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Abstract

Recent advances in fast protocols for vector oblivious linear evaluation (VOLE) have inspired
a family of new VOLE-based lightweight designated-verifier NIZK protocols (Weng et al., S&P
2021, Baum et al., Crypto 2021, Dittmer et al., ITC 2021, Yang et al., CCS 2021). In particular,
the Line-Point Zero Knowledge (LPZK) protocol of Dittmer et al. has the advantage of being
entirely non-cryptographic given a single instance of a random VOLE correlation.

We present improvements to LPZK through the introduction of additional structure to the
correlated randomness. Using an efficiently realizable variant of the VOLE correlation, we reduce
the online proof size of LPZK by roughly 2x: from roughly 2 field elements per multiplication
gate, or 1 element in the random oracle variant, to only 1 or 1

2 elements respectively. In partic-
ular, we get the first practical VOLE-based NIZK that breaks the 1-element-per-multiplication
barrier.

We implemented an optimized version of our protocol and compared it with other recent
VOLE-based NIZK protocols. In the typical case where communication is the bottleneck, we
get at least 2x performance improvement over all previous VOLE-based protocols. When prover
computation is the bottleneck, we outperform all non-LPZK protocols by at least 2-3x and
(our optimized implementation of) LPZK by roughly 30%, obtaining a 2-3x slowdown factor
compared to plain circuit evaluation.

1 Introduction

There has been a recent flurry of designated-verifier non-interactive zero-knowledge (NIZK) proof
systems [17, 8, 3, 18] taking advantage of improvements in secure generation of correlated random-
ness, in particular, “silent” generation of a random vector oblivious linear evaluation (VOLE) cor-
relation [4, 15, 5, 7]. VOLE-based NIZK protocols significantly reduce the prover’s computational
overhead while allowing execution in a streaming fashion, with a memory footprint comparable to
that of evaluating the circuit in the clear.

Among the VOLE-based NIZK protocols, Line-Point Zero Knowledge (LPZK) [8] achieved the
best communication complexity, requiring slightly more than 1 field element of communication per
gate for arithmetic circuits over large enough fields. This was extended to Boolean circuits by Quick-
silver [18], whose optimized implementation gave unprecedented end-to-end runtimes for large-scale
instances of zero-knowledge proofs. In particular, when considering the task of (designated-verifier)
NIZK over fast networks, VOLE-based protocols significantly outperform all existing succinct proof
ZK systems based on linear PCPs (such as SNARKs and STARKs), interactive proofs and IOPs
(see §1.3 for discussion and literature pointers and § 5.3 for benchmarking comparisons).
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Protocol Comm. Prover comp. Prover speed

× + H(·)
Plain circuit eval. 1 0 0 49.6 M/sec

Mac ’n’ Cheese [3] 3 23 15 3 3.6 M/sec

Wolverine [17] 2 13 16 3 0.96 M/sec

IT-LPZKv1 [8] (2 + 1
t ) 4 7 0 19.6 M/sec

Quicksilver [18] 1 15 13 < 1 7.8 M/sec

IT-LPZKv2 (1 + 1
t ) 3 5 0 21.8 M/sec

ROM-LPZKv2 1
2 8.5 8.5 1 9.8 M/sec

Table 1: Online communication and prover computation for VOLE-based NIZK. Communication
is given in field elements per multiplication gate, ignoring lower order terms depending on input
and output size. “Prover comp.” columns count the number of multiplications, additions, and calls
to a cryptographic hash function, respectively per multiplication gate (an addition gate requires
two additions). Speeds are given in millions of multiplication gates per second on a single-threaded
machine; see § 1.4 and § 5.1 for further discussion. The parameter t in the IT-LPZK protocols
corresponds to a soundness error of (2t + 1)/|F|. All estimates and benchmarks are done using a
computational security parameter of κ = 128 and a field F = F261−1. Numbers in red come from
this paper. Verifier costs are lower than prover costs, see § 5.2.

An additional advantage of VOLE-based protocols is that their low overhead does not only hold
when considering big instances of zero knowledge, but kicks in even when (sequentially) proving
many small statements over committed data. This can be useful for achieving security against
malicious parties in secure computation protocols [8] and other applications. The key advantage of
VOLE-based protocols is that VOLE generation can be done offline, thereby maximizing the speed
of online proof generation.

1.1 Our contribution

We present two variants of a new designated-verifier NIZK protocol in the preprocessing model that
improve on LPZK in terms of communication complexity and online computation. We implemented
and benchmarked both variants, demonstrating a concrete improvement over Quicksilver in terms
of the prover and verifier’s online runtimes.

In order to fairly compare our improvements when comparing to the original LPZK paper of [8],
we also implemented the original protocol as well (which we call LPZKv1), which was previously
not implemented to the best of our knowledge. The two variants presented in this paper, which
we call IT-LPZKv2 and ROM-LPZKv2, to refer to the information-theoretic and random oracle
variants, respectively, require approximately half of the online communication of the corresponding
LPZKv1 variants, and approximately 30% less online computation (see §5.1 for further discussion).
We give informal theorem statements below, and formal theorem statements of the IT and ROM
variants in Sections 3 and 4, respectively. See Table 1 for a summary of the performance of our
new protocols compared to previous VOLE-based protocols.

Our protocols take advantage of a variant of the VOLE correlation that we call quadratically
certified VOLE, or qVOLE. We propose two efficient methods for securely realizing the qVOLE
correlation required by both variants of our protocol. The first method bootstraps off of an existing
instance of VOLE, and requires a linear amount of communication in the online phase (effectively
pushing 50% of the communication of LPZKv1 to an offline phase). The other method uses ring-
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LPN to give a sublinear-communication qVOLE generation protocol that is concretely efficient in
the SIMD setting or circuits with repeated subcircuits (such as hash trees). See Section 1.2 for
further discussion.

Our information-theoretic protocol, IT-LPZKv2, requires 1 + 1
t elements of communication,

(3− 1
t ) multiplications by the prover, and 2 multiplications by the verifier per multiplication gate,

where t is a parameter guaranteeing soundness error (2t+ 1)/|F|.
Our random oracle model protocol, ROM-LPZKv2, requires 1

2 elements of communication and
4.5 + 2r multiplications by both the prover and verifier (where r ≥ 1 is approximately the compu-
tational security parameter divided by the log of the field size) for layered circuits, where each gate
is assigned to some layer k, and all the inputs to gates at layer k are outputs to gates at layer k−1.
The approach of ROM-LPZKv2 can be applied to general circuits, with a variable amount of com-
munication savings depending on the circuit structure. Indeed, as we discuss in §4.1, for a random
circuit made up entirely of multiplication gates, we still achieve an approximately 38% reduction
in communication. For layered circuits, 50% is in fact a lower bound on the total communications
savings.

Finally, we remark that the results below can be extended from arithmetic circuits containing
only fan-in 2 addition and multiplication gates to circuits with arbitrary degree 2 polynomial gates
by using the technique of [18] (applied to those degree 2 polynomial gates rather than the entire
circuit). In fact, we will give the protocols and proofs in terms of degree 2 polynomial gates, but
write our informal theorem statements below in terms of the usual addition and multiplication
gates for clarity.

Theorem 1.1 (NIZK over qVOLE, informal). Fix an integer t ≥ 1. There exists an (unconditional,
perfect zero-knowledge) NIZK protocol in the qVOLE-hybrid model (defined in §2.2) that proves the
satisfiability of an arithmetic circuit C over a field F, where C has k inputs, k′ outputs and m
multiplication gates, with the following security and efficiency features:

• Soundness error: ε = (2t+ 1)/|F|;

• Communication: k + (1 + 1
t )m field elements from P to V ;

• qVOLE length: n = k + 2m field elements;

• Computation: Assuming the cost of field additions is negligible compared to multiplications,
the computation of the prover is less than 3 times the cost of evaluation in the clear, and the
computation of the verifier is less than 2 times the cost of evaluation in the clear.

Theorem 1.2 (NIZK over qVOLE in the ROM, informal). Fix an integer r ≥ 1. There exists
an (unconditional) NIZK protocol in the RO-qVOLE-hybrid model that proves the satisfiability of a
layered arithmetic circuit C over a field F, where C has k inputs and m multiplication gates, and ℓ
is the number of oracle calls a malicious prover P ∗ makes, with the following features:

• Soundness error: ε = 2
|F| +

ℓ
|F|r ;

• Communication: k + 1
2m+ 2r field elements;

• qVOLE length: n = k +m+ r field elements;

• Computation: Computation of O(r|C|) field operations and a cryptographic hash from Fm

to Fmr for both the prover and the verifier.
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1.2 Overview of techniques

We now give a brief overview of the main technical ideas.

