Secure Storage with Deduplication

John Best Wayne Hineman Steven Hetzler* Guerney Hunt
IBM Research IBM Research Facebook IBM Research

Charanjit S. Jutla
IBM Research

Abstract

We describe a new secure storage scheme that facilitates deduplication. The scheme is also
proved secure in the universal-composability model. It is a single server scheme, and the basic
scheme does not prevent against off-line dictionary attacks if the server is compromised. How-
ever, if a global secret key is shared amongst users of the organization, and this key is never
stored at the server, we also get protection against off-line dictionary attacks even if the server
is compromised. The UC security model for deduplication is based on an earlier work of Liu,
Asokan and Pinkas, Proc. CCS 2015. The scheme obtains additional optimization by employing
the XTS-AES mode of encryption in the public random permutation model.

Another upshot of the analysis is that one can first MAC and then encrypt using XTS mode
and attain authenticated encryption, avoiding the pitfalls cautioned against by Hugo Krawczyk,
in the work “How Secure is SSL?”, CRYPTO 2001.

1 Introduction

In this work, we describe a new secure storage scheme that facilitates deduplication. The scheme is
also proved secure in the universal-composability (UC) model [3]. It is a single server scheme, and
the basic scheme does not prevent against off-line dictionary attacks if the server is compromised.
However, if a global secret key is shared amongst users of the organization, and this key is never
stored at the server, we also get protection against off-line dictionary attacks even if the server is
compromised.

The scheme achieves additional storage efficiency by using XTS-mode of encryption, which is a
restriction of IAPM [6] to just message-secrecy. A not-so-efficient version of the basic scheme could
be described as follows: A client hashes the plaintext file using a random oracle (such as SHA-2) to
obtain an AES key k. It then encrypts the file using this key k. As this is deterministic encryption, it
leads to easy deduplication. This key k can also be stored at the server, encrypted under a personal
(AES) secret key of the user. The encryption of the file could use IAPM to get (deterministic)
authenticated-encryption. However, in our scheme the additional IAPM authentication-tag need
not be computed (nor stored), as authentication can be obtained from the key k itself. Instead of
using k, which was obtained by invoking the random oracle on the plaintext file, as an AES key, we
use it as the whitening key for the XTS scheme. The AES-key for the XTS scheme can be set to a

*This research was done while the author was at IBM Research.

global public random key (see e.g. [11, 8], where it is defined as IAPM mode in the public random
permutation model). On decryption of the ciphertext file, the resulting plaintext is again hashed
and checked against k for authentication. We prove that this suffices for authentication. The public
random permutation model, however, does not entirely match the security bounds achievable as by
usual private random permutations, in particular because the adversary has access to the underlying
random permutation as an oracle and can query it in an offline fashion. However, since the size
of the files are limited (to say no more than 232 128-bit blocks), and each file uses a fresh random
whitening key, the possibility of an offline attack is limited to a probability of success of at most
279,

In a more advanced scheme, the random oracle is replaced by a pseudo-random function (say,
HMAC), and the HMAC key is chosen randomly and known only to the members of the organiza-
tion. The XTS public random key can also be kept secret from everyone except members of the
organization.

The UC security definitions [3] of secure storage with deduplication are inspired by password-
authenticated key-exchange (PAKE [2]) definitions [4], and in particular from the work [12]. Since
there is a single server, and ciphertexts and encrypted keys are stored at the server, our definitions
are akin to asymmetric PAKE definitions [5]. We prove that our scheme realizes the UC ideal
functionality.

Finally, another upshot of the analysis is that one can first MAC and then encrypt using
XTS mode and attain authenticated encryption, avoiding the pitfalls cautioned against by Hugo
Krawczyk [10]

2 Introduction to Ideal Functionalities

Cryptographic protocols are inherently multi-party protocols where the parties jointly compute
some function. While the issue of liveness of protocols falls in the realm of distributed computing,
we are interested here in issues related to privacy (secrecy) of the parties, as well as the related
issue of authentication.

These multi-party privacy constraints of a protocol are best defined by hypothetically em-
ploying an ideal trusted third party. In the simplest form of this definitional paradigm, all parties
hand their respective inputs to the ideal trusted third party, which then computes the function on
these inputs as desired by the protocol being defined, and then hands portions of the output to the
individual parties, the portions restricted to what is desired by the protocol.

Note that in the above we assumed that the parties have a secure and persistent tunnel to
the ideal third party, but this being just a definition this assumption is not a concern. In a
more general setting, this definitional paradigm also allows the ideal third party to leak certain
information to an Adversary (without loss of generality, we always assume that there is only one
monolithic adversary). This maybe a necessary part of the definition as otherwise there may not
be any implementation possible in the real world (i.e. a distributed implementation without the
ideal third party). In a further generalization, the ideal third party may also take directives and/or
inputs from the Adversary.

