops at j = 1728 is exactly 1 +
(

∆K

`

)
. If 3` < p, then the

number of loops at j = 0 is exactly 1 +
(

∆K

`

)
.

Proof. Let O be Z[ζ3] or Z[i] when j = 0 or 1728, respectively. Whether ` splits or ramifies or is inert
determines the number of elements of ι(O) of degree `, up to automorphisms: two, one or zero, respectively.
These elements are all loops on the vertex. All other loops fall into groups of size |Aut′(E)|, as in the proof
of Proposition 2.11. For the last two sentences of the statement, we revisit the endomorphism rings of the
vertex (Section 2.1), to see that the smallest elements not in ι(O) have norm p/4 and p/3 respectively. �

It is possible to compute k explicitly for any given value of ` in terms of p, by reference to the endomorphism
rings as described in the proof.

The graph GK,` consists of connected components, each with a volcano structure as pictured in Figure 1.
The rim vertices of any given volcano are K-orientations of supersingular elliptic curves which areO-primitive
for some fixed `-fundamental order O of K. The oriented supersingular elliptic curves which appear at depths
below the rim are primitively oriented by orders whose index in O is given by increasing powers of `: at
depth one from the rim, the curves are primitively (Z+ `O)-oriented, and in general, at depth k, the curves
are primitively (Z + `kO)-oriented. The edges of the volcano can thus be classified according to whether
they increase, decrease or preserve the depth as we move from domain to codomain.

Definition 2.14 (Horizontal, descending and ascending isogenies). Let φ : (E, ι)→ (E′, ι′) be a K-oriented
degree ` isogeny. If ι is a primitive O-orientation and ι′ is a primitive O′-orientation, then φ is one of the
following three types of isogeny:

(1) φ is horizontal if O = O′,
(2) φ is descending if O ) O′,
(3) φ is ascending if O ( O′.

The fact that each component has a volcano structure is the content of the following proposition; versions
of this appear in various places in the literature [17,42].

Proposition 2.15. Let (E, ι) be such that ι is O-primitive. If O is `-fundamental, then (E, ι) has no
ascending `-isogeny and

(
∆O
`

)
+ 1 horizontal `-isogenies. Otherwise, (E, ι) has one ascending `-isogeny and

no horizontal isogenies. All other isogenies from (E, ι) are descending.

Proof. This follows from [5, Proposition 4.8]. Write O = Z[θ] satisfying the hypotheses of that proposition.
If O is `-fundamental, then the norm of θ is not divisible by `. Then θ acts to permute E[`] and therefore
has two non-zero eigenvalues. By [5, Proposition 4.8], there are two horizontal isogenies if and only if these
eigenvalues are distinct and defined over F`, i.e. ` splits. If they are not distinct but defined over F`, there is
one horizontal isogeny, i.e. ` ramifies. Otherwise there are no horizontal isogenies. If O is not `-fundamental,
then the norm of θ is divisible by ` and there is a zero eigenvalue (but only one, since ` does not divide θ).
By [5, Proposition 4.8], this gives exactly one ascending isogeny. All other isogenies are descending. �

Let O be an order in K. Every primitive O-oriented curve (E, ι) is on a volcano in GK,`. If O is `-
fundamental, then (E, ι) is on the rim of this volcano. If ` divides the conductor of O, then the power of `
dividing the discriminant of O is referred to as the depth of the curve on this volcano.

Proposition 2.16. A connected component of GK,`, when identifying `-isogenies with their duals, has at
most one cycle, passing through the rim vertices.

Proof. The fact that there is at most one ascending isogeny from any vertex below the rim implies that
there are no cycles below the rim. Restricting to the rim, we have a 2-regular graph, hence a union of cycle
graphs. But since the graph is connected by assumption, it consists of at most one cycle. �
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Therefore, we also use the term rim to refer to the undirected cycle graph that one obtains as a subgraph
of GK,` by restricting to the rim vertices and identifying `-isogenies with their duals. We call a rim directed
if we choose a direction of traversal (disallowing backtracking).

Remark 2.17. We pause briefly to justify the choice of equivalence on isogenies for GK,` (which differs from
the notion of equivalence in G`). In fact, when forming a graph whose vertices are isomorphism classes of any
type of object, the graph is well-defined if we choose the edges to be maps up to pre- and post-composition
by isomorphism, as in (7). In other words, it is reasonable to require of our graph definition that, under any
two sets of representatives for the vertices, and any set of object-wise isomorphisms between those sets of
representatives, the resulting graphs should be canonically isomorphic. This requirement, when unravelled,
is essentially the requirement than the maps be taken up to pre- and post-composition. Historically, the
supersingular isogeny graph is not defined in this robust way, instead identifying isogenies as equivalent
merely up to post-composition. This allows for the computational convenience of identifying kernels with
isogenies, and allows for an identification between non-backtracking walks and cyclic isogenies. However,
it results in certain non-canonical behaviours. These behaviours can be observed only in proximity to the
curves with extra automorphisms (having j-invariant j = 0 and j = 1728), particularly the phenomenon
described in the second paragraph of Section 3.2. The historical definition of the supersingular isogeny graph
resulted in substantial difficulties arising from extra automorphisms in proving our main Theorem 3.2.

2.3. The sets SSpr
O and ρ(E``(O)) and the class group action. Having stratified each volcano into

depths where the orientations are all primitive with respect to a fixed order, it is natural to consider the
complete set of curves with such orientations.

Definition 2.18 (SSpr
O ). Let SSpr

O denote the set of primitively O-oriented isomorphism classes of supersin-
gular elliptic curves, up to K-isomorphism.

Here we recall the following conditions for the set SSpr
O to be non-empty.

Proposition 2.19 ([42, Proposition 3.2]). The set SSpr
O is not empty if and only if p does not split in K

and does not divide the conductor of O.

If O is `-fundamental, then SSpr
O is a union of volcano rims in GK,`.

For the proof of our bijection in Section 3.3, we invoke the Deuring lifting theorem as outlined in [42,
Section 3.2]. For this, we will need a number of definitions and lemmas about CM elliptic curves over number
fields.

There is a number field L′ (an extension of the ring class field L of O) and a prime ideal p above p in
OL′ such that every elliptic curve with complex multiplication by O has a representative over L′ with good
reduction at p [50, Section VII.5]. Fix such a choice.

Definition 2.20 (E``(O)). Let E``(O) denote the set of isomorphism classes of elliptic curves over L′ with
endomorphism ring isomorphic to O and good reduction at p.

By the theory of complex multiplication, # E``(O) = hO. Write [·]E : O → End(E) for the isomorphism
which is normalized so that ([α]E)∗ωE = αωE , where ωE denotes the invariant differential of E ([42, Section
2.3], [49, Prop. II.1.1]). There is a map given by reduction modulo p:

ρ : E``(O)→ SSpr
O , E 7→ (Ẽ, ιE),

where ιE : K → End0(Ẽ) is determined by its restriction ιE : O → End(Ẽ) being the reduction modulo p
of the isomorphism [·]E (in other words, ιE(α) = [α]E (mod p) for all α ∈ O). In particular, from the
normalization, it holds that ιE(α)∗ωẼ = αωẼ by reduction modulo p.

The map ρ is injective on E``(O), so that its image ρ(E``(O)) is a subset of SSpr
O of size hO. There is

an action of the p-power Frobenius on SSpr
O , given by πp · (E, ι) 7→ (E(p), ι(p)), where E(p) = πp(E) and

ι(p) = (πp)∗ι.

Proposition 2.21 ([42, Proposition 3.3]). For all (E, ι) ∈ SSpr
O , at least one of (E, ι), (E(p), ι(p)) belongs to

ρ(E``(O)).

As suggested by the above, surjectivity of ρ may indeed fail: # SSpr
O ∈ {hO, 2hO}. Theorem 4.4 describes

when this failure occurs.
We define an action of ideals of O on oriented elliptic curves (E, ι) ∈ SSpr

O .
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Definition 2.22 (Ideal action on oriented elliptic curves). Let (E, ι) ∈ SSpr
O for some order O of K. Let a

be an integral ideal of O coprime to p. Define the intersection:

E[ι(a)] :=
⋂
α∈a

ker(ι(α)).

This group defines an isogeny φ
(E,ι)
a : E → E/E[ι(a)]. The action of a on (E, ι) is defined as a ∗ (E, ι) :=

(φ
(E,ι)
a (E), (φ

(E,ι)
a )∗ι).

When clear from context, we will drop the superscript and just write φa. Note that to define the action
of the ideal a, we require its norm to be coprime to p (see the proof of [42, Proposition 3.6]).

Theorem 2.23 ([42, Theorem 3.4]). Assume that p does not split in K and p does not divide the conductor
of O. Then the ideal action of Definition 2.22 defines a free and transitive action of Cl(O) on ρ(E``(O)).

This action is the ‘same’ as that of the CM theory, in the sense that ρ(σ · (E, ι)) = σ · (ρ((E, ι))) for
σ ∈ Cl(O) [42, Proof of Proposition 3.6].

Finally, we relate SSpr
O to the volcanoes of GK,`.

Definition 2.24 (O-cordillera). A collection of volcanoes in GK,`. The collection of volcanoes whose rims
are primitively oriented by O is called the O-cordillera.

The set of vertices at the rim of the O-cordillera is exactly the set SSpr
O .

Next, we slightly strengthen results of Colò-Kohel [17] and Onuki [42] to give an action on oriented
isogenies by a direct product of the class group with Frobenius.

Definition 2.25 (Action of Frobenius on oriented elliptic curves). The two-element group 〈πp〉 = {1, πp}
generated by the Frobenius automorphism πp of Fp2 acts on GK,` by

πp · (E, ι) = (E(p), ι(p)), πp · ϕ = ϕ(p),

where ι(p) := (πp)∗(ι).

For any isogeny ϕ, we have πp ◦ ϕ(x, y) = ϕ(p)(xp, yp) = ϕ(p) ◦ πp(x, y). Hence, one has

ι(p)(α) = (πp)∗(ι)(α) =
1

p
πp ◦ ι(α) ◦ π̂p =

1

p
ι(α)(p) ◦ πp ◦ π̂p = ι(α)(p).

Since ϕ 7→ ϕ(p) gives an isomorphism End(E) ∼= End(E(p)), this yields an action on SSpr
O by 〈πp〉. In fact, it

is an action on the graph GK,`, i.e. it preserves adjacency.

Proposition 2.26. The actions described in Definitions 2.22 and 2.25 above commute and hence give an
action of Cl(O)× 〈πp〉 on SSpr

O . This action is transitive and its point stabilizers are either all trivial or all
〈πp〉. In particular, # SSpr

O ∈ {hO, 2hO}.

Proof. We have πp ·ϕa · (E, ι) = (ϕa)(p) ·πp · (E, ι). To avoid confusion we momentarily use the more specific

notation ϕ
(E,ι)
a to denote the isogeny ϕa with domain (E, ι) and kernel E[ι(a)]. Then

ker((ϕ
(E,ι)
a )(p)) = ker(ϕ

(E,ι)
a )(p) = E[ι(a)](p) =

⋂
θ∈ι(a)

ker(θ)(p)

=
⋂

θ∈ι(a)

ker(θ(p)) =
⋂

θ∈ι(p)(a)

ker(θ) = E(p)[ι(p)(a)] = ker((ϕ
(E(p),ι(p))
a ).

The calculation above implies that (ϕ
(E,ι)
a )(p) = ϕ

(E(p),ι(p))
a . Thus,

πp · a · (E, ι) = a · πp · (E, ι).

So the action of Cl(O)× 〈πp〉 on SSpr
O is well-defined.

The restriction of this action to Cl(O) acts freely and transitively on a subset of SSpr
O which contains at

least one of (E, ι) or (E(p), ι(p)) [42, Theorem 3.4], from which the rest of the statement follows. Transitivity
implies that the stabilizers are all of the same size. �



ORIENTATIONS AND CYCLES IN SUPERSINGULAR ISOGENY GRAPHS 11

Figure 2. Here p = 31, ` = 2 and K = Q(
√
−47). This figure shows the set SSOK which

consists of two cycles. We denote by (j, ιj) the vertex with j-invariant j and orientation ιj ;
if the j-invariant appears twice, the second orientation is denoted by ιj,2. The notation ιj
denotes the conjugate orientation. Conjugation (Section 4) maps (j, ιj) to (j, ιj) and (j, ιj,2)
to (j, ιj,2). On the other hand, πp maps (1728, ι1728) to (1728, ι1728), (2, ι2) to (2, ι2,2), and
(4, ι4) to (4, ι4,2).

Remark 2.27. One might expect to see the dihedral group, not a direct product. We will see the dihedral
group coming from class field theory in Section 4, where we consider the action of conjugation on SSpr

O . But
in our definitions here, Frobenius acts on both curve and orientation. In other words, SSpr

O has an action by
a direct product and by a dihedral group, both extensions of the same action of Cl(O) by Z/2Z, but these
are not necessarily the same. For an example of the action of Frobenius and the action of conjugation being
different, see Figure 2.

2.4. A lemma of algebraic number theory. We make explicit a small lemma from algebraic number
theory that will be used in Section 7.

Lemma 2.28. Let K be an imaginary quadratic field and let O be an order in K with conductor f . Assume
that ` is a prime that does not divide f . Then ` splits (ramifies, is inert, respectively) in O if and only if `
splits (ramifies, is inert, respectively) in the maximal order OK .

Proof. By [18, Proposition 7.20], if a is an OK-ideal above ` prime to f , then a′ = a∩O is an O-ideal above
` with the same norm, and if a′ is an O-ideal above ` prime to f , then a = a′OK is an OK-ideal above `
with the same norm. Furthermore, these maps are inverse to one another, giving a bijection between ideals
of OK coprime to f , and invertible ideals of O. Therefore the splitting, ramification and inertia properties
of ` in OK and in O are the same. �

3. Bijection between oriented volcano rims and isogeny cycles in the supersingular
`-isogeny graph

3.1. Statements of results. In this section, we give a bijection between ‘isogeny cycles’ (closed walks
satisfying a non-backtracking and non-repeating condition; see below) on the supersingular `-isogeny graph
and rims (up to conjugation) of the volcanoes in all oriented supersingular `-isogeny graphs. We first give
our definition of isogeny cycles.

Definition 3.1 (Isogeny cycle). An isogeny cycle is a closed walk, forgetting basepoint, in G` containing no
backtracking (no consecutive edges compose to multiplication-by-`, Definition 3.5) which is not a power of
another closed walk (i.e. not equal to another closed walk repeated more than once).

Isogeny cycles travelling the same vertices in opposite directions necessarily employ different directed
edges and hence are considered different.
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We need a few more items of terminology. The term directed refers to the notion of direction of traversal.
Each rim corresponds to two directed rims, since there are two possible directions of traversal. The conjugate
of a rim R is obtained by taking each vertex (E, ι) to (E, ι) and each edge φ : (E, ι)→ (E′, ι′) to φ : (E, ι)→
(E′, ι′). The conjugation of a rim is again a rim. Note that if φ

(E,ι)
a : (E, ι)→ (E′, ι′), then φ

(E,ι)
a : (E, ι)→

(E′, ι′) since E[ι(a)] = E[ι(a)]. So in particular, the direction of a rim (E0, E1, etc.) is preserved by
conjugation, but the ideal whose action traverses the rim in that direction is conjugated.

