
Distributed Shuffling in Adversarial
Environments

Kasper Green Larsen1!, Maciej Obremski2!!, and Mark Simkin3! ! !

1 Aarhus University
2 National University of Singapore

3 Ethereum Foundation

Abstract. We study mix-nets in the context of cryptocurrencies. Here
we have many computationally weak shufflers that speak one after an-
other and want to joinlty shuffle a list of ciphertexts (c1, . . . , cn). Each
shuffler can only permute k << n ciphertexts at a time. An adversary
A can track some of the ciphertexts and adaptively corrupt some of the
shufflers.
We present a simple protocol for shuffling the list of ciphertexts effi-
ciently. The main technical contribution of this work is to prove that our
simple shuffling strategy does indeed provide good anonynmity guaran-
tees and at the same time terminates quickly.
Our shuffling algorithm provides a strict improvement over the current
shuffling strategy in Ethereum’s block proposer elections. Our algorithm
is secure against a stronger adversary, provides provable security guar-
antees, and is comparably in efficiency to the current approach.

1 Introduction

Shuffling the elements of a long vector efficiently is a problem that ap-
pears in various shapes and forms throughout many different domains of
cryptography. In most applications, the vector entries are either commit-
ments or ciphertexts and each position in the vector is associated with a
corresponding identity. The process of shuffling the vector produces a new
vector that contains the same multi-set of committed or encrypted values,
but hides which value is associated to which identity. In anonymous com-
munication systems [Cha81, SK95, JJR02], for instance, a set of senders
would each like to communicate one message to a set of receivers without
revealing who is talking to who. In electronic voting [SK95, JJR02, Nef01],
we have a long list of votes and we would like to determine the election

! larsen@cs.au.dk. Supported by Independent Research Fund Denmark (DFF)
Sapere Aude Research Leader grant No 9064-00068B.

!! obremski.math@gmail.com. Funded by MOE2019-T2-1-145 Foundations of
quantum-safe cryptography.

! ! ! mark.simkin@ethereum.org

outcome without revealing who voted for who. In the domain of cryp-
tocurrencies [Max13, BNM+14], we have multiple payers, who would like
to transfer money to multiple payees without revealing who is paying
who.

A popular approach for achieving anonymity in the above applica-
tions are mix-nets [Cha81]. Here, we assume the existence of one or more
shufflers that shuffle the input vector one after another. If only one shuf-
fler was honest, then even an adversary that corrupts all other shufflers
cannot tell which entry in the input vector belongs to which entry in the
output vector. From a security perspective this approach is great, but un-
fortunately such strong anonymity guarantees do not come for free. The
required memory and the computational overhead of each shuffler grows
linearly in the length of the vector that should be shuffled. In applications
like electronic voting, the length of a vector of votes could easily be in
the millions, which places a significant memory burden on each shuffler.
In addition, shufflers often need to provide computationally expensive
zero-knowledge proofs attesting the correctness of their performed shuf-
fle [SK95, FS01, Nef01, BG12] to show that no values in the vector have
been changed by them. These high costs make mix-nets unsuitable for
applications, where shuffling needs to terminate in a timely fashion and
where the shufflers are restricted in terms of memory or computational
power.

1.1 Our Contribution

In this work, we study mix-nets in the context of cryptocurrencies. Here
we have many shufflers, but all of them are computationally weak, in the
sense that they can only read and shuffle k entries in a vector of length
n, where k is potentially much smaller than n. Initially, a vector of ci-
phertexts (c1, . . . , cn) is written on a public bulletin board, accessible to
all. The shufflers speak one after another and each shuffler chooses k en-
tries, re-randomizes, and permutes them. We assume that shuffling takes
place in the presence of an adversary A. At the start of the protocol,
A is allowed to corrupt a subset of indices I ⊂ {1, . . . , n} with |I| ≤ α
and can track all ciphertexts ci for i ∈ I throughout the shuffling pro-
cess. Additionally, the adversary can adaptively corrupt up to β shufflers
throughout the execution. The goal of the shuffling protocol is to hide the
output location of the uncorrupted entries in the input vector from the
adversary. In terms of efficiency, we would like to minimize the number
of shuffles of size k that need to be performed.

2

We present a very simple shuffling mechanism, where each shuffler
picks k uniformly random entries and permutes them. The main technical
contribution of this work is a upper bound that shows that this shuffling
process terminates quickly and provides good anonymity guarantees. The
following informal theorem is a corollary of our main theorem.

Theorem 1 (Informal). Let (c1, . . . , cn) be a vector of ciphertexts. Let
A be a PPT adversary that tracks α = C · n ciphertexts, where C is a
constant, and adaptively corrupts β shufflers adaptively. If each shuffler
randomly permutes k ∈ Ω(ln2(n)) random ciphertexts, then shuffling ter-
minates in O(n/k · ln(n) + β) steps with a constant success probability.

To underline the practicality of our distributed shuffling protocol, we
implemented our solution and we provide benchmarks, which show that
shuffling is not only asymptotically, but also practically efficient.

1.2 Applications.

Single Secret Leader Elections. In the single secret leader election (SSLE)
problem, introduced by Boneh et al. [BEHG20], we have a public bulletin
board and n parties that would like to elect exactly one leader among
them. The leader should be fairly chosen, in the sense that each party
should have a roughly equal probability of becoming the leader. Ad-
ditionally, the leader should remain hidden until they decide to reveal
themselves.

Boneh et al. present three solutions to this problem. The first two solu-
tions are based on indistinguishability obfuscation [GGH+13] and thresh-
old fully homomorphic encryption [BGG+18] respectively. Both of these
solutions are theoretically interesting, but concretely too inefficient to be
useful in a practical setting.