Finally, to allow a compositional definition, we assume that all parties (except the ideal
third party, but including the Adversary) are driven by an all encompassing entity called the
Environment. In other words, the inputs of the parties (possibly related) are actually provided

by the Environment so as to cover all possible scenarios. This notion of Environment is not necessary
to understand ideal functionalities, but it will become important when we discuss compositional
security.

Ideal Functionality Fppup

Participants: An arbitrary set of users { P, },c y and adversary S interact with functionality Fppup
(or F).

Initiate: The functionality initializes variable INDEX to zero. It also initializes a dictionary D of
plaintext-indexset pairs to empty. This dictionary is keyed by a plaintext-message, and its
value is a (non-empty) set of indices. It also initializes a dictionary L to empty. This dictionary
is keyed by an index and its value is a pair consisting of a userid and a plaintext message.
It also initializes the set A of pending adversarial queries to empty. This maintains a list of
messages that the adversary may have preemptively queried.

Read-Write:
On receiving an input (store, P;, M) from P;,

1. increment the variable INDEX,

2. check if M is in the dictionary D. If so, insert INDEX into the set associated with
M in D. If not, then create a new entry in dictionary D with key M and indexset
{INDEX}.

3. Add the key-value pair (INDEX, (P;, M)) to the dictionary L, and return INDEX to
the user P;.

4. Check if M is in the set A. If so, output P;, M and the indexset associated with M

in D to the adversary S. If not, then just output P; and the set of indices associated
with M in D to the adversary S.

On receiving an input (read, P;, j) from P;, check if there is entry (j, (P;, M*)) in dictionary
L. If so, then return M* to P;, else return L to P;.

Adversarial Action:

On receiving an input (corrupt-message,j) from adversary S, replace any entry with key
j (and userid F;) in L by (j,(P;, 1)).

On receiving an input (move-message, j1, jo) from adversary S, if entries with keys j; and
jo in L, say, (j1,(P;, M7)) and (ja, (P;, M3)), have the same userid P;, then replace
the entry corresponding to key ja in L by (ja, (P;, M7)), remove js from the indexset
corresponding to key MJ in D, and insert j» into the indexset corresponding to key M7
in D. If the userids P;; and P;5 are not the same in entries corresponding to j; and j
respectively in L then replace the entry corresponding to jo in L by (ja, (Pia, 1)).

On receiving an input (test-message, M) from adversary S, check if M is in the dictionary
D. If so, return the index-set associated with M to S. Else, insert M into the set A.

Figure 1: A functionality for Secure Storage with Deduplication

2.1 Introduction to Simulation Based Security Definition

While the previous section only described a way to define the desired goal of a protocol using
an ideal third party, one can also define security of a real-world protocol by relating it to this

ideal functionality. Note that the ideal functionality has precisely characterized what output each
legitimate party gets, and what is leaked to the Adversary. It also characterizes directives that
an Adversary unavoidably controls, e.g. whether a message should be delivered to a counter-party
or not. Thus, if we can show that the real world protocol has the same characteristics, we have
managed to prove desired security constraints of the real protocol.

A real world protocol between some parties is said to realize an ideal functionality, if for
every adversary in the the real world protocol, there is an adversary in the ideal world protocol
(i.e. involving the ideal trusted third party representing the ideal functionality) such that the
Environment interacting with the parties and the two adversaries (the real world and the ideal
world) cannot distinguish between the two scenarios'. Thus, in this definition the Environment
gets the same amount of information in the real and the ideal world. Since the ideal world precisely
defined what the Environment gets (actually what the Adversary gets, which it reports back to the
Environment), one concludes that also in the real world protocol the Environment (and hence the
adversary) gets only the precisely defined information.

More rigorous definitions can be found in [3].

Such realization proofs are done by a simulation argument. Given a real world protocol, and
an Adversary A in the real world, the proof constructs a Simulator S that simulates the real world
protocol to A. To do this simulation, S is assumed to reside in the ideal world, and hence has access
to the Ideal Functionality (as an ideal world Adversary S). If such a simulation is possible, then
we have managed to construct for each adversary A in the real world an adversary A’ (which is
obtained by juxtaposing S and A) in the ideal world, such that the Environment can not distinguish
the two scenarios, and hence, by definition, security follows.

2.2 Ideal Functionality for Secure Storage with Dedup

The ideal functionality for secure storage with depduplication is given in Fig 1.

3 Real World Scheme for Secure Storage with Deduplication

We will assume a secure keystore functionality Fkg, which for each user P; returns an AES key
(which was initialized to a randomly chosen AES key). We will also assume a random oracle
functionality Fro.

The real word scheme will be given in the hybrid-Fro ks model. The scheme will maintain a
storage consisting of a few dictionaries. The real-world adversary A will have full read-write access
to this storage.

The storage will maintain two dictionaries, D*, L*. The dictionary D* will have a unique
counter value ¢ attached to each entry as a dictionary key, the counter initialized to zero, and
incremented every time a new entry is added to D*. The value associated to £ in the dictionary is
a ciphertext c.

