
Smart Contracts Obfuscation from

Blockchain-based One-time Program

Sora Suegami

Department of Information and Communication Engineering, The
University of Tokyo

suegamisora@g.ecc.u-tokyo.ac.jp

April 29, 2022

Abstract

We propose a cryptographic obfuscation scheme for smart contracts
from one-time programs using a blockchain, a garbled circuit, and wit-
ness encryption. The proposed scheme protects not only the privacy of
its input data and states but also the privacy of its algorithm and hard-
coded secrets. Its security depends on existing secure blockchains and
does not require the honest majority of secure multiparty computation
and trusted hardware. This scheme is more efficient than obfuscating an
entire program with indistinguishability obfuscation. In addition, it needs
a trusted setup, but its security is protected unless all participants of the
setup process are malicious.

Keywords: privacy-preserving smart contract, blockchain, cryptographic obfus-
cation, garbled circuit, witness encryption

1 Introduction

In smart contracts, which are user-defined programs supported by blockchain pro-
tocols, there is inadequate privacy protection because a blockchain is a ledger shared
among an unspecified number of anonymous computers in a peer-to-peer network, and
inputs to the smart contract and the bytecode representing its functions are recorded
on the blockchain.

We can categorize the privacies that smart contracts should protect into data
and function privacies. The former is the privacy for input and state data of the
smart contract, whereas the latter is the privacy for the smart contract algorithm
and secrets hardcoded in its bytecode. Although function privacy is not as essential
as data privacy in traditional applications using smart contracts, e.g., decentralized
finance, it is crucial to help a company implement a program for its service as a smart
contract because there would be a business problem if that program were available to
competitors. Besides, by hardcoding a secret key in a bytecode of the smart contract,

1

we can improve existing scaling solutions for blockchains, e.g., zero-knowledge (ZK)
rollups [1]. For these reasons, we propose a solution that protects both data and
function privacies.

Existing solutions for privacy-preserving smart contracts use either a noninter-
active ZK (NIZK) proof system [2, 3, 4], secure multiparty computation (SMPC)
[5, 6, 7, 8], or trusted hardware called trusted execution environment (TEE) [9, 10, 11].
The NIZK proof system cryptographically protects the data privacy of a limited class
of smart contracts where only a single user’s secrets are handled simultaneously but
does not protect function privacy. Meanwhile, SMPC and TEE can protect data and
function privacies for a smart contract that accesses multiuser secrets; however, their
security is not solely based on cryptographic assumptions. An SMPC-based smart
contract requires computations and communications by participants of SMPC, and
its privacy protection is lost if its majority colludes. Besides, a TEE manufacturer
can plant a backdoor in the TEE, which can break the privacy protection of a smart
contract. Thus, we need a new solution whose security does not depend on such third
parties. Cryptographic obfuscation could yield such a new solution.

1.1 Cryptographic Obfuscation

Obfuscation is a technique to hide the contents of a program while preserving its
functionality. As such, anyone can execute an obfuscated program and obtain the
same output as the source program, but they cannot know the algorithms or secrets
included in the program. Cryptographic obfuscation is an obfuscation realized by
cryptographic techniques, and its security is based on cryptographic assumptions. It
can be used, for example, by software developers to distribute demo versions with
limited functionalities to prevent reverse engineering of their software.

A smart contract that protects data and function privacies is constructed by hard-
coding the secret key in its bytecode and obfuscating it with cryptographic obfuscation
[12]. All of its input and state data are encrypted under the public key, and they are
decrypted inside the obfuscated program. Its function privacy is directly guaranteed
by the obfuscation security. Its data privacy is also guaranteed because an adversary
cannot extract the hardcoded secret key from the obfuscated program. Therefore,
cryptographic obfuscation enables a smart contract to cryptographically protect data
and function privacies without requiring an honest majority of the SMPC participants
or TEE.

However, there is no cryptographic obfuscation that makes an arbitrary program
a black box. Particularly, it proved impossible to obfuscate an arbitrary program
under ”virtual black box security” [13]. Instead, cryptographic obfuscation that guar-
antees weak indistinguishability, called indistinguishability obfuscation (iO), would be
feasible. The security of iO guarantees that if two programs of the same size and func-
tionality (input-output relationship) are obfuscated, they will be indistinguishable.
Recently, many iO candidates have been proposed, particularly in [14, 15], which
showed that iO can be constructed based solely on already established cryptographic
assumptions. However, even in the latest research [14, 16, 17, 18], the execution time
is unrealistic. In summary, although the secure construction of iO exists under estab-
lished assumptions, its efficiency remains impractical.

In addition to its inefficiency, iO is unsuitable to construct an obfuscated smart
contract for two reasons1. First, its privacy protection is limited because iO only

1As far as our knowledge, there is no concrete proposal to realize a privacy-preserving

2

guarantees the indistinguishability of functionality-equivalent functions. That is, it
only protects the function privacy for a smart contract that can theoretically realize the
same functionality without no secret algorithm and values. Second, a smart contract
can preserve a state, whereas iO cannot do that as it always returns the same output
for the same input. Assuming that a smart contract obfuscated with iO takes as
input a previous state and outputs a new state, we can provide any state as input to
the obfuscated smart contract. As such, already provided states cannot be rejected.
However, a smart contract, by specification, cannot use any state other than the latest
one, so we have to resolve this difference.

1.2 Our Contribution

We propose a smart contract obfuscation scheme that solves the above problems. Our
scheme is characterized by the following points.

1. It protects data and function privacies for wider classes of functions than iO.

2. Its security depends on a secure blockchain. Although it is not based solely on
cryptographic assumptions, we can use existing proof-of-stake (POS) blockchain
mechanisms without modifying their protocols.

3. It can preserve the state of an obfuscated smart contract, that is, only the latest
state can be provided as the input.

4. It needs multiparty computation (MPC) for only the setup process; its security
is maintained if at least one of the MPC participants is honest, and it does not
require the participants to work after the setup process.

1.3 Literature Review

We categorize the existing studies for privacy-preserving smart contracts into NIZK,
SMPC, and TEE-based solutions. Our scheme does not belong to any category as
described in Subsection 1.1. We compare them in terms of the following features.

• Data Privacy: Privacy for the input and state data of the smart contract.

• Function Privacy: Privacy for the algorithm and hardcoded secrets of the smart
contract.

• Trust Model: The strength of the trust model.

Their differences are summarized in Table 1.

Table 1: Comparison between previous works and this work.
Data Privacy Function Privacy Trust Model

NIZK-based Limited Not protected Cryptographic assumption

SMPC-based Protected Protected Honest majority of participants

TEE-based Protected Protected Trusted hardware

Our scheme Protected Protected Existing secure blockchain

NIZK-based solutions

smart contract using iO except [12].