The third presented solution is based on a distributed shuffling proto-
col. In their protocol, each of the n participants publishes a commitment
ci only they can open on the bulletin board. Then, each participant’s
commitment is assigned a bucket of size

√
n, which is shuffled once. The

protocol guarantees that each entry in the output vector could come from√
n possible locations in the input vector. The authors mention that

stronger anonymity guarantees may be achieved using H̊astad’s square
shuffle [H̊as06, H̊as16], but leave the analysis of such an approach as an
explicit open question. H̊astad’s square shuffle is an algorithm that shuf-
fles a vector of length n using shuffles of size k =

√
n in a benign setting.

The algorithm itself does not provide any security guarantees in a set-
ting, where an adversary may track some of the commitments or where

3

the adversary can adaptively prevent some of the shuffles from happening.
Even worse, it is straightforward to design an adaptive adversary with a
relatively small budget of allowed corruptions that can prevent certain
commitments from being shuffled at all.

Using our distributed shuffling protocol, which works for various choices
of k beyond just k =

√
n, we obtain a new SSLE protocol that is secure

against adaptive adversaries, where the elected leader is hidden not only
among

√
n other participants, but instead among close to all n of them.

Ethereum Block Proposer Elections. A variant of the SSLE problem has
recently been considered in the context of the Ethereum blockchain, where
we are not only interested in electing one, but rather a ordered list of γ
leaders. Two real-world efficiency constraints are important to point out
here. Every shufflers needs to speak in a timely manner, yet at the same
time they need to provide zero-knowledge proofs attesting the correctness
of their performed shuffle. These two constraints mean that no shuffler
has enough time to permute the full vector at once.

The currently proposed protocol [Eth22] for potential deployment in
Ethereum is effectively a direct implementation of H̊astad’s square shuf-
fle along with some other minor steps that are not relevant for the dis-
cussion here. The protocol is heuristically claimed to be secure against
non-adaptive corruptions. However, the protocol is only discussed in an
informal model and no security proofs are provided. Similarly to the plain
square shuffle of H̊astad, the proposed construction is not secure against
an adaptive adversary that may adaptively target specific shufflers during
the protocol execution. Especially in the context of a blockchain, where
shufflers are known entities, and an adversary that may have the ability
to target some of them adaptively, we believe that a stronger adaptive se-
curity notion and provable security guarantees are of crucial importance.

Our distributed shuffling protocol, which provides provable security
guarantees against a stronger adversary, can be used as a direct replace-
ment of the current proposal. Our experimental results show that the effi-
ciency of our protocol is comparable to the current proposal of Ethereum.
We discuss this application in more depth in Section 5.

1.3 Related Works

Multiple research domains are related to our work here.

Benign Shuffling. A series of existing works [Tho73, DS81, BD92, H̊as06,
H̊as16, RY13, MR14] has studied the question of how long it takes to

4

shuffle the elements of a vector via either smaller or restricted shuffling
operations. There, the problem is studied in a benign setting and it is
unclear what security can be achieved in the presence of an adversarial
entity.

Conceptually, the work of Diaconis and Shahshahani [DS81], which
considers shuffling a deck of cards by repeatedly picking two random cards
and switching them, is closest to our algorithm. In their work, the authors
are interested in determining the required number of rounds until the
resulting permutation looks close to uniformly random to a distinguisher
that does not see which cards were swapped. In contrast to their work,
we want to determine the required number of shuffles of size k until any
uncorrupted card is at an unpredictable location, even if the adversary
gets to see all subsets of k elements that were shuffled in the protocol.

Single Secret Leader Elections. After the first three initial approaches
for solving the SSLE problem by Boneh et al. [BEHG20], an alternative
solution based on functional encryption was proposed by Catalano, Fiore,
and Giunta [CFG21]. Their solution has many attractive properties, but
requires an expensive initial setup to be performed between the parties
participating in the elections. In situations where elections are performed
periodically and many participants may join or leave between elections,
the setup needs to be repeatedly renewed. Shuffling based solutions on the
other hand, gracefully deal with joining and leaving participants, since no
setup is required.

In a recent independent work by Catalano, Fiore, and Giunta [CFG22],
the authors also study SSLE in the presence of an adaptive adversary.
Their work focuses on providing a full formalization of the SSLE problem
in the universal composability framework [Can01]. The authors provide
a solution based on shuffling that requires each shuffler to speak multiple
times and to permute the full vector. In contrast to their work, we focus
on distributed shuffling protocols, where shufflers have bounded memory
and only speak once. We believe that our model is closer to how shufflers
would actually operate in a real blockchain like Ethereum.

2 Preliminaries

Notation. We write [n] to denote the set {1, . . . , n}. We denote the
computational security parameter by λ. For a set X, we write x ← X to
denote the process of sampling a uniformly random element x from X.
For a randomized algorithm A we write A(x; r) to explicitly specify the

5

random tape r when A is executed on some input x. Otherwise, we write
A(x) and simply assume that r is implicitly chosen uniformly at random.
We write ⊥ ← A(x) to denote that an algorithm A failed to produce
an output. We write AO(·) to denote algorithm A with oracle access to
algorithm O.

2.1 Encryption Schemes

We define the minimal security properties that are sufficient for proving
our shuffling algorithm secure in our model. For the remainder of this
work, we focus on shuffling a vector of ciphertexts, but all of our results
easily carry over to commitments.