!The main idea is the generalization of the concept of zero-knowledge. A protocol is said to be zero-knowledge
if for every adversary in the real world that gains some private knowledge there exists another adversary which can
gain the same knowledge from an ideal execution of the protocol. From this, one can then conclude that since the
ideal execution leaks (almost) zero information which is meant to be private, then the adversary in the real world
also gets zero information. Thus, the real protocol is secure in the sense that all information which is meant to be
private remains private.

The dictionary L* is keyed by a (unique) index, and the value is a triple consisting of a userid
Pj, a counter value /, and a cryptographic-tag 7.

As mentioned above, the scheme maintains a counter that is used as a key in dictionary D*.
The scheme also initializes INDEX to zero,, and uses this as index values.

We will also use a XTS-like encryption mode but with public random permutation,instead of
private random permutation (see Section 5 for details). The security of such a scheme is proved
in [11, 8] (see Section 5.3). The scheme is initialized by choosing a fresh random AES key k. The key
k is made public by giving it to the adversary .A. The mode derives its security from a secret h being
used as a whitening-key (also known as a tweak key). The encryption phase of the mode takes as
input the public key k, a message M and an IV and returns a ciphertext ¢ = XTS-ENc(k, h, M).
The decryption phase takes as input the public key &, a ciphertext ¢ and an IV and returns a
plaintext M = XTS-DEc(k, h,¢).

Now we describe the real-world read-write operations. It is described in Fig 2.

Real-World Scheme DDUP

On receiving an input (store, P;, M) from P;,

1. Increment the variable INDEX,

2. let h = Fro(M). Obtain ¢ = XTS-ENcC(k, h, M). Search for ¢ in D*. If there is already
an entry, record the counter value ¢. Else, increment counter, to obtain ¢, and create a
new entry in D* with this counter value ¢, and set the value associated with this entry
as c.

3. Fetch the key k; associated with P; from Fks. AES-Encrypt h with AES key k; to
obtain 7. Insert in dictionary L*, an entry with key INDEX and value a triple consisting
of (P, 4,T).

4. Return to P; the index value INDEX.
On receiving an input (read, P;, j) from P,

1. Search the key j in the dictionary L*. If there is no entry, return L. If there is an entry,
say (Pj«,,7), then if 4* # 4, return L. If the userid matches, i.e. i* = 4, then fetch key
k; for P; using Fks.

2. Next obtain h by AES-decrypting 7 with key k;.

3. Search for key ¢ in D*, and let the corresponding value be c¢*. Obtain M =
XTS-Dec(k, h, ¢).

4. Using the Random oracle, obtain h* = Fro(M).

5. If hx # h return L. Otherwise, return M.

Figure 2: A scheme realizing Fppup in hybrid-Fkgs ro model

4 Awuthenticated Encryption in Public Random Permutation Model

We give definitions of authenticated encryption schemes in a public random permutation model.
Let Coins be the set of infinite binary strings. Let KC {0,1}* be the key space, and D be a

distribution on the key space.

Definition A (2-oracle, probabilistic, symmetric, stateless) authenticated-encryption scheme, with
block size n, key space I, and distribution D, consists of the following:

e initialization: All parties exchange information over private lines to establish a private key
k € K. All parties store k in their respective private memories.

e message sending with integrity: Let F and D be efficient 2-oracle algorithms, with F
taking as input a key & (in K), COINS (in Coins), and a plaintext binary string and outputting
a binary string, and D taking as input a key k and a ciphertext binary string and outputting
either L or a binary string. The two oracles take n-bits as input and produce n-bits as output.

In addition E and D have the property that if oracles O; and Oy implement inverse functions of
each other, then for all k € K, for all COINS and P,

DO Oz (EOO>(k, comns, P)) = P

We will usually drop the random argument to E as well, and just think of F as a probabilistic
algorithm. The security of such a scheme is given by the following two definitions, the first defining
confidentiality under chosen plaintext attacks, and the second defining message integrity. In the
security definitions, we will count the length of plaintext inputs in terms of n-bit blocks. Thus, a
plaintext input of length m bits will be considered to have length [m/n] blocks.

Definition (Chosen-Plaintext Attack Security[1))

For any n > 0, consider a 3-oracle probabilistic adversary A. Consider an authenticated-
encryption scheme with key-space IC, key distribution D and 2-oracle algorithms E and D. For any
n-bit permutation 7, let REALy be the oracle that on input P returns Emm! (k, P), and IDEAL] be
the oracle that on input P returns Em (k,0/Pl). The IND-CPA advantage Adv4 of the adversary
A in the public random permutation model is given by

]Pr[k<—D, Aﬂﬂr’l,REALE — 1] - Pr[k%D;Aw’ﬂil’IDEALE — 1”

where the probabilities are over choice of 7 as a random permutation on n-bits, and choice of k
according to D, other randomness used by E, and the probabilistic choices of A.

