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Abstract. Continuous group key agreement (CGKA) allows a group of
users to maintain a continuously updated shared key in an asynchronous
setting where parties only come online sporadically and their messages
are relayed by an untrusted server. CGKA captures the basic primitive
underlying group messaging schemes.

Current solutions including TreeKEM (“Messaging Layer Security” (MLS)
IETF draft) cannot handle concurrent requests while retaining low com-
munication complexity. The exception being CoCoA, which is concurrent
while having extremely low communication complexity (in groups of size
n and for m concurrent updates the communication per user is log(n),
i.e., independent of m). The main downside of CoCoA is that in groups of
size n, users might have to do up to log(n) update requests to the server
to ensure their (potentially corrupted) key material has been refreshed.

In this work we present a “fast healing” concurrent CGKA protocol,
named DeCAF, where users will heal after at most log(t) requests, with t
being the number of corrupted users. While also suitable for the standard
central-server setting, our protocol is particularly interesting for realizing
decentralized group messaging, where protocol messages (add, remove,
update) are being posted on some append-only data structure rather
than sent to a server. In this setting, concurrency is crucial once the rate
of requests exceeds, say, the rate at which new blocks are added to a
blockchain.

In the central-server setting, CoCoA (the only alternative with concur-
rency, sub-linear communication and basic post-compromise security)
enjoys much lower download communication. However, in the decentral-
ized setting – where there is no server which can craft specific messages
for different users to reduce their download communication – our protocol
significantly outperforms CoCoA. DeCAF heals in fewer rounds (log(t)
vs. log(n)) while incurring a similar per round per user communication
cost.



1 Introduction

1.1 (Group) Messaging

Popular group messaging applications, like Signal [29], work in an asynchronous
setting, where users need to be online only occasionally and their messages are
relayed by an untrusted server. The underlying ratcheting protocol provides
strong security; in particular, forward secrecy (FS), post-compromise security
(PCS), and end-to-end encryption, which is important as conversations can last
for years at a time. FS ensures that messages sent in the past remain secure if a
user gets compromised, while PCS allows for the keys of a user to be refreshed
after compromise ensuring future messages are secure again. It is a challenging
problem, and the focus of recent IETF standard on “Messaging Layer Security”
(MLS) [13], to efficiently scale messaging applications to larger groups without
giving up on the strong security properties provided by two-party protocols like
the Double Ratchet [29].

1.2 CGKA

Continuous group key agreement (CGKA) was identified as the key primitive un-
derlying group messaging [4, 5]. Accordingly, it has recently seen a lot of attention
with works giving CGKA instantiations [3, 4, 7, 9, 14, 19, 21, 23, 24, 27, 28], ana-
lyzing the security of constructions [6, 8, 18, 15, 31], lower bounds [2, 10, 16, 17], or
targeting additional properties like CGKA for multiple groups [2, 22], metadata-
hiding [25], or tools for cryptographic administration of group membership [11].
See [30] for a SoK of security definitions for group key agreement.

CGKA allows a set of users to maintain a shared key in an asynchronous
setting where protocol messages are relayed by an untrusted server. The op-
erations CGKA must support are the users’ addition and removal, and a key
update functionality by which a user can rotate its secret key material so as
to achieve forward secrecy and post-compromise security. Most of the so far
proposed CGKA schemes with this motivation, beginning with ART [19] and
TreeKEM [27], arrange users’ keys in a binary tree structure. In this so-called
ratchet tree, each node corresponds to a public/secret key pair. Leaves are iden-
tified with users who hold the secret keys of all nodes from their leaf to the root.
The root secret key — known to all users — is used to define the group key which
secures messages sent to the group. We think of the edges of the tree as being
directed from the leaves to the root, and an edge (pk, sk)→ (pk′, sk′) basically
means that sk′ is encrypted under pk in a ciphertext that can be retrieved from
the delivery server. Thus, the user at a leaf with key-pair (pk, sk) will be able
to retrieve all the secret keys on the path from its leaf to the root. The reason
to use trees rather than, say, pairwise channels for maintaining the keys, is that
in groups of size n, each user only has to send log(n) ciphertexts in order to
update all secret keys they know (as opposed having to rekey n− 1 independent
channels). Concretely, as illustrated in Figure 1 (tree on the top left, ignoring the
blue nodes for now), if a user A wants to update, they resample the keys on their
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path (the red path in the figure), encrypt the fresh keys to the nodes on their
co-path (the red edges), and send these ciphertexts to the server. Other group
members can fetch those ciphertexts and update their local states to reflect the
new keys. An important “invariant” property of these tree-based schemes is that
a user will always only learn the secret-key for nodes on their path to the root
(which is why it is sufficient to replace just the keys on the user’s path to root
to achieve FS and PCS for that user).

Concurrent updates. While updates in the initial versions of TreeKEM only need
log(n) communication, they are inherently sequential: a user can only send an
update request after processing the previous one. If two (or more) users A and
B send an update request each rekeying their full paths to the server for the
same previous ratchet tree state (as shown on the left in Figure 1), the server
will simply reject all but one of the requests. In fact, this is true for all CGKA
variants with two exceptions discussed below.

Recent versions of TreeKEM do allow for a different type of concurrent up-
dates through the “Propose and Commit” framework. Here, initial users con-
currently announce their update operations in a first round, generating new key
material only for their own leaf. Then, in a second round, one party “commits”
the updates, along the way refreshing their own full path. But to ensure PCS,
all nodes not on the paths of the initial users have their old keys replaced (or
removed). TreeKEM and similar protocols address this by setting those nodes
to be blank. That is, these node are effectively removed from the tree. Instead,
each blank node’s parent node now has edges to the blanked nodes children (if
the child is blanked, then to its grandchild, etc.). Figure 1 (right side) shows
the tree we get if A commits to an update proposal by B in this way. Note that
the more concurrent updates, the more blanking ruins the tree structure, and
as a consequence future operations become more expensive e.g., to commit A
must send 4 ciphertexts before blanking B, but 6 after. In general the cost can
grow from log(n) to n. If the group members want communication efficiency,
they will have to commit to as few updates as possible at a time, relying instead
on sequential commits to refresh keys. That means concurrency is not possible
anymore, as commits need to be totally ordered, and the issue outlined above
returns.

Causal TreeKEM. The first CGKA protocol supporting concurrent updates was
Causal TreeKEM [28]. This protocol builds on a public key encryption primitive
allowing for keys to be combined in a commutative way. This way, updates will
no longer overwrite the previous key, but instead update it by combining the
fresh key with the existing one. Since this combining process is commutative,
several updates can be merged at the same time, without regard for the order
in which users received them.

CoCoA. The CGKA scheme CoCoA [3] processes concurrent update proposals
in a “greedy” manner and simply accepts as many keys in a concurrent proposal
as possible. As illustrated in Figure 1, fresh keys from concurrent updates are
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A B
Concurrent update/commit requests by A and B

A BTreeKEM I:
B’s commit dropped

A BCoCoA:
B’s update cropped

A BDeCAF:
updates merged

+ + =

+ =
+ =

A B
B proposes, A commits

A BTreeKEM II:
B’s path is blanked

Fig. 1. (left): Illustration of how TreeKEM, CoCoA, and DeCAF handle a concurrent
update by parties A and B who want to replace their (potentially compromised) keys.
TreeKEM I refers to the conservative approach where users commit one at a time. In
DeCAF instead of replacing old keys, the new key-material is merged with the existing
one. (right): An illustration of blanking used to commit an update proposal (removing
B would be similar, with their leaf node blanked instead.)

accepted, and if there is a conflict as two updates want to replace the same
node, one of the two updates is rejected from this point upwards. While this
process does not guarantee that the key is safe after every compromised party
updated,4 somewhat surprisingly [3] proves that the tree does heal after every
party updated log(n) times in the worst case.

Moreover, CoCoA enjoys very low communication complexity, as each party
must only download at most log(n) ciphertexts to process each set of concurrent
updates. Note that, this is independent of both the number m of parties that
update in this epoch, which can be as large as m = n, as well as the number t of
corruptions, which can be as small as t = 1. For this to be theoretically possible,
the untrusted server must be more sophisticated than just relaying every protocol
message it gets to all users in the group. Instead, it only sends a subset of the
ciphertexts to each user based on their position in the tree and some commitment
to its actions, allowing users to check if they received consistent messages.

Server- and blockchain-aided CGKA. In order to distribute protocol messages
among the members of the group, CGKA protocols typically rely on an un-
trusted server. Most CGKA protocols like TreeKEM [13], rTreeKEM [4], and
Tainted TreeKEM [27] require a simple relay server. CoCoA, however, is a server-
aided CGKA protocol, a primitive formally defined in [7], and where the server
is expected to do non-trivial computation and provide users with personalized
packages. To achieve end-to-end security the server is untrusted. Despite this,

4 In the example from Figure 1, if B was compromised, after the update, the two
topmost red nodes would still be compromised, as their keys were encrypted to
compromised keys.
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reliance on the server can still be problematic. For example, it allows it to reject
protocol messages by a particular user, thus preventing them from healing. Or
to selectively forward messages to only part of the users, leading to a group split.

Note that these issues could be amended by replacing the server with a de-
centralized solution, an example of which would be a blockchain. Throughout
the paper we will use the term blockchain for convenience to refer to any append-
only data structure with the property that when the data is distributed among
multiple nodes there is a consensus mechanism that guarantees that the data
is arranged into blocks with a total ordering on these that all nodes agree on.
New data can be added by making use of a peer-to-peer network or any other
suitable type of channels. The use of such an append-only structure (permis-
sioned or permissionless) allows us to realize group messaging which enjoys the
same robustness and security guarantees as the underlying structure. More con-
cretely, instead of sending their CGKA protocol messages (update/add/remove)
to the server, the users would post them on the append-only ledger. Only the
key-management must be on-chain, text messages (encrypted under the current
group key) can be gossiped or shared on a public bulletin board.

Note that any CGKA in the classical setting can be “compiled” to the
blockchain setting: in the latter, the block producer simply emulates the server
to compile the protocol messages that would be broadcast in the classical set-
ting, and adds this message to the block. In the case of server-aided CGKA
the users, after downloading all protocol messages stored on chain, can simply
locally emulate the computation that would be done by the smart server. Note
that this potentially increases the download communication-complexity, as the
users no longer receive personalized packages. The opposite holds as well, any
server being able to emulate the outputs of the decentralized consensus protocol.

There are at least three separate properties which are achieved in the de-
centralized setting, but not in the “classical” server setting. Namely (1) security
against splitting attacks, (2) censorship resistance, and (3) robustness. Regard-
ing (1), an attack which is unavoidable in the classical setting is a splitting
attack, where the (corrupted) server splits the users into two or more groups,
and then only relays messages within those groups, forcing parties in different
groups into different and inconsistent states. With such an attack one can, for
example, enforce that only a particular subset of users sees some set of messages.
If the protocol messages are on a blockchain, all parties will agree on the same
view, and thus this attack is prevented. With regards to (2), another attack that
is unavoidable in the single server setting is the censoring of a particular party.
An untrusted server can ignore messages from a party, this way e.g. preventing
them from ever updating. This is severe as, should this party be corrupted, the
corrupted key can be indefinitely prevented from healing. In the blockchain set-
ting, the “liveness property” of the blockchain, in combination with the fact that
our protocol allows for concurrent updates (so there are no DOS-type attacks
where some parties prevent another one from updating by flooding the mempool)
prevents this attack: if a user wants to update, their request will be added with
high probability within a few blocks. Finally, and regarding (3), in the single
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(a) CoCoA

Update 1 Update 2 Update 3 Update 4

(b) DeCAF

Update 1 Update 2

Fig. 2. Comparison of the number of epochs required to recover in CoCoA (a) and
DeCAF (b) for n users, of which t are corrupted. Red nodes correspond to compromised
keys. In each epoch all parties update concurrently, in CoCoA update requests are
prioritized from left to right. CoCoA requires ⌈log(n)⌉ + 1 = 4 epochs to recover,
DeCAF only ⌊log(t)⌋+ 1 = 2.

server setting the group can be shut down by taking out a single server. Better
resilience can be achieved with several servers, but then one needs to solve the
state machine replication problem. This is what our protocol does if using a
permissioned blockchain. With a permissionless blockchain, resilience would be
even stronger.