From certified LPZK to NIZK over qVOLE. In an LPZK proof system [8], the prover encodes
the witness as a line at+ b and the verifier evaluates the line at a random point α. An LPZK can
be naturally compiled in to an NIZK protocol over a VOLE correlation. In a VOLE correlation,
the prover holds random vectors a′,b′ and the verifier receives a′α + b′. We extend this to a
certified LPZK proof system, where a malicious prover is required to output vectors a,b such that
the vector a satisfies a set of quadratic relations, and give a natural compiler from certified LPZK
to NIZK over qVOLE. The qVOLE correlation is an instance of certified VOLE [8] that imposes
quadratic constraints on the entries of a′ (see §2.2 for formal definition).

As in [8], we take advantage of the algebraic structure of qVOLE, treating the expression
v = aα + b as a linear polynomial in α whose entries can be added and multiplied together, not
only as a commitment scheme. Critically, we modify the approach of [8], by using the vector b,
rather than the vector a to hold the prover’s witness and the intermediate wire values of the circuit.
From the prover’s perspective, the two choices are identical, but the verifier is able to get rid of
one multiplication by α per multiplication gate (in addition to the computational savings from
qVOLE). In fact, this improvement in verifier computation applies even to LPZK over standard
VOLE.

Proofs of polynomial degeneracy. In order to reduce communication, both of our protocols
rely on batched proofs of polynomial degeneracy functionalities, Fk,F

PoPD in the ROM and F1,F
PoLD in

the IT construction. These functionalities and their realizations are given implicitly in [8], but are
given explicitly here to clarify the protocols and proofs, in §2.5.

In both funtionalities, the parties hold or construct shares where the prover holds the coefficients
of a group of polynomials and the verifier holds the evaluation of those polynomials at a secret value
α. The prover then seeks to convince the verifier that the leading term of all polynomials is 0.

The first functionality is more general, allowing polynomials of arbitrary degree, but is circuit
dependent. The second functionality is defined only for linear polynomials, but is simpler to define
and leads to information-theoretic security.

We show that the first functionality Fk,F
PoPD can be realized with sublinear communication in

the random oracle model, requiring only communication of kr elements for a polynomial of degree
k of arbitrary length, where r is a parameter that controls soundness error. We also show that
the second functionality F1,F

PoLD can be realized with sublinear communication in the information-
theoretic setting, requiring only one element of communication for every t entries batched together.

Improvements in information-theoretic LPZK. The fundamental idea behind the use of
qVOLE is to move the computation of certain products aiaj out of the online phase and into the
preprocessing phase.

The information-theoretic protocol for certified LPZK can be understood as a modification of
either IT-LPZKv1, replacing one of the elements of communication with an entry of qVOLE, or of
ROM-LPZKv1, replacing the call to Fk,F

PoPD to a use of an entry of qVOLE and a call to F1,F
PoLD.

Half-free multiplication. Applying qVOLE to the protocol in the random oracle model is more
difficult, since we need to allow the prover and verifier to process some gates non-interactively.

We do so by dividing the wires aα + b up into two types. For some wires, the values a are
determined purely by the correlated randomness. For other wires, the values a are determined by
a function of the correlated randomness and the input.

As we discuss in more detail in §4.1, this can be conceptualized with a wire coloring, where the
wires with a determined purely by correlated randomness are colored red, and the other wires are
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colored blue.
The key observation, then, is that, by taking the product of the polynomial expression for two

red wires, and using an appropriately constructed entry of qVOLE, it is possible to form the output
wire, without any communication. The output wire, however, will be colored blue, and the same
technique does not apply to a product of two blue wires, or of a blue and a red wire. The only
communication required by the protocol is a call to Fk,F

PoPD and the messages from prover to verifier
adjusting the constant terms of red wires.

In the case of layered circuits, it is clear that half of the layers can be colored red and half
colored blue. For simplicity, our proofs and protocols are written in terms of layered circuits, but
we discuss the case of general circuits as well.

qVOLE generation. We propose two different approaches for efficiently realizing the qVOLE
correlation. First, qVOLE can be realized from an existing instance of VOLE, with additional
communication from the prover to the verifier that is linear in the circuit size. In fact, the commu-
nication costs in the offline phase of realizing qVOLE in this way are equal to the savings gained
in the online phase; in LPZKv2 we move around half of the communication and one-third of the
computation into the offline phase. This gives a strict improvement over LPZKv1 in typical settings
where offline work is cheaper than online work.

Combining our online protocol with this first qVOLE generation method can be understood
as a refinement of a certified VOLE functionality from [8], which was introduced in the context of
an application to secure computation. Some alterations are required because of the reversal of the
roles of the vectors a and b, and further optimizations can be applied because we are restricted to
certifications of degree 2 polynomials. We give these details in §2.3.

Our second approach for realizing the qVOLE correlation has sublinear communication cost and
relies on the ring-LPN based pseudorandom correlation generators from [5] (Section 6.3), which are
based on the Learning Parity with Noise assumption. The construction is concretely efficient when
generating many copies of the same degree-2 correlated randomness, and hence is only applicable to
the SIMD case (many instances of the same circuit). Using this realization of qVOLE reduces the
end-to-end communication cost per multiplication of LPZKv2 by a factor of 2, with sublinear offline
communication cost. Because of the ease with which VOLE-based proof systems can implement
a “commit-and-prove” functionality, this approach also works well in a setting where circuits are
made of a small family of subcircuits, repeated many times (e.g., when proving statements about
hash trees). We give a detailed overview of the ring-LPN based realization of qVOLE in §2.4.

1.3 Related work

We now briefly compare our technique with related techniques from the literature.

VOLE-based ZK. In addition to LPZK and Quicksilver, which were discussed above, we compare
our solution to Wolverine [17], a predecessor to Quicksilver, and Mac ’n’ Cheese [3]. Wolverine was
the first VOLE-based zero knowledge proof system to use subfield VOLE to transfer techniques
from arithmetic circuits to boolean circuits. Mac ’n’ Cheese allows for proving a nested disjunction,
with communication cost proportional to the longest statement, using an approach that can be un-
derstood as analogous to stacked garbling [12]. LPZK is also noteworthy for providing information
theoretic security non-interactively, after the initial VOLE setup. Quicksilver is noteworthy for
applying the family of VOLE-based techniques to polynomials, which reduces the communication
required to the input size plus the degree of the polynomial.

The notation differs slightly from protocol to protocol, but they share some key features. In each
protocol, the prover uses the entries of VOLE to commit to their input and to intermediate wire
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values in the circuit evaluation. This commitment produces a secret sharing of wα, where w is the
wire value and α is the secret element known to the verifier used in the VOLE. After, the prover uses
additional entries to prove that the committed values satisfy the desired circuit relations. When
we wish to refer to protocols that produce such a secret sharing for all intermediate wire values,
we say such a protocol is operating in the gate-by-gate paradigm.

Polynomial-based ZK. The most direct way to relax the gate-by-gate paradigm is to allow for
gates that represent polynomials of degree greater than 2. The ZK protocol in Quicksilver for
polynomial sets can be understood as the special case where the entire circuit is replaced with a
single polynomial of degree d, and requires only |I|+ dr communication, where the term r is used
to control soundness error, and can be set equal to 1 for sufficiently large fields.

More generally, in a layered circuit, by introducing gates representing arbitrary polynomials
of degree at most 2c, you can remove all gates except for those at layers congruent to i mod c,
for any choice of i. Choosing i to remove as many gates as possible, total communication will
be ≤ |I| + |C|/c + 2cr. However, at least 2cr computation is required per gate (this is the cost
to simply print the polynomial in question and multiply it by an element of Fr), and so reducing
communication by a constant factor c increases computation by a factor of at least 2c/c.

In contrast, our “half-free multiplication” approach reduces computation in the online phase,
and meets the informal definition of the gate-by-gate paradigm given above.

zkSNARKs and other succinct protocols. The field of non-VOLE-based zero knowledge is
broad and deep, and we can list here only a few significant protocols oriented towards concrete
efficiency.

Groth’s SNARK [11], building on the blueprint of GGPR [10], was the culmination of years
of improvements in SNARKs, and is considered nearly optimal by some measures, such as proof
size. However, it requires a setup in the form of a long structured reference string, and efforts
have been made to improve on its prover computation. Among these efforts we mention three
protocols that remove the need for a trusted setup: Ligero [2], which is built on the MPC-in-the-
head paradigm, Virgo [19], which is IOP-based, and also works on layered circuits, where the proof
size and verifier computation depend linearly on the circuit depth, and Spartan [16] which uses an
existing polynomial commitment scheme as a black box to build polynomial commitment schemes
that can handle sparse polynomials efficiently. Ligero and Virgo each require O(n log n) prover
work for a circuit of size n, while Spartan requires nearly linear work1. Spartan has recently been
improved by Cerberus [14], which gives post-quantum SNARKs and faster concrete runtimes.

Most of these schemes require large circuits for their asymptotic efficiency to be realized, and
are not efficient when realizing small instances of “commit-and-prove.” Moreover, the schemes
based on the GKR protocol incur a biger computational overhead when the witness size is close to
the circuit size.