Definition 1. A public-key encryption scheme E = (Gen,Enc,Dec) is a
comprised of the following algorithms:

(ek, dk) ← Gen(1λ): The key generation algorithm takes the security pa-
rameter 1λ as input and outputs a public encryption key ek and a
secret decryption key dk.

c ← Enc(ek,m): The encryption algorithm takes the key ek and a message
m as input and outputs a ciphertext c.

m ← Dec(dk, c): The decryption algorithm takes key dk and ciphertext c
as input and outputs message m.

Definition 2 (Semantic Security). We say E = (Gen,Enc,Dec) is se-
mantically secure, if for any PPT adversary A, it holds that

Pr

!

"""#

(ek, dk) ← Gen(1λ)

(m0,m1) ← A(ek)

b ← {0, 1}
b∗ ← A(Enc(ek,mb))

: b = b∗

$

%%%&
≤ 1

2
+ negl(λ) ,

where the probability is taken over the uniform random coins of the ad-
versary, the key generation, and the encryption algorithm.

The input to our distributed shuffling algorithm will be a vector of ci-
phertexts, where each one is encrypted under a different public key. To be
able to meaningfully shuffle this vector, we require that ciphertexts under
different keys are indistinguishable from each other. This notion of key
privacy was first considered by Bellare et al. [BBDP01]. We use slightly
weaker formalization of key privacy that is sufficient for our purposes.

6

Definition 3 (Key Privacy). We say a semantically secure encryption
scheme E = (Gen,Enc,Dec) is key private, if for any PPT adversary A,
it holds that

Pr

!

""""""#

(ek0, dk0) ← Gen(1λ)

(ek1, dk1) ← Gen(1λ)

m ← A(ek0, ek1)

b ← {0, 1}
b∗ ← A(Enc(ekb,m))

: b = b∗

$

%%%%%%&
≤ 1

2
+ negl(λ) ,

where the probability is taken over the uniform random coins of the ad-
versary, the key generation, and the encryption algorithms.

One possible instantiation of an encryption scheme with the desired
properties is the ElGamal cryptosystem [ElG85].

2.2 Local Shuffling Algorithms

The focus of our work lies in answering how to shuffle the elements of a
vector of length n through the use of shuffle operations that permute k
many elements at a time. To abstract away the concrete shuffling proce-
dure that is used by any shuffler locally, we define an idealized func-
tion Shuffle that takes k ciphertexts as input and produces a fresh
list of k ciphertexts that commit to the same multi-set of messages. In
practice, the local shuffling procedure would be realized by combining
a re-randomizable encryption or commitment scheme with an appropri-
ate non-interactive zero-knowledge proof that attests the correctness of
the performed shuffle. If the list were to contain ElGamal ciphertexts,
then efficient shuffling arguments of Bayer and Groth [BG12] or Bünz et
al. [BBB+18] could be used. If the list were to contain pedersen commit-
ments [Ped91], then efficient shuffling arguments of Bünz et al. [BBB+18]
or Hoffmann et al. [HKR19] could be used.

3 Model

In this section, we define the formal model within which we will present
and analyze our distributed shuffling protocol. In our setting, we have
a public bulletin board, where parties can post authenticated messages
that are visible to all other parties. The messages are authenticated in
the sense that each message on the bulletin board can be traced to its

7

sender. In the beginning, the only thing written on the message board
are ciphertxts c1, . . . , cn, where ci ← Enc(eki,mi) for some mi for i ∈ [n].
The parties P1, . . . , PT , also known as the shufflers, speak one after an-
other by posting messages on the bulletin board. To compute their mes-
sages, each shuffler reads at most k ciphertexts, locally shuffles them using
the Shuffle procedure, and writes the permuted vector of k ciphertexts
(along with possibly auxiliary information) back on the bulletin board.
At the end of the protocol execution, after all T shufflers have spoken,
ciphertexts c̃1, . . . , c̃n, which encrypt the same multiset as the input vec-
tor, should be written on the bulletin board. We call such a protocol Π
a (T, n, k)-shuffle.

Corruptions. The shuffling protocol runs in the presence of adversarial
behavior. The PPT adversary A can see who posts which messages on
the bulletin board and in addition can perform two types of corruptions.
At the beginning of a protocol execution, the adversary is corrupting α
ciphertexts. For each corrupted ciphertext, the adversary learns the corre-
sponding decryption key and can thus “track their positions” throughout
the shuffling procedure. Additionally, the adversary is allowed to corrupt
β shufflers in a fully adaptive manner, meaning that at the start of ev-
ery round i ∈ [T], the adversary is allowed to decide whether or not to
corrupt shuffler Pi on the fly, as long as the total number of corrupted
shufflers is at most β.

A corrupt shuffler can perform an arbitrary chosen, but valid permu-
tation on an arbitrary choice of at most k ciphertexts. In principle, we do
not need to assume that the adversary honestly permutes k ciphertexts
or that she would even honestly report, which ciphertexts she touched.
Both of these issues are easily resolved via standard non-interactive zero-
knowledge arguments attesting the correctness of the shuffle. To avoid
explicitly talking about such arguments, we simply restrict the adversary
in her behaviour.

Definitions. For a shuffling protocol Π with input vector c and an ad-
versary A, we write (z,π) ← 〈Π(c; r),A(c; r̃)〉 to denote the execution Π
with random coins r in the presence of A with random coins r̃, where z
is the adversary’s output and π is the permutation on domain [n], i.e. be-
tween the input and output ciphertexts’ values. If at the end of a protocol
execution the values inside the output ciphertexts are not a permutation
of the input ciphertexts’ values, then we write π = ⊥.

8

Definition 4 (Correctness). We say that an (T, n, k)-shuffle Π is cor-
rect in the presence of an adversary A, if

Pr

!