Let us mention that in order to avoid all three issues mentioned above we need
to record all the protocol messages on chain, which is probably no problem in
the permissioned setting, but could be expensive in a permissionless blockchain.
Permissionless blockchains like Bitcoin or Ethereum have slow block arrival rates
(and even slower confirmation times), there also is a non-trivial cost to record
transactions on chain. A permissioned blockchain, on the other hand, just re-
quires a fixed small number of servers and provides the required security as long
as a majority of the servers behave honestly (e.g., 3 out of 5). The cost of running
such a protocol is only a small constant factor larger than just having a single
server, but greatly reduces the trust required. If we are only interested in (1)
and (2), but not (3), one can just post a single hash of all the messages which
each block contains on chain, while the actual messages are stored off chain. This
loses property (3) unless we solve the data availability problem separately5.

1.3 Our Contribution

DeCAF. In this work we consider a new CGKA protocol, DeCAF (for DE-
centralizable Continuous group key Agreement with Fast healing), that allows
for concurrent updates. In DeCAF we use a key-updatable PKE scheme, and
updates no longer replace keys, but update them. We show that the protocol
provides forward security in the same vein as most other CGKAs (albeit slightly
weaker than TreeKEM due to a potential delay until update messages are re-
ceived and processed by other users), and only needs log(t) epochs to heal, with
t being the number of corrupted parties. The latter point contrasts to CoCoA,

5 https://blog.polygon.technology/the-data-availability-problem-6b74b619ffcc/
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where it is only guaranteed that the tree healed once each compromised party
updated log(n) times. This difference is illustrated in Figure 2. The root of this
difference is the fact that, while in CoCoA we must drop one of two concurrent
updates for the same node, in DeCAF we can perform them both, which turns
out to have a significant impact on security. As we can expect t to be small
compared to n (in fact, for most of the lifetime one should hope that t = 0),
DeCAF will provide comparable security to CoCoA with fewer updates. On the
downside, as in DeCAF every user must process all updates by other users (while
in CoCoA at most log(n) other updates matter), the download communication
(from server to users) will be larger.

The above discussion suggests a trade-off between DeCAF and CoCoA, and
which one is better will depend on the context. If run using a server, CoCoA
and DeCAF are incomparable; DeCAF heals faster (log(t) vs log(n) epochs) and
therefore has lower sender communication, but CoCoA has lower recipient com-
munication (since the server crafts individual messages for each party). However,
in the decentralized setting (where we do not want to rely on a(n intelligent)
server to relay messages), CoCoA loses its advantage in recipient communication
and DeCAF is strictly better in all aspects. This is discussed in greater detail
below, where we give a comparison of DeCAF to CoCoA and other concurrent
CGKA protocols.

Our protocol is also similar to Causal TreeKEM [28] in some aspects, but
differs largely in others. In particular, the main element in common is the above-
mentioned use of updatable PKE, which is exclusive to these two protocols.
While the primitive is also part of other constructions, such as rTreeKEM [4], it
is employed in a very different way, as the focus is another (improved FS, in that
case). However, while Causal TreeKEM requires the key-update functionality to
be commutative, we do not. Furthermore, mechanisms for adding and removing
parties are different, with those used by DeCAF being both simpler and in
line with what is currently used by MLS, making a potential adoption by the
standard much easier. Another big difference is the security guarantees provided
by both protocols. Indeed, Causal TreeKEM does not consider FS and PCS
is only claimed after each corrupted user issues an update in a separate epoch,
thus needing n epochs to heal (in the model where corrupted users are not aware
of their corruption). The latter claim lacks a formal security proof. We believe
that, for static groups, Causal TreeKEM might enjoy a similar PCS guarantee
to DeCAF, but this is unclear for dynamic groups.

Maintaining a Group on Chain. Given the particular suitability of DeCAF in a
decentralized network, we cast it as making use of a blockchain, access to which
is shared by all group members. The use of blockchain for CGKA protocols is
novel as far as we know, but note that there exist previous messaging protocols
making use of it, like Elixxir [20]. We stress that this is not a requirement for the
protocol to run, which could instead simply rely on a central server, as discussed
above. Now we explain how to make use of such a structure to maintain a group.
In its simplest instantiation, a group would be initialized once some ith block
Bi in the blockchain contains the welcome messages which defines a ratchet tree
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Protocol Conc. Epochs Sender comm. Recipient comm. Cost after rec.

TreeKEM I [14] No n O(n log(n)) O(n log(n)) O(log(n))
TreeKEM II [14] Yes 2 O(n) O(n) O(n)
Causal TreeKEM [28] Yes n O(n log(n)) O(n log(n)) O(log(n))
Bienstock et al. [17] Yes 2 O(n2) O(n2) O(log(n))∗
Weidner et al. [32] Yes 2 O(n2) O(n) O(n)
CoCoA [3] Yes log(n) O(n log2(n)) O(log2(n)) O(log(n))
DeCAF (this work) Yes log(t) O(n log(n) log(t)) O(n log(n) log(t)) O(log(n))
Table 1. Overview of the cost incurred to heal t corruptions in a group of size n (it
is not known which t of the n users are corrupted). Column ‘Conc.’ indicates, whether
the protocol allows for concurrent updates, column ‘Epochs’ the number of epochs
required to recover from corruption, column ‘Sender comm.’ the cumulative uploaded
communication, column ‘Recipient comm.’ the per-user download communication cost,
and column ‘Cost after rec.’ the sender communication incurred by an update of a
single user after the recovery process has concluded. TreeKEM I corresponds to the
conservative approach of only healing by sending commits, TreeKEM II to using update
proposals to heal at the expense of extra blanking. ∗: [17] only achieves weak PCS,
obtaining PCS guarantees similar to the rest would need O(n) cost after healing, due
to extensive tainting.

Ti for some group. Users in the group can post add/remove/update messages on
the blockchain, and the ratchet tree Tj is defined to be the ratchet tree Tj−1 after
processing the protocol messages contained in block Bj . One issue with this basic
protocol is the fact that a message created referring to Ti can only be created
after learning block Bi and must be added to the next block Bi+1. Depending
on the block-arrival time of the chain, we might want to give messages more
time to get included in the blockchain. We use a simple way to achieve this by
introducing a parameter k, and only update the ratchet tree every k blocks, so
messages referring to this tree can be included in any of the k blocks following
the block specifying the tree. The parameter k should not be chosen larger than
necessary, as only one update per k-block epoch will contribute towards healing
(except if a corruption occurs in between two updates from the same epoch). If
a message is not included in time this just means it can no longer be included,
so the user can simply create a new message referring to the new ratchet tree.

To achieve FS, users should delete secret keys of outdated ratchet trees as
soon as possible. For blockchains with immediate finality (i.e., no forks) this
means old keys can be deleted immediately once a new ratchet tree is computed,
while in longest-chain protocols one should wait to delete keys until the corre-
sponding blocks are considered confirmed. Otherwise they might lose access to
the group should a fork occur.

Efficiency. We now discuss the efficiency of DeCAF in healing a group with t
compromises, and how it compares to related protocols. Throughout we refer to
Table 1. There, we distinguish between two modes of TreeKEM (Propose and
Commit). TreeKEM I corresponds to the conservative approach of only heal-
ing by sending commits (which would be expected behaviour, as argued below),
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hence is not concurrent. TreeKEM II, in turn corresponds to using update pro-
posals to heal at the expense of extra blanking. Note that an execution where,
as a rule, users achieve PCS by sending update proposals instead of commit
is not compatible with retaining logarithmic communication in the long term,
due to the large amount of blanks, as illustrated on the last column of Table 1.
Thus, the data shown for the communication complexity of the latter mode of
TreeKEM during healing is only short term. In order to have the fairest com-
parison, we consider the complexity of DeCAF in the decentralized setting and
that of CoCoA in the centralized one, in which it was proposed.

We consider the process by which the group heals from t compromises. We
first stress that since a party does not know if they are corrupted, they can-
not decide whether to update based on this. The main novelty of our protocol
is that the number of epochs that it takes to heal depends on the number of
corrupted parties, but not on relative update behaviour of users. Indeed, while
several previous protocols could heal faster than what is shown on the table in
an optimal execution, this execution needs for the users and/or the server to
coordinate and/or make “optimal” choices obliviously (since, again, there is no
reason the identities of corrupted parties are known); for instance, give prefer-
ence to the corrupted parties in the case of concurrency, or coordinate to not
concurrently commit or update. In the table we consider thus all users updating.
This is the case for TreeKEM I and Causal TreeKEM, who could heal optimally
in t epochs, and thus reduce the communication complexity accordingly; but also
for TreeKEM II, [17] and [32], for which the number of epochs is not affected,
but whose communication complexity could be reduced in an optimal execution.

One can see that, among the protocols that provide sub-linear communication
costs for sending updates over the long term, our protocol manages to heal in
the least amount of epochs. On the recipient side, our protocol performs within a
logarithmic factor of all others, except for CoCoA, which naturally outperforms
all other in this regard, due to users only storing a partial view of the tree.
We stress that, if run in the decentralized setting, CoCoA loses its advantage
in terms of recipient communication, leading to a cost of O(n log(n)2). Thus, in
this setting it is outperformed by DeCAF in every aspect.

2 Preliminaries

In this section we provide syntax for secretly key-updatable PKE, define the
notion of a blockchain-aided continuous group-key agreement and the concept
of ratchet trees.

2.1 Secretly Key-Updatable Public-Key Encryption

We now recall the definition of secretly key-updatable public-key encryption
(skuPKE) schemes [26]. A skuPKE scheme is essentially a public-key encryption
scheme, that additionally allows the sampling of pairs (∆, δ) of public and secret
update information, which can be used to update secret and public keys, in a
consistent way.
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Definition 1. A secretly key-updatable public-key encryption scheme skuPKE
consists of the tuple of algorithms (skuPKE.Gen, skuPKE.Enc, skuPKE.Dec,
skuPKE.Sam, skuPKE.UpdP, skuPKE.UpdS).
Key-generation algorithm skuPKE.Gen on input of the security parameter 1λ re-
turns a key pair (pk, sk). Encryption algorithm skuPKE.Enc on input of public
key pk and message m returns a ciphertext c. The deterministic decryption al-
gorithm skuPKE.Dec receives as input a secret key sk and a ciphertext c and
returns either a message m or the symbol ⊥ indicating a decryption failure.
Sampling algorithm skuPKE.Sam(1λ) is used to sample pairs (∆, δ) consisting of
public and secret update information. The key-update algorithms skuPKE.UpdP
and skuPKE.UpdS get as input (pk,∆) and (sk, δ), respectively, and output a
rerandomized key pk′ or sk′.

Correctness requires that updating the public and secret key of a key-pair with
the same sequence of rerandomization factors preserves compatibility of the up-
dated keys with each other. For security we essentially require that, on one hand,
messages encrypted to a secret key that was generated by updating a potentially
compromised secret key are secure as long as the secret update information to
do so was not leaked, and, on the other hand, that leaking an updated key does
not compromise ciphertexts encrypted to its predecessor as long as the secret
update information was not leaked. We defer the formal definition of correct-
ness and security, as well as, an instantiation based on the ElGamal scheme to
Appendix A.

2.2 Blockchain-aided Continuous Group-key Agreement

We now introduce the syntax of blockchain-aided continuous group-key agree-
ment (baCGKA), which allows the set up of a group G = (id1, . . . .idn) of users
sharing an evolving group key. We assume all users id have an initialization key
packet ((pkid , skid), (svkid , sskid)), known to all other users. Here, (pkid , skid)
will be used to encrypt group invitation messages to id and (svkid , sskid) to
authenticate messages from id . In practice, this would be implemented by a PKI
that allows users to deposit their and recover other users’ key packets.

A baCGKA scheme baCGKA specifies algorithms baCGKA.Init, baCGKA.Upd,
baCGKA.Add, baCGKA.Rem, baCGKA.Proc, baCGKA.Key, baCGKA.Send, and
baCGKA.Fetch. The first 6 algorithms are local, in the sense that they only affect
the executing user’s state, and generate protocol messages to be sent to the rest
of the group. The last two algorithms, on the other hand, interact with the
distributed protocol by sending transactions and fetching blocks, respectively.