1.4 Applications

The general advantage of VOLE-based protocols is their significant improvement in prover com-
putation over other protocols like Virgo and zk-SNARKs, at the cost of communication that is
linear in the size of the circuit. Therefore VOLE-based protocols, in general, outperform other ZK
protocols in settings with fast networks, or in settings where computational costs are significant.

Our protocols improve over the state-of-the-art in VOLE-based protocols for arithmetic fields
in computation and, in the case of the ROM-LPZKv2, in communication as well. Because our

1More specifically, Spartan’s protocol requires Oλ(n) work, where λ is a computational security parameter, and
Spartan defines Oλ(∗) notation to mean that that the constant inside big-O is a function of λ.
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protocols use a form of correlated randomness that is more expensive to generate than VOLE,
our protocols will perform best with fast networks. We give here several examples of real-world
applications where the use of our protocols would be desirable.

Fast networks. As shown in §5.3, for networks faster than 200 MBps, the time required for prover
computation is larger than the time for communication for the most efficient VOLE-based protocols
(and so, a fortiori, for Virgo and zk-SNARKs protocols). For fast internet connections, local area
networks, and direct physical connections (e.g. chip readers), a VOLE-based protocol will have the
best performance in the online-offline model.

As discussed above, our LPZKv2 solution is especially suited to a SIMD setting. For example,
a secure credit card could be required to submit a proof that privately held card data about credit
limits and balances are correct before authorizing a transaction. The authorization circuit is fixed
across all transactions, although the transaction history is variable.

Cloud computing pricing. Prominent cloud computing platforms, including AWS, charge for
computing power but do not charge for certain classes of intra-cloud communication. Therefore in
these settings, the cost of communication is irrelevant (as long as it does not render the application
infeasible) and computational resources required are the only relevant metric for determining cost.

Additionally, these platforms have various forms of surge pricing for usage during peak hours
and discounts for using the platform at fixed times, or for flexibly using spare computing power.
These price incentives give advantages to the use of the online-offline model and encourage moving
as much computation as possible into the offline step.

Computationally expensive gates. When we allow arbitrary degree 2 polynomial gates, it
becomes possible for the computational effort required to compute a single gate to be quite large,
for example if the gate represents the dot product of long vectors. This example is discussed in
[18], where they show that the use of their polynomial technique reduces the communication cost
of matrix multiplication from O(n3) to O(n2) field elements.

Our use of generic degree two gates achieves the same reduction, and extends it to other com-
putations, e.g., computations that use matrix multiplication as a sub-protocol in a larger circuit.
The computational cost of matrix multiplication remains super-quadratic in n, so for n sufficiently
large, the cost of computation will dwarf the cost of communication, regardless of the speed of the
network. This example is discussed in more detail in Remark 4.

1.5 Arithmetic circuit formats

Our result for arithmetic circuits in the information-theoretic settings holds for arbitrary arithmetic
circuits, but to clarify the presentation we write a circuit C := ((wi), (Gj),F) as a collection of wires
wi over F and arbitrary fan-in degree 2 polynomial gates Gj acting on the wires, instead of the more
common construction consisting entirely of fan-in two addition and multiplication gates and fan-in
one scalar multiplication gates.

This more common construction can be recovered from our definition by noting that the inputs
to any multiplication gate in the standard construction can be represented as a linear combination
over F of outputs from prior multiplication gates, and the product of two linear functions gives a
degree 2 polynomial gate.

The authors of Quicksilver [18] noted that it is possible to construct a NIZK with communication
sublinear in the circuit size in cases such as matrix multiplication where a functionality could be
represented by a low degree polynomial. In the language of our modified circuit format, matrix
multiplication requires n3 multiplications, but only n2 degree 2 polynomial gates. In other words,
we have embedded the observation of [18] into the circuit format.
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2 Preliminaries

In this section we give a formal definition of our new notion of a certified LPZK proof system and
show how to compile such a proof system into a designated-verifier NIZK when given a random
qVOLE correlation. We also show how the underlying qVOLE functionality can be realized either
by an offline LPZK-NIZK step or by ring-LPN.

2.1 Defining certified LPZK

The definition of a certified LPZK proof system should be compared to the definition of an LPZK
proof system in [8]. The primary difference is that the prover’s algorithm is required to output
vectors a,b where the vector a satisfies a set of quadratic relations, and the verifier receives a
guarantee (certification) that this set of quadratic relation does indeed hold. There is additionally
some metadata tracked by the Prove and Verify algorithms that we use to simplify the protocol
descriptions.

As in [8], we focus here on the case of arithmetic circuit satisfiability, and work in an arithmetic
model in which probabilistic polynomial time (PPT) algorithms can sample a uniformly random
element from a finite field F and perform field operations at a unit cost. All of the protocols we
describe make a black-box use of the underlying field F.

As in [8], we remark that the proof systems we construct satisfy the stronger proof of knowledge
property, but the proof does not add much additional insight and we omit the details to streamline
the presentation. Again, as in [8], we give only the definition for a certified LPZK proof system
with statistical security, but a certified LPZK proof system with computational security can be
defined similarly.

Definition 1 (Certified LPZK). A certified line-point zero-knowledge (certified LPZK) proof system
for arithmetic circuit satisfiability is a triple of algorithms (Setup,Prove,Verify) with the following
syntax:

• Setup(F, C) is a polynomial time algorithm that given an arithmetic verification circuit C :
Fk → Fk′ outputs an integer n, a set I ⊆ [1, n], and a sequence Q := (fi)i∈I , where each
fi ∈ F[xi]i ̸∈I is either zero or a homogeneous polynomial of degree 2.

• Prove(F, C, w, n, I,Q) is a PPT algorithm that given an arithmetic verification circuit C :
Fk → Fk′ and a witness w ∈ Fk, outputs a pair of vectors a,b ∈ Fn that specify an affine line
v(t) := at+ b such that fi(a) = ai for all i ∈ I. For i ∈ I such that fi ̸= 0 the values bi are
chosen uniformly at random from F, and for all i ̸∈ I, the values ai are chosen uniformly at
random from F.

• Verify(F, C, α,vα, n, I,Q) is a polynomial-time algorithm that, given an evaluation vα of the
line v(t) at some point α ∈ F, outputs acc or rej.

We note that the restriction that certain entries ai, bi be randomly distributed is not inherently
necessary. We impose it to simplify the definition of qVOLE and the compiler from certified
LPZK to NIZK over qVOLE in §2.2 below. The algorithms (Setup,Prove,Verify) should satisfy the
following:

• Completeness. For any arithmetic circuit C : Fk → Fk′ and witness w ∈ Fk such that

C(w) = 0, for (n, I,Q) = Setup(F, C), and for any fixed α ∈ F, we have Pr[v(t)
R←−

Prove(F, C, w, n, I,Q) : Verify(F, C, α,v(α), n, I,Q) = acc] = 1.
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• Reusable ε-soundness. For every arithmetic circuit C : Fk → Fk′ such that C(w) ̸= 0 for all
w ∈ Fk, with (n, I,Q) = Setup(F, C), and every (adversarially chosen) line v∗(t) = a∗t+ b∗,
where the length n of v∗ depends on C as above, and fi(a

∗) = a∗i for all i ∈ I, we have

Pr[α
R←− F : Verify(F, C, α,v∗(α), n, I,Q) = acc] ≤ ε. Moreover, for every F, C,v∗(t) the

probability of Verify accepting (over the choice of α) is either 1 or ≤ ε. Unless otherwise
specified, we assume ε ≤ O(1/|F|).

• Perfect zero knowledge. There exists a PPT simulator Sim such that, for any arithmetic
circuit C : Fk → Fk′ , any witness w ∈ Fk such that C(w) = 0, any α ∈ F, and (n, I,Q) =
Setup(F, C), the output of Sim(F, C, α) is distributed identically to v(α), where v(t) is the
affine line produced by Prove(F, C, w, n, I,Q).

The reusable soundness requirement guarantees that even by observing the verifier’s decision bit
on a maliciously chosen circuit C, and line v∗(t) = a∗t + b∗, the prover learns essentially nothing
about the verifier’s secret point α, which allows the same α to be reused without substantially
compromising soundness.

Complexity measures for certified LPZK: (n, n′, n′′)-cLPZK. As in [8], in addition to
the dimension/length parameter n, we use two other parameters n′ and n′′ as complexity measures
for certified LPZK. We stress that n′ and n′′ do not correspond to the n′ and n′′ used for LPZK.
Concretely, the parameter n′ is the number of elements i ∈ I for which fi ̸= 0, while n′′ is the
number of elements i ∈ I for which fi = 0.

2.2 Compiling certified LPZK to NIZK over qVOLE

We now give a simple compiler that converts a certified LPZK proof system into a (designated
verifier) NIZK protocol by means of a certain variant of a certified VOLE functionality we define
here called qVOLE (see [8, 6] for a general discussion of certified OLE and certified VOLE).