3

In the NIZK-based solutions, a user who holds some secrets generates a proof using
the NIZK proof system, and that proof is verified on-chain, i.e., the verification process
is performed by all computers participating in a blockchain protocol. The NIZK
proof system guarantees that the proof leaks no secret under established cryptographic
assumptions [19, 20, 21, 22]. The NIZK proof system was first adopted for specific
applications. Zerocash uses this system to hide the remittance information of its crypto
assets [23]. Aztec [24] and Tornado cash [25] also use it to improve the confidentiality
and anonymity in transferring crypto assets on Ethereum blockchain. For general-
purpose smart contracts, Steffen et al. [4] proposed a programing language named
”zkay” that helps a smart contract developer implement a privacy-preserving smart
contract with the NIZK proof system. This language allows the developer to specify
data ownership of variable-kept secrets, whose encryption is recorded on a blockchain
by the data owner. It automatically checks that the program is feasible using the NIZK
proof system, e.g., its caller can access all secrets necessary for the proof generation,
and prevents a vulnerability that implicitly leaks confidential information. Zether [2]
is a privacy-preserving smart contract that has interoperability with arbitrary smart
contracts. Although its core feature focuses on the confidential transfer of a crypto
asset called ”ZTH”, by allowing a user to lock the ownership of his/her assets to other
smart contracts, it can realize relevant applications, e.g., sealed-bid auctions without
overcollateralization, confidential payment channel, and stake-based voting. Besides,
unlike a smart contract written by zkay [4], Zether can be extended for protecting user
anonymity. Zexe [26] is an exception in the NIZK-based solutions because it partially
protects function privacy. It enables a user to execute offline computations and uses
the NIZK proof system to prove its validity without revealing secrets. Although it
only handles stateless computations, it can protect the privacy of not only confidential
data but also its supported functions. KACHINA [3] is one of the most recent NIZK-
based solutions. It proposes a generalized model for privacy-preserving smart contracts
using the NIZK proof system. Particularly, previous NIZK-based solutions [2, 4, 26]
are expressed as smart contracts in the KACHINA protocol. It also enables these
contracts to interact without compromising their privacy protections.

SMPC-based solutions
The idea of combining SMPC and a blockchain was first considered in [5] for

improving the security of SMPC. An incentive system that confiscates a deposit of
maliciously behaving participants of the SMPC was introduced [5]. For protecting
the data privacy of smart contracts, the SMPC has been used with a secret sharing
scheme [6]. The user’s secret inputs are divided into secret shares and then distributed
to participants of the SMPC. To construct the secret a sufficient proportion of the se-
cret shares is necessary, implying that an adversary who collects a sufficient number
of secret shares can break the privacy protection for the input data. This security
property has been improved by integrating the SMPC with homomorphic encryption
(HE) [7], wherein the input data are first encrypted under HE and then divided into
secret shares. Its decryption key is held only by a coordinator who coordinates SMPC
participants, so the adversary cannot recover the input data from the collected shares.
However, it is still insecure if that coordinator is malicious and colludes with a dis-
honest majority of participants.2 Notably, function privacy has not been considered in
the existing SMPC-based solutions, but we can generally upgrade them to protect the

2The authors of [8] also used HE with SMPC, where the input data were encrypted under
the user’s public key. Its privacy protection does not depend on any third parties, but it
cannot handle a smart contract that requires multiuser secret inputs.

4

function privacy, using a universal circuit as a public function and a private function
as a secret input [27, 28, 29].

TEE-based solutions
TEE, e.g., Intel SGX [30], is an isolated region inside a CPU. Even the owner of

the hardware cannot access data and programs in this region, and this feature plays
a significant role in the TEE-based solutions. Hawk [9] is one of the first frameworks
for building a privacy-preserving smart contract. To protect data privacy it requires
a trusted manager that can see user inputs, which can be instantiated with TEE.
FASTKITTEN [10] proposed a practical scheme to protect privacy for smart contracts
on existing public blockchains such as Bitcoin [31]. It executes a contract inside the
isolated region so that an adversary cannot learn the information during its execution.
Besides, it is highly efficient because an execution with TEE requires fewer overheads
than cryptographic schemes. Secret Network [11] is a public blockchain that achieves
privacy-preserving smart contracts in a similar to FASTKITTEN’s scheme [10]. How-
ever, although a single TEE could execute smart contracts in [10], multiple parties
called validators executed it with their TEE and made a consensus for its result in
[11]. TEE is also useful for function privacy [32], which protects it by evaluating a
universal circuit inside the isolated region. Despite the advantages of the TEE-based
solutions, they have severe security issues. That is, a malicious TEE manufacturer
can plant a backdoor that allows monitoring and tampering with the isolated region.
Moreover, even if such a backdoor is not planted, an adversary that can physically ac-
cess the hardware can access the isolated region by physical attacks, e.g., side-channel
attacks [33].

2 Basic Idea

2.1 Construction from BOTP

Our scheme is built from one-time programs (OTPs) that use the POS blockchain.
An OTP is a program that can be evaluated only on a single input specified at the
evaluation time [34]. In other words, once an OTP has been evaluated, it cannot be
evaluated on any other inputs. The first OTP construction proposed in [34] relied on
trusted hardware called ”one-time memory (OTM)”. Goyal [35] replaced the OTM
with POS blockchain and extractable witness encryption and proposed a software-
based OTP, which we call blockchain-based OTP (BOTP). In the BOTP scheme,
a program generator compiles a program, and its evaluator records a single input
onto the blockchain [35]. The valid blockchain data, including its record, allows the
evaluator to evaluate the compiled program on that input. Its output is equivalent
to that of the source program, but the evaluator cannot obtain any information other
than the input and output of the program, provided the evaluator cannot remove the
record from the blockchain. Thus, this scheme obfuscates the smart contract for only
a single input.

If a program compiled under the BOTP scheme can be evaluated on multiple
inputs, such a scheme implies smart contract obfuscation. However, if its generator
newly compiles a program for each evaluation, the scheme must continuously rely on
that generator. In other words, if the generator terminates the compiling process, the
evaluator cannot evaluate obfuscated smart contracts anymore. To solve this problem,
we develop an updatable OTP scheme, which does not require a trusted generator
except for the setup process, by compiling a program that outputs the newly compiled

5

program. In the following description, the program is assumed to be represented as a
Boolean circuit. In general, the circuit compiled in our scheme (defined as a recursive
circuit) takes as input a bit string of an arbitrary circuit, compiles the given circuit,
and outputs the compiled circuit. If the input is equivalent to a recursive circuit,
the output is a compiled recursive circuit. By repeating the operation of inputting
a recursive circuit to a recursive circuit, the evaluator can continue to generate new
recursive circuits from a single recursive circuit. Therefore, although the evaluator
can evaluate the circuit on multiple inputs, the only process that requires a trusted
generator in our scheme is the setup process of compiling the first recursive circuit.