We now state our main theorem. For each integer r > 2, define two sets:

Cr = { isogeny cycles in G` of length r }.
Rr = { directed rims R of size r in GK,`: K is an imaginary quadratic field } .

Theorem 3.2. Let r > 2. There is a bijection between Cr and Rr/ ∼, where ∼ denotes identifying any rim
with its conjugate.

Sketch of proof. Theorem 3.2 will be proved in Section 3.3. At the highest level, this bijection is easy
to describe: given a rim R ∈ Rr, forgetting orientations gives a cycle C ∈ Cr. Conversely, given a cycle
C ∈ Cr passing through a curve E, composing its component isogenies in order, one obtains an endomorphism
θ ∈ End(E), which induces an orientation ιθ. Lifting E to (E, ιθ), the isogenies of the cycle will give a rim
in GK,`, where K is the quadratic field generated by the minimal polynomial of θ. These two maps are
inverse.

However, the devil is in the details, especially the devil whose name is extra automorphisms. In particular,
if G` has no curves with extra automorphisms, the proof is much briefer. In what follows, we have endeavoured
to clearly mark areas where we address extra automorphisms, so that at a first read, they can be skipped.
In particular, if G` has no extra automorphisms, the reader can entirely skip Section 3.4, and the word
‘safe’ (Definition 3.13) can be ignored. Section 3.2 should still be read, however, because its definitions and
statements will be used in the proof of Theorem 3.2.

3.2. Extra automorphisms and ‘arbitrary assignment’. Before we proceed, we must discuss a sub-
tlety concerning extra automorphisms (see the related Remark 2.17). In particular, the composition of the
isogenies along a walk in G` is not well-defined, because the isogenies themselves are only defined up to
post-composition by an automorphism. In the case of the automorphisms [±1], which commute with all the
isogenies in the chain, this amounts to a single sign ambiguity. But extra automorphisms may wreak havoc:
the endomorphism obtained by composing around a closed walk may not even have the same discriminant
(and quadratic field) after a post-composition by an automorphism.

This would appear to lampoon any hope of associating endomorphisms nicely with closed walks. However,
the remedy to this issue is the following observation. Consider two walks which differ by replacing a segment

j1
φ−→ 0

ψ−→ j2 with j1
[ζk3 ]φ−→ 0

ψ[ζ−k3 ]
−→ j2, or j3

φ−→ 1728
ψ−→ j4 with j3

[i]φ−→ 1728
ψ[−i]−→ j4, where [ζ3] and [i] are

extra automorphisms associated to primitive third and fourth roots of unity, respectively. In each case, the
first arrow is the same directed edge of G`, but the second arrow differs as an edge of G`. The composition
of the walk, however, is unchanged. In fact, there are typically three distinct walks j1 → 0 → j2 in G`,
and three distinct resulting isogenies j1 → j2, but there is no canonical identification between the elements
of these two sets of size three. One way to set a non-canonical identification is to consider the incoming
isogeny j1 → 0 to be a particular fixed (but arbitrary) representative of its equivalence class (recall that
the equivalence class consists of all the isogenies with the same kernel, i.e. up to post-composition by an
automorphism).

Definition 3.3 (Arbitrary assignment). An arbitrary assignment is a choice of isogeny φ, up to sign, from
every equivalence class of isogenies represented by a directed edge of G`.

There is no choice except when the codomain has extra automorphisms. In what follows, we shall
assume that such a fixed arbitrary assignment has been made for every arrow entering j = 0
or j = 1728. This choice will affect the exact bijection we obtain in our main theorem, but not the fact that
it is a bijection. Figure 3 is instructive as to the subtleties that may arise.

The following lemma is now immediate.

Lemma 3.4. Assume we have made an arbitrary assignment for G`. Then any closed walk in G` results in
a unique endomorphism (up to sign) by composition of its component isogenies in order.
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E0

E121

ϕ[ζ3]ϕ[ζ2
3 ]ϕ ϕ̂ ϕ̂[ζ2

3 ] ϕ̂[ζ3]

Figure 3. This figure shows all the 2-isogenies between j = 0 and j = 121 for p = 179.
Dual pairs are indicated by arrows matching in style. The isogenies entering j = 0 (upward
in the picture) differ by post-composition by an automorphism: either [±1], [±ζ3] or [±ζ2

3 ].
Therefore they are represented by a single directed edge in G`. The downward arrows from
j = 0 to j = 121 are represented by distinct directed edges in G`. The two walks ϕ̂[ζ3] ◦ ϕ
(up on dashed, down on solid) and ϕ̂ ◦ [ζ3]ϕ (up on dotted, down on dashed) give the same
endomorphism of j = 121, namely ϕ̂◦ [ζ3]◦ϕ, despite being different walks in G`. In fact, the
nine distinct closed walks of length 2 from 121 to 0 and back compose to only three distinct
endomorphisms of j = 121, namely ±[2], ±ϕ̂ ◦ [ζ3] ◦ ϕ, or ±ϕ̂ ◦ [ζ2

3 ] ◦ ϕ. Finally, notice that
any walk of length two from j = 0 to j = 121 and back is considered backtracking according
to Definition 3.5. The same is not true for walks of length two from j=121 to j = 0 and
back.

The endomorphism obtained by composing the isogenies of a cycle in order will simply be called the
composition of the cycle. The fact that composition is well defined allows us to define a notion of backtracking
without ambiguity around curves with extra automorphisms.

Definition 3.5 (Backtracking closed walk). Given an arbitrary assignment on G`, two consecutive edges
• φ0−→ • φ1−→• are said to be backtracking if φ1 ◦ φ0 = [`], up to possible post-composition by an automorphism.
A closed walk is considered to contain backtracking if any consecutive edges, including the last and first, are
backtracking.

This definition of backtracking is the same definition as [7, Definition 4.3], except those authors leave
out the composition of the last and first steps, which is more appropriate in their context. Note that this
definition is not captured by the sequence of vertices alone. To wit, see Figure 3 for an example of two
length-two walks, one of which is backtracking and one of which is not backtracking, but which are taken to
each other by an isomorphism of the graph fixing vertices.

We also have a converse to Lemma 3.4.

Lemma 3.6. Assume we have made an arbitrary assignment for G`. Consider an endomorphism θ ∈ End(E)
of `-power degree. If θ is not divisible by [`], then there is a unique closed walk in G` with composition ϕθ,
for some ϕ ∈ Aut(E). Furthermore, the walk has no backtracking, and ϕ is unique up to sign.

Proof. Since [`] - θ, the kernel ker(θ) ∩ E[`] has size `. Define the isogeny φ1 : E → E′ corresponding to
this subgroup (using the arbitrary assignment if applicable). Then any isogeny cycle which composes to θ
must factor through this isogeny, hence this is the first step in the desired isogeny cycle: θ = φ′ ◦ φ1. Now
take kerφ′ ∩ E′[`] to find the next kernel, and the map φ2 so that θ = φ′′ ◦ φ2 ◦ φ1. Continuing, we obtain
a closed walk in the `-isogeny graph composing to an isogeny with the same kernel as θ. Which is to say,
±θ, up to post-composition by an automorphism of E. But by construction, this walk is unique. It has
no backtracking, since backtracking would produce a composition divisible by [`]. The same closed walk is
obtained if we begin with θ or a post-composition of θ by an automorphism on E. Thus, by Lemma 3.4, the
automorphism ϕ of the statement is unique up to sign. �

Finally, there is one more small lemma we will require, that shows that any closed walk composing to a
power of an endomorphism is a power of a closed walk.
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Lemma 3.7. Suppose we have made an arbitrary assignment for G` and let ι : K → End0(E) be an O-
primitive orientation. Let α = uβs for some s > 1, β ∈ O, and some unit u ∈ O. Assume that ` does not
divide α, and that a closed walk C of G` composes to ±ι(α). Then C = Csβ where Cβ is a closed walk of G`
that composes to ±ι(β).

Proof. By Lemma 3.6, since ` does not divide β, there exists a unique closed walk Cβ of `-isogenies composing
to ϕι(β) for some automorphism ϕ of E. If E has no extra automorphisms, then the proof is done.

If E has extra automorphisms, however, then we slightly modify Cβ . Change the initial edge φ of Cβ
by replacing it with φϕ−1 (having the same domain and codomain). Call this modified closed walk C ′β .

By the conventions of the arbitrary assignment (Definition 3.3), the composition around C ′β is ϕι(β)ϕ−1.

The composition of (C ′β)s is ϕι(β)sϕ−1 = ϕι(u−1)ι(α)ϕ−1. But then we have closed walks C and (C ′β)s,

composing to ±ι(α) and ±ϕι(u−1)ι(α)ϕ−1, respectively. By the arbitrary assignment and Lemma 3.6, we
can again modify the first edge of (C ′β)s to obtain C ′ which composes to ±ϕι(u−1)ι(α). But then C = C ′ by

Lemma 3.6, and so ϕ = ±ι(u) ∈ ι(O). Therefore ϕ ∈ ι(O), in which case (C ′β)s composes to ±ι(u−1)ι(α),

and by Lemma 3.6, C = (C ′β)s. �

3.3. Proof of Theorem 3.2. In order to prove Theorem 3.2, it is easier to first discuss rims and isogeny
cycles with a basepoint (a marked point). Let E be a fixed vertex of G`. We define the following sets.

RE,r =

{
directed rims of size r in GK,`

passing through (E, ι)
: K is an imaginary quadratic field,

ι is a K-orientation on E

}
,

IE,r =

(ι, l) :

ι : K → End0(E) a primitive O-orientation,
K is an imaginary quadratic field,
O is an `-fundamental order of K,

(`) = l̄l splits in O,
[l] has order r in Cl(O),

 , and

CE,r = {isogeny cycles of length r in G` starting and ending at E }.

Let ∼ denote conjugation on elements of IE,r, i.e. taking a pair (ι, l) to (ι, l). As described in Section 3.1,
conjugation preserves the direction of the rim but conjugates the ideal whose action traverses the rim. We
will continue to use the symbol ∼ to denote conjugation of a rim.

We assume a safe arbitrary assignment (Definition 3.13) has been made for G`. Depending upon this
arbitrary assignment, we define the following maps:

(8) IE,r/∼
Ψ // RE,r/∼
Ψ′

oo

Φ
zz

CE,r
Θ

cc

The goal is to show that the diagram commutes, where every map is a bijection. Then Theorem 3.2 will
follow by ‘forgetting’ the basepoint.

Disregarding conjugation for the moment, we first define maps

IE,r
Ψ // RE,r
Ψ′
oo .

In Lemma 3.8, we show that these are inverse bijections and that they provide inverse bijections even after a
quotient by the conjugation relation. In Lemma 3.9 we will define Θ and show it is a bijection. Lemma 3.10
will define Φ and show it is a bijection. Finally, in Theorem 3.11, we show that the triangle in (8) commutes.

Definition of Ψ′. Consider a directed rim R ∈ RE,r passing through (E, ι). Denote by O the order such
that ι is O-primitive. Then O is `-fundamental since (E, ι) is at the rim. Moreover, the O-ideal (`) splits
and the O-ideals above ` have order r in Cl(O) since (E, ι) belongs to a rim of size r. The direction along
the rim corresponds to the action of one of the ideals above `, which we denote l. Then Ψ′ is defined as

Ψ′ : RE,r → IE,r, R 7→ (ι, l).
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Definition of Ψ. On the other hand, consider (ι, l) ∈ IE,r. The orientation ι on E gives rise to a directed
rim of size r passing through (E, ι) by the consecutive action of l. Let Ψ send (ι, l) to this directed rim in
RE,r, i.e.

Ψ: IE,r → RE,r, (ι, l) 7→ R = ((E, ι)→φl
· · · ).

Lemma 3.8. The maps Ψ and Ψ′ defined above are inverse bijections. They also provide bijections

IE,r/∼
Ψ // RE,r/∼
Ψ′
oo

where ∼ denotes equivalence between conjugates.

Proof. The fact that Ψ and Ψ′ are inverse to each other follows from their definitions. It is also clear that
conjugate rims correspond to conjugate orientations (while fixing E and K). �

Definition of Θ. We now define a map Θ from CE,r to IE,r. Let C ∈ CE,r. Starting at the vertex E,
this cycle composes into an endomorphism ±θ ∈ End(E). This endomorphism ±θ induces an orientation
ιθ : K → End0(E) on E (defined up to conjugation). Fixing a choice for ιθ, let O be the order for which ιθ
is primitive. Then ` must split or ramify in O because θ ∈ O has norm `r and is not divisible by ` (since

C ∈ CE,r has no backtracking). If φ
(E,ιθ)
l is equal to the first isogeny of the cycle C in its indicated direction,

for a prime l above `, then define Θ(C) := (ιθ, l).

Lemma 3.9. The process described above gives a well-defined map Θ: CE,r → IE,r/∼ (in particular, the
ideal l indicated in the definition above exists).

Proof. Let CE,r ∈ CE,r and let θ ∈ End(E) be the composition of the edges in CE,r (unique up to sign).
Let α denote the preimage of θ in K via ιθ. The orientation ιθ is a primitive O-orientation for exactly one
order Z[α] ⊆ O ⊆ Q(α). If Z[α] has conductor divisible by `, then α has discriminant and norm divisible
by `, hence trace divisible by `, so it is itself divisible by `. But this is impossible because the isogeny cycle
CE,r has no backtracking. Hence Z[α], and therefore O, are `-fundamental orders.

Note that α has norm `r. We consider the factorization of (`) in O. As mentioned in the definition of Θ,
` splits or ramifies, so (`) = ll. Then we can factor (α), using its norm: (α) = (`)tls for some t, s (up to
possibly replacing l with its conjugate). However, t = 0 since ` does not divide α. Hence s = r, by comparing
norms. That is, (α) = lr.

This shows that ` is represented by a class [l] of order dividing r in Cl(O). We will show it is of order
exactly r. If not, then ls = (β) ∈ O, so α = uβs for some unit u ∈ O. Then by Lemma 3.7, the cycle CE,r
is a power of a smaller cycle, a contradiction to the definition of isogeny cycle.

Finally, since (α) = lr, the kernel E[l] is contained in ker θ, and so φl defined on (E, ιθ) is equal to the
first isogeny of C in its direction of travel.

Note that our only arbitrary choice is that of ιθ in place of its conjugate, but as we map into IE,r/∼, the
other choice results in the same image element, and the map is well-defined. �

Definition of Φ. Next we consider the map Φ. Given a directed rim R ∈ RE,r/∼, we get a walk in G` by
forgetting orientations. If there are no extra automorphisms on any curves of the rim, this is well-defined up
to a sign on the isogenies. If there are extra automorphisms, we must use the process in Section 3.4 to safely
forget orientations. The resulting cycle will be denoted Φ(R). Note that if R is conjugated, we obtain the
same walk. This is clear when there are no extra automorphisms. When we use the process in Section 3.4,
this follows from the observation that any valid set of representatives is again valid for the conjugate rim, in
the proof of Proposition 3.14.