This compiler is similar to the compiler from LPZK to NIZK in [8], although we make one
high-level, conceptual change. In [8], the wire values are held in the vector a, and the vector b is
used as a mask, while in this work, the vector b holds the wire values, and the vector a holds the
masks. This reduces the cost for the verifier, since V no longer needs to multiply P ’s message by
α.

Definition 2 (Quadratically certified random VOLE). Quadratically certified random VOLE (qV-
OLE) is a two-party functionality that takes as input from the sender and receiver a triple (n, I,Q)
that is equal to the output of Setup(F, C) for some arithmetic verification circuit C. The function-
ality outputs to the sender a pair of vectors a,b ∈ Fn and to the receiver a value α ∈ F and the

vector aα+ b. The vector a satisfies fi(a) = ai for all i ∈ I, and ai
R←− F for i ̸∈ I. The vector b is

chosen uniformly at random from Fn.

Lemma 2.1 (From certified LPZK to NIZK). Given (n, n′, n′′)-cLPZK over F with soundness
error ε, there is an NIZK protocol that uses a single instance of qVOLE of length n − n′′ and
requires communication of n− n′ field elements from the prover to the verifier.

Proof. The prover and verifier are given a random qVOLE of length n, so that the prover holds
(a′,b′), and the verifier holds v′ = a′α+ b′ for a random α ∈ F.

By the randomness guarantees of cLPZK, the algorithm Prove(F, C, w) can take a = a′ and
then compute b from a. The prover sends the vector b− b′ to the verifier, who then computes

v = v′ + (b′ − b).

9



The relations fi(a) = ai for i ∈ I and the randomness of ai for i ̸∈ I are guaranteed by the qVOLE
protocol. This compiler requires communication of n elements to send the entire vector b′−b, and
a qVOLE of length n.

However, we can set b′i = bi for i ∈ I such that fi ̸= 0, since those entries are randomly
distributed under Prove(F, C, w). This forces b′ − b = 0 for those i, and so the prover can omit
those values from the message to the verifier, reducing communication complexity to n−n′ elements.
Similarly, a qVOLE instance is not required for the entries i ∈ I such that fi = 0, giving an adjusted
qVOLE of length n = n′′, as desired. The security completeness, soundness, and zero knowledge
properties of the above NIZK protocol are inherited directly from the corresponding properties of
the LPZK.

For efficient end-to-end NIZK protocols, we need practically efficient protocols to realize the
qVOLE functionality. We give two realizations below.

2.3 qVOLE from general certified VOLE

The qVOLE functionality above can be realized as a special case of the certified VOLE with a
general relation established in [8][Lemma 6.2]. However, that general protocol is designed to certify
arithmetic relations involving terms from distinct instances of VOLE, and is therefore not optimized
for this setting. We prove the following lemma in Appendix §A.1.

Lemma 2.2. Fix an integer r ≥ 1. A receiver R and a sender S can realize the functional-

ity F (F)
qV OLE(n, I,Q), in the RO-rVOLE hybrid model with a single instance of random VOLE. This

VOLE instance has total length
n+ |Q|

, and the protocol requires communication of

|Q|+ 2r

field elements from sender to receiver and has k
|F| +

ℓ
|F|r soundness error, where ℓ is the number

random oracle calls a malicious prover can make.

2.4 qVOLE from ring-LPN

As discussed in §1.2, the qVOLE functionality can be understand as a flavor of multiplication triple
(MT)-type correlations, and these correlations can in turn be understood in terms of simple atomic
operations under a “correlation calculus”. Atomic operations consist of picking a random vector
x ∈ Fn, computing the scalar product βx, computing the point-wise product x · y, extending a
vector by copying certain entries, sending a vector to a party, and sharing a vector between parties.
Standard authenticated triples come from computing z := x ·y and βz and sharing all four vectors.

With that understanding, the proof of the following lemma follows from Theorem 6.4 of [5].

Lemma 2.3. A receiver R and a sender S can produce a collection of realizations of the func-

tionality F (F)
qV OLE(n, I,Q) under the Ring-LPN assumption with communication costs sublinear in

n.
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2.5 Batched proofs of polynomial degeneracy

In Figure 1, we give a proof of polynomial degeneracy functionality whereby a prover P ’s initial
message m allows P to learn the coefficients of B polynomials of degree k, while a verifier V learns
the evaluation of those polynomials on a secret value α (i.e. their VOLE input), and P convinces
V that the leading term of all polynomials is equal to zero (i.e. that the polynomial is degenerate)
if their initial message was formed correctly.

In practice, we want the message m that P sends in step 1 be sufficient for each party to
determine their messages from Fk,F

PoPD in step 2. To that end, we say that a pair of protocols
(ΠP ,ΠV ) has Property S if the outputs of (ΠP (m) are a series of vectors (x0, . . . ,xk), and one
of Cooperate, Defect, the output of ΠV (m) is (α,y), and together these values satisfy the
conditions given in step 2.

In this paper (ΠP ,ΠV ) will always be obtained from the outputs of (Prove,Verify) corresponding
to a block of B multiplication gates in the circuit, and m will be the part of P ’s proof corresponding
to that block.

In Figure 3, we give a related functionality for the special case where k = 1. Our protocol realiz-
ing this functionality has information theoretic security, and so we no longer require an initialization
message m, which simplifies the definition.

In the following two lemmas, we give two protocols that realize these functionalities. These
functionalities and their realizations are found implicitly in [8], but we include them here for
completeness and clarity of presentation.

Lemma 2.4. Let (ΠP
PD,Π

V
PD) be any pair of protocols with property S. The protocol in Fig-

ure 2 realizes the functionality Fk,F
PoPD in the random oracle model with a random oracle H :

Fs × [1, . . . , B] → Fr, soundness error k
|F| +

ℓ
|F|r , where ℓ is the number of calls a malicious

prover can make to H, communication of kr field elements, Bkr multiplications by the prover,
and (2r + 1)k +Br multiplications by the verifier.

Proof. Completeness: This follows directly from the correctness of the OPE functionality and
the relation

k−1∑
i=0

xiαi = y.

Zero Knowledge: The verifier’s simulator generates each of zi uniformly at random over Fr, and

computes w :=
(∑k

i=0 ziα
i
)
−
∑B

j=1H(m; j)yj . The distribution of the zi’s is uniformly random,

since the ci’s are generated uniformly at random, and w must satisfy the above relation.
Soundness: The expression

w +

B∑
j=1

H(m; j)yj −

(
k−1∑
i=0

ziα
i

)
is a polynomial in α of degree k with leading coefficient

B∑
j=1

H(m; j)xkj .

If this coefficient is nonzero, then for a malicious prover P ∗ to violate soundness, they must guess
one of the k (possibly repeated) roots of this polynomial, which P ∗ can do with probability at most
k
|F| .
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Figure 1: k-degree proof of polynomial degeneracy

Functionality Fk,F
PoPD: k-degree proof of polynomial

degeneracy

Parametrized by a finite field F, a degree k, and a batch
size B, with the following syntax:

1. P sends a message m ∈ FB and one of
{Cooperate,Defect} to Fk,F

PoPD.

2. Fk,F
PoPD chooses (x0,x1, . . .xk, α,y), with xi,y ∈

FB, α ∈ F,

y =
k∑

i=0

xiαi

and xk = 0 if P sent Cooperate and xk ̸= 0
otherwise.

3. Fk,F
PoPD sends (x0,x1, . . .xk) to P and (α,y,m) to

V .

4. Fk,F
PoPD sends ⊥ to V if xk ̸= 0 or if

k−1∑
i=0

xiαi ̸= y.
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Figure 2: k-degree proof of polynomial degeneracy protocol

Protocol Πk,F
PoPD: k-degree proof of polynomial

degeneracy

Parametrized by a finite field F, a degree k, a batch size
B, and a pair of protocols (ΠP

PD,Π
V
PD) with property

S.

1. P sends a message m ∈ FB to V .

2. P learns (x0, · · · ,xk) from ΠP
PD(m) and V learns

(α,y) from part ΠV
PD.

3. P and V engage in ΠV OLE so that P holds (a,b)
and V holds v, with v = aα + b, and all vectors
of length k − 1, with indices from 1 to k − 1.

4. For i = 0, . . . , k − 1, P sets ci := ai + bi+1, with
a0 := bk := 0.

5. V sets w :=
∑k

i=1 viα
i−1.

6. P sends

zi := ci +
B∑
j=1

H(m; j)xij

to V .

7. V verifies that(
k−1∑
i=0

ziα
i

)
= w +

B∑
j=1

H(m; j)yj

and otherwise outputs ⊥.
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Figure 3: Proof of linear degeneracy

Functionality F1,F
PoLD: Proof of linear degeneracy

Parametrized by a finite field F and a batch size B.

• Initially, P holds (x0,x1) where each xi ∈ FB,
and V holds (α,y), with α ∈ F and y = αx1+x0.

• P sends (x0,x1) to F1,F
PoLD.

• V sends (α,y) to F1,F
PoLD.