We consider a setting in which an append-only data structure is used to store
the protocol messages and the data is distributed among several nodes. Users
send their protocol messages to these nodes and then these nodes run a consensus
algorithm that guarantees that they agree on their view of the data and on a
total ordering of the blocks formed by the protocol messages. A blockchain is an
example of this and that is why we use the term “blockchain-aided” CGKA.
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Initialization.User id1 runs (id1.st ,W )← baCGKA.Init(G, (pkid1 , . . . , pkidn),
sskid1

) to initialize a session . Here G = (id1, . . . , idn) specifies the group, pkidi

is the initialization encryption public-key of user id i, and sskid1
the initialization

authentication secret key of the party setting up the group. The output consists
of user id1’s initial state and a welcome message W .

Updates. To update their state, id runs (id .st , U) ← baCGKA.Upd(id .st),
updating their state and generating an update message.

Adding a group member. To add user id ′ to the group member id can run
(id .st , A)← baCGKA.Add(id .st , id ′, pkid′). Here pkid′ is the initialization public
key of id ′ and A an add message.

Removing a group member. User id can remove a (not necessarily dif-
ferent) user id ′ from the group by running (id .st , R)← baCGKA.Rem(id .st , id ′).
The output consists of an updated state and a removal message R.

Processing a block. To process a block B consisting of update, welcome,
add, and remove messages, and move to an updated state, user id runs id .st ←
baCGKA.Proc(id .st , B).

Retrieving the group key. At any point a party id in the group can extract
the current group keyK from its local state st by runningK ← baCGKA.Key(id .st).

Sending a transaction. To send a protocol message M generated by one
of the previous algorithms, user id runs baCGKA.Send(id .st ,M).

Fetch new blocks. Algorithm (B1, . . . , Bℓ)← baCGKA.Fetch(id .st) returns
all blocks added to the chain since the user last fetched them.

2.3 Ratchet Trees

Similarly to other efficient CGKA protocols, our protocol relies on a ratchet tree.
This is a directed binary tree T = (V,E), edges pointing towards the root vroot.
Intuitively, the root corresponds to the group secret and every user id has an
associated leaf vid . For node v we denote its child by v.child , its parents by
v.par , and its left and right parent by v.lpar and v.rpar . If v is a leaf we denote
its path to the root by v.path and by v.copath its copath, i.e. the set of parents
of w ∈ v.path that are not themselves in v.path.

Further, v has an associated state v.st consisting of a skuPKE key pair (v.pk,
v.sk), sets v.unm0 and v.unm1, and, if v = vid is a leaf, user id ’s signature key
pair (svkid , sskid). v.unm0 and v.unm1 are sets of unmerged leaves, capturing
the leaves below v, whose users do not know the secret key v.sk. More precisely,
v.unm0 corresponds to unmerged users such that there has not yet been an epoch
with an update affecting v since they joined the group, v.unm1 to unmerged
users, for whom a single such epoch exists. We denote by v.stpub the public part
of the state, i.e. (v.pk, v.unm0, v.unm1) and, if v = vid is a leaf, the signature
verification key svkid . The secret part v.stsec of v’s state consists of v.sk and, if
v = vid is a leaf, the signature signing key sskid . Similarly, we denote by T.stpub
the public part of the ratchet tree, i.e., (V,E) together with v.stpub for all v ∈ V .
A node’s state can also be blank, meaning its state is empty. For the purpose of
later populating this node with a new state, a blank node is considered to have
a dummy key-pair (pkc, skc), sampled when the group is created, and whose

11



secret key is public knowledge. Updates unblanking a node will then update this
dummy key-pair. Finally, we define the resolution v.res of v as v.res = {v} if v
not blank, v.res = ∅ if v is a blank leaf, and v.res =

⋃
v′∈v.par v

′.res else.

3 Protocol description

We now describe DeCAF in detail. Section 3.1 describes how the protocol pro-
ceeds in epochs determined by the blockchain’s blocks, Section 3.2 how the
structure of the ratchet tree is modified when handling changes to the group
membership, and Section 3.3 how update information for a path in the ratchet
tree is sampled and applied. Finally, in Section 3.4 we give the description of the
protocol’s algorithms. For a more formal description of DeCAF in pseudocode
see Appendix C.

3.1 Blocks and Epochs

DeCAF proceeds in epochs consisting of k blocks. More precisely the ith epoch
corresponds to blocks i·k+1, . . . , i·k+k of the blockchain. Updates are generated
with respect to the ratchet tree of the first block of the current epoch. This is
to handle potential delays of up to k blocks from the moment a user sends a
message containing group operations information to the moment it makes it
into the blockchain. At the beginning of a new epoch, the group switches to a
new ratchet tree that incorporates all updates of the last epochs, as well as the
dynamic changes made to the group. One consequence of having to accommodate
for such delays is that users need to store at least the keys at the beginning of
an epoch for the entire duration of it, and if the underlying blockchain does not
have immediate finality potentially keys from further back. This translates into
weaker FS guarantees than in the server setting as a user cannot immediately
delete keys after updating to the next state. But this difference will be marginal
as the length of an epoch (or confirmation time of the blockchain, whichever is
larger) will still be tiny compared to the duration for which users are typically
offline. A second consequence is that these delays introduce a further delay in
the execution of dynamic operations. Indeed, updating information generated
during an epoch is computed without taking into account users that were being
removed or added during that epoch. Thus, in the case of epochs with adds, the
key at the end of that epoch will not be known to the new parties, who will
need to wait one more epoch to learn it. In the case of epochs with removes,
the key at the end of that epoch will be blank, so a new key will be necessary
to establish a new group key that the removed users do not have knowledge of.
We remark that this seems to be somewhat inherent. In fact, if we set k = 1,
the situation is not that different than that in other protocols like CoCoA or
TreeKEM, where a first round of dynamic operations needs to be followed by
a subsequent one where the commit effecting the operations takes place. In
summary, using a blockchain for decentralization gives improved consistency
and security guarantees, but the delay between protocol epochs is now dictated
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by the block arrival and typical inclusion times of the underlying blockchain.
Therefore, FS is (marginally) affected by the confirmation time of blocks.

User id ’s state id .st contains the user’s identifier id , two ratchet trees T =
(V,E) and Tnext = (Vnext, Enext), lists Onext, and Upending, epoch counter ectr, a
key pair (pkc, skc), the (potentially empty) group key K, and a working copy of
the group key Knext for the next epoch.

T contains the state of the ratchet tree at the beginning of the current epoch.
More precisely, this encompasses the public states v.stpub of all nodes v ∈ V and,
if we denote id ’s leaf in T by vid , additionally the secret node states v.stsec for all
nodes v in id ’s update path vid .path. Ratchet tree Tnext serves as a working copy
for the next epoch, i.e., it contains keys updated according to the blocks already
processed in the current epoch—excluding dynamic operations. Note that the
two trees differ only in the node states, but not the general tree structure. To
clarify whether we consider nodes in T or Tnext, we will denote nodes in the
latter by vn. Onext is a list of the dynamic operations included in the blocks of
the current epoch that were already processed. These changes will be applied to
Tnext at the end of the epoch. List Upending stores pending update information.
The epoch counter ectr is used to generate and confirm protocol messages for the
current epoch. Finally (pkc, skc) is the dummy key-pair used for blank nodes.

3.2 Implementing Dynamic Operations

As a result of dynamic operations, the tree structure will change. Here, we de-
scribe this change, ahead of the protocol description.

To add parties we use the unmerged leaves technique, introduced in TreeKEM
v9[12]. Note that a new user might not be able to receive the keys for all nodes
in their path to the root the moment they are added, since all other parties
under any of these nodes might be offline at the time. Thus, new parties are
joined directly to the root, and sent the keys in their path in subsequent epochs.
More in detail, whenever id , whose path shares a node with that of a new
party id ′, generates an update in a follow-up epoch, they need to encrypt the
current key for that node, together with the seed used to sample the update
information to id ′. However, this key might already have been present in an
epoch which preceded that in which id ′ was added. Hence, sending it to id could
cause problems with forward secrecy—id must ensure that the key sent to id ′

was updated after they joined the group. Thus, this process is done in two steps.
First, upon being added to the group, id ′ is included into the set v.unm0 for all v
in their path, except for the root. Updates that apply to v, issued while id ′ is in
this set v.unm0, do not encrypt any secret information about v to id . Whenever
an epoch first contains such an update for v, however, id ′ is removed from the
set v.unm0 and added to v.unm1, at the end of the epoch. This signals that
the key at v is now safe to be communicated to id ′. Any following update that
applies to v once id ′ ∈ v.unm1, will then encrypt the current key plus the update
information to id ′. Once such an update occurs, id ′ learns the key at v, and is
then removed from v.unm1. The one exception to this is the root node vroot,
where id ′ is directly added to vroot.unm1. The reason is that all add operations
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are coupled with an update from the issuing party, thus ensuring that the root
key at the end of that epoch is updated, and thus safe to communicate to id ′.

Removes are handled via blanking, where the keys that removed users had
knowledge of get set to the dummy key-pair (pkc, skc) and get ignored by users
encrypting new secret update information δi until they get updated again.

All these changes are executed once at the end of each epoch. While all group
operations in the following epoch will take the new tree into account, added and
removed users will not be properly added and removed until the end of that
following epoch, though. This seems inherent if we want to allow concurrency:
the author of an operation concurrent with a dynamic one will be oblivious to
the latter, thus unable to prepare their operation taking it into account.

More in detail, at the end of an epoch where adds A = (A1, . . . , Aℓa), re-
moves R = (R1, . . . , Rℓr ), and modifications M = (M1, . . . ,Mℓm) to the sets
of unmerged users took place, users will call algorithm upd-tree(Tnext, A,R,M),
which will output the tree resulting from applying these operations. First, the al-
gorithm in order processes the Mi, which are lists of nodes that were affected by
updates in the current epoch (their exact definition is given in Section 3.3 below).
For every v ∈M the sets of unmerged leaves are updated to v.unm1 ← v.unm0

and v.unm0 ← ∅. Then, the algorithm will set the state of all in the paths of
any of the removed users to blank, and associate with them the dummy key-
pair (pkc, skc). Added parties will get assigned a leaf in the tree in a canonical
way, determined by the ordering of operations in the corresponding block. The
first leaves to be assigned will be blank ones, and new leaves to the right of the
existing ones will be added, if there are not enough blanked ones, adding any
internal nodes necessary to maintain the binary structure of the tree. If a new
root node must be added to accommodate for the new parties, this will be given
the dummy key-pair until updated at the end of the next epoch. Then, for each
newly-added party id i with init key pkid , it sets the state of their new leaf vid to
(pkid , svkid), and for any v ∈ li.path except the root vroot, it adds id i to v.unm0.
The root idi is added to vroot.unm1. Finally, it outputs the resulting tree.

Both blanks and unmerged leaves sets can disappear over the protocol ex-
ecution, bringing the tree back to its optimal binary structure. Whenever an
Update including new update information for a node v takes place, v will be-
come unblanked if it was not so already. Moreover, unmerged leaves in unm1

will become merged, and those in unm0 will then pass to unm1.

3.3 Updating the States of an Update Path

During group creation and updating, users will update the keys along some path.
Before describing our protocol’s algorithms, we detail this operation.