An authenticated-encryption scheme with block size n is said to be (¢, ql, g2, m, €)-secure
against chosen plaintext attack in the public random permutation model if for any adversary A as
above which runs in time at most ¢ and asks at most gl queries to 7 and 7', and at most ¢2
queries to the third oracle (these totaling at most m blocks), its advantage Adv 4 is at most e.

Definition (Message Integrity): Consider an adaptive 3-oracle (probabilistic) adversary A running
in two stages. Adversary A has access to oracles O1, Oy and an encryption oracle EOl’OQ(kz,). In
the first stage (find) A asks r queries of the encryption oracle. Let the oracle replies be C1, ..., C".
Subsequently in the second stage, A produces a cipher-text C’, different from each C*, i € [1..r].
The adversary’s success probability is given by

Succy £ Pr[D™ ' (k,C") #.1]

where the probability is over choice of O; as a random permutation on n-bits (and O3 as its inverse),
and choice of k according to D, other randomness used by E, and the probabilistic choices of A.

An authenticated-encryption scheme with block size n is (¢, g1, ¢2, m, €)-secure for message in-
tegrity in the public random permutation model if for any 3-oracle adversary A running in time
at most ¢ and making at most ¢l queries to @7 and Qs and at most ¢2 queries to the encryption
oracle (these totaling m blocks), its success probability is at most e.

5 IAPM (and XTS) in Random Permutation Model

5.1 Preliminaries

Definition 1 (Keyed Hash Functions): For any finite set H, an H-keyed (m,n)-hash function
‘H has signature H : H x {0,1}" — {0,1}".

Definition 2 (e-XOR-Universal Keyed Hash Function) [9] For any finite set H, an H-keyed
(m,n)-hash function H is called an e-XOR-Universal keyed hash function, if for every m-bit value
M, and every n-bit value ¢, Pry[H(h, M) =] < ¢, and further if for every pair of distinct m-
bit values M1 and M2, and every n-bit value ¢, Prp[H(h, M1) @ H(h, M2) =] < €, where the
probabilities are over choosing h uniformly from H.

An example 27"-XOR-universal keyed (2n,n) hash function is built using Galois field GF(2"),
where H(h, (a,b)) =h*a+Db.

Definition 3 (min-entropy) For a random variable X defined on {0, 1}", its min-entropy is the
minimum over all n-bit strings = of log (1/ Prx[X = z]).

While in this work we are mostly focused on XTS, which does not provide message authentica-
tion, but since it is built from the authenticated-encryption mode IAPM, we will define the schemes
using IAPM. The XTS scheme just ignores the MAC-tag computation.

We will prove our results for more general (abstract) IAPM-like schemes, but to serve as a
background we briefly review the definition of TAPM from [6, 7]. In the following, the operator “+”
will stand for integer addition, and “@®” for n-bit exclusive-or. Since with wide permutations on n
bits, the “MAC” tag produced by the permutation may need to be truncated, the authentication
check in decryption is defined slightly differently (as in OCB [13] and [11]). In the following, when
using n-bit permutations, we will refer to n-bit strings as a block.

Definition 4 Given a permutation f from n bits to n bits, an H-keyed (2n,n)-hash-function g,
where H is the set of all v-bit strings (v < n), the (deterministic) function E-1APMy o: H x {0,1}" x
({0,1}™)* — ({0,1}™)7 is defined as follows:

e Let the input to E-IAPMf, be h € H, an n-bit (block) IV, and an m block string P (=
P17P27 sy Pm)

e Define Cp = IV, and checksum =0 & @’L, ;.

e Define for j =1 to m:
Cj =g(h,(IV,j)) & f(P; & g(h,(IV,j}))).

e Cpt1=g(h,(IV,0)) & f(checksum @ g(h, (IV,m + 1))).

e The output of the function E-1APM;, is the m + 2 block string Cp,Ch,...,Cipq1. The last
block can be truncated to the required “MAC” tag-length, say u bits.

Definition 5 With the same parameters as above, the function D-1APM;,: H x ({0,1}")" —
({0,1}™)* U {L} is defined as follows:

e Let the input to D-IAPMf 4 be an h € H, an ((m+ 1)n + p)-bit string C', which is divided into
(m + 1) blocks IV, (Y, ..., Cy, and a tag T of pu bits.

e Define for j =1 to m:
Py = g(h.(IV.j)) & f~1(C; & g(h, (IV.]))).

o T =g(h,(IV,0)) & f(Bj~y F; & g(h, IV, m + 1))).

o if (trunc,(T*) # T) return L, otherwise the output of D-1APMf, is the m block string
Py, ..., P,.