• F1,F
PoLD sends ⊥ to V if x1 ̸= 0 or if y ̸= αx1+x0.

Because ΠP
PD satisfies property P , for any fixed choice of m, the resulting vector xk will have

at least one nonzero entry, and so the probability that

B∑
j=1

H(m; j)xkj = 0

is 1
|F| . To boost soundness error, we repeat steps (2) through (6) on a family of hash functions Hi,

for i = 1, . . . , r.
Over ℓ queries to H (where on a single query, we allow P ∗ to learn the value of Hi(m; j) for all

i, j, for the sake of simplicity), P ∗ has a probability of success of ℓ
|F|r , as desired.

Lemma 2.5. The protocol in Figure 4 realizes the functionality F1,F
PoLD with soundness error 2B

|F| ,
communication of 1 field element, and B − 1 multiplications in F by each party.

Proof. Completeness: If x1 = 0, then x0i = yi for 1 ≤ i ≤ B, and so the values of z match.
Perfect Zero Knowledge: The verifier’s simulator generates the sender’s message z by making

the substitution yi ← 1 whenever yi = 0, and setting

z :=

B∏
i=1

yi.

This matches the verifier’s view during an honest run of the protocol exactly.
Soundness: The verifier does not need to be convinced that y = αx1 + x0, since they are

already guaranteed this from the initial setup. If a cheating prover holds x1 ̸= 0, then let I ⊆ [1, B]
be the set of indices i such that at least one of x0i , x

1
i is nonzero. Then the prover can compute the

polynomial

f(t) :=
∏
i∈I

(x1i t+ x0i ),

of degree at least 1 and at most B. Let z∗ be the cheating prover’s message, and let z be the product
of the nonzero elements of y. Then if z∗ = z, either z∗ = f(α), or for some i ∈ I, yi = x1iα+x0i = 0.
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Figure 4: Proof of linear degeneracy protocol

Protocol Π1,F
PoLD: Information-theoretic proof of
linear degeneracy protocol

Parametrized by a finite field F and a batch size B.

1. Initially, P holds (x0,x1) where each xi ∈ FB,
and V holds (α,y), with α ∈ F and y = αx1+x0.

2. P substitutes x0i ← 1 whenever x0i = 0.

3. V substitutes yi ← 1 whenever yi = 0.

4. P computes z :=
∏B

i=1 x
0
i .

5. V computes z′ :=
∏B

i=1 yi.

6. P sends z to V .

7. V verifies that z = z′ and otherwise returns ⊥.

The first possibility occurs with probability at most B/|F|, since P does not know α, and f(t)− z∗

has at most B roots. By a union bound, the second possibility occurs with probability at most
B/|F|, since for any i ∈ I, the probability that x1iα + x0i = 0 is equal to 0 if x1i = 0, and 1/|F|
otherwise.

Remark 3. The functionality F1,F
PoLD can be used to instead prove x1 = 0 by having P swap

x0 and x1 and V assign y ← α−1y and α ← α−1, and then executing F1,F
PoLD. This requires an

additional B multiplications by the verifier. When performing multiple instances of F1,F
PoLD, R can

reduce computation by instead computing the value α−B once and then computing

α−B
∏
yi ̸=0

yi

for each instance of F1,F
PoLD, at a cost of 1 additional multiplication per instance.

3 Certified LPZK

We now state and prove a more refined version of Theorem 1.1.
Let C = ((wi), (Gj),F) be an arithmetic circuit with k inputs, k′ outputs, and |C| degree 2

polynomial gates, as described in §1.2. We write a gate Gj := (gj , Ij , (wi)Ij ), where gj is a degree
2 polynomial acting on the wires wi, for i in the index set Ij , with output wire wj .

The algorithm Setup(F, C) sets n := k + (2 + 1
t )m, I equal to the set [k − k′ +m + 1, . . . , k −

k′ + (2 + 1
t )m], and Q := (fj)j∈I defined by setting fj equal to the degree 2 part of gj−k+k′−m for

gate Gj−k+k′−m, for k − k′ +m+ 1 ≤ j ≤ k − k′ + 2m, and fj = 0 otherwise.
We give the algorithms ProveIT and VerifyIT in Figures 5 and 6, respectively. We give the full

proof of the following theorem in Appendix §A.2.
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Figure 5: Prover algorithm for certified IT-LPZK

Algorithm ProveIT (F, n, I,Q,w)

Parametrized by a finite field F, a degree k, and a batch
size B.

1. P chooses a1,b1 ←R Fk+m, and sets b1 := w =
(wi)1≤i≤k+m−k′ .

2. a1,b1[m− k′ + 1 : m]← 0k
′
.

3. P chooses b2 ←R Fm and sets a2j = Q(a1), for
j = 1, . . . ,m.

4. For each gate Gj , P computes the values

x1j :=

(
dgj
dz

(a1z + b1)(0)

)
− a1j − b2j

and
x0j = gj(b

1)− b1j .

5. P computes a message z using F1,F
PoLD(x

0,x1) and
sets b3 := z.

6. P sets a3 := 0, a vector of length m
t .

7. Return (a1 ∪ a2 ∪ a3,b1 ∪ b2 ∪ b3).

Theorem 3.1 (Certified LPZK for arithmetic circuit satisfiability). For any NP-relation R(x, y)
and finite field F, there exists a certified LPZK system for R over F with soundness error O(1/|F|).
Concretely, in the case of proving the satisfiability of an arithmetic circuit C over F, we get LPZK
over F with the following size parameters (n, n′, n′′) and soundness error ε for every integer t ≥ 1.
If C has k inputs, k′ outputs, and m degree 2 polynomial gates, we have n = k+(2+ 1

t )m, n′ = m,
n′′ = m

t + k′, ε = 2t/|F|. Moreover, assuming that the cost of additions in the field are negligible
compared to the cost of multiplications, the computation of the prover is less than 3 times the cost of
evaluation in the clear, and the computation of the verifier is less than 2 times the cost of evaluation
in the clear.

3.1 Certified LPZK protocol

To simplify the indexing, we write the output from the algorithm Prove(F, C, w) as eight vectors
a,a1,a2,a3,b,b1,b2,b3, with a := a1∪a2∪a3 and b := b1∪b2∪b3. The vectors a1,b1 correspond
to the indices [1, k−k′+m], the vectors a2,b2 correspond to the indices [k−k′+m+1, k−k′+2m],
and the vectors a3,b3 correspond to the indices [k − k′ + 2m+ 1, k + (2 + 1

t )m]. We then re-index
each vector so that, e.g. a1j and b2j each will be consumed by the jth degree 2 polynomial gate.

The vectors a1,b1 correspond to all indices i ̸∈ I from Setup(F, C). The vector b1 represents
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Figure 6: Verifier algorithm for certified IT-LPZK

Algorithm VerifyIT (F, n, I,Q, α,vα)

Parametrized by a finite field F, a degree k, and a batch
size B.

1. v1
α ← vα[1 : k +m], i.e. the first k +m entries of

vα.

2. v1
α[m− k′ + 1 : m]← 0k

′

3. v2
α ← vα[k − k′ +m+ 1 : k − k′ + 2m]

4. v3
α ← vα[k − k′ + 2m+ 1 : k − k′ + (2 + 1

t )m]

5. For each gate Gj , V computes the values

yj := gj(v
1
α)− v2α,jα− v1α,j .

6. V calls F1,F
PoLD(α,y,v

3
α) and returns rej if the pro-

tocol returns ⊥.

7. Return acc.

all wire values in the circuit, and the vector a1 masks those wire values. By the definition, we have
a1 chosen uniformly at random. We have |a1| = |b1| = k +m − k′, take b := w = (wi)i≤k+m−k′ ,
and extend both vectors to length k +m by adding zeros.

The vector a2 holds the action of the polynomial sequence Q on the vector a1. We have
|a2| = |b2| = m, with the vector |a2| defined by the polynomial sequence Q. The vector b2 is
chosen uniformly at random from Fm. For each gate Gj , the prover computes the polynomial

gj(a
1z + b1)− α(a2jz + b2j )− (a1jz + b1j ).

The term (a1jz + b1j ) can be dropped when Gj is an output wire, since b1j must be equal to 0, and
so there is no need to hide the value.

By construction, this is a linear function in z, and P sets the result equal to x1j + x0j , as shown

in step (3) of the algorithm. Moreover, if P is honest, x0j = 0, and so P executes a proof of

linear degeneracy on (x0,x1) to show that x0 = 0, using the modification of F1,F
PoLD described in

Remark 3. The prover sets b3 equal to the message sent during the execution of F1,F
PoLD and sets

a3 := 0.
In the algorithm Verify(F, C, α,vα), the verifier subdivides vα into v1

α,v
2
α,v

3
α whose values are

equal to aiα+ bi, for i ∈ {1, 2, 3} in an honest run of the protocol.
For each gate Gj , the verifier computes the value

yj := gj(v
1
α)− v2α,jα− v1α,j

and plays the part of the receiver in a proof of linear degeneracy. The expression for y is the
evaluation of the polynomial x1z + x0 computed by the prover at z = α, and again the v1α,j term
can be dropped when Gj is an output gate.
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3.2 Cost analysis of certified LPZK

Communication: As described in §2.2, the communication complexity of (n, n′, n′′)-certified
LPZK is n − n′, since P sends one field element to V for each element of b1 and b3, but sends
nothing for a2 or b2. Thus total communication complexity is k + (1 + 1

t )m. Note that k′ has no
impact on communication complexity because the cost of verifying a degree 2 polynomial gate is
the same as cost of verifying the gate and its output.