Consider user id with associated leaf vid . Update information for the keys
of vid .path is sampled using ((∆i, δi, Ci)i, κ) ← gen-path-upd(id .st). The algo-
rithm, on input of the user’s state, first fetches (v1 = vid , . . . , vr = vroot) =
vid .path with respect to ratchet tree T corresponding to the beginning of the
epoch. Let m be maximal such that id ∈ vm−1.unm0 ∪ vm−1.unm1. If no such
m exists, we set m = 2. The algorithm samples a seed s1 uniformly at random
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and computes sm = H1(s1) as well as si = H1(si−1) for i = m + 1, . . . , r. For
i ∈ {1,m, . . . , r} it samples update information (∆i, δi)← skuPKE.Sam(H2(si))
using randomness H2(si). It then for i ∈ {m, . . . , r} computes vectors of ci-
phertexts Ci = (ci,j)zj with ci,j ← skuPKE.Enc(zj .pk, si), where the nodes zj
are chosen as zj ∈ vi−1.res ∪ vi.unm1 \ vi−1.unm1 for i = m + 1, . . . , r and
zj ∈ (vi.lpar).res ∪ (vi.rpar).res ∪vi.unm1 \{id} for i = m. Finally, κ = H1(sr)
will be used to update the group key. The algorithm’s output is ((∆i, δi, Ci)i, κ).
Looking ahead, (∆i, Ci)i will be sent out as the update message and ((∆i, δi)i, κ)
saved in the user’s pending state.

When user id ′ wants to apply a path update (∆i, Ci)i with i ∈ {1,m, . . . , r}
generated by user id , they call algorithm id ′.st ← proc-path-upd(id ′.st , (∆i, Ci)i).
It first fetches user id ’s update path (vn1 = vnid , . . . , v

n
r = vnroot) = vnid .path from

the working copy Tnext of the ratchet tree. Then, for all i it updates the pub-
lic keys along the path, i.e., vni .pk ← skuPKE.UpdP(vni .pk,∆i). Here, if vni was
blank the public key of a constant dummy key-pair (pkc, skc) is used as vni .pk.
Note that this implies that vni ’s resolution is now {vni }.

Let vi denote the first node that is shared between vid .path and vid′ .path
and for which id ′ /∈ vi.unm0. Then, if the update was generated during the
current epoch, Ci contains an encryption ci,j of seed si under the public key
of some node wi,j for which the secret key is contained in id ’s copy of tree T
that is part of vid′ .st . The algorithm recovers si ← skuPKE.Dec(wi,j .sk, ci,j)
and for j ∈ {i + 1, . . . , r} computes sj = H1(sj−1) and update information
(∆j , δj) ← skuPKE.Gen(H2(sj)). It then updates the corresponding secret keys
in Tnext as vnj .sk ← skuPKE.UpdS(vnj .sk, δj), where, analogous to the above, if
vj is blank, skc takes the role of vj .sk. Finally, the algorithm computes group
key update information κ = H1(sr), incorporates it in the working copy of the
group key Knext ← Knext ⊕ κ, and adds the list M = (vm, . . . , vr) to Onext. The
latter will be used to update the sets of unmerged users at the end of the epoch.

3.4 Protocol Algorithms

To initialize a group for users (id1, . . . , idn), user id1 first generates the
dummy key-pair (pkc, skc)← skuPKE.Gen(1λ). They then set up a left-balanced
binary ratchet tree T = (V,E). Every node in T is blank, except for the leaves.
The public state of the ith leaf contains the corresponding user’s initialization
public key and their signature verification key. Further, the secrets state of
id1, vid1 .stsec, contains id1’s secret decryption and signing keys. Group cre-
ator id1 incorporates (pkc, skc), T , a copy Tnext of T , and an empty list Onext

in their state and computes ((∆i, δi, Ci)i, κ) ← gen-path-upd(id1.st). The tu-
ple ((∆i, δi)i, κ) is added to id1’s state together with epoch counter ectr = (0, 0)
(where the first coordinate denotes the epoch and the second one the block inside
the epoch) and Knext ← 0. The algorithm outputs the resulting state and wel-
come message W = (T.stpub, (∆i, Ci)i, (pkc, skc), σ, id1), where σ is a signature
of (T.stpub, (∆i, Ci)i, (pkc, skc)) under sskid1 .

To issue an update, id computes ((∆i, δi, Ci)i, κ) ← gen-path-upd(id .st).
The secret update information (δi)i and κ are stored in id ’s pending state Upending.
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Let (v1, . . . , vr) = vid .path be id ’s update path. Update messages also commu-
nicate the current secret key of nodes to unmerged users that have already
processed an update on this node. More precisely, the updating user for all i ∈
[2, . . . , r] such that id /∈ vi.unm0∪vi.unm1 computes a vector of ciphertexts C̃i =
(c̃i,j)zj , where c̃i,j = skuPKE.Enc(zj .pk, vi.sk) and zj are the nodes satisfying
zj ∈ vi.unm1. For users who just joined the group, and are thus unmerged at
the root, this ciphertext contains the key Knext. The algorithm outputs message
U = ((∆i, Ci)i, (C̃)i, ectr, σ, id), where σ is a signature of ((∆i, Ci)i, (C̃)i, ectr)
under sskid .

To add a user, when called by id , the addition algorithm outputs Ã =
(A, T.stpub, (pkc, skc), U, ectr, σ, id), containing an add requestA = “add.user(id ′)”,
where id ′ is the new user. Further, it contains a copy of the public ratchet tree
state, the dummy key pair, an update message U generated as described in the
previous paragraph, the epoch counter, a signature σ of the message (A, T.stpub,
(pkc, skc), U, ectr) under sskid , and the identity id .

To remove a user, when called by user id , the removal algorithm outputs
R̃ = (R, ectr, σ, id), with R = “remove.user(id ′)” for id ′ the removed user, and
where σ is a signature of (R, ectr) under sskid .

To process a block, user id processes a block B = (W,U, Ã, R̃) consisting
of (a potential) welcome message W , update messages U = (U1, . . . , Uℓu), add
messages Ã = (Ã1, . . . , Ãℓa), and removal messages R̃ = (R̃1, . . . , R̃ℓr ) as follows.
We first describe the case of users already in the group. User id starts by process-
ing the update messages given by the block as follows. Update message Uℓ for
ℓ ∈ [ℓu] has the form ((∆i, Ci)i, (C̃)i, ectr, σ, id). First, the user checks whether
the signature σ verifies under svk′id and that ectr matches the value stored in
id .st . If one of the checks fails the update is discarded.

If id = id ′, i.e., Uℓ is an update generated by the processing user, id re-
trieves from Upending the corresponding update information ((∆i, δi)i, κ) with i =
{1,m, . . . , r} for some m, deletes it from Upending, and applies it to their update
path vnid .path = (vn1 , . . . , v

n
r ) with respect to Tnext as v

n
i .pk ← skuPKE.UpdP(vni .pk,

∆i) and vni .sk ← skuPKE.UpdS(vni .sk, δi) (note that this updates all key pairs
on id ’s update path for which the user has access to the secret key). Then they
set Knext ← Knext ⊕ κ. Else, let vu1 , . . . , vut be the nodes in vid .path ∩ vid′ .path
such that id ∈ vui

.unm1 and ui ≥ m. Then, C̃ui
contains an encryption of vui

.sk
under id ’s leaf key vid .pk. For i ∈ [u1, . . . , ut], id uses the corresponding secret
key to recover vui

.sk and adds it to vui
.st in T and Tnext unless the state already

contains a secret key. Then id calls id .st ← proc-path-upd(id .st , (∆i, Ci)i), which
updates the keys affected by the update in the working copy Tnext of the ratchet
tree (note that the secret keys added in the previous step ensure id is able to
decrypt the ciphertext relevant to them), the working copy of the group key, and
the list of merges to be implemented at the end of the epoch.

After processing all update operations, id processes adds Ã and subsequently
removes R̃. First, they check that the signature included in a message verifies
and that the message was generated for the current epoch, discarding it if not.
In the case of an add message Ãℓ = (Aℓ, T.stpub, (pkc, skc), U, ectr, σ, id) the
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user processes the update message U as described above and appends Aℓ to
Onext. For valid remove message R̃ℓ = (Rℓ, ectr, σ, id) the request Rℓ is added
to Onext. Finally, if B was the last block of an epoch, i.e., B is the ith block
with i = 0 mod k, then id prepares the transition to the next epoch. To this
end, id recovers from Onext the ordered lists of merges M = (M1, . . . ,Mℓm),
adds A = (A1, . . . , ALa), and removes R = (R1, . . . , RLr ) that were included in
the blocks of the current epoch. Then they apply these changes to the working
copy of the ratchet tree Tnext ← upd-tree(Tnext, A,R,M) to be used in the next
epoch, update T ← Tnext, increase the epoch counter to ectr ← ((ectr)1 + 1, 0),
set Onext to the empty list, and update the group key to K ← H1(“key”,Knext),
and afterwards Knext ← H1(“next”,Knext).

Let us now describe the second case, that is, that of users not in the group. We
distinguish two further cases according to whether id (a) was added in an add op-
eration or (b) in the group initialization (i.e., W ̸= ⊥). In case (a) let Bp

1 , . . . , B
p
k

be the blocks of the previous epoch. Then one of these blocks contains an add
message Ã = (A, T.stpub, (pkc, skc), U, ectr, σ, id) with A = “add.user(id ′, id)”
being the add request for user id . The user, after validating the signature and
epoch, incorporates T.stpub, (pkc, skc) in id .st . As T.stpub is the ratchet tree of
the previous epoch, id brings it up to date by processing, in order, the blocks
Bp

1 , . . . , B
p
k . Here, as they do not have access to any secret keys of the tree, they

only update the public keys. After this operation T and its copy Tnext match the
current epoch and the user adds to vid .stsec their init decryption key and sskid ,
and then processes the current block B = (U,A,R) as described above.

Finally, assume that id was added as part of the group initialization, i.e., case
(b) above, with W = (T.stpub, (∆i, Ci)i, (pkc, skc), σ, id1). In this case id checks
that the signature σ verifies under svkid1

, rejecting it if this is not the case. If id
is the user who issued the initialization message, they recover ((∆i, δi)i, κ) from
their state, apply the update information to their update path, set Knext ← κ,
andK ← H1(“key”,Knext). If id did not issue the initialization message, they in-
corporate (T.stpub, (pkc, skc)) in their state, add to vid .stsec their init decryption
key and sskid , setKnext to the zero string, and run id ′.st ← proc-path-upd(id ′.st ,
(∆i, Ci)i) to update Tnext. K is set to H1(“key”,Knext), Onext is initialized as
empty list, as there are no merge, add, or remove operations yet, and ectr ←
(0, 0).

We conclude by describing the remaining operations of the CGKA scheme.
To extract the current group key, a user id fetches K from its state, and deletes
this value afterwards. To send a protocol message, id simply uses the underlying
blockchain protocol to send it as a transaction to the blockchain. To fetch the
last blocks of operations, id uses the underlying blockchain protocol to retrieve
the blocks added to it since it last did.

4 Security

To analyze the modified protocol, we essentially use the security model from [27],
which allows the adversary to act partially active and fully adaptive. The only
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differences in the setting of baCGKA are that 1) users are processing concurrent
messages, and 2) no messages will ever be rejected. It is however possible that
messages get lost and hence sent but not processed.

Asynchronous baCGKA security is defined through a game between an adver-
sary and a challenger, where the adversary can request to see arbitrary execution
patterns of the protocol, i.e. decide on how many parties to initiate a group key
agreement, then dictating parties to update their state (by posting a respective
message on the blockchain), remove/add other parties, download and process
updates, and also to start/end corruption of users (which leaks the users entire
state during the corrupted period). The adversary can decide on this sequence
of actions fully adaptively and can request arbitrary actions to be performed
concurrently. For security (see Appendix Bfor the formal definition), intuitively,
we aim to guarantee that all group keys which were not leaked to the adversary
via (processing of updates using) corrupted keys remain indistinguishable from
random.

To precisely define the set of group keys for which we can guarantee security,
similar to previous work, we define a safe predicate. Intuitively, in our protocol
a group key will be considered safe if all users to which this key was communi-
cated (i.e., the current group members in the view of the party generating the
group key) have either performed a single update (with no-one else performing
a concurrent update) or participated in at least ⌊log(C)⌋+1 concurrent updates
(C denoting the total number of corrupted users since the last time the group
key was secure) since their last corruption, and furthermore have processed a
further own (potentially concurrent) update before the next corruption. This
is in contrast to the predecessor CoCoA [3], which also allows for concurrent
updates, but requires each party to perform ⌊log(n)⌋+ 1 concurrent updates (n
being the group size, which can be assumed significantly larger than the number
C of corrupted parties). In Appendix Bwe prove the following theorem.