2.2 Security Definition

The security definition of our scheme is stronger than that of iO; although iO guaran-
tees indistinguishability only for two circuits whose output is always the same for the
same input, our scheme guarantees it, provided the two outputs are indistinguishable.
For example, if two circuits encrypt different outputs under public key encryption
(PKE) using internally generated random coins, an adversary who does not know the
secret key required to decrypt them cannot distinguish their outputs. Therefore, our
scheme can make them indistinguishable, although iO can not do that.

Specifically, we define data and function privacies as input and function indistin-
guishabilities, respectively. They are described as a game between an adversary and
a challenger. In the game of the former definition, the adversary selects a source
program and two inputs whose outputs are indistinguishable, sending them to the
challenger. The challenger randomly chooses one of the received inputs and returns
its encryptions. If the adversary cannot guess which input is encrypted with nontrivial
probability, our scheme satisfies input indistinguishability. The game of the latter def-
inition is described in the same manner, except that the adversary selects two source
programs whose outputs are indistinguishable for the same input, and the challenger
returns the obfuscation of the randomly chosen program. Our scheme protects both
of them as shown in Subsection 4.5.

2.3 State Preservation

The modified construction of the original BOTP scheme allows obfuscated smart con-
tracts to preserve states. We first review the construction proposed in [35]. In addition
to the blockchain, it uses a garbled circuit and extractable witness encryption as its
underlying scheme. The garbled circuit scheme is a cryptographic technique for en-
coding a circuit and its inputs, whose encoded circuit, called a garbled circuit, reveals
nothing except its output [36]. Its encoded inputs, called wire keys, are generated
for each bit of the input, and the corresponding wire keys are necessary to evaluate a
garbled circuit at a specified input. The witness encryption scheme is an encryption
scheme to encrypt a message to a particular problem instance in the NP language
[37]. In the BOTP scheme, a circuit is encoded to a garbled circuit, and its wire keys
are encrypted under the witness encryption scheme. We cannot directly release the
wire keys for all inputs because the security of the garbled circuit is maintained only
for a single input. That is, an adversary who holds wire keys for two different inputs
can learn the information on the circuit. These encrypted wire keys are decrypted if
the blockchain data that includes a record of only one input are provided. Therefore,
unless removing the record from the blockchain, the adversary cannot obtain wire keys
for more than two inputs.

6

In the origin construction, all wire keys were encrypted under the witness encryp-
tion scheme. However, if some bits of the input are fixed when the circuit is compiled,
we can securely reveal the wire keys corresponding to the fixed bits. In our modified
construction, such fixed bits are defined as constant inputs. The others are called
variable inputs, which are provided during evaluation. The wire keys for the variable
inputs are encrypted as with the original ones.

We realize the state preservation by fixing the next state as a constant input
in the recursive circuit process. Specifically, the recursive circuit outputs wire keys
corresponding to the bits of the next state encryption as a part of the compiled circuit.
Because the wire keys corresponding to the opposite bits are not revealed, no other
state can be provided to the compiled circuit.

2.4 Efficiency analysis

We discuss the efficiency of our scheme by analyzing the computational complexity
of the process that depends on an impractical cryptographic scheme. In the BOTP
scheme, the computational complexity of the process using the garbled circuit scheme
is proportional to the circuit size, whereas that of the witness encryption scheme is
described by the circuit input size. Recently, the garbled circuit scheme has been
optimized by various scholars [38, 39, 40, 41, 42, 43], thus we can regard it as a
practical scheme. However, the witness encryption scheme is still impractical because
most of its candidates depend on multilinear maps [37, 44, 45] or iO [46, 47, 48, 49]. In
this way, although the BOTP scheme still depends on the impractical cryptographic
scheme, its computational complexity is O(n), where n is the input size. Because our
scheme is an iterative application of the BOTP scheme, this efficiency analysis also
applies to our scheme.

2.5 MPC for Decentralized Trusted Setup

A generator of an obfuscated smart contract can break its privacy protection because
it knows all secrets hardcoded in the recursive circuit. Therefore, instead of relying
on a single trusted generator, we employ generator decentralization using MPC. In
the MPC, the hardcoded secrets are generated by a pseudorandom number generator
(PRG) with a seed unknown to any MPC participant. Specifically, each participant
submits a fresh PRG seed continuously, and the unknown seed is derived as the XOR
of all submitted seeds. To compute the XOR with only revealing the output, we use an
input-hiding technique of the BOTP scheme in [35]. Using the above mechanisms, if
at least one of the MPC participants is honest, no participant can learn the hardcoded
secrets and break the privacy protection of the obfuscated smart contract.

3 Preliminaries

3.1 Notations

Let N be the set of natural number and R be the set of real number. For n ∈ N,
[n] represents a set of {1, . . . , n}, and [0] is defined as an empty set ∅. x

U←− X is
uniformly sampled from a distribution X , where X ≈c Y, X and Y are computationally
indistinguishable.

7

We will denote the security parameter by λ. A function negl(λ) : N→ R is said to
be negligible, if there exists n ∈ N for any c > 0 such that negl(λ) < λ−c holds for all
λ > n.
Cn,m denotes a class of circuits that takes n bit inputs and returns m bit outputs.

If a circuit C takes as input random coins r, C is a probabilistic circuit. When C(x)
outputs multiple types of values, we denote its i-th output value by [C(x)]i. Let U(·, ·)
be a universal circuit, which satisfies U(C, x) = C(x) for all circuit C ∈ Cn,m and its
input value x ∈ {0, 1}n.

We adopts definitions of EXECΓV

(A(x),Z, 1λ) and viewA(EXECΓV

(A(x),Z, 1λ))
from [35].

3.2 Basic Cryptographic Schemes

We use the following functions of the basic cryptographic schemes. PKE.Enc and
PKE.Dec are, respectively, encryption and decryption algorithms of IND-CPA secure
public key encryption (PKE). Pseudorandom generator (PRG) is secure if PRG(s) ∈
{0, 1}nPRG ≈c r

U←− {0, 1}nPRG holds for all seed s. PRF is pseudorandom function.
We assume that secure PRF with a PRF key K satisfies PRF(K, s) ∈ {0, 1}nPRF ≈c

r
U←− {0, 1}nPRF for all seed s. KeyGen generates a key pair (sk, pk) of the PKE and a

PRF key K. Commit and Open are, respectively, committing and opening algorithms
of the commitment scheme.

3.3 BOTP

A BOTP scheme was first proposed in [35]. We modify its definition regarding the
following points:

1. Our compiling algorithm takes as input random coins r
U←− {0, 1}∗ as a source

of the randomness; if the same r is used, this algorithm always returns the
equivalent output for the same input. Besides, this algorithm also takes as
input 2n instances {xb

i}i∈[n],b∈{0,1} in the NP language L, for which the BOTP
scheme is defined.