Lemma 3.10. Let R ∈ RE,r. Then Φ(R) ∈ CE,r.

Proof. Let W be the walk obtained from R by forgetting the orientations. We need to show that W doesn’t
have backtracking and is not repeating smaller cycles. Let (ι, l) = Ψ′(R) ∈ IE,r/∼. First, we show that the
action of l, which dictates the direction of R, cannot produce a backtracking path. Suppose the action of l
produces a backtracking path φ1, φ2. Then there is an endomorphism ϕ of E such that ϕ[`] = φ2φ1 has the
same kernel as φl2 , namely E[`]. This implies l2 = (`), so r = 2, a contradiction.

Now suppose that the walk W in G` repeats a smaller closed walk k > 1 times. Let φ ∈ End(E) be the
composition of the smaller closed walk. Then φ = φa for the ideal a = lr/k, and φk = φb where b = lr = (β)
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for some β ∈ O. Hence as an element of End(E), φk = ι(β), which implies that φ ∈ ι(K). But then letting α
be such that ι(α) = φ, we have αk = β and lr/k = (α). This contradicts the rim being of size r. Thus, the
walk W in G` cannot repeat a smaller walk k > 1 times. �

Theorem 3.11. Given a safe arbitrary assignment for G`, we define maps Φ and Φ′ := Ψ ◦ Θ as above.
Then the sets CE,r and RE,r/∼ are in bijection under the inverse pair of maps Φ and Φ′.

Proof. We make a safe arbitrary assignment (Definition 3.13), to define the maps above. We will show that
the two maps are inverse to one another.

Suppose C ∈ CE,r is taken to [R] ∈ RE,r/∼ by Φ′. If θ is the composition of C, then R is the rim passing

through (E, ιθ) (R is the rim passing through (E, ιθ), respectively). In particular, lr = (α) where ιθ(α) = θ.
Therefore, composing the isogenies around R results in the endomorphism ±θ. By Lemma 3.6 (and using
Proposition 3.14 in the case of extra automorphisms), the rim R maps to C when orientations are forgotten
(i.e. under Φ).

Next, suppose [R] ∈ RE,r/∼ is taken to (ιθ, l) ∈ IE,r by Ψ′. Let C = Φ(R). Then C composes to θ (using
Proposition 3.14 in the case of extra automorphisms). Thus C maps to (ιθ, l) ∈ IE,r under Θ. �

The discussions so far relies on a choice of a basepoint E. We now prove the main theorem (Theorem 3.2)
as a corollary to the basepointed version (Theorem 3.11).

Proof of Theorem 3.2. Make a safe arbitrary assignment for G` and use it to define the maps of diagram (8)
as described above.

There is a map CE,r → Cr given by forgetting the basepoint of the isogeny cycle. There is also a map
RE,r/∼ → Rr/∼ given by forgetting the basepoint of the rim.

Given [R] ∈ Rr/∼, a basepoint can be chosen in r ways. For each such basepoint (E, ι), we obtain RE,ι ∈
RE,r, which we map to CE,ι := Φ(RE,ι) ∈ CE,r via Theorem 3.11. We must show that the resulting CE,ι
are all equal when basepoints are forgotten. But the map Φ to isogeny cycles is agnostic to the basepoint:
this is clear for rims without extra automorphisms, as there are no choices to make, and is a consequence of
Proposition 3.14 when there are extra automorphisms.

Similarly, a given C ∈ Cr corresponds to Ci ∈ CEi,r for Ei the i-th curve in the cycle. Each of these
basepointed cycles gives a corresponding basepointed rim Ri := Φ′(Ci) ∈ REi,r. We must show that the
resulting Ri are all equal, when basepoints are forgotten. Define (ιi, li) = Θ(Ci) ∈ IE,r. Define the composed

endomorphism θi ∈ End(Ei) for each Ei. Then by construction, ιi = ιθi and φi = φ
(Ei,ιi)
li

. It suffices to

show that all (ιi, li) give rise to the same rim. The θi are related by θi+1 = φiθiφ
−1
i . Thus, we obtain

ιi+1 = (φi)∗ιi. In particular, the orientations ιi are all associated to the same field K, and they are all
primitive for the same order O of K, since φi is horizontal. Therefore (Ei, ιi) and (Ei+1, ιi+1) are elements
of SSpr

O connected by a horizontal isogeny φi of degree `, i.e. they are on the same rim. As for direction,

by construction φi = φEili
for all i. Since φi all indicate the same direction, the li all indicate the same

direction. �

3.4. Mapping from GK,` to G`. We now deal with the one remaining item pushed aside during the proof:
intricacies introduced by extra automorphisms when defining a map from rims to closed walks by forgetting
orientations. One can hope to map any walk in GK,` to a walk in G` by forgetting orientations. However,
isogenies in the oriented isogeny graph are taken up to pre- and post-composition by automorphisms (see (7)),
so when mapping down to G`, there is a choice to be taken if the domain has extra automorphisms. Even
more to the point, if we obtain a closed walk from a rim, by making the choice arbitrarily, we may end up
with a closed walk whose composition does not lie in ι(K). (Recall that in order to obtain a bijection, we
hope to recover the rim from the isogeny cycle using this composition.)

In this section, we sidestep this issue, with the help of a special type of arbitrary assignment, by showing
that it is nevertheless possible to accomplish something more limited: to define a map from rims to isogeny
cycles such that the resulting isogeny cycle has a composition in ι(K). We emphasize that this is a non-issue
(and this entire section can be skipped) if G` has no curves with extra automorphisms. To be somewhat
more precise, consider a rim R in GK,`. If we choose representatives of the vertices and edges (which are, a
priori, only equivalence classes), then we can forget orientations to obtain a closed walk in G`. However, the
choice of representatives must be made with care. First, the edges must belong to the arbitrary assignment:
if not, then when composing around the rim before and after forgetting orientations, we may differ by a
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post-composition, and hence may produce an endomorphism from the wrong quadratic field (which we will
see momentarily in Example 3.12 below). Second, the choice of representatives must be consistent: when we
traverse the entire rim, beginning at representative (E, ι), we must return to representative (E, ι), and not
merely an isomorphic oriented curve. In the proof that follows, we spend the vast majority of our energy in
showing that such a choice of representative exists and is unique.

Example 3.12. An example demonstrates some of the problems the proof will need to overcome. Consider
the example p = 11 and ` = 3 where G3 has two loops at j = 1728. Recall the endomorphism ring of the
curve with j-invariant j = 1728 from Section 2.1. There are eight endomorphisms of degree ` = 3, namely

±1± πp
2

and
±[i]± [i]πp

2
.

The first group have trace ±1 and the second group have trace 0. The endomorphisms

±1 + πp
2

, ± [i] + [i]πp
2

have the same kernel, which we denote κ. This corresponds to one of the loops, and these four endomorphisms
differ by post-composition by an automorphism (namely ±1,±[i]). The endomorphisms

±1− πp
2

, ± [i]− [i]πp
2

all have the same kernel, namely the image of κ under [i]. This corresponds to the second loop, and these
four endomorphisms also differ from one another only by post-composition by an automorphism.

If, in the arbitrary assignment, we choose
1+πp

2 for the first loop and
1−πp

2 for the second, then these

endomorphisms generate orientations by Z
[

1+
√
−11

2

]
. The endomorphisms ±([i] + [i]πp)/2 of trace zero

generate orientations by Z[
√
−3]. The graph GQ(

√
−3),` has one rim in SSZ[

√
−3], namely the loop on the

oriented curve (E, ι) where E has j-invariant 1728 and ι(
√
−3) = [±

√
−3] (case (i) of Remark 2.7). Under

this arbitrary assignment, there is no place to map this rim in such a way that the composition of the
resulting loop will match the order Z[

√
−3] as desired.

This motivates modifying Definition 3.3 so that the two loops must compose to endomorphisms from
different fields K. In particular, we must be careful to choose the arbitrary assignment ‘in tandem’ for
multiple edges between curves with extra automorphisms. This issue arises in larger cycles also. For an
explicit example, consider p = 11, and Q(

√
−23), which has class group of size 3 generated by l lying above

` = 2; the rim for the maximal order is of size 3 with j-invariants 1728, 1728, 0. We therefore make a special
requirement on the arbitrary assignment which applies to this case.

Definition 3.13 (Safe arbitrary assignment). An arbitrary assignment is said to be safe if it obeys the
following rule: whenever there is a collection of edges E1 → E2 related by precomposition by an automor-
phism of E1 besides [±1], we choose their representatives to be of the form {±φϕ : ϕ ∈ Aut(E1)} for a fixed
choice φ.

The rule in Definition 3.13 is automatically satisfied at E1 and E2 by any arbitrary assignment unless
both E1 and E2 have extra automorphisms, and there are multiple edges between them. It is also clear that
a safe arbitrary assignment is always possible.

With regards to Example 3.12, note that
1+πp

2 = −[i]
1−πp

2 [i], which violates Definition 3.13. This is the
reason the example ‘fails’ the bijection.

Proposition 3.14. Suppose a safe arbitrary assignment has been made for G`. There is a map from rims
R of GK,` to closed walks C(R) in G` with the following properties:

(1) The curves and isogenies of C(R) are representatives of the isomorphism classes of curves and
isogenies of R, in the same order; in particular, there is a map R→ C(R) of directed graphs.

(2) The composition ±θ of C(R) at vertex E in C(R) corresponding to (E, ι) in R, gives rise to the
orientation ±ι in the sense that θ = ι(α) for some α ∈ K.

Proof. Defining the map. It is possible to define such a map as follows. Consider a rim R of length r,
associated to an ideal l above ` in the associated `-fundamental order O, with basepoint (E0, ι0), written as
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follows:

(E0, ι0)
φ0 // (E1, ι1)

φ1 // (E2, ι2) · · · (Er−1, ιr−1)
φr−1

// (E0, ι0) .

Write φ := φr−1φr−2 · · ·φ1φ0 ∈ End(E). The result φ depends on representative choices of the isomorphism
classes of oriented curves (Ei, ιi) and of the isogenies φi shown above. We seek to choose such representatives
so that

(i) φ∗ι0 = ±ι0,
(ii) each φi is chosen from the safe arbitrary assignment.

Such a choice will be called a valid set of representatives during the course of this proof. With such a valid
set of representatives, to define a map from rims to isogeny cycles, we then forget orientations to obtain
an isogeny cycle in G`. This is now well-defined because of (ii) and will define the map referred to in the
statement of the proposition. For any rim R, we will write C(R) for the isogeny cycle which is its image.

Facts about valid sets of representatives. We will need a few facts about valid sets of representatives.
First, we will show that if we have a valid set of representatives with respect to a basepoint (E0, ι0), then
it is also a valid set of representatives for any other (Ei, ιi) in the cycle. In other words, for any k, we
have (φr−k · · ·φr−k+1)∗ιr−k+1 = ±ιr−k+1 (where indices are taken modulo r). To see this for (E1, ι1), use
ι1 = (φ0)∗ι0 to compute the left hand side, using the fact that φ∗ι0 = ±ι0; repeat for E2, E3 etc.

Let α ∈ O be such that lr = (α). Without causing confusion, we will write φl : (Ei, ιi)→ (Ei+1, ιi+1) for
each i (this isogeny is defined up to isomorphism, by the convention that its kernel is Ei[ιi(l)]). We will now
prove that any valid set of representatives also satisfies

(iii) kerφi = kerφl = Ei[ιi(l)],
(iv) φ = ±ι0(α).

To prove this, observe that kerφlr = Ei[ι0(α)] = ker ι0(α). In particular, ι0(α) is K-isomorphic to φlr .
Furthermore, (ι0(α))∗ι0 = ±ι0 because elements of ι0(K) commute. Next, since φ∗ι0 = ±ι0 = (ι0(α))∗ι0
(by (i)) it must be that φ = ±ι0(α), since this is the only pre-/post-composition φ of ι0(α) that continues
to satisfy φ∗ι0 = ±ι0. This implies that kerφ = kerφlr and hence kerφ0 = kerφl. Since the valid set of
representatives is valid at each basepoint, we have kerφi = kerφl by the same reasoning.

Claim: The map defined on a valid set of representatives satisfies requirements (1) and (2)
of Proposition 3.14. By (iv), φ = ±ι0(α). The composition of the isogeny cycle C(R) is ±φ, which
demonstrates (2) at the vertex (E0, ι0). Then (2) holds at the other vertices in R by the fact that a valid set
of representatives is valid at each of the vertices of R. The fact that the map satisfies (1) is by definition.

Proof outline. It remains to show that there is a set of representatives satisfying (i)–(ii) (i.e. it is a
valid set of representatives), and that any such set leads to the same isogeny cycle (i.e. the map R→ C(R)
given above is well-defined). To do this, we will divide the possible rims into two cases: exceptional and
non-exceptional. The exceptional case is the following: first, we assume every vertex of the rim has the
same j-invariant with extra automorphisms, of which ϕ is a non-trivial ( 6= [±1]) element; then, defining φ
as above for any basepoint, we assume that no matter which vertex we start with as basepoint, we have
kerφ = kerφϕ.

The map R 7→ C(R) is well-defined. Let us show that the map R 7→ C(R) is well-defined in the
non-exceptional cases. A priori, it may be that there are two choices of representatives satisfying (i)–(ii).
Suppose so. Use primes (ι′, φ′i etc.) to denote the second valid set of representatives.

First note that if (Ei, ι
′
i) = (Ei,±ιi) at any vertex, then the two choices of representatives must be

the same. To see this, note that the vertex representative (Ei,±ιi) determines the kernel of φi (by (iii)),
which in turn determines φi up to sign (by (ii)). Therefore φ′i = ±φi. But this implies that (Ei+1, ι

′
i+1) =

(Ei+1,±ιi+1). Proceeding in this way, the two valid sets of representatives are the same. Hence the proof is
complete if any curve in the rim has no extra automorphisms (in which case there is no choice for ιi).

Suppose that we have ι′0 = ϕ∗ι0 for some non-trivial (not ±1) automorphism ϕ ∈ End(E0). In particular,
E0 has extra automorphisms. At the same time, ι′1 = η∗ι1 for some η ∈ Aut(E1) (possibly trivial this time).
These relationships entail that φ′0 = ηφ0ϕ

−1. By (ii), φ0 and φ′0 both belong to the safe arbitrary assignment,
so η = ±1 and hence ι′1 = ±ι1; thus, we have reduced to the case in the previous paragraph.