Theorem 1. If the secretly key-updatable public key encryption scheme used in
DeCAF is (εEnc, t)-IND-CPA-secure (t denoting the runtime, εEnc the advantage
of adversaries) and the used hash functions are modeled as random oracles, then
DeCAF is (O(εEnc ·2(nQ2)2), t, Q)-baCGKA-secure, where Q denotes the number
of oracle queries made in the security game.
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A Secretly Key-Updatable Public-Key Encryption

In this section we provide a formal security definition for secretly key-updatable
PKE and given an instantiation based on the ElGamal PKE scheme.

A.1 Formal Definition of Correctness and Security

Correctness essentially requires that updating the public and secret key of a key-
pair with the same sequence of rerandomization factors preserves compatibility
of the updated keys with each other. More precisely let λ, k ∈ N, and each pair
(pk0, sk0) ∈ [skuPKE.Gen(1λ)], and (∆0, . . . ,∆k), (δ0, . . . , δk) be vectors with
(∆i, δi) ∈ [skuPKE.Sam(1λ)] for all i. Further, for i ∈ {0, . . . , k} let pki+1 =
skuPKE.UpdP(pki, ∆i) and ski+1 = skuPKE.UpdS(ski, δi). We require that for
all messages m and all i, PKE.Dec(ski,PKE.Enc(pki,m)) = m.

Regarding security, we say that skuPKE is secure with respect to an upper
bound L on the number of key updates, if it satisfies the following security
guarantees:

Definition 2. Let (pk0, sk0) ← skuPKE.Gen(1λ) and also let (∆0, . . . ,∆Q−1),
(δ0, . . . , δQ−1) with (∆i, δi) ← skuPKE.Sam(1λ), and let s and si denote the
random coins used by skuPKE.Gen and skuPKE.Sam, respectively. For i ∈ [Q−1]0
define pki+1 = skuPKE.UpdP(pki, ∆i) and ski+1 = skuPKE.UpdS(ski, δi). Then,
skuPKE is IND-CPA secure, if for any choice ρ, j−, j+ with −1 ≤ j− < ρ ≤
j+ ≤ Q and messages m0,m1 it holds that

skuPKE.Enc(pkρ,m0) ≈c skuPKE.Enc(pkρ,m1) ,

even given access to (pki)i∈[L]0 , (ski)i∈[Q]0\[j−+1,j+], (∆i)i∈[Q−1]0 , (δi)i∈[Q−1]0\{j−,j+},
as well as random coins s if j− ≥ 0, and (si)i∈[Q−1]0\{j−,j+}.

Our variant of IND-CPA is incomparable to the one required for two party
ratcheting [26]; in this work the update information can be generated using ad-
versarially chosen randomness, and the challenge ciphertext encrypts a message,
that contains secret update information, giving the security notion a circular
flavor. On the other hand, only one secret key is ever exposed to the adversary,
while in our notion several are. Compared to [4] our security notion is stronger;
in this work the authors use skuPKE mainly to achieve improved forward secrecy.
Accordingly, their variant of IND-CPA roughly requires that access to updated
secret keys does not allow to compromise encryption to previous keys, as long
as the update information used to generate the corrupted key remains secure.

A.2 Instantiation from CDH

A very efficient instantiation of skuPKE can be constructed in prime order
groups (G, g, p). The scheme first presented in [26] is essentially the Hashed
ElGamal scheme [1], where update information is of the form (∆ = gδ, δ) with
δ ∈ Zp uniformly random, and key pairs (X = gx, x) are updated as x + δ and
X · ∆ respectively. In this section we give a proof of the scheme’s IND-CPA
security in our model.
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Definition of the scheme. The key-generation, encryption and decryption algo-
rithms work as in the Hashed ElGamal scheme. That is, skuPKE.Gen(1λ) outputs
a pair (pk, sk) = ((G, p, g, gx,H), (G, p, g, x,H)), where G is a group of prime or-
der p (the bit length of p is λ), g is a generator of G, x is sampled at random
from Zp and H is a hash function that takes elements in G as input and outputs
strings in {0, 1}λ. An encryption of a message m ∈ {0, 1}λ using the public key
gx is a pair (gy,H((gx)y) ⊕ m) where y is sampled at random from Zp. The
decryption algorithm takes as input a ciphertext (c1, c2) and a private key x and
outputs H((c1)

x)⊕ c2.
The sampling algorithm skuPKE.Sam(1λ) outputs a pair (∆ = gδ, δ) where δ

is sampled from the uniform distribution over Zp. Public-key-update algorithm
skuPKE.UpdP gets as input (gx, ∆) and outputs gx∆, while skuPKE.UpdS takes
(x, δ) as input and outputs x+ δ.

The security proof is based on a standard IND-CPA security proof of Hashed
ElGamal like the one that can be found on textbooks and it is provided for com-
pleteness. It relies on the hardness of the computational Diffie-Hellman (CDH)
problem and uses the random oracle model.

We say that the CDH problem is hard with respect to skuPKE.Gen if for
every PPT algorithm A there exists a negligible function ϵ(n) such that

Pr[A(G, q, g, gx, gy) = gxy] ≤ ϵ(n),

where the probabilities are taking over the randomness used by skuPKE.Gen to
generate (G, q, g) and x and y are sampled uniformly from G.

Theorem 2. If the CDH problem is hard with respect to skuPKE.Gen and H is
modeled as a random oracle, the Hashed ElGamal skuPKE scheme is IND-CPA
secure.

Proof. Let ρ, j−, j+ be a set of indices such that −1 ≤ j− < ρ ≤ j+ ≤ L and A
be a PPT adversary trying to distinguish

skuPKE.Enc(pkρ,m0) ≈c skuPKE.Enc(pkρ,m1)

as in Definition 2.
Let (gy,H((pkρ)

y)⊕mb) denote a ciphertext. As the hash function is modeled
as a random oracle, A cannot distinguish the ciphertexts with probability greater
than 1/2 unless it makes a query to the random oracle on (pkρ)

y. Let E denote
the event that such a query is made. Therefore the probability that A is able to
distinguish the two distributions is bounded by 1/2 + Pr[E].

We now show that Pr[E] is negligible. We define an algorithm B that takes
as input a CDH challenge (G, p, g, gx, gy) and uses A as a subroutine. It sam-
ples b ← {0, 1} and (∆i, δi) ← skuPKE.Sam(1λ) for i ∈ {0, . . . , j− − 1} ∪
{j− + 1, . . . , j+ − 1} ∪ {j+ + 1, . . . , L − 1}. It chooses gx as the ρ-th public

key, (pkj− , skj−) = (gr
−
, r−) and (pkj++1, skj++1) = (gr

+

, r+) where r−, r+

are uniformly chosen in Zp. It computes ∆j− = gx(
∏ρ−1

i=j−+1 ∆i)
−1g−r− and

22



∆j+ = g−x(
∏j+−1

i=ρ ∆i)
−1gr

+

. The remaining public and private keys are chosen
accordingly, that is,

pki = pki+1 ·∆−1
i for i ∈ {ρ− 1, . . . , 0}

pki = pki−1 ·∆i−1 for i ∈ {ρ+ 1, . . . , L}
ski = ski+1 − δi for i ∈ {j− − 1, . . . , L}
ski = ski−1 + δi−1 for i ∈ {j+ + 2, . . . , L}

Then B sends to A (pki)i∈[L]0 , (ski)i∈[L]0\[j−+1,j+], (∆i)i∈[L−1]0 , (δi)i∈[L−1]0\{j−,j+}
as well as the random coins used by skuPKE.Gen and skuPKE.Sam as specified
in Definition 2.

As an observation, B can actually compute those secret keys because it first
chooses skj− and skj++1, and then it proceeds recursively using the δi that it
sampled before. The construction also guarantees that the pairs (pki, ski) satisfy
gski = pki.

When A makes a random oracle query u ∈ G, B sends a random string su
and keeps a list of pairs (u, su). When A sends two messages m0,m1, B replies
with a ciphertext (gy, k ⊕mb) where k is sampled uniformly at random.

Finally, B chooses a random pair in the list of random oracle queries A made
and outputs the first component.

Since the view of A as an IND-CPA adversary and when run as a subroutine
of B before it makes a query to the random oracle on (pkρ)

y is the same, the
probability that E happens is the same in both cases. This is because if A
does not make said query then B perfectly simulates the IND-CPA game. Let
Q denote the number of random oracle queries. By construction, when A is
run as a subroutine of B, Pr[E]/Q ≤ Pr[B(G, q, g, gx, gy) = gxy] ≤ ϵ(λ) for
some negligible function by hypothesis. Hence the probability that A is able to
distinguish the two distributions is bounded by 1/2 + Q · ϵ(λ), i.e., the Hashed
ElGamal skuPKE scheme is IND-CPA secure. ⊓⊔

B Security Model and Proof

B.1 Security model and safe predicate

To analyze the modified protocol, we essentially use the security model from [27],
which allows the adversary to act partially active and fully adaptive. The only
differences in the setting of baCGKA are that 1) users are processing concurrent
messages, and 2) no messages will ever be rejected. Regarding 2) it is however
possible that messages get lost and hence, even if a user generated an update it
might not process this update.

Definition 3 (Asynchronous baCGKA Security). The security for baCGKA
is modeled using a game between a challenger C and an adversary A. At the be-
ginning of the game, the adversary queries create-group(G) and the challenger
initialises the group G with identities (id1, . . . , idn′). The adversary A can then
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make a sequence of queries, enumerated below, in any arbitrary order. On a high
level, add-user and remove-user allow the adversary to control the structure
of the group, whereas store-on-blockchain and process allow it to control the
scheduling of the messages. The query update simulates the refreshing of a local
state. Finally, start-corrupt and end-corrupt enable the adversary to corrupt
the users for a time period. The entire state and random coins of a corrupted
user are leaked to the adversary during this period.

1. add-user(id , id ′): a user id requests to add another user id ′ to the group.
2. remove-user(id , id ′): a user id requests to remove another user id ′ from

the group.
3. update(id): the user id requests to refresh its current local state γ.
4. store-on-blockchain(q1, . . . , ql): for queries q1, . . . , ql, all of which must be

actions of the form ai ∈ {create-group,add-user, remove-user,update}
by some users id i (for i ∈ [l]), this action stores the outputs of the queries
in the next block of the blockchain.

5. process(ℓ′, id): for (B1, . . . , Bℓ) ← baCGKA.Fetch(id .st) and ℓ′ ∈ [ℓ], this
action forwards all blocks B1, . . . , Bℓ′ to id, who immediately processes them.

6. start-corrupt(id): from now on the entire internal state and randomness
of id is leaked to the adversary, with the exception of sskid .

6

7. end-corrupt(id): ends the leakage of user id’s internal state and random-
ness to the adversary.

8. challenge(ℓ∗): A picks a block Bℓ∗ . Let K0 denote the group key that is
established by processing the first ℓ∗ blocks B1, . . . , Bℓ∗ in the blockchain and
K1 be a fresh random key; if there is no group key established after block
Bℓ∗ ,

7 then set K0 = K1 := ⊥. The challenger tosses a coin b and – if the
safe predicate below is satisfied – the key Kb is given to the adversary (if the
predicate is not satisfied the adversary gets nothing).

At the end of the game, the adversary outputs a bit b′ and wins if b′ = b. We
call a baCGKA scheme (ϵ, t, Q)-baCGKA-secure if for any adversary A making
at most Q queries of the form update(·) and running in time t it holds

AdvbaCGKA(A) := |Pr[1← A|b = 0]− Pr[1← A|b = 1]| < ϵ.

We define the safe predicate to rule out all trivial winning strategies, such as
challenging a block while some current group member is corrupted.

Definition 4 (Critical window, safe user). Let L be the length of the blockchain,
C the number of users A corrupts throughout the security game, and ℓ∗ ∈ [L].
For user id, define q−id ∈ [Q]0 to be maximal such that the following holds:

– There exist c := ⌊log(C)⌋ + 1 blocks Bℓ1id
, . . . , Bℓcid

in distinct epochs within
the first ℓ∗ blocks in the blockchain such that each contains an update query
aiid := update(id) (i ∈ [c]) that

6 Note, we assume all operations to be done instantly, i.e. parties can only be corrupted
before or after they have done some operation.