5.2 Public Random Permutation Model

If g is an efficiently computable function, the above two functions E-ITAPM and D-IAPM can be com-
puted efficiently given oracle access to f and f~'. It is important to make this characterization as
we intend to instantiate f and f~! by public permutations. Further, the definition of an (authen-
ticated) encryption scheme requires specifying the distribution from which the keys are sampled.
We may assume a benign setting where the v-bit key h above is chosen uniformly from H.

Definition 6 (IAPM with uniform keys in public RP model) Authenticated Encryption
scheme IAPM-uniform(g, v, 1) with block size n, and oracle f and f~! is given by a key space K
that is the set of v-bit strings, and a distribution D on keys that is the uniform distribution on K.
Moreover, the encryption and decryption algorithms under key k are given by E—IAPMg’f o (k-),

and D-IAPMA{;’fi1 (k,-) resp.

Definition 7 (Zero-IV TAPM) An IAPM scheme is called a zero-IV scheme if IV is always set
to zero. Thus, Cy = 0 for all ciphertexts, and ¢ function is computed with IV set to zero. As a
consequence, the encryption function does not need the IV input.

In this work, we will be using Zero-IV (IAPM and) XTS. Essentially, only the block number
is used in the XOR-universal g function. A concrete instantiation of ¢ is then g(h,i) = h * i
where both h and i are treated as elements of a finite field, preferably Galois field GF(2"), and the
multiplication is in the field.

5.3 Theorems for IAPM in Public Random Permuation Model

The following result is proved in [11, 8] IAPM-uniform(g, v, 1) is secure for message integrity in the
public random permutation model, with

Succy <27P 4+ (m?430) e+ g2+ (2xqgxm+m(m—+1)) e

where A makes at most z queries to the encryption oracle, these totaling at most m blocks, and A
makes at most ¢ queries to the public random permutation. Here, v = n, and hence € is 27" (from
e-XOR-universal g). Recall p is the size of the authenticaion tag. Here v is the number of blocks
in the challenge ciphertext.

If authentication is not required, the step in IAPM that computes the authentication tag can
be removed, and we get the XTS scheme. The above bound also holds for message secrecy, with
no 27# term. To be precise,

Advg < (g+2xqgxm+2+xm(m+1))%x27",

where A makes at most z queries to the encryption oracle, these totaling at most m blocks, and A
makes at most ¢ queries to the public random permutation.

Note that the g queries to the public random permutation should be considered as offline attack,
i.e. these can be performed by the Adversary regardless of how many actual block m are encrypted,
and even before any blocks are encrypted using the whitening key h. Hence, m should be kept as
low as possible, preferably less than 232.

6 Proof of Security

We start by describing the simulator & which interacts with the ideal functionality Fppyp and
presents a view to the adversary.A (and the environment), which we will later show (in Section 6.2)
is indistinguishable to the view of the adversary (and the environment) in the real world scheme.

6.1 Simulator

Since we are presenting the real world scheme in the hybrid-Fro ks model, the simulator S will
internally mimic (i.e. simulate) the random oracle and the keystore functionalities.
It will also present a storage to the Adversary (with full read-write capability for the Adversary),
consisting of two dictionaries D** and L** which simulate the real world dictionaries D* and L*.
This is how S behaves.

e Initialize: The Simulator initializes the random oracle to an empty table. It chooses a fresh
random AES key for each user P; and maintains it in a table keystore. It initialzes D** to
an empty dictionary, and L** to an empty ditionary as well. It initializes ¢ to zero, and * to
zZero.

o Read-Write:

Store: When the ideal functionaity receives a store command, it outputs to S, either (a)
P;, M and indexset associated with it, or (b) just P; and an indexset. The former
happens when the S had earlier called “test-message” with M. In any case, the indexset
is either singleton or a larger set. In the former case (i.e. singleton case), the Simulator
creates a new random string ¢* (of length of the ciphertexts) and increments ¢. and
stores in D** a new entry with key ¢ and value c¢*. It also inserts in L** an entry with
the key the singleton value in the indexset, and value a triple (P;, ¢, 7*), where tau* is
AES encryption of h* under AES-key of P; (obtained from its simulated keystore), and
h* is a fresh random n -bit string.

If the indexset is not a singleton, it searches L** for entries where some entry INDEX
of the just received indexset is a key, and the value associated with it is (P, o, 70)-
Then for all (actually, just one) values INDEX in the just received indexset which do
not already have an entry in L**, it creates a new entry with key INDEX and value the
triple (P;, £y, 7*), where 7* is obtained by AES-encrypting hy with key of P;, where hg
is obtained by AES-decrypting 7y with key for Pjg.

In case (a) and if the indexset just received is a singleton, recall the S had already called
“test-message” with M. As we will see below, this happens whenever the real world
adversary calls the random oracle with M, and RO simulation by S had returned an
h(M), which it maintains in its RO simulation table. So, in this case the 7 is obtained
by AES encrypting this h(M) with the AES key of P;. Rest of the simulation is same
as above.