2. We divide an input y ∈ {0, 1}n of the circuit C ∈ Cn,m into a constant input
yc ∈ {0, 1}nc and a variable input yv ∈ {0, 1}nv , where n = nc + nv. The
constant input is determined in the compiling process, and the variable input
is provided by the evaluator. Our compiling algorithm takes as input yc, and
outputs a compiled circuit CC whose constant input is fixed.

3. Our definition separates the algorithm of recording a variable input onto the
blockchain from the evaluation algorithm. The recoding algorithm outputs wire
keys for the variable inputs.

4. Our evaluation algorithm returns as output multiple bits, whereas that in [35]
outputs a single bit.

In summary, our BOTP scheme comprises the polynomial algorithms Compile,
Record, and Eval.

• Compile(1λ, C ∈ Cn,m, {xb
i}i∈[n],b∈{0,1}, yc ∈ {0, 1}nc ; r): Takes as input a se-

curity parameter λ, a circuit C, 2n instances {xb
i}i∈[n],b∈{0,1}, a constant input

yc, and random coins r
U←− {0, 1}∗. It outputs a compiled circuit CC.

8

• Record(CC, yv ∈ {0, 1}nv): Takes as input a compiled circuit CC and a vari-
able input yv. It outputs wire keys w for the variable input or the symbol
⊥.

• Eval(CC,w): Takes as inputs a compiled circuit CC and wire keys w for the
variable input. It outputs z ∈ {0, 1}m or the symbol ⊥.

The BOTP scheme defined for an NP language L and a class of circuits Cn,m

satisfies the correctness if for all λ, n,m,C ∈ Cn,m, r
U←− {0, 1}∗, yc ∈ {0, 1}nc , yv ∈

{0, 1}nv , and {xb
i ∈ L}i∈[n],b∈{0,1},

Pr[Eval(CC,Record(CC, yv)) = C(yv, yc)] ≥ 1− negl(λ)

where CC ← Compile(1λ, C, {xb
i}i∈[n],b∈{0,1}, yc; r).

The BOTP scheme is secure if it satisfies one-time security [35]. Informally, it
guarantees that the information that an adversary can extract from a compiled circuit
CC can be simulated by one-time access to the source circuit C, provided the number of
forked blocks that the adversary can generate is bounded. Goyal [35] defined adaptive
one-time secrecy (Definition 3.9 in [35]) and selective one-time secrecy (Definition 3.10
in [35]); the former allows an adversary to adaptively choose an input value after
seeing the compiled circuit, whereas the latter is a weaker security notion because the
adversary has to select an input value beforehand. The construction of the BOTP
scheme in [35] only satisfies the selective one-time secrecy. Formally, they are defined
as follows.

Definition 3.1 (Adaptive one-time secrecy). A compiler of the BOTP scheme de-
fined for an NP language L and a class of circuits Cn,m is a B/C-secure one-time
compiler, if and only if (iff) for every probabilistic polynomial-time (PPT) adver-

sary A, there exists a PPT simulator Sim such that for all λ, n,m,C ∈ Cn,m, r
U←−

{0, 1}∗, {xb
i}i∈[n],b∈{0,1}, yc ∈ {0, 1}nc , the following holds.

{viewSim(EXECΓV

(SimOC(·,yc)(1n, 1|C|),Z, 1λ))}
≈c

{viewA(EXECΓV

(A(CC),Z, 1λ)) : CC ← Compile(1λ, C, {xb
i}i∈[n],b∈{0,1}, yc; r)}

where OC(·, yc) provides one-time access to the circuit C with a constant input yc.

Definition 3.2 (Selective one-time secrecy). A compiler of the BOTP scheme defined
for an NP language L and a class of circuits Cn,m is a B/C-selectively-secure one-time
compiler, iff for every PPT adversary A, there exists a PPT simulator Sim such that for

all λ, n,m,C ∈ Cn,m, r
U←− {0, 1}∗, {xb

i}i∈[n],b∈{0,1}, yc ∈ {0, 1}nc , and yv ∈ {0, 1}nv ,
the following holds.

{viewSim(EXECΓV

(Sim(1n, 1|C|, yc, yv, C(yv, yc)),Z, 1λ))}
≈c

{viewA(EXECΓV

(A(CC),Z, 1λ)) : CC ← Compile(1λ, C, {xb
i}i∈[n],b∈{0,1}, yc; r)}

where adversary A is admissible if it evaluates the OTP CC on (yv, yc) before evalu-
ating on any other input.

9

In the proof of the selective one-time secrecy, the simulator Sim simulates a com-
piled circuit indistinguishable from the compiled circuit obtained from the Compile
algorithm. (See Proof of Theorem 7.1 in [35]).

Lemma 3.1. If a compiler of the BOTP scheme defined for an NP language L and a
class of circuits Cn,m is B/C-selectively-secure one-time compiler, for every PPT adver-

sary A, there exists a PPT simulator SimCC such that for all λ, n,m,C ∈ Cn,m, r
U←−

{0, 1}∗, {xb
i}i∈[n],b∈{0,1}, yc ∈ {0, 1}nc , and yv ∈ {0, 1}nv , the following holds.

|Pr[A(CC) = 1 : CC ← Compile(1λ, C, {xb
i}i∈[n],b∈{0,1}, yc; r)]−

Pr[A(C̃C) = 1 : C̃C ← SimCC(1
n, 1|C|, yc, yv, C(yv, yc))]| < negl(λ)

Remark (Efficiency of the BOTP scheme). In the Compile algorithm, a circuit is
encoded to a garbled circuit and its wire keys corresponding to the variable input
are encrypted under the witness encryption scheme [35]. Therefore, the number of
ciphertexts of the witness encryption scheme, which we call impractical, depends only
on the input size of the source circuit C.

3.4 Smart Contract Obfuscation

There are four roles for the smart contract obfuscation participants: a generator, an
obfuscator, a user, and an evaluator (Figure 1). The generator generates a common
reference string, which includes a compiled circuit of the recursive circuit. The ob-
fuscator publishes an obfuscated circuit using the common reference string. The user
encrypts the user’s input and sends it to the evaluator. The evaluator evaluates the
obfuscated circuit on the encrypted input. The obfuscator obfuscates a probabilis-
tic circuit Csc ∈ Cn,m that represents functions of the smart contract (defined as a
contract circuit).

Figure 1: Relationships among smart contract obfuscation participants.

10

The contract circuit handles a state and a nonce, which is a number that indicates
how many times the circuit has been evaluated. Specifically, it takes as inputs a value

y ∈ {0, 1}ny , a state statep ∈ {0, 1}ns1 , a nonce nc ∈ {0, 1}nnc and random coins r
U←−

{0, 1}nr , and returns an output z ∈ {0, 1}mz , an updated state staten ∈ {0, 1}ms2 , and
an increased nonce nc+1 ∈ {0, 1}mnc . (Notably, nnc = mnc, n = ny +ns1 +nnc +nr,
and m = mz + ms2 + mnc holds.) When Csc is obfuscated, its encrypted state and
nonce are included in the obfuscated circuit, and updated for each evaluation.