7 This could happen if the root of the tree is blanked, e.g. if no update was stored on
the blockchain yet.
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1. was generated by id in or after query q−id ,

2. is successful, i.e. refers to block Bℓ̄iid
with ℓ̄iid = ℓiid − (ℓiid mod k).8

If there do not exist c such blocks then we set q−id = 0, the first query.

– There exists a block Bℓ−id
with ℓ−id ≤ ℓ∗ that contains an update a−id :=

update(id) for user id for which 1) and 2) hold, but the entire epoch does
not contain any more successful updates for corrupted users. We call such
an update a single update.

Furthermore, let q+id be the first query that invalidates id’s current keys, i.e.,
in query q+id , id processes an initial block Bℓ+id

of some subsequent epoch9 (i.e.

ℓ+id/k = ⌊ℓ+id/k⌋ > ⌊ℓ∗/k⌋) such that one of the blocks Bℓ∗+1, . . . , Bℓ+id
contains

an update a+id := update(id) referring to block Bℓ+id−k. If id does not process

any such query then we set q+id = Q, the last query.
We say that the window [q−id , q

+
id ] is critical for id with respect to challenge ℓ∗.

Moreover, if the user id is not corrupted at any time point in the critical window,
we say that id is safe w.r.t. ℓ∗.

In Section B.3 we discuss a strenghtening of this definition, that our protocol
would also satisfy, but which we omit for now for the sake of simplicity. Similar
to [27], we define a group key as safe if all the users in the group are individually
safe, i.e., not corrupted in their critical windows.

Definition 5 (Safe predicate). Let K∗ be a group key established by process-
ing the first ℓ∗ blocks of the blockchain and let G∗ be the set of users which end
up in the group after block Bℓ∗ was processed. Then the key K∗ is considered
safe if for all users id ∈ G∗ we have that id is safe w.r.t. ℓ∗ (as per Definition 4).

B.2 Security of the protocol

Theorem 3. If the secretly key-updatable public key encryption scheme used in
DeCAF is (ϵEnc, t)-IND-CPA-secure and the used hash functions are modeled as
random oracles, then DeCAF is (O(ϵEnc · 2(nQ2)2), t, Q)-baCGKA-secure.

In order to prove Theorem 3, we first argue that a safe group key is not leaked
to the adversary via corruption. We make this formal in the following definition
and Lemma 1. In fact, we define leakage of arbitrary secret information which
the adversary could potentially learn through corruption.

8 Recall, by definition of the process operation in our protocol, condition 2) is necessary
for the update aiid in block Bℓi

id
to be indeed processed by users processing block

Bℓi
id
.

9 Recall, in order to be able to process messages in the current epoch, a user keeps the
keys of the first round of the current epoch in its state and will only release these
keys once it proceeded to the next epoch.

25



Definition 6 (Secure keys, update information, and seeds). For a seed
s we say s is leaked if it is sampled by a user while this user is corrupted, or it
is encrypted to the public key associated to a leaked secret key, or s was derived
through s := H1(s

−) and s− is leaked.
A key Knext derived through Knext := K−

next ⊕ κ is leaked if it is contained in
a user’s state while this user is corrupted, or K−

next and κ are both leaked. If
Knext was derived through Knext := H1(“next”,K

−
next) then it is leaked if it is

contained in a user’s state while this user is corrupted, or K−
next is leaked. A

group key K that was derived through K ← H1(“key”,Knext) is leaked if K is
contained in a user’s state while this user is corrupted, or Knext is leaked.
Let δ be secret update information that was generated by first sampling a seed
s, then computing s′ := Hi

1(s) for some i ∈ [⌈log(n)⌉]0, and then computing
(∆, δ)← skuPKE.Sam(H2(s

′)). The secret update information δ is leaked if δ is
contained in a user’s state while this user is corrupted, or s′ is leaked.
The secret key skc of the dummy key pair (pkc, skc) is always considered leaked.
For a user’s initial key pair (pk, sk), sk is leaked if sk was in the user’s state
while the user was corrupted. Let sk′ be a secret key that was generated as sk′ ←
skuPKE.UpdS(sk, δ). The key sk′ is leaked if sk′ is contained in a user’s state
while this user is corrupted, or sk and δ are both leaked.
A secret key/secret update information/seed is called secure if it is not leaked.
We say that a corruption of some user id does not leak key sk, if leakage of sk
is independent of that corruption of id.

Remark 1. Note that the above definition only defines security for honestly gen-
erated secret keys/secret update information/seeds. This is enough for our pur-
pose, since in our security model the adversary can only act through honest
users. Furthermore, the definition might look circular at first sight; however,
this is not the case since any seed associated with some node in the tree is only
encrypted to keys that are associated with nodes lower in the tree.

Lemma 1. Assume there are no collisions among seeds, update information
and keys throughout the security experiment. If a group key K∗ is safe as per
Definition 5 then it is secure as per Definition 6.

In order to prove Lemma 1, we rely on the fact that the users who can
derive the challenge key K∗ are exactly those in G∗, where the set of group
members G∗ is defined to be the users for which either an add-user(·, id) op-
eration was included in block ℓa ≤ ℓ∗ − (ℓ∗ mod k), or id ∈ G for the ini-
tial group set up by create-group(G) (in which case we let ℓa = 0); and
such that no remove-user(·, id) was included in block ℓr, with ℓa + k − (ℓa

mod k) ≤ ℓr ≤ ℓ∗ − k − (ℓ∗ mod k).

Note that, on the one hand, any operation included in a block and accepted
by users must come from a user itself, as the adversary is not allowed to create
messages itself. On the other hand, since all users share a common view of the
blockchain, they will accept the same operations and have the same view of the
group members set.
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Lemma 2. Assume there are no collisions among seeds, update information and
keys throughout the security experiment. Then corruption of users not in G∗ does
not leak K∗.

Proof. Assume K∗ is leaked. We show that K∗ must have been leaked through
corruption of some user id ∈ G∗. By definition, either a user who had K∗ in its
state was corrupted or the key K∗

next used to derive K∗ was leaked. In the first
case, since all users share a common view of the blockchain and a user holding
K∗ must have processed the update in which K∗ was generated, clearly this user
must be in G∗ and hence leakage of K∗ is independent of any further corruptions
of users outsideG∗. Now, consider the second case. Similarly, a user holdingK∗

next

in its state must be in G∗, and the same is true for a user holding K−
next if K

∗
next

was derived as K∗
next := H1(“next”,K

−
next). Hence we consider the case where

K∗ is leaked because for some Knext, which was derived as Knext = K ′
next ⊕ κ,

both K ′
next and κ were leaked.

Let id /∈ G∗ and assume for contradiction that id during the game learns a
seed that was used to derive κ. Clearly, since id /∈ G∗, id cannot have produced
κ itself. Let ℓ ≤ ℓ∗ be the last block index such that ℓ ≡ 0 mod k, and let ℓ− =
ℓ − k. We must have that either no add-user(·, id) operation was included in
any block before time ℓ, or that a block ℓr ≤ ℓ− contained a remove-user(·, id)
operation. Now, if there was never an add-user(·, id) before or at time ℓ (for
convenience, here we count time in blocks on the blockchain), no seed was ever
encrypted to an initkey of id at any time before ℓ. Moreover, if id is added to
the group after ℓ, it will not be sent any key or new seed until it belongs to the
set v.unm1 for some v on the update path of the user generating κ, meaning
that at least one update affecting the v took place after ℓ, thus updating its key
at this time. Similarly, if such an operation was included in a block in [ℓ+ 1, ℓ∗]
(if such an interval exists), id will still not receive any encryption by block ℓ∗,
and will thus learn no seeds used to derive κ either.

Assume, thus, that id was removed in block ℓr. Since the group key K∗ is
generated w.r.t. time ℓ, there must have been an entire epoch between [ℓr, ℓ] (the
first following the epoch to which ℓr belongs to, and where any updates took
place), where all new secret update information values were encrypted under
keys outside the then blanked path of id . In particular, id cannot have learnt a
seed that was used to derive κ.

This implies that κ was leaked through corruption of a user in G∗ at a time
when it did not yet process the update generating K∗. By correctness of the
scheme, this user must be able to derive K ′

next, hence K ′
next is leaked through

the same corruption and, hence, leakage of K∗ is independent of any corruption
of users outside G∗. ⊓⊔

Proof (Proof (of Lemma 1)). By Lemma 2 leakage of the challenge key K∗ is
independent of corruption of users outside G∗, hence we only have to consider
users id ∈ G∗ in the following. Since the challenge group key K∗ is safe, all users
id ∈ G∗ are safe, i.e. not corrupted during their respective critical windows. This
implies for every user id ∈ G∗ that 1) id is not corrupted during the current
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epoch; 2) either id was not corrupted before it processed Bℓ∗ , or id successfully
updated in at least c := ⌊log(C)⌋+1 epochs before the current one and after its
last corruption (where C denotes the number of corrupted parties), or id had a
successful single update in some previous epoch; and 3) after it processed Bℓ∗ ,
either id was never corrupted again, or an update for id gets included into a
block after Bℓ∗ and id processed the initial block of the subsequent epoch before
it’s next corruption started.

We will first argue that due to 3), corruption of safe users after they already
processed Bℓ∗ does not leak the challenge key K∗. To this aim, note that through
successfully updating and processing the initial block of the subsequent epoch,
a user completely refreshes its state and, in particular, does not have any of the
keys associated with the tree established in block Bℓ∗ or with any previous tree
state in its state, neither does it have any seeds used to derive such keys in its
state. Furthermore, all the seeds used to derive the keys in the tree established
in Bℓ∗ were encrypted to tree states associated with blocks before block Bℓ∗ ,
and the seed used for the successful update was freshly sampled after processing
block Bℓ∗ and deleted when processing the initial block of the subsequent epoch.
On the other hand, if for some node on the update path the associated seed
derived during such a successful update is leaked through another user, then
also the key associated to that node in the beginning of the respective epoch is
already leaked through that user. In other words, while leakage of some update
information could allow an adversary who is given the new key to reverse that
update and derive the old key, this old key is already leaked through the same
corruption that leaked the update information. This proves that corruption of
safe users after they processed Bℓ∗ does not leak K∗.

Now, consider a node v in the tree established in block Bℓ∗ and assume that
every party under v, that was corrupted before it processed Bℓ∗ , since corruption
ended successfully updated in at least i previous epochs or had a successful single
update in some previous epoch, and furthermore every party under v, that was
corrupted after it processed Bℓ∗ , successfully updated after it processed Bℓ∗ and
processed the initial block of the subsequent epoch before its next corruption
starts. We will show by induction on i that if the secret key, which is associated
to v (resp. the challenge key in case v is the root) after block Bℓ∗ was processed,
is leaked, then at least 2i of the corrupted parties {id1, . . . , idC} have update
paths through v. Since for i = ⌊log(C)⌋+ 1 we have that 2i > C, it follows that
the key associated to node v cannot be leaked. Hence, for v = vroot we obtain
that K∗ is secure.

For the inductive argument, note that for i = 0 the statement is true since
if the key associated to v is leaked there must be at least 1 = 20 corrupted
parties with an update path through v. Now, let i ≥ 1 and assume that the
statement holds for all integers smaller than i. Let l be the epoch in which the
last of the corrupted parties with update paths through v updates for the ith
time or had a successful single update. During this epoch, key skv at node v is
replaced with skuPKE.UpdS(. . . skuPKE.UpdS(skuPKE.UpdS(skv, δ1), δ2) . . . , δJ),
where the rerandomization terms δj and sj stem from the J parties which update
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node v during epoch l. The group key K, on the other hand, which is associated
with the root of the tree, is derived as H1(“key”,Knext) where Knext is replaced
with Knext⊕

⊕
j∈[J] κj . Note that in order for skv (resp. K∗ if v is the root of the

tree) to be leaked it is necessary that the adversary learns all δj (resp. κj), which
implies that for all j ∈ [J ] the seed used to derive δj (resp. κj) is leaked, i.e.
was either derived from a leaked seed, or encrypted to a leaked key. We consider
the three cases that after epoch l − 1 (a) there are at least two nodes v1, v2 in
the resolution of the parents of v whose associated keys are leaked, (b) there is
exactly one node v′ in the resolution of the parents of v whose associated key is
leaked and at least one update path in epoch l goes through v′, and (c) there is
exactly one node v′ in the resolution of the parents of v whose associated key is
leaked and all of the update paths of epoch l do not go through v′. Note that
one of the cases has to occur since otherwise the key associated to v would be
secure after epoch l.