"""#

(eki, dki) ← Gen(1λ) ∀i ∈ [n]

ci ← Enc(eki, i) ∀i ∈ [n]

c := (c1, . . . , cn)

(z,π) ← 〈Π(c; r),A(c; r̃)〉

: π ∕= ⊥

$

%%%&
= 1,

where the probability is taken over the random coins r and r̃.

Definition 5 (Security). Let A be a PPT adversary that corrupts at
most β shufflers. We say that an (T, n, k)-shuffle Π is (ε, δ)-secure in the
presence of an (α,β)-adversary A, if for all I ⊂ [n] with |I| ≤ α, it holds
that with probability at least 1− δ we have

Pr

!

""""""#

(eki, dki) ← Gen(1λ) ∀i ∈ [n]

ci ← Enc(eki, i) ∀i ∈ [n]

c := (c1, . . . , cn)

dk := {dki | i ∈ I}
((i, j),π) ← 〈Π(c; r),A(c,dk; r̃)〉

: π(i) = j ∧ i ∕∈ I

$

%%%%%%&
≤ ε,

where the randomness is taken over the random coins r and r̃.

In the definition above, there exists a naive attacking strategy. The
adversary could just guess a random pair (i, j) of indices with i, j ∕∈ I,
which means that the best security we can hope for is ε = 1/(n − |I|).
If on the other hand, we achieve ε ≤ C/(n − |I|) for some constant C,
then this translates into the intuitive guarantee that any element in the
output vector comes from at least (n − |I|)/C possible locations in the
input vector.

4 Construction

Our distributed shuffling protocol is conceptually very simple. Each round,
a shuffler picks a random subset of k ciphertexts and permutes those. The
main technical challenge is to prove that after a not too large number of
rounds, this procedure will shuffle the input vector sufficiently well.

We note that all shufflers in our protocol act independently and do
not coordinate who will shuffle which entries in the vector. For this rea-
son, even a powerful adaptive adversary cannot do anything better than

9

corrupting an arbitrary subset of β shufflers. Thus, the question of how
big the number of rounds T has to be set to tolerate an adversary that
corrupts β shufflers, effectively reduces to the question of how well the
input vector is shuffled in T − β rounds in the presence of an adversary
that can corrupt no shufflers at all.

Π(c1, . . . , cn)

for t ∈ [T] :

St picks random {i1, . . . , ik} ⊂ [n]

St computes (c̃i1 , . . . , c̃ik) ← Shuffle(ci1 , . . . , cik)

St publishes (c̃i1 , . . . , c̃ik)

Fig. 1. Distributed shuffling protocol.

The formal protocol description is given in Figure 1 and we prove the
following theorem.

Theorem 2. Let A be a PPT adversary that corrupts at most β shuf-
flers. Let E = (Gen,Enc,Dec) be a semantically secure and key private
encryption scheme. For any 0 < δ < 1/3, if T ≥ 20(n/k) ln(n/δ) + β
and k ≥ 256 ln2(n/δ)(1 − α/n)−2, then the protocol in Figure 1 is a
(ε, δ)-secure (T, n, k)-shuffle in the presence of a (α,β)-adversary, where
ε = 2/(n− α) + negl(λ).

Proof. Let I ⊂ [n] with |I| = α be an arbitrary, but fixed subset of in-
dices belonging to ciphertexts that are corrupted by the adversary. Let
H := [n] \ I be the indices of uncorrupted ciphertexts. Let hybrid hybrid0
be the security game as stated in Definition 5. We consider hybrid hybrid1,
which is identical to hybrid0 with the exception that (eki, dki) := (ek1, dk1)
for all i ∈ H. Indistinguishability of hybrid0 and hybrid1 follows from
the key privacy of the underlying encryption scheme. In hybrid2 we set
ci ← Enc(eki, 1) for all i ∈ H. Indistinguishability of hybrid1 and hybrid2
follows from the semantic security of the underlying encryption scheme.
At this point, we observe that in each invocation of Shuffle by an honest
shuffler the adversary learns nothing about how the honest ciphertexts
were permuted. To see this, we note that each honest ciphertext returned
by Shuffle is identically distributed, encrypted under the same key, en-
crypting the same message.

Next, we observe that an adaptive adversary can not do anything
better than corrupting an arbitrary set of β shufflers. To see this, observe

10

that each shuffler chooses its subset of k ciphertexts independently, thus
the distribution of permutations between input and output vector that is
produced by our protocol is independent of which shufflers are corrupted
by A. For the remainder of the proof we determine the number TH of
honest shuffles that need to be performed, such that every ciphertext’s
location is hidden sufficiently well. Our protocol can then be run for
T ≥ TH + β rounds to be secure against β corrupt shufflers.

We now view the ciphertexts as a set of n cups, denoted c1, . . . , cn. Of
these n cups, the last α are idle and the first n− α are active. The cups
may contain a non-negative amount of water.

Let k ≥ 2. A TH step k-way mixing consists of repeatedly selecting
k cups uniformly at random (without replacement). If B denotes the set
of selected cups, we then gather all water in active cups ci ∈ B. The
collected water is then distributed evenly among the active cups. This
process is repeated for TH steps. We call one such step a mixing step.

We say that a TH step k-way mixing is successful if, for any ci among
the active cups, if we had placed 1 unit of water in ci and 0 in all remaining
cups, then at the end of the mixing, no cup contains more than 2/(n−α)
water. That is, regardless of which active cup we choose put 1 unit of
water in, at the end of shuffling, no cup contains more than a factor 2
more water than if we had distributed all water uniformly among active
cups.