The smart contract obfuscation scheme provides polynomial algorithms as follows.

• Setup(1λ): Takes as input a security parameter λ, and outputs a common
reference string crs.

• Obfuscate(crs, Csc ∈ Cn,m, state0): Takes as input a common reference string
crs, a contract circuit Csc, and an initial state state0 and outputs an obfuscated
circuit C′.

• Enc(crs, y): Takes as input a common reference string crs and an input y and
outputs an encrypted input cty.

• Eval&Update(C′, cty): Takes as input an obfuscated circuit C′ and an en-
crypted input cty and returns an output z and an updated circuit C′′ or the
symbol ⊥. The updated circuit includes the encryption of the updated state
and nonce, and it is used as C′ in the next execution of this algorithm.

The above definition satisfies the correctness if for all λ, n,m,Csc ∈ Cn,m, state,
and y ∈ {0, 1}n, the following holds.

Pr[[Eval&Update(C′,Enc(crs, y))]1 = Enc(crs, [Csc(y, state, nc; r)]1]) ≥ 1− negl(λ)

where crs ← Setup(1λ), C′ ← Obfuscate(crs, Csc, state0), state and nc are the latest

state and nonce when C′ is evaluated for the nc times, and r
U←− {0, 1}nr is random

coins generated in the Eval&Update algorithm.
We present two definitions of game-based security for the smart contract obfus-

cation scheme: input and function indistinguishabilities. The former requires that
the two encrypted inputs cty0 , cty1 to the obfuscated circuit of Csc are indistinguish-
able, provided Csc(y0, state, nc; r) and Csc(y1, state, nc; r) are indistinguishable. The
latter is satisfied iff obfuscated C0

sc and C1
sc are indistinguishable, for two contract

circuits C0
sc, C

1
sc ∈ Cn,m whose sizes are equivalent and outputs are indistinguishable

(i.e., C0
sc(y, state, nc; r) ≈c C1

sc(y, state, nc; r) for all y ∈ {0, 1}n and r
U←− {0, 1}nr).

Notably, both definitions assume a selective adversary, i.e., the adversary chooses two
inputs or circuits for the (n+ 1)-th evaluation before seeing the n-th updated circuit.

Definition 3.3 (Selective input indistinguishability). An obfuscator of the smart
contract obfuscation scheme satisfies the selective input indistinguishability iff for all
PPT adversary A, λ, n,m, nc > 1 and Cn,m, the following holds.

Pr[IND
input,sel
A,Cn,m,nc(1

λ) = 1] <
1

2
+ negl(λ)

where the game IND
input,sel
A,Cn,m,nc(1

λ) is defined as follows:

• IND
input,sel
A,Cn,m

(1λ):

1. The adversary chooses the first input y0, an initial state state0, the second
input y1, and a contract circuit Csc ∈ Cn,m: (y0, state0, y1, Csc)← A(1λ).
The adversary sends (Csc, state0) to the challenger.

11

2. The challenger setups a common reference string crs ← Setup(1λ), and
provides crs to the adversary.

3. The adversary obfuscates Csc: C
′
0 ← Obfuscate(crs, Csc, state0).

4. For n ∈ [nc− 2],

(a) The adversary chooses the (n+1)-th input: yn+1 ← A(crs, state0, {yi}i∈{0...n}, Csc),
and sends yn+1 to the challenger.

(b) The adversary evaluates C′
n on the input yn and updates the circuit:

(zn, C
′
n+1)← Eval&Update(C′

n,Enc(crs, yn)).

5. The adversary chooses two nc-th inputs (y0
nc, y

1
nc) that satisfies |y0

nc| =
|y1

nc| and Csc(y
0
nc, statenc−1, nc− 1; r) ≈c Csc(y

1
nc, statenc−1, nc− 1; r) for

random coins r
U←− {0, 1}nr : (y0

nc, y
1
nc)← A(crs, state0, {yi}i∈{0...nc−1}, Csc).

These inputs (y0
nc, y

1
nc) are provided to the challenger.

6. The challenger selects a bit b ∈ {0, 1} randomly, and returns ctb ←
Enc(crs, yb

nc) to the adversary.

7. The adversary guesses b: b′ ← A(crs, state0, {yi}i∈{0...nc}, Csc, ctb).

8. The adversary outputs b = b′.

Definition 3.4 (Selective function indistinguishability). An obfuscator of the smart
contract obfuscation scheme satisfies the selective function indistinguishability iff for
all PPT adversary A, λ, n,m, nc and Cn,m, the following holds.

Pr[INDfunc,sel
A,Cn,m

(1λ) = 1] <
1

2
+ negl(λ)

where the game INDfunc,sel
A,Cn,m

(1λ) is defined as follows:

• INDfunc,sel
A,Cn,m

(1λ):

1. The adversary chooses the first input y0, an initial state state0, the second
input y1, and two contract circuits C0

sc, C
1
sc ∈ Cn,m that satisfies |C0

sc| =
|C1

sc| and C0
sc(y, state, nc; r) ≈c C1

sc(y, state, nc; r) for all state, nc, r
U←−

{0, 1}nr : (y0, state0, y1C
0
sc, C

1
sc)← A(1λ). The adversary sends (y0, state0, y1, C

0
sc, C

1
sc)

to the challenger.

2. The challenger setups a common reference string crs ← Setup(1λ) and
provides crs to the adversary.

3. The challenger selects a bit b ∈ {0, 1} randomly, and returns C′
b ← Obfuscate(crs, Cb

sc, state0).

4. For n ∈ [nc− 1],

(a) The adversary chooses the (n+ 1)-th input:
yn+1 ← A(crs, state0, {yi}i∈{0...n}, C

0
sc, C

1
sc).

(b) The adversary evaluates C′
b on the input yn and updates the circuit:

(zn, C
′
b)← Eval&Update(C′

b,Enc(crs, yn)).

5. The adversary guesses b: b′ ← A(crs, state0, {yi}i∈{0...nc}, C
0
sc, C

1
sc, C

′
b).

6. The adversary outputs b = b′.

12

4 Smart Contract Obfuscation from BOTP

4.1 System model

In our scheme, a smart contract comprises an obfuscated program and an on-chain
program. An obfuscated program is an obfuscated contract circuit, whose inputs and
states are encrypted. It is executed by an evaluator of the smart contract obfuscation
scheme. An on-chain program is a bytecode deployed on the blockchain. Its input
and state are available to participants of the blockchain network and executed by the
associated transactions.