Consider case (a). After epoch l − 1, by minimality of l, it must hold that
either 1) every corrupted party under v1 and v2 has updated in at least i − 1
epochs or had a successful single update, or 2) all but one corrupted party under
v1 and v2 has updated in at least i epochs or had a successful single update.
In case 1), we obtain by the induction hypothesis that at least 2i−1 corrupted
parties have update paths through v1 and v2 respectively. In turn there are
at least 2i corrupted parties under v. In case 2), we have that all corrupted
users under vb for some b ∈ {1, 2} have successfully updated in at least i epochs
preceding l−1 or had a successful single update before epoch l−1. Furthermore,
the number of corrupted users below vb is strictly smaller than the number of
corrupted parties below v. We denote by l′ the epoch in which the last of the
corrupted parties with update paths through vb updates for the ith time or had
a successful single update and can now do the same case distinction for epoch l′

and node vb.

In case (b), for every update path of epoch l which goes through v′ the seed
used to derive the δj is encrypted to secure keys. Thus, in order for skv to be
leaked it is necessary that the seeds used to derive the key associated to node v′

were leaked as well. This implies that the key associated to v′ is leaked even
after epoch l. Thus we can set l′ ← l and make the same case distinction for v′.

Now consider case (c) and let v′ be the only node in the resolution of the
parents of v that has a leaked associated key. Node v′ is not part of the update
paths of epoch l. Thus, every corrupted party with update path through v′ must
have updated in at least i epochs before epoch l or had a successful single update
before epoch l, and further by definition of l the number of such parties is strictly
smaller than the number of corrupted parties below v. Analogous to above let
l′ denote the epoch in which the last corrupted party under v′ updated for the
ith time. We can now make the same case distinction as above.

Summing up, if case (a)1) occurs, then at least 2i of the corrupted par-
ties {id1, . . . , idC} have update paths through v. If, on the other hand, cases
(a)2), (b) or (c) occur, then there exist a parent v′ of v and an epoch l′ such
that all corrupted parties under v′ updated at least i times or had a single up-
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date, and the last to do so did in epoch l′. Note that repeated application of the
case distinction reduces the height of node v′ in the tree. Thus if we assume that
case (a)1) never occurs, at some point we end up with a leaf node v′ such that
the associated key is leaked and the user associated with that leaf either was not
corrupted or updated at least once since its last corruption; in both cases the
associated key would be secure. Thus, at some point case (a)1) has to occur,
which implies the desired statement. ⊓⊔

Lemma 1 in place, the proof of Theorem 3 follows the security proof from
[27]. The main difference here is that we reduce baCGKA security of DeCAF
to the IND-CPA security of the underlying secretly key-updatable public-key
encryption scheme skuPKE as per Definition 2 (as opposed to IND-CPA security
of a simple public-key encryption scheme as in [27]). Looking into the details
of our protocol, another difference is that the update information for the group
key is derived by hashing a seed associated to the root of the challenge tree, but
this update information is never encrypted (as opposed to [27], where the seed
is directly applied to derive the new group key); this slight modification in our
current protocol will allow for quite some simplification of the proof from [27].

Repeating the entire rather technical argument of [27] would be outside the
scope of this work; instead we give a high level overview on the proof of [27] and
discuss how the proof can be adapted.

Proof (Proof sketch (of Theorem 3)). The main idea in [27] is the following: If
H1 and H2 are modeled as random oracles, then all the public-key pairs (pk, sk)
sampled through skuPKE.Gen as well as the update information (∆i, δi) have the
same distribution as if they were sampled independently (to ensure consistency,
the random oracles can be programmed accordingly). Furthermore, by Lemma 1,
the challenge key K∗ := H1(“key”,Knext) is secure, i.e. K∗ is not contained in
a user’s state while the user is corrupted and (the seed) Knext is secure.

Now, if the adversary never queries a secure seed to the random oracles H1

and H2, then the group key K∗ is identically distributed to a uniformly random,
independent string. Thus, any adversary that has advantage > 0 in breaking the
security of DeCAF must query the oracles H1 or H2 on some secure seed; we call
this event E.10 As long as E doesn’t happen, every secure seed is information-
theoretically hidden unless encrypted to some (secure) key. The idea for our
(fully black-box) reduction R now is to embed an IND-CPA challenge (with
two uniformly random seeds as messages) for skuPKE and hope that the query
that makes E turn true will be the seed that was encrypted in the challenge
ciphertext; when E turns true, the reduction stops the experiment. To see why
this works, note that by Definition 6, for every secure key pair (pk∗, sk∗) there
exist ρ, j−, j+ with −1 ≤ j− < ρ ≤ j+ ≤ Q such that

– (pk∗, sk∗) was derived by ρ times updating either some dummy key pair
(pk0, sk0) or an init key of some user; we write (pkρ, skρ) := (pk∗, sk∗),

10 In fact, this property of our scheme would allow us to prove security based on a
weaker security assumption than IND-CPA security for skuPKE, where given an
encryption of a random message the adversary has to compute the message.

30



– secret keys (ski)i∈[j−+1,j+] as well as secret update information δj− , δj+ are
secure.

Now, as long as E does not happen, the secret update information δj− , δj+
is identically distributed to freshly sampled, independent update information,
hence, the reduction can indeed embed an IND-CPA challenge for skuPKE within
the baCGKA security experiment.

To bound the security loss involved by our reduction, note that seeds associ-
ated to leaves are information-theoretically hidden unless compromised through
corruption, and also the respective other message used in the IND-CPA security
experiment is information-theoretically hidden as long as E did not happen11.
Thus, except with negligible probability, whenever the reduction R correctly
guessed ρ∗, j−, j+ and embedded the challenge key pair (pkρ, skρ) of the skuPKE
challenge and the two seeds at the right position in the challenge tree, then R
succeeds in embedding its challenge and turning the adversary into an adver-
sary against IND-CPA security of the skuPKE scheme. More precisely, before
the game starts, R guesses uniformly at random the query q∗ in which the seed
s∗ that makes event E turn true is generated. Furthermore, for the key pk∗ to
which s∗ will be encrypted during the game, R guesses uniformly at random the
position v∗ in the tree as well as the number of updates ρ∗ through which the
key pair (pk∗, sk∗) was derived, as well as the indices j−, j+ for the skuPKE chal-
lenge. Thus, R succeeds with probability 1/(2nQ4), and additionally taking into
account unmerged leaves, and the probability of a collision between the seeds,
we end up with a security loss of roughly 2(nQ2)2+(log(n)Q)2/|H2|, where |H2|
is the size of the range of H2.

B.3 A stronger safe predicate

The safe predicate in the section above, or, in particular, the definition of critical
window, is written with respect to the users corrupted by A since the beginning
of the security game. Here, we will briefly argue that, while we presented it like
this for simplicity, in practice one would want to consider a stronger version,
that takes into account the users corrupted only from the last time a group key
was safe. We will argue that such a strenghthening follows easily, if only at the
cost of a more convoluted presentation.

Example: A safe group key not covered by the safe predicate. First, to see why
the predicate defined above (Definitions 4 and 5) is suboptimal, observe that by
defining it in such a fashion, we exclude several situations where a key is safe
(but would be marked as unsafe by said predicate). This is because it ignores the
possibility of healing at some point throughout the game execution, some time
before the challenge query. For instance, consider the game execution where the
adversary corrupts every user at some point, but does so by corrupting users two

11 For simplicity of exposition, we ignore the issue of unmerged leaves here; the general
case including unmerged leaves and therefore multiple encryptions of the same seed
follows by a hybrid argument, losing another multiplicative factor n in security.
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by two, in order from left to right, say. Further, A ends each pair of corruptions
before starting the next and, moreover, in between each pair of corruptions, A has
the last two corrupted users, concurrently, issue two updates each, thus healing
their state. I.e., A first corrupts id1 and id2, ends the corruption of both of them,
makes them issue updates q1, q2 respectively, calls store-on-blockchain(q1, q2),
makes both users process this last block, then issue new updates q′1, q

′
2, and then

process the block resulting from store-on-blockchain(q′1, q
′
2). Done that, then

A corrupts id3 and id4, stops the corruption, and proceeds in the same fashion as
before, making these two users update twice, before corrupting id5 and id6, and
so on. In this execution of the game, it is clear that the group key will be secure
every time a pair of users execute their pair of concurrent updates. However,
from the time the adversary has corrupted 4 or more users, the predicate above
will consider any future group key insecure, as C ≥ 4 corruptions would require
either c ≥ 3 concurrent updates or a single update, from each corrupted user.
Since each user only ever updates twice, and those updates are concurrent, the
safe predicate will indeed never be satisfied.

A stronger safe predicate. This issue, however, can be solved rather easily by
introducing a slightly modified, recursive definition of the safe predicate safe(ℓ∗)
associated to block ℓ∗ (equivalently, to its corresponding epoch). For this, to ℓ∗

we associate ℓ−(ℓ∗) < ℓ∗, the last block before ℓ∗ that satisfied safe(ℓ−), where
we set ℓ−(ℓ∗) = 0 if no such block before ℓ∗ exists. Now, safe can be defined
as in Section B.1, the only difference being that in Definition 4 the number
of corrupted users C(ℓ∗) is defined as the number of users A corrupts between
ℓ−(ℓ∗) and ℓ∗ (instead of the number of all users corrupted up to ℓ∗).

In order to see that the proof would carry over to this new predicate, note
that we would only need to ensure that Lemma 1 still holds. Namely, that if the
stronger safe predicate holds for key K∗, then K∗ is not leaked. This can indeed
be showed through an inductive argument on the sequence of secure epochs. Note
that the base case, i.e. ℓ−(ℓ∗) = 0 corresponds to the already existing predicate
and is taken care of by the current proof. For the inductive step, one would need
to show that key K∗ is secure (as per Definition 6) given that the group key
defined by ℓ−(ℓ∗) is secure. This follows from the existing proof together with
two observations, which we will briefly argue in the paragraphs below. On the one
hand, the fact that the ratchet tree defined by processing blocks up to the safe
one ℓ−(ℓ∗) exclusively contains keys that have not leaked. On the other, the fact
that if a seed set by any update included in any block after ℓ−(ℓ∗) is encrypted
under a key pk belonging to a tree associated to some block ℓ̃ < ℓ−(ℓ∗), then
pk also belongs to the tree associated to ℓ−(ℓ∗). These two observations ensure
that the leakage of any key generated during the period between ℓ−(ℓ∗) and ℓ∗

can be traced back to a corruption taking place during that same period. This,
in turn, allows to use essentially the same proof of Lemma 1 to argue for the
inductive step.

To see why the first observation is true, one can look at the simpler case: if
u and v are two nodes in the ratchet tree, with u being the child of v, then it
is not possible for the secret key at v to be leaked, while the secret key for u is
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secure (since, by assumption, the group key at ℓ−(ℓ∗) is secure, the statement
follows). Indeed, let skv be leaked and qv be the time at which A first learnt
the value of a secret key at v (and such that from qv to the present there was
no time when A did not have knowledge of the secret key at v). At this time,
A must have learnt this key through a corruption, and so must have also learnt
the secret key at u at the time. However, since A has knowledge of the key at v
throughout the interval from qv to the time skv was set, they, in particular, must
also have learnt all seeds used to derive secret update informations updating the
key at v during that time. Consider now the different secret update informations
evolving the key at u. Any such δ that comes from an update by a user below v
is derived from a seed, itself derived by a hash evaluation of a seed that A learnt.
For the other δ coming from the other sub-tree under u, the corresponding seed
gets encrypted to a key at v, which A also knows, by assumption. This shows
that A would also know the key at u, i.e. it is leaked.