Read: § is not even notified by the ideal functionality during a read operation, so no action
is needed.

e Actions by A: These consist of A either calling the random roacle Frg or A modifying L*
and/or D* in the real world. We show how S simulates these behaviors using L** and D**
instead, and its simulation of the random oracle.

RO call: If A calls the random oracle with a value M then S checks its table to see if M was
ever called before, in which case it returns the stored random value. Else, it chooses a
fresh random n bit value and stores it associated with M and returns the new value to
A. The simualtor S also calls Fppup with (test-message, M).

Modify L* or D*: Whatever modifications A performs on the real-world L* and D*, the
simulator does the same modifications to L** and D**. For example, if A moves an
entry from one record to another, S does the same. In this case, S also calls Fppup
with move-message. If A modifies with a brand new value, that same brand new value
is used on L** and/or D**. In this case S calls Fppyp with corrupt-message.

6.2 Indistinguishability

Since in the UC-model [3], the Environment £ drives the parties and the Adversary, and security is
defined in terms of indistinguishability of the view of £ in the ideal and the real world, we will now
combine the simulator S and the ideal functionality Fppup into a a single entity responding to £
(and A which we will just merge with £). we remind the user that even legitimate users P; receive
all their commands from &, and anything that F outputs to P;, party P; reports it back to £. We
will denote this as experiment EXPTy between the environment £ and the simulator S (which now
merges with Fppyup. We will describe a sequence of experiments between these two entities, with
the last one being identical to the real world. We will show that £ cannot distinguish between the
experiments with non-negligible probability.

6.3 Experiment EXPT,

This is how S behaves in EXPTy (with Fppyp merged with it) against &.

e Initialize: The Simulator S initializes the random oracle to an empty table. It chooses a
fresh random AES key for each user P; and maintains it in a table keystore. It initializes D**

10

to an empty dictionary, and L** to an empty dictionary as well. It initializes £ to zero, and
* to zero.

o Read-Write:

Store: When the ideal functionality (and thus S) receives a store command, recall Fppyp
outputs to to S, either (a) P;, M and indexset associated with it, or (b) just P; and an
indexset. The former happens when the S had earlier called “test-message” with M. In
any case, the indexset is either singleton or a larger set. In the former case (i.e. singleton
case), the Simulator creates a new random string ¢* (of length of the ciphertexts) and
increments £. and stores in D** a new entry with key ¢ and value ¢*. It also inserts in L**
an entry with the key the singleton value in the indexset, and value a triple (P;, ¢, 7%),
where tau* is AES encryption of h* under AES-key of P; (obtained from its simulated
keystore), and h* is a fresh random n -bit string. The main change now is that S also
knows the M which P; requested to store, and hence in its RO-table it puts h* as a
random oracle output of M.

If the indexset is not a singleton, it searches L** for entries where some entry INDEX(
of the just received indexset is a key, and the value associated with it is (P, o, 70).
Then for all (actually, just one) values INDEX in the just received indexset which do
not already have an entry in L**) it creates a new entry with key INDEX and value the
triple (P;, £y, 7*), where 7* is obtained by AES-encrypting hy with key of P;, where hg
is obtained by AES-decrypting 7y with key for Pjg.

In case (a) and if the indexset just received is a singleton, recall the S had already called
“test-message” with M. As we will see below, this happens whenever the real world
adversary calls the random oracle with M, and RO simulation by S had returned an
h(M), which it maintains in its RO simulation table. So, in this case the 7 is obtained
by AES encrypting this h(M) with the AES key of P;. Rest of the simulation is same
as above.

It is important to note that the dictionaries L and D that Fppyp maintained are con-
sistent with the dictionaries L** and D**. In other words, for all entries in L** with
key and value (P, ¢ 7") such that ¢ is same as some common ¢*, there is an entry in
D with indexset comprising of these collection of . This indexset has a particular M*
associated with it in D. And in D** there is a single ciphertext ¢* associated with this
¢*. Thus, in the merged S, ¢* and M* are matched (and also matched with a unique £*
and indexset). L and D are already consistent with each other in the sense that if L has
an entry (INDEX, (P;, M)), then the indexset associated with M in D contains INDEX.

Read: on receiving (read, P;,j) from &£, the merged S follows what Fppup does, i.e. the
following: check if there is entry (j, (P;, M*)) in dictionary L. If so, then return M* to
P;, else return L to P;.

e Actions by A (i.e £): These consist of £ either calling the random oracle Fro or £ modifying
L* and/or D* in the real world. We show how S simulates these behaviors using L** and
D** instead, and its simulation of the random oracle.

RO call: If £ calls the random oracle with a value M then S checks its table to see if M was
ever called before, in which case it returns the stored random value. Else, it chooses a

11

fresh random n bit value and stores it associated with M and returns the new value to
E. Since simulator S also calls Fppup with (test-message, M), this has the effect that
M is added to set A.