4.2 Setup process

To describe the definition of the setup process, we first specify how to construct a
recursive circuit. The recursive circuit includes a secret key sk, its corresponding
public key pk, and a PRF key K as hardcoded keys. It uses sk to decrypt its input,
pk to encrypt its output state, and K to generate random coins, thereby inducing the
randomness used for probabilistic algorithms.

In the recursive circuit, an NP language L that defines the BOTP scheme is also
fixed. Our definition of L is equivalent to that defined in Subsection 7.1 of [35],
except that ours includes a nonce nc. Let B1,B2 be blocks of the POS blockchain,
n be the input size of the recursive circuit, and cId be an id of the contract (e.g.,
contract address). A pair of the instance x = (B1, 1

ℓ1 , 1ℓ2 , 1n, β, i, b ∈ {0, 1}, cId, nc)
and witness w = B2 satisfies an NP relation RL corresponding to L, iff the following
properties are satisfied [35].

1. Both B1 and B2 are valid blockchains.

2. B1 is an ancestor chain of B2. That is, the first different block between B1

and B2 follows the latest block in B1.

3. There is a unique block B∗ in the different blocks between B1 and B2 such
that

• In a transaction that is associated with the contract of cId and included
in B∗, an input value y is recorded, where the i-th bit of y ∈ {0, 1}n is
equivalent to b.

• The nonce of the contract is increased in B∗ from nc to nc+ 1.

• When ℓ′ denotes the index of block B∗ in the blockchain B2, ℓ
′ ≥ ℓ1 + ℓ2

holds and the fraction of unique stakes for the latest ℓ′− ℓ1 blocks is larger
than β.

In general, this definition indicates that an honest blockchain including the unique
input value is necessary as a witness to decrypt the ciphertext of the witness encryption
used in our scheme.

The recursive circuit Crec ∈ Cn,m takes as inputs an encrypted input cty ∈ {0, 1}n1 ,
an encrypted state ctstatep ∈ {0, 1}n2 , an encrypted circuit that will be compiled
ctC1 ∈ {0, 1}n3 , and an encryption ctC2 ∈ {0, 1}n4 of the zero-padded contract circuit
Csc ∈ Cnsc,msc whose size is 2nsc, and the nonce nc ∈ {0, 1}n5 . Therefore, its input
size is n = n1 + n2 + n3 + n4 + n5. It outputs the first output of the contract circuit
z ∈ {0, 1}m1 , an encryption of the updated state ctstaten ∈ {0, 1}m2 , and a compiled
circuit CC ∈ {0, 1}m3 , so that its output size is m = m1 + m2 + m3. Let ny be a

13

length of input y. We assume that cty is an encryption of y that is zero-padded so that
its length is double of ny, i.e., cty = Enc(crs, pk, (y ∈ {0, 1}ny , 0ny)). The contract
circuit Csc ∈ {0, 1}nsc in ctC2 is also zero-padded similarly. This padding is significant
to achieve the input indistinguishability as shown in the proof of Lemma 4.2.

In summary, a recursive circuit Crec is constructed as follows:

• Crec[1
λ,B1, 1

ℓ1 , 1ℓ2 , 1n, β, cId, sk, pk,K](cty, ctstatep , ctC1 , ctC2 , nc):

1. (ypad ∈ {0, 1}2ny , statep, C1, Cpad ∈ {0, 1}2nnc)← PKE.Dec(sk, (cty, ctstatep , ctC1 , ctC2)).

2. Cut the left half of ypad as y ∈ {0, 1}ny and ignore the right half.

3. Cut the left half of Cpad as C2 ∈ {0, 1}sc and ignore the right half.

4. r ← PRF(K, (cId, ctC1 , ctC2 , nc)).

5. For each i ∈ [n] and b ∈ {0, 1},
xb
i = (B1, 1

ℓ1 , 1ℓ2 , 1n, β, i, b, cId, nc+ 1) ∈ L.
6. (z, staten, nc+ 1)← U(C2, (y, statep, nc; r)).

7. ctstaten ← PKE.Enc(1λ, pk, staten; r).

8. CC ← BOTP.Compile(1λ, C1, {xb
i}i∈[n],b∈{0,1}, (ctstaten , ctC1 , ctC2 , nc+1); r).

9. Output (z, ctstaten , CC).

Next, we describe the specifications of the on-chain program. It stores in its storage
a nonce nc and a mapping mapyv

from nc to the encrypted input cty. Besides, it must
implement the RecordInputOnChain function. It is called in the Record algorithm of
the BOTP scheme.

• RecordInputOnChain(cty):

1. Store an encrypted input cty in mapy at nc.

2. Increase nc to nc+ 1.

Using the above recursive circuit and on-chain program, we formally define a Setup
algorithm. In this algorithm, a generator generates sk, pk, and K and deploys a new
on-chain program whose contract id is cId. A recursive circuit is constructed with
the hardcoded values (cId, sk, pk,K). Then, the generator compiles and encrypts the
recursive circuit, as well as outputs a common reference string crs. The crs comprises
pk, cId, the compiled circuit CCrec, and the encrypted circuit ctrec.

• Setup(1λ):

1. Select apposite public parameters (B1, 1
ℓ1 , 1ℓ2 , β) for the security param-

eter 1λ.

2. Sample random coins r
U←− {0, 1}∗.

3. (sk, pk,K)← KeyGen(1λ; r).

4. Deploy an on-chain program and obtain its contract id cId.

5. Construct a recursive circuit with hardcoding the parameters and gener-
ated keys: Crec[1

λ,B1, 1
ℓ1 , 1ℓ2 , 1n, β, cId, sk, pk,K].

6. ctrec ← PKE.Enc(1λ, pk, Crec; r).

7. For each i ∈ [n] and b ∈ {0, 1},
xb
i = (B1, 1

ℓ1 , 1ℓ2 , 1n, β, i, b, cId, 0) ∈ L.
8. CCrec ← BOTP.Compile(1λ, Crec, {xb

i}i∈[n],b∈{0,1}, (ctC1 = ctrec, nc =
0); r).

9. Output C′ ← (pk, cId, CCrec, ctrec).

14

4.3 Encryption and Obfuscation process

Our encryption and obfuscation processes are almost identical: a user encrypts a zero-
padded input y under pk in the encryption process, whereas an obfuscator encrypts a
zero-padded contract circuit Csc and its initial state state0 under pk. Afterward, the
obfuscator evaluates the obfuscated circuit on a dummy input that does not modify
the initial state. Because the first compiled circuit returned by the Setup algorithm
takes the encryption of (Csc, 0

|Csc|) (i.e., ctC2) as variable input, the size of the input
encrypted under the witness encryption schemes increases proportionally with the size
of the contract circuit |Csc|. Therefore, the obfuscator needs to perform the initial
evaluation. Formally, an Enc algorithm and an Obfuscate algorithm are defined as
follows.