Prover computation: To run the protocol, the prover must compute the values(
dgj
dz

(a1z + b1)(0)

)
and gj(b1) and play the role of the prover in m

t executions of F1,F
PoLD. But the derivative evaluated

at zero can be computed as:(
dgj
dz

(a1z + b1)(0)

)
= gj(a

1 + b1)− fj(a
1)− gj(b

1),

and fj(a
1) is computed in a preprocessing step as part of the qVOLE functionality.

Therefore the total computation cost for the prover is equal to two times the cost of evaluation
in the clear plus the cost of t − 1 field multiplications per execution of F1,F

PoLD, for a total cost of
(1− 1

t )m+ 2comp(C) field multiplications.
Verifier computation: The values αv2α,j can be computed from v2

α in a preprocessing step,

as can the value α−t required for F1,F
PoLD, as described in Remark 3. The computations gj(v

1
α) −

v2α,jα−v1α,j can be done with the same amount of verifier work as executing the circuit in the clear,
plus the cost of two subtractions per gate.

Additionally, the verifier requires t multiplications for each batch of t gates in F1,F
PoLD, for a

total cost of m+ comp(C) field multiplications.

Remark 4. In the special case of certified-LPZK for N ×N matrix multiplication, we have, using
the standard schoolbook algorithm, k = k′ = m = N2, and comp(C) = N3 field multiplications.
We therefore have m = o(comp(C)), and for N sufficiently large, prover work is roughly equal
to 2 times the cost of computation in the clear, and verifier work is roughly equal to the cost of
computation in the clear.

The concrete efficiency parameters are (3 + 1
t )N

2 field elements of communication, 2N3 + (1−
1
t )N

2 multiplications by the prover, and N3 + 2N2 multiplications by the verifier.
Because matrix multiplication is a homogeneous polynomial of degree 2, the cost of comput-

ing the functions gj(a
1 + b1), gj(b

1) is exactly equal to two times the cost of evaluating matrix
multiplication. Therefore we can replace the standard schoolbook algorithm with any algorithm
for matrix multiplication, reducing the computational cost for both parties to O(N2.8074) with the
Strassen algorithm, or to O(N2.3728596) with the best asymptotic matrix multiplication algorithm
due to Alman and Williams [1]. Communication cost will be (3+ 1

t )N
2 = o(comp(C)) field elements

regardless of the matrix multiplication algorithm used.
For practical values of N , the standard algorithm or the Strassen algorithm should be used,

with the Strassen algorithm becoming preferable somewhere between N = 500 and N = 1000, see
e.g. [13, 9].

18



Figure 7: Prover algorithm for certified ROM-LPZK

Algorithm ProveROM (F, n, I,Q,w)

Parametrized by a finite field F, a degree k, and a batch
size B.

1. P chooses a1 ←R Fk+m′
and sets b1 := w =

(wi)i∈K∪Iτ .

2. P chooses b2 ←R Fm−m′
and sets a2j = Q(a1), for

j = 1, . . . ,m.

3. a3,b3 ← 0r

4. a4,b4 ← 0k+m−m′

5. (a4,b4)[1 : k]← (a1,b1)[1 : k]

6. For each gate Gj , in sequence:

• If j ∈ Iτ , the prover computes

x1j := fj(a
4)

and

x0j =

(
dgj
dz

(a4z + b4)(0)

)
− a1j .

• If j ∈ I1−τ the prover computes the values

a4j :=

(
dgj
dz

(a1z + b1)(0)

)
− b2j

and
b4j := gj(b

1).

7. For each output gate Gj , the prover computes the
values

x1j := fj(a)

and

x0j =
dgj
dz

(az + b)(0).

8. P calls F2,F
PoPD on (x0,x1), producing the message

z, and sets b3 := z.

9. P sets a3 := 0.

10. Return (a1 ∪ a2 ∪ a3,b1 ∪ b2 ∪ b3).
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4 Certified LPZK in the ROM

Let C = ((wi), (Gj), ℓ,F) be an arithmetic circuit with k inputs, k′ outputs, and |C| degree 2
polynomial gates, as described in §1.5. As above, we write a gate Gj := (gj , Ij , (wi)Ij ), where
gj is a degree 2 polynomial acting on the wires wi, for i in the index set Ij , with output wire
wj . Here ℓ : (wi) → N is a grading that assigns each wire to a layer, with the requirement that
ℓ(wj) = ℓ(wi) + 1, for each wire wi ∈ Ij that is an input to gate Gj . For input wires wi, we
set ℓ(wi) = 0, and let ℓmax be the maximum value of ℓ(wi) (achieved on all output wires). Let
K = [1, . . . , k] be the set of input wire indices, let I0 be the set of indices i corresponding to wires
wi with ℓ(wi) even and 0 < ℓ(wi) < ℓmax, and let I1 the set of indices i corresponding to wires wi

with ℓ(wi) odd and 0 < ℓ(wi) < ℓmax. Set

m′ = min {|I0|, |I1|} ≤
m

2
,

and set τ = 0 if m′ = |I0| and τ = 1 otherwise.
The algorithm Setup(F, C) sets n := k +m+ r, I equal to the set [k +m′ + 1, . . . , k +m+ r],

and Q := (fj)j∈I defined by setting fj equal to the degree 2 part of gi, where i is the jth element
of Iτ , and gi corresponds to gate Gi, for k +m′ + 1 ≤ j ≤ k +m, and fj = 0 otherwise. We give
the algorithms ProveROM and VerifyROM in Figures 7 and 8, respectively. We give the proof of the
following theorem in Appendix §A.3.

Theorem 4.1 (LPZK in the ROM). For any positive integer r, there exists an LPZK in the
ROM for arithmetic circuit satisfiability for layered circuits, with the following size parameters
(n, n′, n′′) and soundness error. If C has k inputs, k′ outputs, and m multiplication gates, we
have n = k + m + r, n′ = m′, n′′ = r. For any malicious prover making ℓ calls to a random
oracle H : Fm → Fmr, the soundness error is ε = 2

|F| +
ℓ

|F|r . Moreover, the computation of both the

prover and the verifier consists of O(r|C|) and a single call to H.

4.1 Certified LPZK protocol in the ROM

To simplify the indexing, we write the output from the algorithm Prove(F, C, w) as eight vectors
a,a1,a2,a3,b,b1,b2,b3, with a := a1∪a2∪a3 and b := b1∪b2∪b3. The vectors a1,b1 correspond
to the indices [1, k+m′] and the vectors a2,b2 correspond to the indices [k+m′+1, k+m], and the
vectors a3,b3 correspond to the indices [k +m+ 1, k +m+ r]. Additionally, the prover computes
another pair of vectors (a4,b4) that are not included in the vectors a,b, with |a4| = b4| = k+m−m′.
As above, we then re-label the indices of all vectors so that the element at index j will be consumed
by the the jth multiplication gate.

The vectors a1,b1 correspond to all indices i ̸∈ I from Setup(F, C). These represent the input
wires and all wires at a level with parity τ , masked as entries of VOLE. By the definition, we have
a1 chosen uniformly at random. We have |a1| = |b1| = k +m′, and take b1 := w = (wi)i∈K∪Iτ .

We have |a2| = |b2| = m−m′, with the vector |a2| defined by the polynomial sequence Q. The
vector b2 is chosen uniformly at random from Fm. These vectors hold the results of applying the
degree 2 gates of the circuit to the vector a1, masked by the values b2.

The vectors (a3,b3) only holds the message needed for Fk,F
PoPD, as in the information-theoretic

protocol.
The first k entries of a4 and b4 are set equal to the first k entries of a1 and b1, respectively,

for indexing purposes. The remaining entries of a4 and b4 hold the wire values of all wires at level
with parity 1− τ , together with the masks a4.
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Figure 8: Verifier algorithm for certified ROM-LPZK

Algorithm VerifyROM (F, n, I,Q, α,vα)

Parametrized by a finite field F, a degree k, and a batch
size B.

1. v1
α ← vα[1 : k +m′], i.e. the first k +m′ entries

of vα.

2. v2
α ← vα[k +m′ + 1 : k +m]

3. v3
α ← vα[k +m+ 1 : k +m+ r]

4. v4
α ← 0, a vector of length k +m−m′.

5. v4
α[1 : k]← v1

α[1 : k].