Modify L* or D*: Whatever modifications £ performs on the real-world L* and D*, the
simulator does the same modifications to L** and D**. For example, if £ moves an en-
try from one record to another, S does the same. In this case, S also calls Fppuyp with
move-message, which has the following effect: On receiving an input (move-message, ji, j2)
from S, if entries with keys j; and js in L, say, (j1, (P;, M7)) and (jo, (P;, M3)), have the
same userid P;, then replace the entry corresponding to key ja in L by (ja, (P;, M7)), re-
move jp from the indexset corresponding to key M3 in D, and insert jp into the indexset
corresponding to key M7 in D. If the userids P;; and Pj are not the same in entries
corresponding to j; and jo respectively in L then replace the entry corresponding to jo
in L by (ja, (Pa, 1)-

If £ modifies with a brand new value, that same brand new value is used on L** and/or
D**. In this case S calls Fppyp with corrupt-message which has the following effect:
replace any entry with key j (and userid F;) in L by (j, (F;, L1)).

6.4 Experiment EXPT;

Experiment EXPT; is different from EXPTy in the way S generates c¢*, which we already showed is
matched with a particular M*. This does not include the case where £ (or A) actually modified
a ciphertext in D**, in which case the corresponding entry in L had been changed to L (see
corrupt-message).

Instead of generating ¢* at random (as in EXPTy), the simulator having merged with Fppyp

knows the M* associated with it. So, it first calls the random oracle on M* to get h* (and note there
is already an h* associated with it in EXPTy, so it is exactly this h*). Next it calls the XTS-scheme
in the public random permutation model (see section 4 and 5), with whitening key h* and plaintext
M* to get a c*.
Proof: We now show that experiments EXPTy and EXPT; are distinguishable by £ with only
negligible probability . First note that while the adversary £ can modify the ciphertexts in the
dictionaries, any new ciphertexts lead to corrupt-message invocation, which returns 1 to the user
(and hence to &, as the user reports back to the environment). Thus, we are in the chosen-plaintext
security model (CPA) for message privacy of encryption mode (in the public random permutation
model). Then by results mentioned in section 5.3, the distinguishing probability of £ is at most

(1 +2xqxm+2xm(im+1))x27",
where m is the number of blocks in M, £ makes at most ¢; queries to the public random permu-
tation. 0
6.5 Experiment EXPT,

While in experiment exp;, S marks and returns some entries with L based on adversarial actions,
in experiment EXPTs such markings are removed, and instead will be inferred (when returning to a
party on a read invocation) just as in the real world scheme. Recall, the following is the behavior

12

of the real world scheme on a read invocation, and EXPTy will also do the same (using L** and
D** instead of L* and D*):

e On receiving an input (read, P;, j) from P,

1. Search the key j in the dictionary L**. If there is no entry, return L. If there is an entry,
say (Pj«,¢,7), then if ¢* # 4, return L. If the userid matches, i.e. i* = ¢, then fetch key
k; for P; using simulation of Fks.
2. Next obtain h by AES-decrypting 7 with key k;.
3. Search for key £ in D**, and let the corresponding value be ¢*. Obtain M = XTS-DEc(k, h, ¢*).
4. Using the simulation of random oracle, obtain h* = Fro(M).
5. If hx £ h return 1. Otherwise, return M.

From description of EXPTg, we note that L is returned in the following cases:

e on receiving (read, P, j) from &,

(i) if there is no entry (j, (P;, M*)) in dictionary L return L to P;. Note that since L and
L** are consistent, this is equivalent to checking: if there is no entry (j, (P;, ¢, 7)) in L**
then return L.

(i) If adversary & takes a 71 from L** entry (ji,(P;,,¢1,71)) and replaces the 7 in entry
corresponding to j, say (j, (P;, ¢, 7)) with 7, and if P;, # P, then return L.

(iii) If adversary &€ takes a 7 from L** entry (j1,(F;,¢1,71)) and replaces the 7 in entry
corresponding to j, say (J, (P, ¢, 7)) with 71, but ¢; # ¢, and entry corresponding to ¢ in
D** is untouched, then return L.

(iv) If adversary & takes a 7 from L** entry (j1,(F;,¢1,71)) and replaces the 7 in entry
corresponding to j , say (j, (P;, ¢, 7)) with 71, but ¢; # ¢, and entry corresponding to
¢ in D** is altered and has a ¢ that is different from the ¢ in the (original, if touched)
entry corresponding to ¢1, then return L.

(v) If adversary £ has replaced 7 in entry corresponding to j in L** with a completely new
value (i.e. not copied as in above cases) then return L.

(vi) If entry corresponding to j in L** is (j, (P;,¢, 7)), and adversary has replaced the entry
corresponding to ¢ in D** with a new ¢ (i.e. not copied from elsewhere as in above cases)
then return L.