Lemma 3. For any 0 < δ < 1/3, if TH ≥ 20(n/k) ln(n/δ) and k ≥
256 ln2(n/δ)(1 − α/n)−2, then a TH step k-way mixing with α idle cups
is successful with probability at least 1− δ.

Observe first that if a TH step k-way mixing is successful, then if
we perform another mixing step, the mixing remains successful. This is
because the maximum amount of water in a cup cannot increase in a
mixing step. Hence we prove the lemma for TH = 20(n/k) ln(n/δ) and
note that it also implies the result for larger TH .

In our proof, we first show that if c1 has 1 unit of water and the
remaining have 0, then with probability at least 1 − δ/n, it holds that
after T steps that there is no cup with more than 2/(n−α) units of water.
A union bound over all n − α active cups that may contain the initial 1
unit of water completes the proof.

So consider the setup where c1 has 1 unit of water and the remaining
have 0. We define two undesirable events, such that if none of these events
occur, the mixing is successful. To define the first of these events, let Bt

be the indices of the cups selected for mixing in the t’th step.

11

Consider an execution of a TH step k-way mixing. A back-tracking
from cup ci is a sequence of indices i1, . . . , ir ∈ [k], possibly with repeti-
tions, such that the following holds: Initialize b = i, j = 0 and t = TH .
Repeat until t = 0: If cup cb was selected for mixing in step t, increment
j and set b to be the index of the ij ’th cup in Bt (for some arbitrary but
fixed ordering on cups). Decrement t and repeat (regardless of whether
cup cb was selected for mixing in step t).

A back-tracking thus specifies a “path” that starts with ci and as we
go backwards through the TH mixing steps, whenever the current cup
cb is selected for mixing, the path proceeds to trace the next cup in the
list. When j reaches r in the back-tracking, it must be the case that the
currently traced cup cb is not selected in any further mixing steps while
decrementing t. The first undesirable event says that there is a short
back-tracking:

– Event E1: There is a back-tracking i1, . . . , ir with r ≤ 4 lgk n.

To define the second event, let wt
i denote the amount of water in cup

ci after t steps of mixing. We have w0
1 = 1 and w0

i = 0 for i ∕= 1. Also,
let At ⊆ Bt denote the indices of the active cups among Bt. Finally,
let Wt =

'
i∈At

wt−1
i /|At| denote average amount of water in the cups

selected in step t. By definition, we have wt
i = Wt for every i ∈ At. With

these definitions in place, the second undesirable events says that we in
some step perform a mixing that results in much water on average, yet
none of the involved cups had significantly more water than the average:

– Event E2: There is a step t where Wt ≥ 2/(n−α) but maxi∈At w
t−1
i ≤

k1/4Wt.

Success when none of E1 and E2 occur. We first show that a TH step
mixing is successful when none of the events E1 and E2 occur. For this,
consider an unsuccessful mixing where E2 did not occur. We claim that
this implies that E1 occurred. We thus need to show that an unsuccessful
mix together with the fact that E2 does not occur implies a short back-
tracking. For this, let ci∗ be a cup such that wT

i∗ > 2/(n − α). Such a
cup exists since the mixing is unsuccessful. We will now back-track from
that cup. So let i = i∗, b = i and initialize t = TH . Also, let ωt denote
the amount of water in the cup cb traced in step t. We thus have ωTH =
wTH
i∗ > 2/(n−α). We will guarantee that the values ωt are non-decreasing

when we decrement t from TH towards 0. For t = TH down to 0, if cup cb
is selected for mixing in step t, we know that Wt = ωt ≥ ωTH > 2/(n−α).
Since E2 did not occur, it must be the case that maxh∈At w

t−1
h > k1/4Wt.

12

Let h∗ be the index into Bt of the h obtaining this maximum water in
step t−1. We append h∗ to the constructed list of indices i1, . . . , ir in the
back-tracking as well as append the step t to the list of steps t1, . . . , tr.
We then update b to h, set ωt−1 to wt−1

h ≥ k1/4ωt and decrement t. If cb
was not selected for mixing, we simply decrement t.

Since ω increases by a factor at least k1/4 each time the traced cup
cb is selected for mixing, it must be the case that ω0 ≥ 2kr/4/(n − α) if
the produced back-tracking has length r. Since no cup ever contains more
than 1 unit of water, this implies 2kr/4/(n − α) ≤ 1 ⇒ r < 4 lgk n. This
implies that the event E1 occurs.

Probability of success. In the following two paragraphs, we will show that
Pr[E1] ≤ 2δ10/n and Pr[E2] ≤ δ2/n. A union bound and the fact that
δ < 1/3 implies that a TH step k-way mixing is successful with probability
at least 1−δ/n when c1 has 1 unit of water. As mentioned earier, a union
bound over all n − α choices of the cup with 1 unit of water completes
the proof. What remains is thus to bound the probability of E1 and E2.