6. For each gate Gj , in sequence:

• If j ∈ Iτ , the verifier computes

yj := gj(v
4
α)− v1α,j .

• If j ∈ I1−τ the verifier computes

v4α,j := gj(v
1
α,j)− v2α,jα.

7. For each output gate Gj , the verifier computes
yj := gj(v).

8. V calls F2,F
PoPD(α,y,v

3
α) and returns rej if the pro-

tocol returns ⊥.

9. Return acc.
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The vectors a4 and b4, and the corresponding vector v4
α held by the verifier, can be computed

by the prover (resp. verifier) from the previous level’s vectors a1,v1 and a2,b2 (resp. v1
α and v2

α),
without any communication. The correlated randomness held in a2 allows us to reduce the degree
of the gate output of gj(a

1z + b1) without any communication. However, the resulting vector a4

depends upon the prover’s input, and so we can no longer use correlated randomness can be used
to get to next level. Therefore the prover must communicate to set the vector b1 on the next level,
as in the information-theoretic variant, and then use F2,F

PoPD to show this was done correctly, and
the cycle repeats.

For each gate Gj , with j ∈ Iτ , the prover computes the polynomial gj(a
4z + b4) − (a1jz + b1j ),

and sets the z2 and z coefficients to x1j and x0j , respectively.

For gate Gj with j ∈1−τ , the prover computes the polynomial gj(a
1z + b1) − α(a2jz + b2j ) over

z and sets (a4j , b
4
j ) equal to the coefficients of z1 and z0, respectively (See step (6) of Figure 7.)

Finally, for each output gate Gj , the prover computes the values

x1j := fj(a)

and

x0j =
dgj
dz

(az + b)(0),

and engages in a proof of linear degeneracy on (x0,x1).
In the algorithm Verify(F, C, α,vα), the verifier subdivides vα into v1

α,v
2
α, whose values are

equal to aiα + bi, for i ∈ {1, 2, 3} in an honest run of the protocol, and creates the additional
vector v4

α, whose values will be computed by the verifier. The first k entries of v4
α are set equal to

the first k entries of v1
α.

For each gate Gj , with j ∈ Iτ and with j ∈ I1−τ , the verifier computes the value corresponding
to the evaluation of the prover’s computed polynomial in z at z = α (see step (6) of Figure 8.)

Finally, for each output gate Gj , the verifier computes the value

yj := gj(a)

and engages in a proof of linear degeneracy to verify that yα = x1α+ x0.

Remark 5. It is important to note that it is possible to apply this protocol to arbitrary circuits,
not only layered circuits, by placing a gate index in Iτ when any of the input indices lie in I1−τ ,
and otherwise choosing whether to place it in Iτ or I1−τ . This can be stated as a coloring problem:
Use the color red to denote wires for which the value ai is determined purely by the correlated
randomness, and use blue to denote wires for which the value ai depends on the prover’s input.
Color the input wires red, then color the remaining wires of the circuit such that, for any gate with
all blue inputs, or a mix of blue and red inputs, the output wire is red, while for a gate with all red
inputs, the output wire may be red or blue. The communication cost using this approach is equal
to the number of red wires.

For many potential applications, the savings are substantial. For example, let C be a circuit
made up entirely of multiplication gates, where the two inputs to the ith gate are chosen at random
from the outputs of gates 1, . . . , (i− 1). Then PB, the probability a wire is blue, is asymptotically
equal to P 2

R, where PR is the probability a wire is red. But of course PB + PR = 1, and we can
solve to find PR = (−1 +

√
5)/2 ≈ 0.62, that is, we achieve a 38% reduction in communication.
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4.2 Communication and computational complexity of certified LPZK in the
ROM

Communication: As described in §2.2, the communication complexity of (n, n′, n′′)-certified
LPZK is n − n′, since P sends one field element to V for each element of b1 and b3, but sends
nothing for a2 or b2. Thus total communication complexity is

k +m′ + r ≤ k + m
2 + r.

Prover computation: As in the non-ROM protocol, the prover must compute:(
dgj
dz

(aιz + bι)(0)

)
= gj(a

ι + bι)− fj(a
ι)− gj(b

ι),

for each gate Gj , and ι ∈ {1, 4}. However, for gates Gj with j ∈ Iτ , the value fj(a
4) can no longer

be computed in a preprocessing step, since a4 depends on P ’s witness.
Therefore the total computation cost for the prover is between 2comp(C) and 3comp(C) field

multiplications, plus the cost of a proof of linear degeneracy of length m′ + k, with 2(m′ + k)r field
multiplications and m′ + k calls to a random oracle.

Verifier computation: The computational cost for the verifier is equal to the cost of the
non-ROM protocol, replacing the calls to F1,F

PoLD with a call to Fk,F
PoPD of length m′+k. It therefore

requires (m′ + k + 4)r + comp(C) field multiplications and m′ + k calls to a random oracle.

5 Implementation and Benchmarking

We implemented our Prove and Verify algorithms in the IT and ROM variants, and benchmarked
their performance. For our benchmarking, we worked in the preprocessing model, where the neces-
sary qVOLE randomness had been generated in an offline step. The tests were done on an Amazon
EC2 machine of type m5.2xlarge with a single thread.

5.1 Comparing with prior VOLE implementations

In Table 1, in the introduction, we compared the speed in millions of gates per second to those of
Mac ’n’ Cheese, Wolverine, and Quicksilver. The implementation of Quicksilver by Yang et al in
[18] has since been surpassed on their Github, so we used their most recent numbers. Additionally,
we implemented IT-LPZKv1, since to the best of our knowledge, this was not implemented by
Dittmer et al in [8]. Finally, we implemented a plain circuit evaluation for comparison purposes.
Quicksilver, like our work, used a single-threaded m5.2xlarge instance. Wolverine used a larger
m5.4xlarge instance.

We note that the implementation of Mac ’n’ Cheese, like our implementations of LPZK, distin-
guishes the actual silent generation of VOLE from on-line cost. Both Mac ’n’ Cheese and Quicksilver
include the cost of on-line communication, where our benchmarking tests are even more refined: we
measure the Prove and Verify algorithms cost independently. We therefore use their benchmarking
run on a LAN to give as equal of a comparison as possible.

The benchmarked estimates are all roughly consistent with the columns of computations, with
two exceptions - the plain circuit evaluation and Wolverine are slower than would be expected from
the number of operations required per gate. Even the plaintext circuit has to read the witness from
memory before performing additions and multiplications and iterate through the gates, which may
be a substantial portion of its cost. We remark that pipelining and multi-threading to read the
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Protocol Prime Prover Verifier Ratio

IT-LPZKv1 F261−1 51.1 30.3 0.59

IT-LPZKv2 F261−1 45.8 27.4 0.60

IT-LPZKv1 P-384 3050 1813 0.59

IT-LPZKv2 P-384 2556 1511 0.59

ROM-LPZKv2 F261−1 102.5 88.1 0.86

Table 2: Prover and verifier times for LPZK variants over various primes, and the ratio between
the runtimes. All times are given in ms / million multiplication gates

circuit in, read the witness in, and begin the proof and verification in parallel could close this gap.
and, more importantly, speed up the LPZK protocols further.

Similarly, we note that we might expect a 33% improvement in runtime from IT-LPZKv1 to
IT-LPZKv2, since the latter protocol requires 3 multiplications per gate instead of 4. Instead, we
got approximately a 10% improvement. Again, it is possible that, since field operations over the
Mersenne prime 261 − 1 are highly optimized, the cost of additions, subtractions, control flow, and
iterating over the various forms of randomness may be contributing.

It is not entirely clear why Wolverine is unusually slow. Ultimately, of course, the reason
Wolverine is slow is that the authors turned their attention to optimizing the code of Quicksilver,
and deprecated Wolverine. Additionally, Wolverine uses a slower VOLE generation procedure than
later works, and includes this time in its benchmarking, as well as some communication and pre-
processing that is linear in the circuit size. Quicksilver also includes the VOLE generation time in
its cost, but uses the faster Silver procedure [7] so that the costs here become negligible. Finally,
Quicksilver includes optimizations around hashing that are applicable to our setting as well but
we have not implemented. Wolverine discusses various choices here (and in other parts of their
protocol), but it is not clear which choices were actually implemented.

5.2 LPZK prover and verifier online runtimes

In Table 2, we give the prover and verifier runtimes for our LPZK protocols. For the IT-variant,
we give runtimes over F261−1 and P-384 (the prime associated with the elliptic curve of the same
name).

For all the information-theoretic protocols and choices of primes, the verifier run-time is very
close to 0.59 times the prover’s run time. For the random oracle protocol, that ratio is around 0.85,
probably because the cost of hashing is equal for both parties.

We also note that the prover’s advantage in IT-LPZKv2 versus IT-LPZKv1 improves from 10%
to 16% when using the larger prime. We suspect that this ratio continues to increase towards 30%
for large enough primes, as the cost of multiplication dominates.