Existence of a valid set of representatives in non-exceptional cases. We use the safeness of the
safe arbitrary assignment (Definition 3.13). Let φ0 be the map with kernel E0[ι0(l)] and post-composition
determined by the safe arbitrary assignment. Then let ι1 = (φ0)∗ι0. Continue in this manner around
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the entire rim. When we close the rim (reaching (E0, ι0) again), we find that φ∗ι0 = ϕι0ϕ
−1 for some

automorphism ϕ (since the rim closes, we must reach an oriented curve isomorphic to the initial oriented
curve). If E0 has no extra automorphisms, then the proof of this case is complete. Hence we are done if the
cycle contains even one curve without extra automorphisms.

Let us therefore restrict to the case that E0 has extra automorphisms and so do all other curves in the
rim. If item (i) fails, then there is a nontrivial automorphism ϕ ∈ Aut(E0) so that φ∗ι0 = ϕ∗ι0. Then

(φϕ−1)∗(ϕ∗ι0) = φ∗ι0 = ϕ∗ι0.

Thus, replacing isomorphism class representatives (E0, ι0) with (E0, ϕ∗ι0) and φ0 with φ0ϕ
−1, we recover (i).

Provided that φ0 and φ0ϕ
−1 have different kernels, which they do when E1 6∼= E0 (Lemma 2.9), then using the

conventions of the safe arbitrary assignment (Definition 3.13), we have the freedom to replace φ0 with φ0ϕ
−1

without violating item (ii).
Thus we are reduced to the case that all Ei are isomorphic (assumed equal without loss of generality),

and φ0 and φ0ϕ have the same kernel (for every choice of basepointing the rim). This is the exceptional
case.

Existence of a valid set of representatives in the exceptional case. Suppose we are in the
exceptional situation described in the proof outline. That is, all vertices are isomorphic curves with extra
automorphisms, and kerφ = kerφϕ. Since φ 6= ±φϕ (as in the proof of Lemma 2.9), we have ϕkφ = ±φϕ
for some integer k with ϕk 6= ±1. This means either φϕ = ϕφ or φϕ = ϕφ. Note that φ commutes with ϕ if
and only if ϕφ does, so commuting is independent of the safe arbitrary assignment.

The above is true for φ0 as well as φ. But ` = N(φ0) < p, which by Lemma 2.1 implies that φ and ϕ
commute. The same argument applies to each φi for which kerφi = kerφiϕ. But if there is a φi for which
this is not true, we are out of the exceptional case. Hence every φi commutes with ϕ.

Therefore we may suppose φ commutes with ϕ. Then φ ∈ Q(ϕ). Regardless of the safe arbitrary
assignment, the commutativity implies φ∗ι = ι for the orientation ι(ζ3) = ϕ or ι(i) = ϕ for j = 0 and
j = 1728, respectively. So suppose φ is the arbitrary assignment. Then if R is a rim with φl = φ (up to
post-composition by an automorphism), then R is associated to the field K = Q(ζ3) or Q(i) respectively,
and φ provides a set of representatives satisfying (i)–(ii). Hence there is a valid set of representatives. �

We observe the following immediate corollary to Theorem 3.2.

Corollary 3.15. Let (j1, . . . , jn) be a finite sequence of j-invariants of supersingular elliptic curves in G`.
Then the number of isogeny cycles in G` on this ordered sequence of j-invariants is equal to the number of
rims of

⋃
K GK,` on this ordered sequence of j-invariants.

In fact, an alternate approach to proving Theorem 3.2 would be to observe that it is indeed equivalent
to this corollary. One could then break into cases based on the existence of extra automorphisms. In most
cases, there are no double edges, and this is a bijection of singleton sets.

3.5. An undirected version of the main bijection. The arbitrary assignment also allows us to set up a
bijection between walks and their ‘duals’ (walking the same j-invariants backwards), despite the ambiguity
at j = 0 and j = 1728. This means we can discuss the bijection between undirected rims and undirected
isogeny cycles.

Lemma 3.16. Assume we have made a safe arbitrary assignment for G`. Let (j0, j1, . . . , jn) be a sequence
of j-invariants for a closed walk in G` (where ji is adjacent to ji+1, and jn to j0). Then the closed walks
through this ordered list of j-invariants can be paired with the closed walks through the list (jn, jn−1, . . . , j1, j0)
(i.e. going backwards) in such a way that the pair of endomorphisms obtained from each pair of walks (by
composition) is a pair of dual endomorphisms.

Proof. Each walk φ0, φ1, . . . , φn with composition θ has a ‘dual walk’ obtained by replacing the individual

isogenies with their duals and reversing the order: the walk φ̂n, φ̂n−1, . . . , φ̂0. This results in a walk on the
same vertices backwards. If the walk does not pass through j = 0 or j = 1728, this dual walk gives the dual
endomorphism under composition (up to sign). The difficulty arises when choosing a dual for an outgoing

edge φi : Ei → Ei+1 where Ei has j-invariant 0 or 1728, in which case the dual φ̂i : Ei+1 → Ei may not be in

the safe arbitrary assignment, and we are forced to use instead ϕφ̂i : Ei+1 → Ei for some ϕ ∈ Aut(Ei). In this

case the endomorphism obtained by composition is no longer ±θ̂, because of the intervening ϕ between φ̂i
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Figure 4. An example of an isogeny cycle that is a barbell (Definition 3.19). If we walk
in the direction of the arrows from E0, we obtain ψϕ̂1 · · · ϕ̂nψ′ϕn · · ·ϕ1. If we walk the

cycle backwards (as defined in Lemma 3.16), we get ϕ̂1 · · · ϕ̂nψ̂′ϕn · · ·ϕ1ψ̂. If we ignore the

basepoint and have ψ = ψ̂ and ψ′ = ψ̂′, then these are the same cyclic sequence of arrows,
in which case this is a barbell.

and φ̂i−1. However, this can be adjusted by choosing an appropriate replacement for φ̂i−1 : Ei → Ei−1 from
among the available isogenies in the safe arbitrary assignment from Ei to Ei−1, which differ by precomposition

by an automorphism. In other words, can obtain the composition φ̂i−1φ̂i as φ̂i−1ϕ
−1ϕφ̂i. In this way, we can

obtain a dual path whose composition according to the safe arbitrary assignment is ±θ̂. Since this process
can be performed in both directions (from clockwise paths to counterclockwise, and vice versa), inversely
(by Lemma 3.6), the statement is proved. �

The preceding lemma allows us to define, for any closed walk, its backward walk.

Lemma 3.17. If R is the conjugate of R, then Φ(R) and Φ(R) are backward isogeny cycles of each other.

Proof. The rim R consists of the set of edges and vertices traversed backward, where an isogeny is replaced
with its dual. From the proof of Lemma 3.16, this results in the backward isogeny cycle of Φ(R). �

Corollary 3.18. There is a bijection between undirected rims of length r of GK,` for all K, and undirected
isogeny cycles of length r in G`.

Definition 3.19. A closed walk in G` is called a barbell if traversing it in the opposite direction as in
Lemma 3.16 results in the same walk, up to a choice of basepoint.

An example is shown in Figure 4, justifying the name of ‘barbell.’

Lemma 3.20. Barbells necessarily involve at least two loops and have an even number r of vertices and
edges. The total number of barbells having r edges is at most #G`(`+ 1)`(r−2)/2.

Proof. Any barbell traverses a palindromic sequence of vertices of the following form:

j0, j1, . . . , jn−1, jn, jn, jn−1, . . . , j1, j0.

In particular, the ‘turnaround’ points must be loops, because otherwise they would involve backtracking.
This implies that the number of edges and vertices is even. The count follows by counting the number of
walks of length (r − 2)/2 between two loops, and bounding the number of loops by the number of edges of
the graph. �

The above bound on the number of barbells is far from tight. There are congruence conditions modulo p
depending on ` which can rule out loops in G` and hence rule out the existence of barbells. (These conditions
can be worked out by considering the specialization of the modular polynomial Φ`(x, x) mod p and choosing p
such that the roots are not supersingular.)

Theorem 3.21. Under the bijection of Theorem 3.2, the self-conjugate rims in GK,` are in bijection with
the barbells in G`.

Proof. If R is a self-conjugate rim, then conjugation returns the same rim traversed in the opposite direction.
Hence Φ(R) must be a barbell. Conversely, if R is a rim such that Φ(R) is a barbell, then the rim R′

directed in the opposite direction maps to Φ(R), the cycle Φ(R) traversed in the opposite direction. Hence
Φ(R) = Φ(R′) and therefore R is self-conjugate. �
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4. Supersingular curves oriented by O

This section answers the question of when SSpr
O = ρ(E``(O)). Its purpose is to prepare for the next section,

where we discuss the fibre sizes of the map taking a rim to its corresponding quadratic order. In particular,
we wish to understand the action of conjugation on SSpr

O .
Let p be inert or ramified in K, and let O be an order of K. In this section, we study the set SSpr

O in
greater detail, using class field theory. In particular, Theorem 4.4 characterizes when ρ(E``(O)) = SSpr

O ,
which holds precisely when p ramifies in K. This also characterizes the scenario when conjugation takes
ρ(E``(O)) back to itself.

Let K = Q(β) be an imaginary quadratic field of discriminant ∆K with a distinguished root β of a fixed
minimal polynomial fK(x) generating K/Q. Let O be an order of K. Let L/K be the ring class field
of O. By the general theory of class fields, the field L has Galois group Gal(L/Q) ∼= Cl(O) o 〈τ〉 where
Cl(O) ∼= Gal(L/K), and τ is the non-trivial automorphism of K/Q, and where στ = τσ−1 for any σ ∈ Cl(O)
[18, Lemma 9.3]. Let HO(x) be the Hilbert class polynomial (sometimes called the ring class polynomial) of
the order O. Define

LK := {j ∈ L : HO(j) = 0}, LQ := {(j, α) ∈ L×K : HO(j) = 0 = fK(α)}.

The Galois groups Gal(L/K) and Gal(L/Q) act freely and transitively on LK and LQ, respectively, via
j 7→ jσ and (j, α) 7→ (j, α)σ = (jσ, ασ), respectively. We have #LK = hO = # Gal(L/K) and #LQ = 2hO =
# Gal(L/Q).

It is well known that LK is in bijection with E``(O), the isomorphism classes of elliptic curves over C
with complex multiplication by O, by the map j 7→ E(j) taking a j-invariant to its isomorphism class of
curves. (We will abuse notation by denoting an element of E``(O) as a curve E without equivalence class
brackets [E].) This endows E``(O) with an action of Gal(L/K).

We now give an analogous result for LQ. Given E ∈ E``(O), there are two isomorphisms ι : O → EndC(E)
that differ by conjugation. Denote these by ιE and ιE , where ιE is normalized so that ιE(α)∗ωE = αωE for
the invariant differential ωE of E and any α ∈ O. Let E``∗(O) denote the set of cardinality 2hO of pairs
consisting of a curve from E``(O) together with one of the two orientations:

E``∗(O) := {(E, ι) : E ∈ E``(O), ι : O ∼−→ End(E)}.

Proposition 4.1. There is a bijection of LQ with E``∗(O) via

(j, δ) 7→
(
E = E(j),

{
ιE if δ = β

ιE if δ = β

)
.

This endows E``∗(O) with an action of Gal(L/Q).

The bijection is evidently non-canonical; we could make the opposite choice for ιE .
Choose a finite extension L′/L such that there is a prime p of L′ above p for which all curves in E``(O)

have good reduction at p. Let ρp denote reduction modulo p, and put Ẽ = ρp(E) for brevity. Reduction
provides a map

ρ : E``∗(O)→ SSpr
O given by (E, ιE) 7→ (Ẽ, ιE mod p), and (E, ιE) 7→ (Ẽ, ιE mod p).

There is a natural embedding of E``(O) in E``∗(O) given by E 7→ (E, ιE) (i.e. choosing the normalized
isomorphism), and to ease notation, we will consider E``(O) a subset of E``∗(O). Consider the following
diagram.

Cl(O) ∼= Gal(L/K)
� � // Gal(L/Q) ∼= Cl(O) o 〈τ〉

LK
��

o��
LQ
��

o��
E``(O) �

�
//

ρp
��

E``∗(O)
ρp��

ρp(E``(O)) �
�

// SSpr
O

The actions of the Galois groups shown are free and transitive. The inclusion map E``(O) ↪→ E``∗(O) is
equivariant with respect to the action of Gal(L/K) ⊆ Gal(L/Q).



22 ARPIN, CHEN, LAUTER, SCHEIDLER, STANGE, TRAN

In the vertical arrows of the lower half of the diagram, we see reduction modulo p. The square in this
portion commutes. The descending arrow on the left is a bijection.

First, we consider the easier unramified case, and show that ρp(E``(O)) 6= SSpr
O . The map (E, ι) 7→ (E, ι)

on SSpr
O will be called conjugation.

Proposition 4.2. Let p be inert in K. Then the two isomorphism classes of O-oriented curves represented
by (E, ι) and (E, ι) cannot both belong to ρp(E``(O)), so ρp(E``(O)) 6= SSpr

O , in which case 2#ρp(E``(O)) =
# SSpr

O .

Proof. Since p is unramified, there exists α0 ∈ O such that ι(α0−α0) is separable. Suppose E1, E2 ∈ E``(O).
Then there are isomorphisms [·]Ei : O → End(Ei), where we use the normalization of Section 2.3, namely we
choose the isomorphisms so that [α]∗EiωEi = αωEi for all α ∈ O. With notation as in Section 2.3, suppose

that the reduction (Ẽ1, ιE1) of (E1, [·]E1) modulo p is in the isomorphism class of (E, ι) and the reduction

(Ẽ2, ιE2
) of (E2, [·]E2

) is in the isomorphism class of (E, ι).

Let us first assume for simplicity that (Ẽ1, ιE1
) = (E, ι) and (Ẽ2, ιE2

) = (E, ι), in which case the proof is
more transparent. Then, as discussed in Section 2.3, the normalization is preserved by reduction, which is
to say,

ι(α)∗ωE = αωE = ι(α)∗ωE

for all α ∈ O. But then
ι(α)∗ωE = ι(α)∗ωE = ι(α)∗ωE ,

for all α ∈ O, which implies ι(α − α)∗ωE = 0 for all α, a contradiction for α = α0 since ι(α0 − α0) is
separable.

In general, however, the map ρ is only defined on isomorphism classes, prompting a certain amount of
bookkeeping. In particular, assume that (Ẽ1, ιE1

) = (φ1E, φ1ιφ
−1
1 ), and (Ẽ2, ιE2

) = (φ2E, φ2ιφ
−1
2 ) where

φi : E → φiE, i = 1, 2, are isomorphisms. Then for all α ∈ O,

αωE = αφ∗2ωφ2E = φ∗2αωφ2E = φ∗2(φ2ι(α)φ−1
2 )∗ωφ2E = ι(α)∗φ∗2ωφ2E = ι(α)∗ωE = ι(α)∗ωE

and by a similar computation, ι(α)∗ωE = αωE . The rest of the proof is as before. �

Next we consider the ramified case, where we show that ρp(E``(O)) = SSpr
O .

Proposition 4.3. Suppose p is ramified in K. Then the action of Gal(L/Q) on LQ induces an action
on SSpr

O . Under this action, τ acts by conjugation, i.e. τ · (E, ι) = (E, ι).