There is a short back-tracking (Event E1). To rule out the existence
of a short back-tracking, consider a fixed value of r ≤ 4 lgk n. For any
such r, there are no more than kr ≤ n4 choices for i1, . . . , ir and n
choices for i. For any such choice, there are no more than

(
TH
r

)
≤ T r

H

choices for the steps t1, . . . , tr where j is decremented (the traced cup
is selected for mixing). Fix any such r, i1, . . . , ir and t1, . . . , tr. For this
to be a valid back-tracking, it must hold for all steps t /∈ {t1, . . . , tr}
that the cup cb traced in that step is not selected for mixing. Since the
mixing steps are independent, this happens with probability precisely
(1 − k/n) independently of the random choices in steps t + 1, . . . , TH .
For all steps t ∈ {t1, . . . , tr}, it must be the case that the cup cb traced
in that step is selected for mixing. Again by independence, this happens
with probability precisely k/n independently of the random choices in
steps t + 1, . . . , TH . For the fixed choice of i, r, i1, . . . , ir and t1, . . . , tr,
the probability that these form a valid back-tracking is thus no more
than (1 − k/n)TH−r(k/n)r ≤ exp(−(TH − r)k/n)(k/n)r. We have TH =
20(n/k) ln(n/δ) and k ≤ n, thus r = 4 lgk n ≤ TH/2 and the probabil-
ity is no more than exp(−THk/(2n))(k/n)r = exp(−10 ln(n/δ))(k/n)r =
(k/n)r(δ/n)10. A union bound over all possible back-trackings of length
r ≤ 4 lgk n shows that

Pr[E1] ≤
4 lgk n*

r=0

n5T r
H(k/n)r(δ/n)10

13

=

4 lgk n*

r=0

n5(20(n/k) ln(n/δ))r(k/n)r(δ/n)10

=

4 lgk n*

r=0

n5(20 ln(n/δ))r(δ/n)10.

For k ≥ 40 ln(n/δ), this is no more than

4 lgk n*

r=0

n5(20 ln(n/δ))r(δ/n)10 ≤

4 lgk n*

r=0

n5(k/2)r(δ/n)10 ≤

4 lgk n*

r=0

2−rn5k4 lgk n(δ/n)10 =

2δ10/n.

A mix with much water, but no full cup (Event E2). Let us first consider a
fixed step t and condition on a fixed cardinality a of At and an arbitrary
execution of the first t − 1 steps. If we let E′

2,t denote the event that

maxi∈At w
t−1
i ≤ k1/4Wt and E′′

2,t the event that Wt ≥ 2/(n−α). We now
wish to bound Pr[E′

2,t∩E′′
2,t | |At| = a]. For this, we further split E′

2,t and

E′′
2,t into smaller events. Let E′

2,t,ξ denote the event that maxi∈At w
t−1
i ≤

2k1/4ξ and E′′
2,t,ξ the event Wt ≥ ξ and consider values of ξ = 2i/(n− α)

for i = 1, . . . , lg2 n. We claim that

Pr[E′
2,t∩E′′

2,t | |At| = a] ≤ Pr
+
∪lg2 n
i=1 (E′

2,t,2i/(n−α) ∩ E′′
2,t,2i/(n−α)) | |At| = a

,
.

To see this, note that when E′′
2,t occurs, there is a maximal 1 ≤ i < lg2 n

for which 2i/(n − α) ≤ Wt ≤ 2i+1/(n − α). When E′
2,t also occurs, this

further implies maxi∈At w
t−1
i ≤ 2i+1k1/4/(n − α). That is, both of the

events E′
2,t,2i/(n−α)

and E′′
2,t,2i/(n−α)

occur. By a union bound, we thus

have

Pr[E′
2,t ∩ E′′

2,t, |At| = a] ≤
log2 n*

i=1

Pr[E′′
2,t,2i/(n−α) ∩ E′

2,t,2i/(n−α) | |At| = a] ≤

14

log2 n*

i=1

Pr[E′′
2,t,2i/(n−α) | E

′
2,t,2i/(n−α), |At| = a]

Next, we recall that each shuffler picks a uniformly random subset of
cups to mix. If we condition this choice on E′

2,t,ξ and |At| = a, then At is
distributed as a uniform sample of a elements without replacement from
the set of active cups ci where wt−1

i ≤ 2k1/4ξ. Furthermore, recall that
we started with one cup containing one unit of water and all other cups
being empty. If we were to sample a cup uniformly at random among
all active cups, then the expected amount of water in a sampled cup
would be precisely 1/(n − α). Conditioning on E′

2,t,ξ removes the most
full cups and hence the expected amount of water in each sampled cup
may only decrease when conditioning on E′

2,t,ξ. It follows from Hoeffding’s
inequality for sampling without replacement that for any ξ ≥ 2/(n− α),
we have

Pr[E′′
2,t,ξ | E′

2,t,ξ, |At| = a] =

Pr[|Wt| ≥ ξ | E′
2,t,ξ, |At| = a] ≤

Pr[|Wt − E[Wt]| ≥ ξ − 1/(n− α) | E′
2,t,ξ, |At| = a] ≤

Pr[|Wt − E[Wt]| ≥ ξ/2 | E′
2,t,ξ, |At| = a] ≤

2 exp

-
− 2(aξ2/2)2

a(2k1/4ξ)2

.
=

2 exp
/
−a/(8

√
k)
0
.

Thus

Pr[E′
2,t ∩ E′′

2,t | |At| = a] ≤ 2 lg2(n) exp(−a/(8
√
k)).

Using this inequality, we then observe that

Pr
1
E′

2,t ∩ E′′
2,t

2

=

k*

a=0

Pr
1
E′

2,t ∩ E′′
2,t | |At| = a

2
Pr [|At| = a]

=

k(1−α/n)−2
2*

a=0

Pr
1
E′

2,t ∩ E′′
2,t | |At| = a

2
Pr [|At| = a]

+

k*

a=
k(1−α/n)

2

Pr
1
E′

2,t ∩ E′′
2,t | |At| = a

2
Pr [|At| = a]

15

≤

k(1−α/n)−2
2*

a=0

Pr [|At| = a]

+

k*

a=
k(1−α/n)

2

2 lg2(n) exp
/
−(k(1− α/n)/2)/(8

√
k)
0
Pr [|At| = a]

≤Pr

3
|At| ≤

k(1− α/n)

2

4
+ 2 lg2(n) exp

/
−(k(1− α/n)/2)/(8

√
k)
0

To conclude the proof, we would now like to argue that both of the
terms in the last inequality above are small. We observe that Bt is a
uniform sample without replacement from the n cups and thus we have
that E[|At|] = k(1−α/n). Using the Chernoff bound for sampling without
replacement and assuming k ≥ 16 ln(n/δ)(1− α/n)−1, we get

Pr[|At| ≤ (1/2)k(1− α/n)] ≤ exp(−k(1− α/n)/8) ≤ (δ/n)2.