• Enc(crs, y):

1. Parse crs as (pk, cId, CCrec, ctrec).

2. Sample random coins r
U←− {0, 1}∗.

3. cty ← PKE.Enc(1λ, pk, (y, 0|y|); r).

4. Output cty.

• Obfuscate(crs, Csc ∈ Cn,m, state0):

1. Parse crs as (pk, cId, CC0, ctrec).

2. Sample random coins r
U←− {0, 1}∗.

3. ctCsc ← PKE.Enc(1λ, pk, (Csc, 0
|Csc|); r).

4. ctstate0 ← PKE.Enc(1λ, pk, state0; r).

5. Select a dummy input y0.

6. cty0 ← Enc(crs, y0).

7. w ← BOTP.Record(CC0, (cty = cty0 , ctstatep = ctstate0 , ctC2 = ctCsc)). In
this process, a transaction to call RecordInputOnChain((cty0 , ctstate0 , ctCsc))
is broadcast, and a blockchain B2 including that transaction is used as a
witness for the decryption of encrypted wire keys.

8. (z, ctstate1 , CC1)← BOTP.Eval(CC0, w).

9. Output C′ ← (pk, cId, CC1, ctstate1 , ctrec, ctCsc , 1).

4.4 Evaluation and Update process

The evaluation and update processes are executed simultaneously. That is, an evalu-
ator can obtain the output of the circuit and the updated circuit simultaneously. The
updated circuit is used in the next evaluation as the obfuscated circuit.

• Eval&Update(C′, cty):

1. Parse C′ as (pk, cId, CCp, ctstatep , ctrec, ctCsc , nc).

2. Sample random coins r
U←− {0, 1}∗.

3. w ← BOTP.Record(CCp, (cty = cty0)). In this process, a transaction to
call RecordInputOnChain(cty0) is broadcast, and a blockchain B2 includ-
ing that transaction is used as a witness for the decryption of encrypted
wire keys.

15

4. (z, ctstaten , CCn)← BOTP.Eval(CCp, w).

5. C′′ ← (pk, cId, CCn, ctstaten , ctrec, ctCsc , nc+ 1)

6. Output (z, C′′).

We can prove the correctness of the above algorithms straightforwardly:

[Eval&Update(C′,Enc(crs, y))]1

= [Eval&Update((pk, cId, CCp, ctstatep , ctrec, ctCsc , nc),Enc(crs, y))]1

= [BOTP.Eval(CCp,BOTP.Record(CCp, (Enc(crs, y))))]1

= [Crec(Enc(crs, y), (Enc(crs, statep),Enc(crs, Crec),Enc(crs, Csc), nc))]1

= [U(Csc, (y, statep, nc; r))]1

= [Csc(y, statep, nc; r)]1

4.5 Security Proof

Before proving the security of our scheme, we show input indistinguishability of the
compiled recursive circuit CCrec.

Claim 4.1. For two variable inputs y0, y1 and a contract circuit Csc, if Csc(y0, statep, nc; r) ≈c

Csc(y1, statep, nc; r) holds for random coins r
U←− {0, 1}∗, then (cty0 , CCrec, Csc(y0, statep, nc; r)) ≈c

(cty1 , CCrec, Csc(y1, statep, nc; r)) also holds.

Lemma 4.2. If IND-CPA secure PKE, secure PRF, and a B/C-selectively-secure one-
time compiler of the BOTP scheme exists, for all PPT adversaries A, λ, nsc,msc, Csc ∈
Cnsc,msc , statep, nc, pk, and two variable inputs y0, y1 that satisfies |y0| = |y1| and
Csc(y0, statep, nc; r) ≈c Csc(y1, statep, nc; r) for random coins r

U←− {0, 1}∗, the fol-
lowing holds.

(cty0 , CCrec, Csc(y0, statep, nc; r)) ≈c (cty1 , CCrec, Csc(y1, statep, nc; r))

where cty0 ← PKE.Enc(1λ, pk, (y0, 0
|y0|); r), cty1 ← PKE.Enc(1λ, pk, (y1, 0

|y1|); r), CCrec ←
BOTP.Compile(1λ, Crec, {xb

i}i∈[n],b∈{0,1}, (ctstatep , ctCrec , ctCsc , nc); r), ctstatep ← PKE.Enc(1λ, pk, statep), ctCrec ←
PKE.Enc(1λ, pk, Crec), ctCsc ← PKE.Enc(1λ, pk, Csc), and Crec, {xb

i}i∈[n],b∈{0,1}, r are
defined in Subsection 4.2.

Proof. We define a sequence of hybrid experiments.
Hybrid 1: This hybrid corresponds to a compiled recursive circuit CCrec whose

input is cty ← PKE.Enc(1λ, pk, (y0, 0
|y0|); r).

Hybrid 2: This hybrid is the same as Hybrid 1, except that CCrec is generated
by a simulator
SimCC(1

λ, 1|Crec|, (cty, ctstatep , ctCrec , ctCsc , nc), Crec(cty, ctstatep , ctCrec , ctCsc , nc)).
Hybrid 3: This hybrid is the same as Hybrid 2, except that the input is cty ←

PKE.Enc(1λ, pk, (y0, y1); r).
Hybrid 4: This hybrid is the same as Hybrid 3, except that the CCrec is gener-

ated by a simulator
SimCC(1

λ, 1|C
′
rec|, (cty, ctstatep , ctCrec , ctCsc , nc), C

′
rec(cty, ctstatep , ctCrec , ctCsc , nc)), where

C′
rec is defined as follows:

• C′
rec[1

λ,B1, 1
ℓ1 , 1ℓ2 , 1n, β, cId, sk, pk,K](cty, ctstatep , ctC1 , ctC2 , nc):

1. (ypad ∈ {0, 1}2ny , statep, C1, Cpad ∈ {0, 1}2nsc)← PKE.Dec(sk, (cty, ctstatep , ctC1 , ctC2)).

16

2. Cut the right half of ypad as y ∈ {0, 1}ny and ignore the left half.

3. Cut the left half of Cpad as C2 ∈ {0, 1}sc and ignore the right half.

4. r ← PRF(K, (cId, ctC1 , ctC2 , nc)).

5. For each i ∈ [n] and b ∈ {0, 1},
xb
i = (B1, 1

ℓ1 , 1ℓ2 , 1n, β, i, b, cId, nc+ 1) ∈ L.
6. (z, staten, nc+ 1)← U(C2, (y, statep, nc)).

7. ctstaten ← PKE.Enc(1λ, pk, staten; r).

8. CC ← BOTP.Compile(1λ, C1, {xb
i}i∈[n],b∈{0,1}, (ctstaten , ctC1 , ctC2 , nc+1); r).

9. Output (z, ctstaten , CC).

Hybrid 5: This hybrid is the same as Hybrid 4, except that the input is cty ←
PKE.Enc(1λ, pk, (y1, y1); r).