Proof. Define an action on SSpr
O by Cl(O) as in Definition 2.22, and by 〈τ〉 as τ ·(E, ι) = (E, ι). Let P = p∩L

be the restriction of p to L. Since p is ramified in K, τ is in the inertia group of P, which implies that jτ ≡ j
(mod P) and hence also modulo p, where j = j(E). Thus

ρp(τ · (Ej , ι)) = ρp((Ejτ , ι)) = (Ejτ mod p, ι mod p) = (Ej mod p, ι mod p)

= τ · (Ej mod p, ι mod p) = τ · ρp((Ej , ι)).

The map ρ is also known to satisfy ρp(σ · (E, ι)) = σ · (ρp((E, ι))) for σ ∈ Cl(O) [42, Proof of Proposition
3.6]. Therefore, the actions described on SSpr

O give a well-defined action of Gal(L/Q) with respect to which ρ
is equivariant. �

Theorem 4.4. The prime p ramifies in K if and only if ρp(E``(O)) = SSpr
O if and only if conjugation takes

ρp(E``(O)) to itself.

Proof. If ρp(E``(O)) = SSpr
O , then p ramifies by Proposition 4.2. Conversely, if p ramifies in K, then there

is some θ ∈ ι(O) ⊆ End(E) such that θ2 = −np for some integer n coprime to p. The endomorphism θ is a
horizontal isogeny with respect to O (as an element of ι(O)). Furthermore, θ must factor as

E
πp−→ E(p) φ−→ E,

where φ is of degree n and separable. But since θ ∈ ι(O), θ∗ι = ι and we have the following chain of
K-oriented isogenies:

(E, ι)
πp−→ (E(p), ι(p))

φ−→ (E, ι).

The maps shown above are horizontal isogenies (πp is horizontal and so is θ, hence φ is also). We wish
to show that φ represents the action of an element of Cl(O), up to multiplication by an integer. We can
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factor n into prime powers and prove it for each one, so without loss of generality, we assume that n is a
prime power qk, for q 6= p.

The map φ is given by a path in the oriented q-isogeny graph determined by successive kernels, and
as it is horizontal, this path must have as many descending as ascending steps. Using the volcano struc-
ture of the graph, all the ascending and descending edges can be paired up into consecutive pairs φ2 ◦ φ1

where φ1 descends and φ2 ascends. Furthermore, φ2 = ϕ1φ̂1ϕ2 for some automorphisms ϕ1, ϕ2. Then

ϕ−1
1 φ2φ1 = φ̂1ϕ2φ1 has trace and norm divisible by q, hence it is divisible by [q]. So φ2φ1 = ϕ[q] for some

automorphism ϕ. Since we only care about φ up to multiplication by an integer, we can replace φ2φ1 with ϕ,
which is horizontal. Repeating this process leaves a purely horizontal path, which must therefore represent
an action of an element of Cl(O) (since q 6= p, Cl(O) acts on SSpr

O , so any horizontal q-isogeny is the action

of an element of the class group). It follows that (E(p), ι(p)) ∈ Cl(O) · (E, ι), which in turn implies that
ρp(E``(O)) = SSpr

O by [42, Propositions 3.3 and 3.4].
Finally, we show that ρp(E``(O)) = SSpr

O if and only if conjugation takes ρp(E``(O)) to itself. Since p is
ramified, by Proposition 4.3, the action of Gal(L/Q) is defined on SSpr

O and τ acts by conjugation, fixing the
j-invariant j(E) modulo p. First, note that if (E, ι) and (E, ι) are related by an element of the class group,
then the entire orbit Cl(O) · (E, ι) consists of elements related to their conjugates by the class group, and
therefore, conjugation takes ρp(E``(O)) into itself. Therefore conjugation takes ρp(E``(O)) to itself, or else
maps it to SSpr

O \ρp(E``(O)). We know that #ρp(E``(O)) = hO, and # SSpr
O ∈ {hO, 2hO} (Section 2.3). But

# SSpr
O = 2hO if and only if ρp : E``∗(O)→ SSpr

O is an isomorphism if and only if Gal(L/Q) acts freely and
transitively on SSpr

O (calling upon Proposition 4.3 again). But ρp(E``(O)) forms one Cl(O)-orbit, so the only
way the action can be free and transitive is if conjugation takes ρp(E``(O)) outside itself. �

5. Isogeny cycles and their associated orders

The following theorem describes a way to relate isogeny cycles in Cr to imaginary quadratic orders. Define

Ir =

imaginary quadratic orders O :

p does not split in the field containing O
p does not divide the conductor of O
O is an `-fundamental order,

(`) = l̄l splits in O,
and [l] has order r in Cl(O).

 .

These are exactly the orders for which SSpr
O is non-empty and the permutation on the vertices arising from the

action of a prime ideal in O above ` has a decomposition consisting of cycles of length r only. The following
theorem describes how often each order in Ir is obtained from an isogeny cycle in G` via the bijection of
Theorem 3.2. If p is inert, one expects to obtain 2hO/r directed isogeny cycles of size r which give rise to
an order O, since # SSpr

O = 2hO and the rims are identified in pairs by conjugation, and given a direction.
However, in the case that p ramifies in the field K containing O, the exact count may differ from this.

Let O be a quadratic order with fraction field K. Let L/K be the ring class field of O. Let gO be the
number of genera in Cl(O). Let σ` := Frob` ∈ Gal(L/K) have order r. Define C` := 〈σ`〉 (so #C` = r).

Theorem 5.1. Let r > 2. The map Rr → Ir which takes a rim to the order O with respect to which all
its vertices are primitively O-oriented as in the bijection of Theorem 3.2 has fibres of size 2hO/r or 4hO/r,
depending on whether or not p ramifies in the field K containing O, respectively. The map factors through
Rr/∼, so the induced map Cr → Ir has a fibre of size εO,`hO/r over O for some 1 ≤ εO,` ≤ 2. Furthermore,

(1) Suppose p is inert K. Then εO,` = 2.
(2) Suppose p ramifies in K. Then there are two possibilities:

(a) There are no self-conjugate rims in ρ(E``(O)). Then εO,` = 1.
(b) There are self-conjugate rims in ρ(E``(O)), in which case r is even, and

εO,` := 1 +
rgO
2hO

.

In this case, 1 < εO,` ≤ 2.
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The following commutative diagram illustrates the theorem:

(9) Cr
∼=

Thm. 3.2
// Rr/∼

''

Rr

fibres
of size
1 or 2oo

fibres of size
2hO/r

or
4hO/r��

Ir

Proof. Define a map Rr → Ir taking a rim to the associated order as described in the statement of the
theorem. The size of the fibre above O is 2# SSpr

O /r (the factor of 2 arises because rims are directed), which
is 2hO/r or 4hO/r in the ramified and inert cases, respectively, by Theorem 4.4 (the conditions on p in the
definition of Ir imply SSpr

O is nonempty by Proposition 2.19). Since a conjugate rim is associated to the
same order as the original, the map factors through Rr/∼. The fibres of Rr → Rr/∼ are of size 1 or 2
(depending upon whether the rim in question was self-conjugate).

In the inert case, # SSpr
O = 2hO by Theorem 4.4. The fibres of Rr → Rr/∼ are uniformly of size 2 for

rims in SSpr
O (since conjugation swaps ρ(E``(O)) and its complement in SSpr

O by Theorem 4.4). The map
Rr → Ir has a fibre of size 4hO/r over O. Hence the map Cr → Ir has a fibre of size 2hO/r above O.

Now we consider the ramified case. Call upon the conventions and set-up of Section 4. Let G = Gal(L/Q).
We consider the stabilizers StabG((E, ι)) of elements of SSpr

O . All stabilizers are of size 2 since #G = 2hO =
2# SSpr

O by Theorem 4.4, and no stabilizers are contained in Cl(O) (whose action is free). Therefore, for
some (E, ι), we have StabG((E, ι)) = {id, στ}, for some σ ∈ Cl(O) ∼= Gal(L/K). The set of stabilizers is the
orbit of StabG((E, ι)) under conjugation by elements of G ∼= Cl(O) o 〈τ〉. For η ∈ Cl(O), we have

η StabG((E, ι))η−1 = {id, ηστη−1} = {id, η2στ}.

Also τ StabG((E, ι))τ−1 = {id, τσ} = {id, σ−2στ}. Thus, the nontrivial elements of the stabilizers, taken
together, form a set Cl(O)2στ . Set the notation Gσ := Cl(O)2σ. Then σ ∈ Cl(O) \ Cl(O)2, as τ does not
stabilize any pairs (E, ι). Hence Gσ is a non-principal genus of Cl(O).

An element (E, ι) is in the same `-isogeny rim as its conjugate (E, ι) if and only if σk` τ ∈ StabG((E, ι))
for some integer k if and only if C`τ ∩ StabG((E, ι)) = C`τ ∩ Gστ 6= ∅. If C` ∩ Gσ = ∅, then there are
no stabilizers intersecting C`τ , so there are no self-conjugate rims. Since ρ(E``(O)) is taken to itself by
conjugation, in this case all rims pair up in conjugate pairs. Therefore the fibres are of size hO/r.

Suppose there are self-conjugate rims, in which case σk` ∈ Gσ for some integer k. Then k must be odd,
as otherwise σk` ∈ Gσ ∩ Cl(O)2 = ∅. It follows that σ` ∈ Gσ. A similar argument forces r to be even, as

otherwise σ` = σr+1
` ∈ Gσ ∩ Cl(O)2 = ∅.

There are #Gσ = # Cl(O)2 = hO/gO distinct stabilizers, of which #Gσ ∩ C` belong to elements in the
same rim as their conjugates. By the same logic as before, using the fact that r is even, the intersection of
Gσ with C` consists of the odd powers of σ`, and is therefore of size #C`/2 = r/2. Since all rims are the
same size, this means the proportion of rims which are self-conjugate is

c :=
r/2

# Cl(O)2
=
rgO
2hO

.

This represents the proportion of rims (equivalently, of vertices) of SSpr
O that are self-conjugate. This pro-

portion is the same when we restrict to ρ(E``(O)).
The proportion 1− c of non-self-conjugate rims is double-counted when we wish to count `-isogeny cycles

in G`, so we have

εO,` = 2c+ (1− c) = 1 + c.

For the final inequality, note that in the ramified case, the fibres of Rr → Ir are of size 2hO/r, and reference
diagram (9). �

Example 5.2. The following example illustrates the most complicated type of fibre. Consider G` with p =
241, ` = 11, and the quadratic order O of discriminant −4p, namely O = Z[

√
−p]. Since p ramifies,

SSpr
O = ρ(E``(O)) by Theorem 4.4. Let r = 4. The class group of O is cyclic of order 12. Therefore, there

are 12/4 = 3 rims of size 4 in SSpr
O under the action of a prime ideal l in O above `. That means 6 directed

rims. Using an isomorphism (Cl(O), ·) ∼= (Z/12Z,+) which takes σ` of order 4 to the element 3, we have
Cl(O)2 = {0, 2, 4, 6, 8, 10} and C` = {0, 3, 6, 9}. So 1/3 of the elements of Cl(O)2 are in C`. This implies that
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Figure 5. An illustration of Example 5.2 with p = 241, ` = 11 and O = Z[
√
−p], for which

hO = 12. On the left, the rims of GQ(
√
−p),11 drawn in such a way that conjugation is a

mirror symmetry through the dotted line. On the right, the subgraph of Fp-vertices of G11.

1/3 of the total directed rims are self-conjugate: two of the six (one of the three undirected rims). Using the
formula of Theorem 5.1, with gO = 2, we obtain

εO,` = 1 +
4 · 2
2 · 12

=
4

3
,

which gives a fibre size of 4
3 ·

12
4 = 4 for the map C4 → I4 above O. In other words, there should be four

directed isogeny cycles of size 4 (equivalently, two undirected isogeny cycles) in G11 which give rise to O.
The set ρ(E``(O)) has three undirected length 4 isogeny cycles: (64, 93, 216, 240) (twice, conjugate to one

another) and (8, 8, 28, 28) (self-conjugate). The subgraph of G11 of Fp-points is shown in Figure 5, where
we observe that there is only one 4-cycle through (964, 93, 216, 240), and that (8, 8, 28, 28) collapses to a
‘barbell shaped’ isogeny cycle. The commutative diagram (9), if labelled with the (undirected) elements
above Z[

√
−p], looks something like the following (please compare to Figure 5):

�◦p◦
//

//
�
�

%%

� �
�oo

oo

��

Z[
√
−p]

6. An extended example

In this section, we give an example that demonstrates our bijection (Theorem 3.2). We choose p =
179, ` = 2, and we consider r = 3, 4, 5 and 6. Computing the set Rr involves first finding all `-fundamental
imaginary quadratic orders O such that O embeds into Bp,∞, the ideal (`) = l̄l splits in O and [l] has order r
in Cl(O). A complete list of such orders O and prime ideals l, l̄ can be calculated as follows:

(1) list all representations of `r by norm forms of sufficiently small discriminant;
(2) each representation gives rise to an imaginary quadratic element α such that N(α) = `r (up to sign

and conjugation);
(3) check the splitting behaviour of p in Q(α), discarding α if p splits in Q(α);
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(4) consider all `-fundamental orders in Q(α) that contain α and check whether the ideal class [l] has
order r in Cl(O), obtaining a list Lr of desirable orders O.

As an example, consider representing 23 = 8. We need only check discriminants ∆ with |∆| ≤ 4 · 8 = 32.
We find two representations: 12 + 31 · 12 = 4 · 8 and 32 + 23 · 12 = 4 · 8. These gives rise to two possible α
up to conjugation and sign:

±1±
√
−31

2
,
±3±

√
−23

2
.

However, 179 splits in Q(
√
−23) and not in Q(

√
−31). Hence we discard the second α. We find that

l = (2, 1+
√
−31

2 ) is not principal and l3 = (α). Hence L3 =
{
Z
[

1+
√
−31

2

]}
.

Each element α corresponds to an orientation ια (up to conjugation), which gives a rim (up to conjugation
and direction), as in the map Θ of Lemma 3.9. Such a list therefore gives the number of undirected rims:
#Lr = 1

2#(Rr/∼).
Theorem 3.2 concerns directed isogeny cycles and rims, but in this example we will ignore the issue of

direction, which is allowed by Corollary 3.18. Therefore, we use Lr as a proxy for Rr/∼ for computational
purposes. We compare Lr with Cr, verifying the bijection theorem.

For each r ∈ {3, 4, 5, 6}, we compute the set Cr on the supersingular 2-isogeny graph by reference to
Figure 5 showing G2. We will actually consider C′r, the set of isogeny cycles of Cr but forgetting direction,
allowed by Corollary 3.18. Then we determine the associated endomorphisms by composing around the
cycles as in the map Θ; we do this by computing the trace of the composed endomorphism θ using the

formulas θ + θ̂ or 1 + deg(θ)− deg(1− θ) in SageMath [53].
For example, there is only one isogeny cycle of length 3 (in the sense of Theorem 3.2, but ignoring

direction) in C′3 for G2, namely (j3, j3, 171). Composing around the triangle, one finds an endomorphism
of trace ±1. Since the endomorphism has norm 8, it has minimal polynomial x2 ± x + 8, and hence is of

the form ±1±
√
−31

2 . This generates an order with class number 3 (the class numbers were computed with
SageMath).