We now prove that these are exactly the cases caught with high probability by steps 1-5 of the
real world scheme described above.
Proof: Recall that an uncompromised ciphertext is obtained as follows from a plaintext M: (a) h =
Fro(M), (b) ¢ = XTS(k, h, M). Recall, k is a random but public key. Moreover, the authentication
tag 7 is obtained as 7 = AES(k;, h), where k; is the key of P;. In the following we will let gg be the
total number of messages stored in Fppyp. First note that any 7" which is different from any 7;
ever encrypted by S using k;, will lead to an h* which is uniformly random (modulo not being the
same as any h; encrypted with k;). Since the number of encryptions under k; is at most g, then
h* takes any particular value x with probability at most 1/(2" — qo).

13

e Thus, in cases (ii) and (v) above, we have the following analysis: Step 3 of the real scheme
above obtains M = XTS-Dec(k,h*,¢*). Since, h* is different from the one actually used to
obtain ¢* (during encryption), we can focus on any block of ¢*, say block one, and then from
the description of XTS we have that M; = g(h*,1) & AES-inverse(k, cf & g(h*,1)), where
g is the XOR-universal hash function used in XTS (see Section 5). The probability that
c; @ g(h*,1) is equal to any block earlier queried of AES-inverse(k,-) is at most (g1 + m *
qo) * 1/(2"™ — qo). Thus, excluding this probability, the value M; will be a fresh random value
(excluding, earlier (g1 + m * qg) values, as AES is a permutation). Thus, the probability that
M was ever used in a call to the random oracle is at most (o + ¢1) * 1/(2" — (¢1 + m * qo)).
Thus, the probability that h = Fro(M) is same as h* is (by union bound) at most

(@1 +m*qo) *1/(2" —qo) + (g0 + q1) * 1/(2" — (g1 + m * qo)) + 1/2"

e Case (iii) is similarly analyzed as cases (ii) and (v) above.

e In cases (iv) and (vi), the h maybe correct, but ¢* has been altered. Since, XTS is an
encryption scheme, the decryption will necessarily lead to a different plaintext M* than use
to obtain the original ¢, and the original h (which is still same in cases (iv) and (vi)). The
probability that a different M™* on invocation of the random oracle obtains the same h is then
at most 1/2". This h = h* with probability at most 1/2".

This completes the proof of indistinguishability of the ideal world and the real world by the
environment &, noting that EXPTs is same as the real world. The distinguishing probability is at
most

(@1 +2*xqrsm~+2xm(m~+1))*27" +(q1 +m*qo)*1/(2" —qo) +(q0+q1) *1/(2" — (g1 +m*qo)) +1/2"

where ¢p is the number of messages stored, ¢; is the number of AES oracle calls the Adversary
performs with the public random key k, and m is the block size of each message. O

References

[1] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric
encryption. In 38th FOCS, pages 394-403. IEEE Computer Society Press, Oct. 1997.

[2] S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: A password-based protocol
secure against dictionary attacks and password file compromise. In D. E. Denning, R. Pyle,
R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM CCS 93, pages 244-250. ACM Press,
Nov. 1993.

[3] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136-145. IEEE Computer Society Press, Oct. 2001.

[4] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally composable
password-based key exchange. In R. Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 404-421. Springer, Heidelberg, May 2005.

14

[5]

[11]

[12]

[13]

C. Gentry, P. MacKenzie, and Z. Ramzan. A method for making password-based key exchange
resilient to server compromise. In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS,
pages 142-159. Springer, Heidelberg, Aug. 2006.

C. S. Jutla. Encryption modes with almost free message integrity. In B. Pfitzmann, editor,
EUROCRYPT 2001, volume 2045 of LNCS, pages 529-544. Springer, Heidelberg, May 2001.

C. S. Jutla. Encryption modes with almost free message integrity. Journal of Cryptology,
21(4):547-578, Oct. 2008.

C. S. Jutla. Authenticated encryption mode IAPM using sha-3’s public random permutation.
IACR Cryptol. ePrint Arch., 2018:128, 2018.

H. Krawczyk. LFSR-based hashing and authentication. In Y. Desmedt, editor, CRYPTO’94,
volume 839 of LNCS, pages 129-139. Springer, Heidelberg, Aug. 1994.

H. Krawczyk. The order of encryption and authentication for protecting communications
(or: How secure is SSL?). In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages
310-331. Springer, Heidelberg, Aug. 2001.

K. Kurosawa. Power of a public random permutation and its application to authenticated
encryption. IEEE Transactions on Information Theory, 56(10):5366-5374, 2010.

J. Liu, N. Asokan, and B. Pinkas. Secure deduplication of encrypted data without additional
independent servers. In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015, pages 874-885.
ACM Press, Oct. 2015.

P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation
for efficient authenticated encryption. In M. K. Reiter and P. Samarati, editors, ACM CCS
2001, pages 196-205. ACM Press, Nov. 2001.

15