5.3 Comparing with state-of-the-art NIZK protocols and zkSNARKs

In Table 3, we additionally compare our algorithms in this paper and the Quicksilver algorithm to
three of the fastest ZK algorithms used today, Groth16 [11], Virgo [19], and Cerberus [14]. In the
rightmost column, we give the slowest network that can send the proof as quickly as the prover can
generate it. Since our prover times are at least 4-10x faster than these non-based VOLE protocols,
when we have networks running around 100−200 MBps or faster, we can expect that our protocols,
in particular IT-LPZKv2, give the fastest online time for implementing ZK.
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Protocol Comm. P’s Time V’s Time Bottleneck

Groth16 [11] 192 b 21 s < 2 ms 0.009 kBps

Virgo [19] 271 kB 478 ms 12.4 ms 567 kBps

Cerberus [14] 2.8 MB 2.17 s 148 ms 1.29 MBps

Quicksilver [18] 8MB 128 ms < 128 ms 62.5 MBps

IT-LPZKv2 8MB 45.8 ms 27.4 ms 174.7 MBps

ROM-LPZKv2 4MB 102.5 ms 88.1 ms 39.0 MBps

Table 3: Comparison of Quicksilver and LPZKv2 online times to state-of-the-art NIZK protocols
operating on one million gates. The protocols are all executed over F261−1 except Cerberus, which is
executed over a generic 128-bit field. The bottleneck point is the minimum network speed required
for the prover computation to be the performance bottleneck.

5.4 Comparing end-to-end times

Although our protocols are especially designed for the online-offline model, we also obtain highly
competitive protocols in end-to-end runtime under reasonable assumptions about setting and net-
work speed.

When computation is a bottleneck, for example, on a physically connected device, we can use the
qVOLE compiler from plain VOLE, and get numbers for end-to-end prover and verifier computation
for both IT-LPZKv1 and IT-LPZKv2 that will be roughly 2x faster than any other protocol. The
additional cost of VOLE generation must be included here, but as discussed elsewhere, advances
in VOLE in [7] render this cost negligible.

When dealing with medium speed networks, communication will be a bottleneck for both Quick-
silver and ROM-LPZKv2. When using the ring-LPN based approach for generating qVOLE, ROM-
LPZKv2 has, asymptotically, a 2x advantage over Quicksilver in end-to-end communication.

Concretely, we can use Table 3 in [5] and the surrounding discussion, taking c = 4, w = 64
with active, 128-bit security, to estimate the seed size, total end-to-end computation, and total
end-to-end communication needed for ROM-LPZKv2. For a circuit with 32 million multiplication
gates over F261−1 and a network speed of 0.5 Mbps, Quicksilver will require 516 s in this setting,
while ROM-LPZKv2 will require only 406 s. For slower networks and larger circuits, of course,
ROM-LPZKv2’s advantage will be even greater.
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A Deferred Proofs

A.1 Proof of Lemma 2.2

Proof. For each degree 2 polynomial gate Gi, let there be a corresponding entry of VOLE vi =
aiα + bi. Then S sends to R the value d = fi(a) − ai, and R adds αd + vi to give fi(a)α + bi, as
desired.

Then the expression fi(aα + b) − α2d − αvi is a quadratic in α, with leading coefficient zero

under an honest run of the protocol. P and V call Πk,F
PoPD of degree 2 to complete the protocol.

Security follows from the security of VOLE and Πk,F
PoPD.

A.2 Proof of Thereom 3.1

Completeness: If P has a valid witness w for C and follows the protocol, we have gj(b
1) = b1j

for all gates, and gj(b
1) = 0 for output gates. For each gate Gj , the value gj(v

1
α) = gj(a

1α+b1) is
a quadratic polynomial in α, with coefficients

gj(v
1
α) = fj(a

1)α2 +

(
dgj
dz

(a1z + b1)(0)

)
α+ gj(b

1),

where the linear and constant terms are derived from the Taylor series expansion, and, by definition,
fj is the degree 2 part of gj . For all gates we have

gj(v
1
α)− v2α,jα− v1α,j =

(
dgj
dz

(a1z + b1)(0)− b2j − a1j

)
α = x1jα,

which does indeed have a constant term equal to zero, taking v1α,j = a1j = b1j = 0 for output

gates, and so the m
t values sent in the execution of F1,F

PoLD are accepted as a verification that
x1α+ x0 = x1α.

Perfect Zero Knowledge: The simulator generates α and v2
α uniformly at random, matching

the behavior of the simulator for certified VOLE. The simulator next generates v1
α uniformly at

random. This matches exactly the distribution under an honest run of the protocol, since a1 is
chosen uniformly at random by an honest prover. Then the simulator computes the values

yj := gj(v
1
α)− v2α,jα− v1α,j

and generates the the vector v3
α using the simulator for F1,F

PoLD acting on the values yj .
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Soundness: We show the stronger proof-of-knowledge property. For a line (â, b̂) generated by
a (potentially malicious) prover, we give an efficient extractor E(â, b̂) that extracts the witness ŵ.
In fact, we have ŵ := (â11, . . . , â

1
k), i.e. the extractor reads off the first k elements of â1.

By the definition of certified LPZK, we require that even a maliciously chosen (â, b̂) satisfy the
qVOLE property. Suppose V accepts αâ+ b̂ and C(ŵ) ̸= 0. Then gj(b̂

1) ̸= b̂j1 for some gate. If P
cheats on some non-output gate, we have

gj(v̂
1
α)− v̂2α,jα− v̂1α,j =

(
dgj
dz

(â1z + b̂1)(0)− b̂2j − â1j

)
α+ gj(b̂

1)− b̂1j

= x1jα+ x0j ,

for x0j ̸= 0. The verifier will detect that x0 ̸= 0 unless the prover successfully cheats during

the execution of the F1,F
PoLD functionality, which adds 2t/|F| to the soundness error. Finally, for

the prover to cheat on any output gate, they must have a vector b1 such that the output gate
gj(b

1) ̸= 0, but send a value yj such that

(x1j − yj)α+ gj(b
1) = 0,

which is equivalent to guessing α, and adds 1/|F| to the soundness error.

A.3 Proof of Thereom 4.1

Completeness: If P has a valid witness w for C and follows the protocol, we have gj(b
1) = b1j

for all gates, and gj(b
1) = 0 for output gates.

For each gate Gj with j ∈ Iτ , we have

gj(v
4
α)− v1α,j = fj(a

4)α2 +

(
dgj
dz

(a4z + b4)(0)− a1j

)
α+ gj(b

4)− b1j

= x1jα
2 + x0jα

= yjα,

as desired. For each gate Gj with j ∈ I1−τ , we have

gj(v
1
α)− αv2α,j =

(
fj(a

1)− a2j
)
α2 +

(
dgj
dz

(a1z + b1)(0)− b2j

)
α+ gj(b

1)

= a4jα+ bj ,

as desired. Finally, for each output gate Gj , we have

gj(vα) = fj(a
1)α2 +

(
dgj
dz

(a1z + b1)(0)

)
α+ gj(b

1)

= x1jα
2 + x0jα

= yjα,

since gj(b) = 0. Therefore the 2r values sent in the execution of Fk,F
PoPD are accepted as verification

that x1α+ x0 = yα.
Zero Knowledge: The simulator generates α and v2

α uniformly at random, matching the
behavior of the simulator for certified VOLE. The simulator next generates v1

α uniformly at random.
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This matches exactly the distribution under an honest run of the protocol, since a1 is chosen
uniformly at random by an honest prover. The verifier computes v4

α and y as in an honest run of
the protocol, and computes v3

α from the simulator of Fk,F
PoPD.

Soundness: We show the stronger proof-of-knowledge property. For a line (â, b̂) generated by
a (potentially malicious) prover, we give an efficient extractor E(â, b̂) that extracts the witness ŵ.
As above, we have ŵ := (â11, . . . , â

1
k), i.e. the extractor reads off the first k elements of â1.

By the definition of certified LPZK, we require that even a maliciously chosen (â, b̂) satisfy the
qVOLE property.

Suppose V accepts αâ + b̂ and C(ŵ) ̸= 0. Then either gj(b̂
1) ̸= b̂j1 for some gate Gj in Iτ or

I1−τ , or gj(b̂
1) ̸= 0 for some output gate. If P cheats on some gate Gj ∈ Iτ , we have

gj(v̂
4
α)− v̂1α,j = x1jα

2 + x0jα+ gj(b̂
4)− b̂1j ,

which will be detected unless P successfully cheats in the execution of the Fk,F
PoPD functionality.

The prover cannot cheat on gates Gj ∈ I1−τ , since V computes v̂4
α,j without any communication

from P . Finally, for output gates, if P cheats we have

gj(v̂α) = x̂1jα
2 + x̂0jα+ gj(b̂),

which again will be detected unless P successfully cheats in the execution of the Fk,F
PoPD functionality.

Therefore the total soundness error is equal to the soundness error of Fk,F
PoPD.
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