In Table 1, we give the lists C′r, and Lr, and put them in correspondence. This represents the first row of

the table which puts C′3 = {(j3, j3, 171)} and L3 =
{
Z
[

1+
√
−31

2

]}
(as a proxy for R3/∼ modulo direction)

in bijection.
The table also verifies Corollary 7.3. In our case, we have observed no fields ramified at p, so εO,` = 2.

We compute:

2 = 2#C′3 = #C3 =
2

3
h

(
Z
[

1 +
√
−31

2

])
=

2

3
· 3 = 2.

2 = 2#C′4 = #C4 =
2

4
h

(
Z
[

1 +
√
−39

2

])
=

2

4
· 4 = 2.

2 = 2#C′5 = #C5 =
2

5
h

(
Z
[

1 +
√
−47

2

])
=

2

5
· 5 = 2.

14 = 2#C′6 = #C6 =
2

6

(
h

(
Z
[

1 +
√
−87

2

])
+ h

(
Z
[

1 +
√
−231

2

])
+

h

(
Z
[

1 +
√
−247

2

])
+ h

(
Z
[

1 +
√
−255

2

])
+ h

(
Z
[
3

1 +
√
−15

2

]))
=

2

6
· (6 + 12 + 6 + 12 + 6) = 14.

This verifies Corollary 7.3 in this example.
The cycle (0, 121, 112, 35, 112, 121). The case of the j-invariant cycle (0, 121, 112, 35, 112, 121) in Fig-

ure 6 (E) is particularly interesting. This sequence of j-invariants forms a 6-cycle in 12 possible ways, as
follows. There are 4 ways to travel from 112 to 35 and back. There are 3 ways to travel from 121 to 0 and
back, producing three distinct endomorphisms of j = 121 (but not canonically), each composing to one of
±2, ±ϕ̂ ◦ ζ3 ◦ ϕ, or ±ϕ̂ ◦ ζ2

3 ◦ ϕ, as described in Figure 3. Thus, one endomorphism is backtracking and
the other two are duals of each other. The isogenies from 112 to 35 each have a dual: hence two of the
2-cycles from 112 to 35 and back are backtracking (obtained by pairing an isogeny with its dual). There
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isogeny cycle figure length endomorphism order class number

(j3, j3, 171) Fig. A 3 ±1±
√
−31

2 Z
[

1+
√
−31

2

]
3

(61, j1, 140, j1) Fig. A 4 ±5±
√
−39

2 Z
[

1+
√
−39

2

]
4

(22, j2, j3, j3, j2) Fig. A 5 ±9±
√
−47

2 Z
[

1+
√
−47

2

]
5

(22, j2, j1, 140, j1, j2) Fig. B 6 ±13±
√
−87

2 Z
[

1+
√
−87

2

]
6

(140, j1, j2, j3, 171, 120) Fig. C
6 ±5±

√
−231

2
Z
[

1+
√
−231
2

]
12

(140, j1, j2, j3, 171, 120) Fig. D

(0, 121, 112, 35, 112, 121)∗ Fig. E 6 ±3±
√
−247

2 Z
[

1+
√
−247
2

]
6

(22, j2, j3, 171, j̄3, j̄2) Fig. F
6 ±1±

√
−255

2
Z
[

1+
√
−255
2

]
12

(0, 121, 112, 35, 112, 121)∗ Fig. E

(61, j1, j2, 22, j2, j1) Fig. G 6 ±11±3
√
−15

2 Z
[
3
(

1+
√
−15

2

)]
6

Table 1. Cycles of lengths three through six, with the associated endomorphisms to which
the cycles compose. The two cycles labelled with an asterisk ∗ are not fully specified by
giving their j-invariants. However, as discussed in Section 3.2, the bijection between these
two cycles and the two associated α is not canonical, but if we choose a safe arbitrary
assignment, we can make a non-canonical bijection. So there is no reason to specify which
cycle is which in the table here.

are therefore two non-backtracking 2-cycles to choose from among the four ways to travel from 112 to 35
and back. These two non-backtracking 2-cycles are actually duals of each other, and are obtained by simply
changing the direction of traversal. If the traces of the paths that include backtracking are computed, we
obtain the associated endomorphisms ±8, 4(±1±

√
−3), and 2(±1±

√
−15), all of which are divisible by 2.

This leaves exactly four non-backtracking 6-cycles on the j-invariants (0, 121, 112, 35, 112, 121), coming in
pairs obtained by changing the direction of traversal. These two pairs give the two endomorphisms listed in
Table 1.

The cycle (61, j1, j2, 22, j2, j1). Another interesting cycle is (61, j1, j2, 22, j2, j1) in Figure 6 (G). This

cycle corresponds to an element generating the non-maximal order O3 := Z
[
3
(

1+
√
−15

2

)]
. That element

also exists in the order O1 := Z
[

1+
√
−15

2

]
. How do we know which order the volcano rim corresponds

to? The easiest answer is that only the class number of O3 is divisible by 6. However, even without that
observation (sometimes several class numbers may be divisible by the correct integer r), we can observe that
the orientation ι given by the endomorphism on any of the j-invariants on the cycle is O3-primitive, not

O1-primitive. This can be seen because if End(E) contained 1+
√
−15

2 , which has norm 16, then this element

would be realized as a 4-cycle from E, which it is not. (The curves j2, j2, and 22 have no 4-cycle. The curves

61, j1 and j1 have the 4-cycle associated to ±5±
√
−39

2 .) The moral of this observation is that each cycle can
only arise from a single quadratic order, as dictated by Theorem 3.2.

Repeating j-invariants. A final remark is the observation that repeating j-invariants in a cycle can
only happen when the discriminant is large with respect to the prime. This is a consequence of a result by
Kaneko which gives the necessary condition |disc(O)| ≥ p [30, Theorem 2’]. In our case, we do get a cycle
with repeating j-invariants, but the associated discriminants are quite large at −247 and −255, both bigger
in absolute value than the prime p = 179.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 6. Figure (A) is the supersingular 2-isogeny graph G2 over Fp2 , where p = 179.
Here j1 = 64i + 5, j2 = 99i + 107, j3 = 5i + 109, where i denotes a square root of −1 in
Fp2 . Figures (B) – (G) are the isogeny cycles of length 6 as listed in Table 1. There are two
distinct isogeny cycles included in (E), both sharing the same sequence of vertices.

Comparison with Gross [28] Working with the same example, Gross counts cycles of length log`(m)
in the supersingular `-isogeny graph G` via the formula provided in [28, Proposition 1.9]. In the first row of
Table 1, we count one isogeny cycle of length three in the 2-isogeny graph, namely (j3, j3, 171) arising from
the order of discriminant −31. Gross counts nine via the formula [28, Proposition 1.9]. In particular, six of
this count come from the order of discriminant −31. The three-cycle (j3, j3, 171), which we count once, is
counted six times by Gross because it is a valid three-cycle starting at any of j3, 171, j3, in either direction.
Two more of Gross’s count come the order of discriminant −16. The cycle corresponding to the order of
discriminant −16 is necessarily (j22, j1728, j1728). This cycle is only without backtracking when we start at
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22, so Gross counts it once in each direction. We do not count this cycle, as it contains backtracking as
soon as we forget the basepoint. The last one of Gross’s count comes from the order of discriminant −4,
as j1728 has an endomorphism of degree-8 corresponding to composing the loop at j1728 three times, with
appropriate automorphisms in between to avoid backtracking.

7. Counting isogeny cycles in G`
Theorem 5.1 makes possible explicit formulas for the number of isogeny cycles of length r in the `-isogeny

graph G`. In this section, we do the following:

(1) Theorem 7.1 uses spectral graph theory to give an asymptotic for the expected number of length r
isogeny cycles, and this estimate is compared to empirical data in Figure 7. The use of spectral
graph theory requires us to restrict to p ≡ 1 (mod 12), but for any large enough p we still expect
the estimates of this theorem to hold.

(2) Corollary 7.3 gives an explicit formula for the number of length r isogeny cycles in terms of class
numbers of certain quadratic orders, and Theorem 7.4 reformulates this as a sum over these class
numbers with simpler conditions on which quadratic orders to include.

(3) Theorem 7.4 enables an explicit upper bound on the length r isogeny cycle count, given in Corol-
lary 7.7. Unfortunately a lower bound would seem to be connected to an open problem in number
theory (Remark 7.8).

7.1. Asymptotic number of isogeny cycles. It is a standard fact that for (` + 1)-regular Ramanujan
graphs, the number of basepointed non-backtracking closed walks of length r (where the non-backtracking
condition does not rule out entering the final vertex along the initial edge of the walk) is

(`+ 1)`r−1 + #G`O
(
r(`+ 1)r/2

)
,

where the implied constant does not depend on #G`. This follows, for example, from [19, Theorem 1.4.6];
some details are provided at [8]. If we disallow entering the final vertex along the initial edge and then forget
basepoints, then one would heuristically expect this to become

(10) `r/2r + #G`O
(

(`+ 1)r/2
)
.

For small r, estimating the number of graph-theoretic r-cycles is similar (recall that a cycle allows no repeated
edges or vertices); this is because random d-regular graphs on n vertices have on average (d − 1)r/2r such
r-cycles [9, Theorem 2]. In our case, this would give `r/2r. The number of r-cycles in some Ramanujan
graphs, including LPS graphs, but not supersingular graphs, has been analysed, and these graphs appear to
behave as random graphs [54].

In what follows, we give a brief proof of an asymptotic version of (10).

Theorem 7.1. Let p ≡ 1 (mod 12). Let G` be the supersingular `-isogeny graph over Fp and let #G` denote
its number of vertices. The number of non-backtracking closed walks of length r in G`, taken up to order of
traversal and starting point, asymptotically approaches `r/2r as r →∞. Thus, the number of isogeny cycles
in G` is also asymptotically `r/2r as r →∞.

Before giving a formal proof, we give a heuristic description. Choose one of #G` initial vertices j0. Label
its ` + 1 neighbours j1, j2, . . . , j`+1. Choose one of these neighbours for the first step, say j1 (relabelling
without loss of generality). Consider the `r−1 non-backtracking length r − 1 walks that could follow the
edge j0 → j1. Such a walk provides a non-backtracking closed walk of length r through j0 → j1 if and only
if the walk terminates at j0 via one of j2, . . . , j`+1. The probability of this termination vertex j0 should be
expected to be 1/#G`. However, only ` of the `+ 1 incoming edges reach j0 via one of j2, . . . , j`+1. Finally,
we obtain a typical closed non-backtracking walk of length r exactly 2r times in this way, since there are
r choices of initial vertex and 2 directions. Hence the number of closed non-backtracking walks of length r
should be obtained by combining the steps in the outline above:

#G`(`+ 1)`r−1(1/#G`)(`/(`+ 1))/2r = `r/2r.

Proof of Theorem 7.1. The natural object for studying non-backtracking walks is a Markov chain on the
non-backtracking matrix B, which is the adjacency matrix of an auxiliary graph G′ whose vertices are the
directed edges of G`, and whose edges indicate adjacency between edges of G` that respects the directedness
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Figure 7. A semilog plot of cycle counts for G` for p = 3361 and ` = 2 (green squares,
lower graph), and for p = 3229 and ` = 3 (red circles, upper graph). The black curves upon
which the data points appear to sit are `x/(2x). The blue lines above the data in each case
indicate the dominant term of Corollary 7.7, indicating our proved upper bound. On the
left, the full data. On the right, a close-up of the behaviour for small cycle sizes. The graphs
were generated in part using code from [4].

and does not backtrack. In other words, the matrix is a scaling of the transition probability matrix of a
non-backtracking random walk on the directed edges of G`. In particular, the entries of Br give the number
of non-backtracking walks of length r+1 that start and end on certain edges. This is studied in [31], where it
is shown that this Markov chain converges to a uniform stationary distribution (the mixing property). There
are #G`(` + 1) directed edges in G`. Choose one of these as the initial directed edge of a walk, originating
at a vertex which we may call j0. From that point, take a random non-backtracking walk of length r − 1
(there are `r−1 of these). Then we have created a closed non-backtracking walk if and only if we end on one
of the ` edges that are directed into j0 without backtracking the initial edge. The mixing property implies
that the probability of ending on of these ` incoming edges is asymptotically `/(#G`(` + 1)). Therefore,
asymptotically, we obtain

#G`(`+ 1)`r−1

(
`

#G`(`+ 1)

)
= `r

total non-backtracking closed walks with a direction and a basepoint. Most of these can be directed in two
ways and a basepoint can be chosen in r ways. The exceptions, namely the barbells (Definition 3.19) are those
closed walks that involve the same edges when the direction is reversed. These exceptions are rare enough
(Lemma 3.20) that they do not affect the asymptotic. Finally, isogeny cycles are those non-backtracking
closed walks which are not powers of smaller non-backtracking closed walks; this requirement clearly also
does not affect the asymptotic. �

Remark 7.2. In Theorem 7.1, we restrict to p ≡ 1 (mod 12) because the graph theory involved requires an
(` + 1)-regular graph. We have remarked at length the difficulties which arise when vertices j = 0, 1728
appear in G`. However, these issues are very localized – the (` + 1)-regularity of the graph may only be
affected at vertices adjacent to j = 0, 1728. For p � `, this is a very small number of potential deviations
from regularity, and we do not expect the estimates provided here to be greatly affected.

By reference to [31] and [2], the mixing rate of the Markov chain could be used to analyse the rate of
convergence of the asymptotic and make this theorem more precise.

The proof of Theorem 7.1 lends itself to computation: using powers of the non-backtracking matrix, we
can compute the number of isogeny cycles in G`, at least up to the issue of barbells. Figure 7 shows some
data collected in SageMath for the number of non-backtracking closed walks of length r on some small
supersingular `-isogeny graphs chosen to avoid loops (so G` is (`+ 1)-regular without any barbells), and its
agreement with the asymptotic.

7.2. Counting isogeny cycles with class numbers. A corollary to Theorems 3.2 and 5.1 counts cycles
exactly as a sum of class numbers of certain quadratic orders.
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Corollary 7.3. Let r > 2 be fixed and consider primes ` 6= p. Let Ir be as in Theorem 5.1.
Let cr = |Cr| denote the number of directed isogeny cycles of length r. Then

cr =
1

r

∑
O∈Ir

εO,`hO,

where εO,` is as defined in Theorem 5.1. In particular, 1 ≤ εO,` ≤ 2 and εO,` = 2 if p is inert in the quadratic
field containing O. If `r < p, then εO,` = 2 for all O ∈ Ir.