Similarly, for k ≥ 256 ln2(δ/n)(1− α/n)−2, we have that

2 lg2(n) exp(−(1/2)k(1− α/n)/(8
√
k))

=2 lg2(n) exp(−
√
k(1− α/n)/16)

≤2 lg2(n)(δ/n)
2

Thus for k ≥ 256 ln2(δ/n)(1− α/n)−2, we have

Pr[E′
2,t ∩ E′′

2,t] ≤ 3 lg2(n)(δ/n)
2.

A union bound over all TH then implies

Pr[E2] ≤ 3TH lg2(n)(δ/n)
2.

There are TH = 20(n/k) ln(n/δ) choices for t and for k ≥ 256 ln2(n/δ),
we have that

Pr[E2] ≤ δ2/n,

which concludes the proof.

5 Ethereum’s Block Proposer Elections

One particular real-world application that can benefit from our shuffling
protocol, is Ethereum’s block proposer election. In the following, we pro-
vide a high-level idea of this election process and we refer the interested

16

reader to the current proposal [Eth22] for more details. In this setting,
we have commitments4 (c1, . . . , cn), where n = 214 and where ci belongs
to some identity i, who is the only entity that can open the commitment.
These identities need to be arranged in a random secret order. Once this
is done, the first γ owners of the commitments reveal themselves in order
of the output list and perform some consensus related action that is not
relevant for us. That is, the first identity in the output list is the first
block proposer, the second identity the second proposer and so on. From
a security perspective, one would like to ensure that an adversary that
corrupts α identities, β of the shufflers, and gets to see some of the pro-
posers that already revealed themselves, cannot guess the identity of the
next honest block proposer.

In order to obtain the random secret ordering, in the current pro-
posal, a sequence of shufflers are effectively executing H̊astad’s square
shuffle [H̊as06, H̊as16], i.e. there k =

√
n, interspersed with some addi-

tional public permutation steps. The current proposal is purely heuristic,
is only described in an informal model, and does not have a security proof.
It is not secure against an adversary that can corrupt shufflers adaptively.

Our approach can be used to obtain a secret random ordering of the
block proposers with stronger security guarantees and, in particular, with
provable security guarantees. We note, however, that in our model we do
not consider parts of the performed permutation to be revealed once the
shuffling protocol is finished. Luckily our analysis can easily be amended
to account for this.

In the proof of Theorem 2, we assumed that a fixed number of cups,
denoted α, were idle. We will now generalize the results to the following
setup: Before the random shuffling process begins, we have two phases. In
the first phase, we have a fixed set of α marked cups. In the second phase,
we choose a uniform random subset of γ of the cups and mark them. If a
cup was marked either during the first or second phase, it becomes idle
and otherwise it is active. Notice that this corresponds to first corrupting
α ciphertexts and then revealing γ random ciphertexts at the end. Let η
be the number of idle cups.

Once the idle and active cups have been chosen, we run the water
mixing process as in the proof of Theorem 2. We now bound the prob-
ability of seeing an active cup with more than 2/(n − η) units of water
after T steps of mixing. We first bound the probability of seeing many
idle cups. For this, notice that the first phase marks precisely α cups.
For the second phase, the number of newly marked cups can be bounded

4 We note again that all of our results work equally well for vectors of commitments.

17

n k α/n

1 214 128 1/4
δ 0.8 0.6 0.4 0.2 0

T − β 713 839 927 988 1804

2 214 256 1/4
δ 0.8 0.6 0.4 0.2 0

T − β 337 398 452 502 627

3 214 512 1/4
δ 0.8 0.6 0.4 0.2 0

T − β 199 229 254 278 438

4 214 128 1/2
δ 0.8 0.6 0.4 0.2 0

T − β 874 955 1080 1204 1853

Table 1. Results of our numerical experiments for determining the number T − β of
honest shuffles that is needed for successfully shuffling with different sets of parameters.

by observing that the γ samples without replacement each picks a cup
already marked in the first phase with probability precisely α/n (when
looking at the marginal distribution of the cup). It follows by a Hoeffd-
ing bound for sampling without replacement that the number of newly
marked cups in the second phase, denoted ζ, satisfies:

Pr[ζ − (1− α/n)γ > ℓ] < exp(−2ℓ2/γ).

Setting ℓ =
5

γ ln(n/δ) bounds the above by δ2/n2. Thus with probability
at least 1− δ2/n2, we have

η ≤ α+ ζ ≤ α+ ℓ+ (1− α/n)γ

=α+ γ − αγ/n+
5

γ ln(n/δ).

A union bound together with Lemma 3 invoked with δ′ = δ/(2n) gives
us that with probability at least 1 − δ2/n2 − δ/n, there is no index i
with wT

i ≥ 2/(n − η). Note that the above analysis above is for a fixed
number γ of revealed output locations. Doing a union bound over all
γ′ ≤ γ shows that the probability that throughout the revealing any of
γ additional locations, that there is ever an input cup z whose output
destination can be predicted with probability greater than 2/(n−η) is at
most n · (δ/(2n) + δ2/n2) ≤ δ.