The second observation follows easily from the consistency properties that
the blockchain ensures, in particular the agreement of all users on the transcript
of the execution so far. Indeed, for the statement of the above observation to
not be true, an update consistent with the transcript so far up to some block
ℓ̂ ≤ ℓ̃ would have needed to be included and processed by users in some block
between ℓ̃ and ℓ−(ℓ∗), which is not possible.

C Pseudocode

In this section we provide the pseudo-code of the protocol algorithms from Sec-
tion 3.4 and the auxiliary algorithms from Section 3.3. DeCAF’s initialization,
update, add, and remove procedures can be found in Figure 3. The algorithm
used to process a block is in Figure 4, and Figure 5 contains helper functions
used to generate and process new key material for a path.
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Alg DeCAF.Init(G, (id1, sk, ssk), (id1, . . . , idn))
00 (pkc, skc)← skuPKE.Gen(1λ)
01 T ← gen-tree(id1, . . . , idn)
02 vid .stsec ← (sk, ssk)
03 st ← (id1, T, T, ∅, ∅, (0, 0), (pkc, skc), 0, 0))
04 ((∆i, δi, Ci)i∈(1,...,r), κ)← gen-path-upd(st)
05 (v1, . . . , vr)← vid .path

T

06 For i ∈ [r]:
07 vi.pk ← skuPKE.UpdP(pkc,∆i)
08 vi.sk ← skuPKE.UpdS(skc, δi)
09 Knext ← κ
10 K ← H1(“key”,Knext)
11 Knext ← H1(“next”,Knext)
12 st ← (id , T, T, ∅, ∅, (0, 0), (pkc, skc),K,Knext)
13 σ ← Sig(ssk, (T.stpub, (∆i, Ci)i∈(1,...,r), (pkc, skc)))
14 W ← (T.stpub, (∆i, Ci)i∈(1,...,r), (pkc, skc), σ, id1)
15 Return (st ,W )

Alg DeCAF.Add(st , id ′)
16 (id , T, Tnext, Onext, Upending, ectr, (pkc, skc),K,Knext)← st
17 (st , U)← DeCAF.Upd(st)
18 σ ← Sig(sskid , (“add.user(id

′)”, T.stpub, (pkc, skc), U, ectr))
19 A← (“add.user(id ′)”, T.stpub, (pkc, skc), U, ectr, σ, id)
20 Return (st , A)

Alg DeCAF.Upd(st)
21 (id , T, Tnext, Onext, Upending, ectr, (pkc, skc),K,Knext)← st
22 ((∆i, δi, Ci)i∈(1,m,...,r), κ)← gen-path-upd(st)
23 Upending ← ((δi)i∈(1,m,...,r), κ)
24 (v1, . . . , vr)← vid .path
25 \\Encryptions to unmerged users

26 For i ∈ (m, . . . , r):
27 If id /∈ vi.unm0 ∪ vi.unm1:
28 C̃i ← ∅
29 For z ∈ vi.unm1:
30 If vi = vroot:
31 C̃i

∪← skuPKE.Enc(z.pk,Knext)
32 Else:
33 C̃i

∪← skuPKE.Enc(z.pk, vi.sk)
34 σ ← Sig(sskid , ((∆i, Ci)i∈(1,m,...,r), (C̃i)i∈(m,...,r), ectr)

35 U ← ((∆i, Ci)i∈(1,m,...,r), (C̃i)i∈(m,...,r), ectr, σ, id)
36 Return (st , U)

Alg DeCAF.Rem(st , id ′)
37 (id , T, Tnext, Onext, Upending, ectr, (pkc, skc),K,Knext)← st
38 σ ← Sig(sskid , (“remove.user(id

′)”, ectr))
39 R← (“remove.user(id ′)”, ectr, σ, id)
40 Return (st , R)

Alg DeCAF.Key(st)
41 (id , T, Tnext, Onext, Upending, ectr, (pkc, skc),K,Knext)← st
42 Return K

Fig. 3. DeCAF Algorithms for initializing the group, generating updates, adding and
removing users. Algorithm gen-tree takes as input a list of user identifiers and outputs
the ratchet tree with leaves having public state given by the identifiers and correspond-
ing public keys. They employ the helper functions detailed in Fig. 5. For the algorithm
that describes how to process the operations see Fig. 4.
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Alg DeCAF.Proc(st , B)
00 (W,U,A,R)← B
01 \\Case: id is already part of the group

02 If st ̸= (id , sk, ssk):
03 (id , T, Tnext, Onext, Upending, ectr, (pkc, skc),K,Knext)← st
04 For Ui ∈ U :
05 ((∆i, Ci)i∈(1,m,...,r), (C̃i)i∈(m,...,r), ˜ectr, σ, ĩd)← Ui

06 Require Verify(svkĩd , σ) = 1 ∧ ˜ectr[0] = ectr[0]
07 If ĩd = id :
08 ((δi)i∈(1,m,...,r), κ)← Upending

09 \\Update nodes in Tnext

10 (vn1 , . . . , v
n
r )← vnid .path

11 vni .pk ← skuPKE.UpdP(vni .pk,∆i)
12 vni .sk ← skuPKE.UpdS(vni .sk, δi)
13 Knext ← Knext ⊕ κ
14 Upending ← ∅
15 Else:
16 j ← min{i : vni ∈ vnid .path ∩ vn

ĩd
.path}

17 For i ∈ (m, . . . , j − 1):
18 If id ∈ vni .unm1:
19 κ← ctxt decrypt(C̃i, T )
20 If vni = vnroot:
21 Knext ← κ
22 Else: vni .sk ← κ
23 st ← proc-path-upd(st , (∆i, Ci)i∈(1,j,...,r))
24 For Ai ∈ A:
25 (“add.user(id ′)”, T.stpub, (pkc, skc), U, ˜ectr, σ, ĩd)← Ai

26 Require Verify(svkĩd , σ) = 1 ∧ ˜ectr[0] = ectr[0]
27 Execute lines 05 to 23 with input U

28 Onext
∪← {“add.user(id ′)”}

29 For Ri ∈ R:
30 (“remove.user(id ′)”, ectr, σ, ĩd)← Ri

31 Require Verify(svkĩd , σ) = 1 ∧ ˜ectr[0] = ectr[0]

32 Onext
∪← {“remove.user(id ′)”}

33 If ectr = (e1, e2) = (e1, k − 1) :
34 ectr ← (e1 + 1, 0)
35 Tnext ← upd-tree(Tnext, Onext)
36 Onext ← ∅
37 T ← Tnext

38 K ← H1(“key”,Knext)
39 Knext ← H1(“next”,Knext)
40 Else ectr ← (e1, e2 + 1)
41 st ← (id , T, Tnext, Onext, Upending, ectr, (pkc, skc),K,Knext)

42 \\Case: id is not part of the group yet

43 Else:
44 (id , sk, ssk)← st
45 \\Sub-case: id is added during the initialization of the group

46 If W ̸= ⊥:
47 (T.stpub, (∆i, Ci)i∈(1,...,r), (pkc, skc), σ, id1)←W
48 Require Verify(svkid1 , σ) = 1
49 T.stpub ← T.stpub
50 T.stsec ← ∅
51 vid .stsec ← (sk, ssk)
52 st ← (id , T, T, ∅, ∅, (0, 0), (pkc, skc), 0, 0)
53 st ← proc-path-upd(st , id1, (∆i, Ci)i∈(1,...,r))
54 K ← H1(“key”,Knext)
55 Knext ← H1(“next”,Knext)
56 st ← (id , T, Tnext, Onext, Upending, ectr, (pkc, skc),K,Knext)
57 \\Sub-case id is added as part of an add operation

58 \\Let Bp
1 , . . . , B

p
k be the blocks from the previous epoch e

59 Else:
60 Require ∃j ∈ [k] , Ãℓ ∈ A ∈ Bp

j : Ãℓ = (“add.user(id)”, . . . )

61 (“add.user(id)”, T.stpub, (pkc, skc), U, ˜ectr, σ, ĩd)← Ãℓ

62 Require Verify(svkĩd , σ) = 1 ∧ ˜ectr[0] = e
63 T.stpub ← T.stpub
64 T.stsec ← ∅
65 Process public part blocks Bp

1 , . . . , B
p
k

(i.e., as in lines 33 to 35 in proc-path-upd for updates,
and lines 24 to 41 of DeCAF.Proc)

66 vid .stsec ← (sk, ssk)
67 st ← (id , T, T, ∅, ∅, e, (pkc, skc), 0, 0)
68 DeCAF.Proc(st , B)
69 Return st

Fig. 4. DeCAF Algorithm to process a block. We write the internal state of users not
yet part of the groups as st = (id , sk, ssk), i.e., containing their identifier, together
with the secret decryption and signing keys.
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Alg gen-path-upd(st)
00 (id , T, Tnext, Onext, Upending, ectr, (pkc, skc),K,Knext)← st
01 (v1, . . . , vr)← vid .path
02 \\Determine height at which user is merged into tree

03 If u = max{i : id ∈ vi−1.unm0 ∪ vi−1.unm1} ̸= ⊥:
04 m← u
05 Else: m← 2
06 \\Generate seeds and update tokens

07 s1
$←

08 For i ∈ (1,m, . . . , r):
09 If i = m : si ← H1(s1)
10 Elseif i > m : si ← H1(si−1)
11 (∆i, δi)← skuPKE.Sam(H2(si))
12 Ci ← ∅
13 \\Encrypt seeds

14 Zm ← vm.lpar .res ∪ vm.rpar .res ∪ vm.unm1 \ {vid}
15 For z ∈ Zm:
16 Cm

∪← skuPKE.Enc(z.pk, sm)
17 For i ∈ (m+ 1, . . . , r):
18 If vi.lpar = vi−1 : wi ← vi.rpar
19 Else: wi ← vi.lpar
20 Zi ← wi.res ∪ vi.unm1 \ wi.res
21 For z ∈ Zi:
22 Ci

∪← skuPKE.Enc(z.pk, si)
23 κ← H1(sr)
24 Return ((∆i, δi, Ci)i∈(1,m,...,r), κ)

Oracle proc-path-upd(st , ĩd , (∆i, Ci)i∈(1,dots,r̃))
25 (id , T, Tnext, Onext, Upending, ectr, (pkc, skc),K,Knext)← st
26 (vn1 , . . . , v

n
r )← vnid .path

27 \\Determine height at which sender was merged into tree

28 If u = max{i : ĩd ∈ vni−1.unm0 ∪ vni−1.unm1} ≠ ⊥:
29 m← u
30 Else: m← 2
31 ((∆m, Cm), . . . , (∆r, Cr))← ((∆2, C2), . . . , (∆r̃, Cr̃))
32 \\Update public keys

33 For i ∈ (1,m, . . . , r):
34 If vni .isblank = 1 : vni .pk ← skuPKE.UpdP(pkc,∆i)
35 Else: vni .pk ← skuPKE.UpdP(vni .pk,∆i)
36 \\Decrypt seed at intersection of paths and update secret keys

37 j ← min{i : vni ∈ vnid .path
Tnext ∩ vn

ĩd
.path ∧ id /∈ vni .unm0}

38 sj ← ctxt decrypt(Cj , T )
39 For i ∈ (j, r):
40 If i ̸= j : si ← H1(si−1)
41 (∆i, δi)← skuPKE.Gen(H2(si))
42 If vni .isblank : vi.sk ← skuPKE.UpdS(skc, δi)
43 Else : vni .sk ← skuPKE.UpdS(vi.sk, δi)
44 \\Update group key

45 κ← H1(sr)
46 Knext ← Knext ⊕ κ
47 \\Keep track of which unmerged-users sets need to be updated

48 Onext
∪← {vm, . . . , vr}

49 st ← (id , T, Tnext, Onext, Upending, ectr, (pkc, skc),K,Knext)
50 Return st

Fig. 5. Helper Functions for DeCAF. The function ctxt decrypt takes as input a list of
ciphertexts C encrypting the seed of a given node to all nodes in its resolution and a
ratchet tree T , and outputs the decryption of the ciphertext in C that corresponds to
a node whose secret key is included in T .
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