Proof. This follows from Theorems 3.2 and 5.1. The cycles Cr of length r in G` are in bijection with Rr/∼.
Each [R] then maps to some order O ∈ Ir. Summing the elements in Ir weighted by the fibre sizes counts
#Cr. The fibre sizes are given in Theorem 5.1. �

On the graph side, it is clear that this count is finite. On the side of ideal classes, finiteness of Ir follows
from the observation that if ord([l]) = r, then `r is represented by the norm form of the quadratic field. For
sufficiently large discriminant, this representation is impossible except as `r = (`r/2)2 if r is even; but in this
case, ` is ramified. This observation can be turned into a counting argument based on quadratic residues.

Theorem 7.4. Assume p > 2. For any positive integer N , define

Q(N) =

{
0 < x < 2`N/2 :

x 6≡ 0 (mod `),
x2 − 4`N is not a quadratic residue modulo p,

and has valuation ≤ 1 at p

}
,

and

QN =
∑

x∈Q(N)

∑
f2|(x2−4`N )

εO,` h

(
x2 − 4`N

f2

)
,

where h(D) denotes the class number of the order of discriminant D. Let cN , N ≥ 3, be as in Corollary 7.3.
Then there are values for c1 and c2 such that∑

r|N

rcr = QN , cN =
1

N

∑
r|N

µ(r)QN/r.

Proof. Let r ≥ 3. Recall from Theorems 3.2 and 5.1 that we have maps

Cr −→ Rr/∼ −→ Ir.

The first map is a bijection, and the second map has fibre sizes εO,`hO/r above O, as described in Theo-
rem 5.1. Using the fibre sizes, we obtain

cN =
1

N

∑
O∈IN

εO,`hO.

Then ∑
r|N

rcr =
∑

O∈
⋃
r|N Ir

εO,`hO.

By definition, O ∈
⋃
r|N Ir if and only if there exists an imaginary quadratic integer α ∈ O, not divisible

by `, such that N(α) = `r, p does not split in Q(α), and ` is invertible and splits in O. Since these properties

of α are invariant up to conjugation and sign, we can write α = x+
√

∆
2 , where ∆ is the discriminant of the

order Z[α], and x ≥ 0. The condition that α has norm `N is equivalent to x2 − ∆ = 4`N . The fact that
α is imaginary is equivalent to 0 > ∆ = x2 − 4`N , or equivalently, x < 2`N/2. Next we show that the
prime ` is invertible and splits in Z[α] if and only if x 6≡ 0 (mod `). To that end, invertibility is equivalent
to the condition that ` does not divide the conductor of Z[α], which is equivalent to x 6≡ 0 (mod `) (since

x2 −∆ = 4`N ), and if these equivalent conditions hold, then 1 =
(

∆
`

)
=
(
x2−4`N

`

)
, which holds if and only

if ` splits in the maximal order containing O (by Lemma 2.28). The prime p does not split in this maximal
order if and only if x2 − 4`N is not a quadratic residue modulo p. Finally, α is not divisible by ` if and only
if ` does not divide ∆. To conclude then, O ∈

⋃
r|N Ir if and only if ∆O = x2 − 4`N for x ∈ Q(N) of the
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theorem statement. Note that each O corresponds to one ∆O, which in turn corresponds to one value of x.
Therefore, ∑

r|N

rcr =
∑

O∈
⋃
r|N Ir

εO,`hO =
∑

x∈Q(N)

∑
f2|x2−4`N

εO,`h

(
x2 − 4`N

f2

)
= QN .

Calling upon Möbius inversion, we have proved the theorem. �

Remark 7.5. The key observation we make here – that small cycles arise from a combination of splitting
behaviour between p and ` – is used in [15, Section 5.3.4] to eliminate small cycles by use of congruence
conditions on p.

The advantage of Theorem 7.4 is that in contrast to the sum of class numbers in Corollary 7.3, we obtain a
sum of class numbers that has no conditions on the class groups. The condition on the order of [l] present in
Corollary 7.3 is removed when summing over x ∈ Q(N), since QN is entirely given in terms of ‘elementary’
conditions, namely Legendre symbols and valuations at p and `.

Example 7.6. We illustrate the theorem and its proof with the example of Section 6, where ` = 2 and p = 179.
We have, from Table 1, the directed isogeny cycle counts

c3 = 2, c4 = 2, c5 = 2, c6 = 14.

Using Sage to compute Q(N), we obtain, showing the data as tuples (x, x2 − 4`n, hx2−4`n),

Q(1) = ∅,Q(2) = {(1,−15, 2)},Q(3) = {(1,−31, 3)},Q(4) = {(5,−39, 4), (7,−15, 2)},Q(5) = {(9,−47, 5)},

Q(6) = {(1,−255, 12), (3,−247, 6), (5,−231, 12), (11,−135, 6), (13,−87, 6), (15,−31, 3)}.

Observe that the last tuple (15,−31, 3) in Q(6) corresponds to α = ±15±
√
−31

2 = ±
(

1±
√
−31

2

)2

. The element

β = ±1±
√
−31

2 corresponds to the unique 3-cycle in Table 1. Note that Z[α] = Z[β] = OQ(
√
−31). Accordingly,

α corresponds to the 3-cycle repeated twice.

The fourth tuple (11,−135, 6) in Q(6) corresponds to α = ±11±3
√
−15

2 =
(
±1±

√
−15

2

)3

. The element

±1±
√
−15

2 corresponds to the 2-cycle (112, 35). In this case, Z[β] = OQ(
√
−15), but Z[α] is a suborder of

Z[β] of conductor 3. Thus, α corresponds to two different types of 6-cycles: the 2-cycle repeated 3 times
(therefore not an isogeny cycle); and also an isogeny cycle of size 6, as in Table 1.

Therefore,

Q1 = 0,

Q2 = 2h

(
Z
[

1 +
√
−15

2

])
= 4,

Q3 = 2h

(
Z
[

1 +
√
−31

2

])
= 6,

Q4 = 2h

(
Z
[

1 +
√
−15

2

])
+ 2h

(
Z
[

1 +
√
−39

2

])
= 4 + 8 = 12,

Q5 = 2h

(
Z
[

1 +
√
−47

2

])
= 10,

Q6 = 2h

(
Z
[

1 +
√
−255

2

])
+ 2h

(
Z
[

1 +
√
−247

2

])
+ 2h

(
Z
[

1 +
√
−231

2

])
+

2h

(
Z
[

1 +
√
−15

2

])
+ 2h

(
Z
[
3

1 +
√
−15

2

])
+ 2h

(
Z
[

1 +
√
−87

2

])
+

2h

(
Z
[

1 +
√
−31

2

])
= 24 + 12 + 24 + 4 + 12 + 12 + 6 = 94.

Recall that for the Möbius function, µ(1) = 1, µ(2) = −1, µ(3) = −1, µ(4) = 0, µ(5) = −1, µ(6) = 1.
So the sum S(N) := 1

N

∑
r|N µ(r)QN/r takes on the following values, which we can verify to match cN for
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3 ≤ N ≤ 6:

S(1) = Q1 = 0, S(2) =
1

2
(Q2 −Q1) = 2, S(3) =

1

3
(Q3 −Q1) = 2 = c3,

S(4) =
1

4
(Q4 −Q2) = 2 = c4, S(5) =

1

5
(Q5 −Q1) = 2 = c5,

S(6) =
1

6
(Q6 −Q3 −Q2 +Q1) = 14 = c6.

We briefly confirm that the conclusion of Theorem 7.4 is in heuristic agreement with Theorem 7.1. Heuris-
tically, we expect #Q(N) ≈ `N/2. Estimating the inner sum in QN with a Hurwitz class number heuristically

of size
√

4`N − x2 (ignoring log factors), we have

QN ≈
b2`N/2c∑
x=1

√
4`N − x2 ≈

∫ 2`N/2

1

√
4`N − x2 dx ≈ `N ,

from which follows cN ≈ `N/N as expected. In fact, a rigorous upper bound of magnitude `N logN on cN
is given in Corollary 7.7, whose proof is based on this rough idea.

Corollary 7.7. With the notation of Theorem 7.4,

QN < BN :=
2

3
(eγ log log(2`N/2) + 7/3) log(4`N )(π`N + 2`3N/4)

and

cN <
BN
N

+

(
eγ log logN + 7/3− 1

N

)
BN/2

<
2πeγ log(4`)

3
`N (logN + log log(2

√
`) + 7/3) +O(`3N/4 logN) as N →∞,

where γ = 0.577 . . . is the Euler-Mascheroni constant.

Proof. For brevity, put X = b2`N/2c. For our bound, we simply ignore all the conditions on x imposed by
membership in the set QN of Theorem 7.4 and use εO,` ≤ 2. That is, we upper-bound QN by Q′N ≥ QN ,
where

Q′N = 2

X∑
x=1

∑
f2|x2−4`N

h

(
x2 − 4`N

f2

)
.

Fix an integer x with 0 ≤ x ≤ X and write 4`N − x2 = y2d for positive integers d, y with d squarefree.
For any imaginary quadratic order O of discriminant ∆, we have hO < (

√
|∆| log |∆|)/3 by [39, Equation

(8.11)], so ∑
f2|(x2−4`N )

h

(
x2 − 4`N

f2

)
<

1

3

∑
f2|(x2−4`N )

√
4`N − x2

f
log

(
4`N − x2

f

)

<
1

3
log(4`N )

∑
f2|y2d

√
y2d

f

=
1

3
log(4`N )

√
y2d

∑
f |y

1

f

=
1

3

√
4`N − x2 log(4`N )

σ(y)

y
,

where σ(·) denotes the sum of divisors function. It is known (see [3, Exercise 3.9 (a)] for example) that
σ(n)ϕ(n) ≤ n2 for all n ≥ 1, where ϕ(·) is Euler’s totient function. By [48, Theorem 15], we have

n

ϕ(n)
< eγ log log n+

2.50637

log log n

for all n ≥ 3. If y ≥ 19, then
2.50637

log log y
≤ 2.50637

log log(19)
<

7

3
,
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so y =
√

(4`N − x2)/d < 2`N/2 yields

σ(y)

y
≤ y

ϕ(y)
< eγ log log y +

2.50637

log log(y)
< eγ log log(2`N/2) +

7

3
.

Simple numerical verification shows that σ(y)/y ≤ 7/3 for 1 ≤ y ≤ 18 (the largest value is σ(12)/12 = 7/3),
so this upper bound holds for all y > 0. It follows that∑

f2|x2−4`N

h

(
x2 − 4`N

f2

)
<

1

3
(eγ log log(2`N/2) + 7/3) log(4`N )

√
4`N − x2.

It remains to bound
∑X
x=1

√
4`N − x2. Since f(x) = 4`N − x2 is monotonically decreasing, we have

X∑
x=1

√
4`N − x2 ≤

∫ X

0

√
4`N − x2 dx =

1

2
X
√

4`N −X2 + 2`N arcsin

(
X

2`N/2

)
.

Now 2 arcsin(X/2`N/2) ≤ 2 arcsin(1) = π. Furthermore, 0 ≤ 2`N/2 −X < 1 and 0 < 2`N/2 +X < 4`N/2,
so

1

2
X
√

4`N −X2 =
1

2
X
√

(2`N/2 −X)(2`N/2 +X) <
1

2
2`N/2

√
4`N/2 = 2`3N/4.

It follows that Q′N < BN where

BN =
2

3

(
eγ log log(2`N/2) + 7/3

)
log(4`N )(π`N + 2`3N/4).

Next, we bound cN . The quantityBN is monotonically increasing as a function ofN , soQN/r < BN/r ≤ BN/2
for all divisors r of N with r ≥ 2. Thus,

cN =
1

N

QN +
∑

1<r|N

µ(r)QN/r

 ≤ 1

N

QN +
∑

1<r|N

QN/r

 <
1

N

(
BN + (σ(N)− 1)BN/2

)
.

Since N ≥ 3, we can bound σ(N) as before, i.e. σ(N) < N(eγ log logN + 7/3), to obtain

cN <
1

N

(
BN + (N(eγ log logN + 7/3)− 1)BN/2

)
=
BN
N

+

(
eγ log logN + 7/3− 1

N

)
BN/2.

The asymptotic bound on cN is obtained by bounding the quantity 2`N/2 in the double log by (2
√
`)N . �

Remark 7.8. The proof of Corollary 7.7 simply ignores the restriction that p should not split and ` should
split in any of the orders under consideration. If we wish to prove a lower bound, these restrictions must

be addressed. There is a widely believed heuristic that a Legendre symbol
(
f(x)
p

)
should take values ±1

with equal probability, independent of the size of x. However, known bounds on the smallest x for which
a polynomial f(x) is a non-residue modulo p are comparatively weak. There is a bound following from
work of Weil; for example, Burgess mentioned this in 1967, observing there is a non-residue x < H for
H � √p log p [10]. Improvements have only been made in general for polynomials in at least two variables
(in contrast to the special case of f(x) = x, where this problem is known as the least non-residue problem);
for a discussion and literature review, see [45].

8. Path finding with oriented isogeny volcanoes

In this section, we review the previous work of the present authors [5] which provides inspiration for the
subject of this paper.

As discussed in the introduction, finding a path between two curves in a supersingular `-isogeny graph
compromises the security of a variety of cryptographic systems. The bijection of Theorem 3.2 serves as
inspiration for producing such a path, by highlighting the many volcano structures present in the graph,
hinting that one might navigate the graph by reference to these oriented volcanoes. In fact, we saw that
every cycle in the supersingular `-isogeny graph is a rim of a volcano in some oriented isogeny graph. In
previous work [5], the authors presented explicit classical and quantum algorithms for finding a path from
any elliptic curve E to an initial curve Einit. Here, Einit is generally taken to be the supersingular elliptic
curve of j-invariant 1728, but other choices for Einit are also possible. The algorithms use the knowledge of
one endomorphism θ on E, or equivalently, an explicit orientation of E by some imaginary quadratic field K,
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to navigate the oriented `-isogeny graph GK,`. Their complexity is subject to certain plausible heuristics,
further detailed below, and is in part governed by the time it takes to evaluate θ on points on E. The reader
is encouraged to consult [56] for a different approach to solving the endomorphism ring problem using the
data of an orientation.

The runtime of the classical algorithm additionally depends subexponentially on the degree d of θ and
linearly on a certain class number that can be significantly smaller than the class number of the quadratic
order of discriminant ∆ defined by θ. This runtime can be substantially improved in many cases, leading in
particular to certain new families of endomorphisms on every supersingular elliptic curve, whose exposure
gives rise to a classical polynomial-time algorithm for finding an `-isogeny path from E to Einit. While this
fact may on first glance seem alarming, the proof is non-constructive and thus does not provide an efficient
strategy for finding such an offending endomorphism. So this result does not pose a threat to the security
of isogeny based cryptosystems.

The quantum path finding algorithm relies on two different quantum subroutines: solving an oriented
variant of the Vectorization problem, which asks to find a class group element acting to take one oriented
curve to another (see also [16, 56]), and a new problem called PrimitiveOrientation, which asks, for a
given endomorphism, to determine the quadratic order for which the orientation it induces is primitive.
The resulting algorithm finds a smooth `-isogeny from E to Einit such that the smoothness bound and the
runtime are subexponential in log |∆|.