6 Experiments

In this section, we perform numerical experiments to precisely determine
the practical constants in our distributed shuffling protocol. We consider
different sets of parameters. Since adversarially corrupt shufflers in our
protocol are as bad as just no shuffle being performed, we simply measure

18

the number of required honest shuffles, until the desired security guaran-
tees are achieved. More precisely, if TH honest shuffles are sufficient, then
running our protocol for T rounds is secure against β = T − TH many
corrupted shufflers.

In each experiment, we run the water mixing process from the proof
of Lemma 3 with varying values for n, k, and α. For each fixed set of
parameters the benchmark is repeated 100 times. In every round of an
experimental run, we check whether any cup has too much water. If it
does, then this run of the experiment for this round is considered to
be failing. The fraction of failing simulations in a given round, denoted
by δ, is an unbiased estimate of the true probability that the adversary
can determine the position of a uncorrupted ciphertext with probability
greater than 2/(n− α) in that round.

The result of our benchmarks are summarized in Figure 1. Even in
a highly adversarial setting, where 1/2 of all elements in the vector are
corrupted and the local shuffle size is as small as k = 128, our protocol
successfully distributes the water after less than 2000 rounds for a vector
of length n = 214. In the context of Ethereum’s block proposer elections,
we have T = 213 time slots for one election and thus one can tolerate a
fraction of around 3/4 of corrupted shufflers .

References

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 315–334. IEEE, 2018. 2.2

BBDP01. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval.
Key-privacy in public-key encryption. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 566–
582. Springer, 2001. 2.1

BD92. Dave Bayer and Persi Diaconis. Trailing the dovetail shuffle to its lair. The
Annals of Applied Probability, pages 294–313, 1992. 1.3

BEHG20. Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Sin-
gle secret leader election. In Proceedings of the 2nd ACM Conference on
Advances in Financial Technologies, pages 12–24, 2020. 1.2, 1.3

BG12. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for
correctness of a shuffle. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 263–280. Springer,
2012. 1, 2.2

BGG+18. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter MR Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In Annual International Cryp-
tology Conference, pages 565–596. Springer, 2018. 1.2

19

BNM+14. Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark,
Joshua A Kroll, and Edward W Felten. Mixcoin: Anonymity for bitcoin
with accountable mixes. In International Conference on Financial Cryptog-
raphy and Data Security, pages 486–504. Springer, 2014. 1

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In Proceedings 42nd IEEE Symposium on Foundations
of Computer Science, pages 136–145. IEEE, 2001. 1.3

CFG21. Dario Catalano, Dario Fiore, and Emanuele Giunta. Efficient and univer-
sally composable single secret leader election from pairings. Cryptology
ePrint Archive, Paper 2021/344, 2021. 1.3

CFG22. Dario Catalano, Dario Fiore, and Emanuele Giunta. Adaptively secure
single secret leader election from ddh. In Proceedings of the 2022 ACM
Symposium on Principles of Distributed Computing, 2022. 1.3

Cha81. David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981. 1

DS81. Persi Diaconis and Mehrdad Shahshahani. Generating a random permuta-
tion with random transpositions. Zeitschrift für Wahrscheinlichkeitstheorie
und verwandte Gebiete, 57(2):159–179, 1981. 1.3

ElG85. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE transactions on information theory, 31(4):469–
472, 1985. 2.1

Eth22. Ethereum. Whisk: A practical shuffle-based ssle protocol for ethereum.
2022. Accessed 09/09/2022. 1.2, 5

FS01. Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle.
In Annual International Cryptology Conference, pages 368–387. Springer,
2001. 1

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In Proceedings of the 2013 IEEE 54th An-
nual Symposium on Foundations of Computer Science, pages 40–49, 2013.
1.2

H̊as06. Johan H̊astad. The square lattice shuffle. Random Structures and Algo-
rithms, 29(4):466–474, 2006. 1.2, 1.3, 5

H̊as16. Johan H̊astad. The square lattice shuffle, correction. Random Structures
and Algorithms, 48(1):213, 2016. 1.2, 1.3, 5

HKR19. Max Hoffmann, Michael Klooß, and Andy Rupp. Efficient zero-knowledge
arguments in the discrete log setting, revisited. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
pages 2093–2110, 2019. 2.2

JJR02. Markus Jakobsson, Ari Juels, and Ronald L Rivest. Making mix nets robust
for electronic voting by randomized partial checking. In 11th USENIX
Security Symposium (USENIX Security 02), 2002. 1

Max13. Coinjoin: Bitcoin privacy for the real world. 2013. 1

MR14. Ben Morris and Phillip Rogaway. Sometimes-recurse shuffle. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 311–326. Springer, 2014. 1.3

Nef01. C Andrew Neff. A verifiable secret shuffle and its application to e-voting. In
Proceedings of the 8th ACM conference on Computer and Communications
Security, pages 116–125, 2001. 1

20

Ped91. Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Annual international cryptology conference,
pages 129–140. Springer, 1991. 2.2

RY13. Thomas Ristenpart and Scott Yilek. The mix-and-cut shuffle: small-domain
encryption secure against n queries. In Annual Cryptology Conference, pages
392–409. Springer, 2013. 1.3

SK95. Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. In In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, pages 393–403. Springer, 1995. 1

Tho73. Edward O Thorp. Nonrandom shuffling with applications to the game
of faro. Journal of the American Statistical Association, 68(344):842–847,
1973. 1.3

21