For completeness, we reproduce the key results of [5] here and give a brief road map of the path finding
algorithms. Let E/Fp be a supersingular elliptic curve and θ an endomorphism on E of degree d and
discriminant ∆ not divisible by p. Denote by Tθ(k, p) the time it takes to evaluate θ on points on E defined
over Fpk . If θ is given by rational maps, then Tθ(k, p) is a polynomial in d, k and log p. But if θ is given
as the product of endomorphisms of smaller degree, then the dependence of Tθ(k, p) on d is much more
favourable. All the algorithms of [5] assume in practice one of these two representations, which are typical
in applications involving elliptic curve endomorphisms.

For any discriminant ∆ of some quadratic order, the `-fundamental part of ∆ is the unique discriminant ∆′

such that ∆ = `2m∆′, with v`(∆
′) ≤ 1 when ` or ∆ are odd and v`(∆

′/4) ≤ 1 when ` = 2 and ∆ is even.
For brevity, write Lx(1/2) = exp(O(

√
log x log log x)).

Theorem 8.1 ([5, Theorem 11.2]). Let E/Fp be a supersingular elliptic curve and θ an endomorphism on
E of degree d and discriminant ∆ coprime to p. Let ` 6= p be a prime (assumed to be constant in the
runtime estimate), ∆′ the `-fundamental part of ∆, and h∆′ the class number of the quadratic order of
discriminant ∆′. If Ld(1/2) is bounded below by a polynomial in log p and |∆′| ≤ p2, then there is a classical
algorithm that finds an `-isogeny path of length O(log p + h∆′) from E to the curve Einit of j-invariant
j = 1728 in heuristic runtime Tθ(Ld(1/2), p) + h∆′Ld(1/2) poly(log p).

Theorem 8.2 ([5, Theorem 11.3]). Let E/Fp be a supersingular elliptic curve and θ an endomorphism on E
of discriminant ∆ coprime to p such that Tθ(k, p) is bounded below by a polynomial in log(pk). If |∆| ≤ p2,

then there is a quantum algorithm that finds an L|∆|(1/2)-smooth isogeny of norm O(
√
|∆|) from E to Einit

in heuristic runtime Tθ(O(log2 d), p)L|∆|(1/2).

The basic strategy of the algorithm of Theorem 8.1 ([5, Algorithm 8.1]) is as follows. Use the orientation
induced by θ as an “orienteering tool” to climb from E to the rim of the oriented `-isogeny volcano contain-
ing E. Generate this entire rim via the action of the class group of the associated `-fundamental order O on
the rim curves and store all their j-invariants in a list L. Orient the curve Einit (whose endomorphism ring
is known) by the same orientation as E and use it to climb its volcano. Hoping to reach the same rim as the
path originating at E, i.e. a vertex in L, construct the desired path from E to Einit from the two ascending
paths and one of the two rim segments connecting them.

Throughout the computation, it is imperative to keep the size of the endomorphisms and the discrim-
inants under consideration reasonable. To that end, endomorphisms are maintained in factored form as
a product of endomorphisms of bounded prime power degree, and a technique akin to sieving produces
such a representation for which the trace of the endomorphism is also of manageable size. Navigat-
ing the oriented `-isogeny graph requires effective subroutines for detecting whether an edge is ascend-
ing/descending/horizontal, traversing an edge and carrying along the orientation, dividing an endomorphism
by ` (to traverse an ascending edge), evaluating an endomorphism on `-torsion points (required for the class
group action), and factoring an endomorphism into a product of endomorphims of prime power degree while
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controlling the size of its reduced trace. Algorithms for performing all these computational tasks, accom-
panied by proofs of correctness and a complete complexity analysis, can be found in [5]. Code is available
at [6] and was used for a proof-of-concept example to generate an explicit 2-isogeny path of length 5 from
E : y2 = x3 + (7i+ 86)x+ (45i+ 174) to Einit : y2 = x3 − x over F1792 , where i2 = −1.

A crucial ingredient in the path finding technique is orienting Einit appropriately. Given an `-fundamental
order O ⊂ K of discriminant ∆, this requires finding an endomorphism θ ∈ End(Einit) that generates an
order O′ ⊆ O. The relative index [O : O′] is a power of `, say `r for some r ≥ 0. For reasons of efficiency, r
should be small, situating O′ as close to a rim as possible. At the same time, to guarantee the existence of
a path from the starting curve E to Einit in GK,`, the orientation induced by θ must place Einit in the same
connected component (i.e. volcano) of GK,` as the oriented starting curve. A natural strategy is thus to loop
over r = 0, 1, 2, . . . until the desired endomorphism θ and order O′ are found. This raises the key question of
how large r needs to be to ensure that a suitable orientation is encountered, at least with high probability.
The answer is governed by how vertices corresponding to a fixed curve are spread around the cordillera. We
will return to this issue in a moment.

A number of the algorithms outlined above depend on heuristics. Quoting from the introductory text
of [5]:

We rely on a number of heuristic assumptions: (i) The Generalized Riemann Hypothesis.
(ii) Powersmoothness in a quadratic sequence or form is as for random integers (a pow-
ersmooth analogue of the heuristic assumption underlying the quadratic sieve; see [5, Heuris-
tics 5.10 and 9.3]). (iii) The orientations of a fixed j-invariant are distributed reasonably
across all suitable volcanoes ([5, Heuristic 3.7]). (iv) This distribution is independent of a
certain integer factorization ([5, Heuristic 6.7]). (v) The aforementioned integer factorization
is prime with the same probability as a random integer ([5, Heuristic 6.4]; this heuristic is
similar to those used in [23] and [32]).

Among these, item (i) is standard, and items (ii) and (v) are purely number theoretical questions. This
leaves items (iii) and (iv) as the only heuristics which concern oriented isogeny graphs. Unfortunately,
item (iv) seems out of reach at the moment, so we will focus on item (iii) which indeed addresses our earlier
question. It asks us to consider, for a fixed j-invariant, how its various orientations appear in a cordillera
of volcanoes: does it prefer certain volcanoes over others? At the same time, it is natural to consider the
‘opposite’ question: for a fixed volcano, how do the various j-invariants lie upon it? Do some j-invariants sit
at greater depth than others? This can be rephrased as a question about the covering map from an oriented
volcano to the usual supersingular `-isogeny graph G`. In Section 9, we address some of these questions.

9. Random walks and consequences for oriented isogeny volcanoes

In this section, we use a standard random walk result for Ramanujan graphs to address some questions
about the appearance of j-invariants on oriented `-isogeny volcanoes.

9.1. Random walks in an `-isogeny graph. In this entire section, as a matter of convenience, we
assume that p ≡ 1 (mod 12) to avoid issues of extra automorphisms. In particular, strictly speaking,
Proposition 9.1 depends upon results about regular undirected Ramanujan graphs. Of course, the result can
be expected to hold for all G`, regardless of p, which are at worst very nearly undirected regular graphs,
having some perturbations around the two vertices j = 0 and j = 1728 if these belong to G`.

We refer to the length (number of `-isogenies) of a shortest path between two curves in the `-isogeny
graph G` as the distance between the two curves . The diameter of G` (the maximum distance between pairs
of points) is known to be bounded by 2 log p [46, Theorem 1]; see also [38]. One way to obtain such results is
using the Ramanujan property and standard methods for expander graphs [29]; our version and proof here
closely follow [27, Theorem 1].

Proposition 9.1. Let p ≡ 1 (mod 12). Let ` be a prime and G` be the supersingular `-isogeny graph over Fp,
with #G` vertices. Let S represent a subset of #S initial vertices. Let j1 represent a target vertex. Let j
represent the vertex reached by a random walk of t steps from a random vertex in S. We denote by Prt the
probability of an event over all such random walks of length t. Then we have∣∣∣∣Prt(j = j1)− 1

#G`

∣∣∣∣ ≤ 1

#S

(
2
√
`

`+ 1

)t
.
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Proof. Choose a basis of a vector space of dimension #G` to correspond to the vertices of G`. Let A` represent
the #G` ×#G` adjacency matrix of G`. Let v0 represent an initial vector whose entry for vertex v is 1/#S
if v ∈ S and 0 otherwise. This is the probability vector for the initial vertex of the random walk. Let λ1

be the largest eigenvalue of A`, and λ2 the second largest. Recursively define vt = 1
λ1
A`vt−1, so vt is the

probability vector for the t-th vertex of the random walk.
Let u have all entries 1/#G`, so u is the probability vector for the uniform distribution over the vertices

of G`. Then u is an eigenvector for λ1, which has an eigenspace of dimension 1. Choose an orthogonal basis
of eigenvectors ei for R#G` such that e1 = u. Then since vt−1 is a probability distribution, 〈vt−1,1〉 =

〈u,1〉 = 1. Writing vt−1 =
∑
i αiei, this implies that α1 = 1. Hence vt−1 − u =

∑#G`
i=2 αiei. Therefore,

A`(vt−1 − u) =

#G∑̀
i=2

λiαiei.

Consequently, we have

‖vt − u‖2 =

∣∣∣∣∣∣∣∣ 1

λ1
A`(vt−1 − u)

∣∣∣∣∣∣∣∣
2

≤ 1

λ1
λ2‖vt−1 − u‖2.

We also have

‖v0 − u‖2 = #S
(

1

#S
− 1

#G`

)2

+ (#G` −#S)

(
1

#G`

)2

=
1

#S

(
1− #S

#G`

)
≤ 1

#S
.

Iterating, we have∣∣∣∣Pr(j = j1)− 1

#G`

∣∣∣∣ = ‖vt − u‖∞ ≤ ‖vt − u‖2 ≤
λt2
λt1
||v0 − u||2 ≤

λt2
#Sλt1

≤ 1

#S

(
2
√
`

`+ 1

)t
.

The final inequality is the bound on the spectral gap (5) for these graphs. �

Corollary 9.2. Let j1 be a j-invariant and S a subset of the vertices of G`. If

t >
log #G` − log #S
log((`+ 1)/2

√
`)

then there exists a path of length ≤ t in G` starting in S and ending at j1. In particular, for

t > log√`/2 #G` − log√`/2 #S,

all curves are within distance t of S.

Proof. This follows from Proposition 9.1 by multiplying through by #G`, to obtain

|#G` Prt(j = j1)− 1| ≤ #G`
#S

(
2
√
`

`+ 1

)t
and then letting t be large enough so the right side is less than 1. �

9.2. The depth of j-invariants on an oriented volcano. Each volcano of the oriented `-isogeny graph
includes every j-invariant of the supersingular graph (to see this, fix a j-invariant j0 of the volcano, and
then consider an `n-isogeny to the desired j-invariant j1; this generates a path in the oriented graph). It
is natural to ask how far down a volcano one must go to see all j-invariants. We may use Corollary 9.2 to
answer this.

Corollary 9.3. Let V be an oriented volcano, and set S := {j ∈ G` : (Ej , ι) is on the rim of V for some ι}.
Then all j-invariants appear on V at depth less than or equal to

dlog√`/2 #G` − log√`/2 #Se.

Remark 9.4. The proof of [5, Proposition 6.5], particularly equation (3), provides a sort of computational
proof of this behaviour in the case of the Gaussian field.
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It is an interesting question to ask about the cardinality of S, which is related to the question of the
multiplicity of j-invariants in SSpr

O . That is, how many O-primitive orientations are there for a fixed curve
E? Kaneko showed that a curve cannot have more than one embedding when the discriminant is at most p
in absolute value [30, Theorem 2’]. On the other hand, [25, Proof of Theorem 1.4] shows that for any fixed
curve E and integer t, orders O of sufficiently large discriminant will always embed into End(E) at least t
times. The number of curves with an O-orientation is bounded below in [34].

9.3. The volcanoes upon which the orientations of a fixed j-invariant lie. Every j-invariant occurs
in every volcano (as described at the beginning of Section 9.2). In [5], the algorithms depended upon the
following heuristic about the relative frequency of a fixed j-invariant across different volcanoes (quoted as
item ((iii)) in Section 8 above).

Heuristic 9.5 ([5, Heuristic 3.7]). Let O be an `-fundamental order in a quadratic field K. Consider the
finite union S of O′-cordilleras in the oriented supersingular `-isogeny graph GK,` for all O′ ⊇ O. Let d(v)
denote the depth of a vertex v on its volcano. Let j(v) denote its j-invariant. Define:

• RV , the number of edges descending from the rim of the volcano V ∈ S;
• RS , the number of edges descending from all rims in S.

Then for any j-invariant j0 and any volcano V ∈ S, the ratio

#{v ∈ V : j(v) = j0, d(v) ≤ t}
#{v ∈ S : j(v) = j0, d(v) ≤ t}

approaches RV/RS as t→∞.

However, näıve methods can only prove a weighted version of this result, where j-invariants at smaller
depth are weighted more heavily. Our result also has a restriction on the rim sizes.

Theorem 9.6. Consider a cordillera C in the oriented supersingular `-isogeny graph GK,` whose volcanoes
are all isomorphic as graphs and (` + 1)-regular (e.g. a single O-cordillera). Let V be one volcano of the
cordillera C and SV the vertex set of its rim. Let SC be the set of vertices in the rims of the full cordillera.
Let d(v) denote the depth of the vertex v, and let ft(d) denote the function that counts the number of paths
of length t starting at the rim of any volcano and terminating at any fixed vertex at depth d of that volcano
(by symmetry, this is independent of the vertex but depends on the depth and rim size). If we define

(11) SV,j1,t =

∑
v∈V, j(v)=j1

ft(d(v))

∑
v∈C, j(v)=j1

ft(d(v))
,

then ∣∣∣∣SV,j1,t − #SV
#SC

∣∣∣∣�
(

2
√
`

`+ 1

)t
,

where the implied constant depends on C and `, but not t.

Proof. The numerator of (11) is the number of times we encounter j = j1 among all paths of length t
originating at the rim of V. The denominator is the corresponding number for all paths of length t originating
at the rims of C. The number of paths of length t from the rim set of V is (` + 1)`t−1#SV . So, applying
Proposition 9.1 with S = SV , we have

1

(`+ 1)`t−1

∑
v∈V,j(v)=j0

ft(d(v)) = Pr(j = j0)#SV =
#SV
#G`

+O

( 2
√
`

`+ 1

)t .

Combining with the analogous fact for the denominator gives the result. �

The restriction to (` + 1)-regularity rules out the rims having oriented curves with automorphisms (see
Remark 2.7); it is merely a convenience and the result could be adjusted to accommodate these cases.

This result is insufficient for the purposes of [5] in that it doesn’t rule out the possibility that some
volcanoes have few occurrences of j = j0 at small depth, while others have more such occurrences at greater
depth. If this is indeed the case, it may be that Algorithm 6.1 of [5], which proceeds by depth, preferentially
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finds certain volcanoes early on. (Nevertheless, Corollary 9.3 above provides some reassurance that all
j-invariants begin to appear after a while.)
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