Hybrid 6: This hybrid is the same as Hybrid 5, except that the CCrec is generated
by a simulator
SimCC(1

λ, 1|Crec|, (cty, ctstatep , ctCrec , ctCsc , nc), Crec(cty, ctstatep , ctCrec , ctCsc , nc)).
Hybrid 7: This hybrid is the same as Hybrid 6, except that the input is cty ←

PKE.Enc(1λ, pk, (y1, 0
|y1|); r).

Hybrid 8: This hybrid corresponds to the compiled recursive circuit CCrec whose
input is cty ← PKE.Enc(1λ, pk, (y1, 0

|y1|); r).
Assuming the IND-CPA security of PKE, PRF security, and a B/C-selectively-

secure one-time compiler of the BOTP scheme, no PPT adversary can distinguish any
contiguous hybrids with nontrivial advantage.

Indistinguishability between Hybrid 1 and 2: The only difference between
Hybrid 1 and 2 is the use of BOTP.Compile algorithm or the simulator SimCC to
generate CCrec. Therefore, adversary A, which cannot break the selective one-time
secrecy of the BOTP scheme, cannot distinguish them.

Indistinguishability between Hybrid 2 and 3: The indistinguishability be-
tween Hybrid 2 and 3 is directly proved by the IND-CPA security of PKE.

Indistinguishability between Hybrid 3 and 4: The only difference between
Hybrid 3 and 4 is the first output, i.e., the difference between [Crec(cty, ctstatep , ctCrec , ctCsc]1 =
[Csc(y0, statep, nc; r)]1 and [C′

rec(cty, ctstatep , ctCrec , ctCsc]1 = [Csc(y1, statep, nc; r)]1.
Because r = PRF(K, (cId, ctC1 , ctC2 , nc)) is indistinguishable from true random num-
ber and Csc(y0, statep, nc; r) ≈c Csc(y1, statep, nc; r) holds, the adversary A cannot
distinguish Hybrid 3 and 4.

Indistinguishability between Hybrid 4 and 5: The indistinguishability be-
tween Hybrid 4 and 5 is directly proved by the IND-CPA security of PKE.

Indistinguishability between Hybrid 5 and 6: There is no difference between
Hybrid 5 and 6 because C′

rec(cty, ctstatep , ctCrec , ctCsc) = Crec(cty, ctstatep , ctCrec , ctCsc),
where cty ← PKE.Enc(1λ, pk, (y1, y1); r).

Indistinguishability between Hybrid 6 and 7: The indistinguishability be-
tween Hybrid 6 and 7 is directly proved by the IND-CPA security of PKE.

Indistinguishability between Hybrid 7 and 8: The only difference between
Hybrid 7 and 8 is the use of BOTP.Compile algorithm or the simulator SimCC to
generate CCrec. Therefore, adversary A cannot distinguish them under the security
of the B/C-selectively-secure one-time compiler.

Because Hybrid 1 and 8 are indistinguishable as above, this lemma follows.

From Lemma 4.2, we can prove both selective input and function indistinguisha-
bilities.

17

Theorem 4.3. If IND-CPA secure PKE, secure PRF, and a B/C-selectively-secure
one-time compiler of the BOTP scheme exists, the smart contract obfuscation scheme
defined in Section 4 satisfies selective input indistinguishability (Definition 3.3).

Proof. We define a sequence of games.

Game 1: This game corresponds to IND
input,sel
A,Cn,m,nc(1

λ) in Definition 3.3.
Game 2: This game is equivalent to Game 1, except that the challenger always

returns ct0 = Enc(crs, y0
nc) in Step 6.

In Game 1, the encrypted input ctb returned by the challenger depends on b ∈
{0, 1}, whereas, in Game 2, the encryption corresponding to b = 0 is always selected.
Because the adversary A chooses two vairable inputs y0

nc, y
1
nc that |y0

nc| = |y1
nc| and

Csc(y
0
nc, statep, nc; r) ≈c Csc(y

1
nc, statep, nc; r) holds for random coins r

U←− {0, 1}∗,
before seeing n-th CCrec, A cannot distinguish (ct0, CCrec, Csc(y

0
nc, statep, nc; r)) and

(ct1, CCrec, Csc(y
1
nc, statep, nc; r)) from Lemma 4.2. Therefore, even if b = 1 is selected

in Game 1, i.e., the input chosen by the challenger in Game 1 and Game 2 are different,
Game 1 and Game 2 are indistinguishable for A. Game 2 does not depend on b, thus,
this theorem follows.

Theorem 4.4. If IND-CPA secure PKE, secure PRF, and a B/C-selectively-secure
one-time compiler of the BOTP scheme exists, the smart contract obfuscation scheme
defined in Section 4 satisfies selective function indistinguishability (Definition 3.4).

Proof. We define a sequence of games.

Game 1: This game corresponds to INDfunc,sel
A,Cn,m,nc(1

λ) in Definition 3.4.
Game 2: This game is equivalent to Game 1, except that the challenger always

returns C′
0 = Obfuscate(crs, C0

sc, state0) in Step 3.
We prove the indistinguishability between Game 1 and 2 in the same manner

as in the proof of Theorem 4.3, by regarding a universal circuit U as a contract
circuit Csc and Cb

sc as a part of the input of U . In Game 1, the obfuscated cir-
cuit C′

b returned by the challenger depends on b ∈ {0, 1}, whereas the circuit cor-
responding to b = 0 is always selected in Game 2. In Step 8 of the Obfuscate
algorithm, the compiled recursive circuit CCrec is evaluated on the variable input
(cty0 , ctstate0 , ctCb

sc
). Because adversary A chooses two circuits C0

sc, C
1
sc that |C0

sc| =
|C1

sc| and U(C0
sc, y0, state0, 0; r) = C0

sc(y0, state0, 0; r) ≈c U(C1
sc, y0, state0, 0; r) =

C1
sc(y0, state0, 0; r) holds for random coins r

U←− {0, 1}∗, before seeing the first CCrec,
A cannot distinguish (ctC0

sc
, CCrec, U(C0

sc, y0, state0, 0; r)) and (ctC1
sc
, CCrec, U(C1

sc, y0, state0, 0; r))
from Lemma 4.2. Therefore, even if b = 1 is selected in Game 1, i.e., the circuit chosen
by the challenger in Game 1 and 2 are different, Game 1 and 2 are indistinguishable
for A. Game 2 does not depend on b, thus this theorem follows.

5 MPC for Decentralized Trusted Setup

5.1 System model

First, we only consider the case in which MPC participants extracting the maximum
secrets from other participants’ data, but follow the protocol honestly, i.e., semi-honest
adversaries. If participants may publish invalid data deviating from the protocol, they
can be verified by the NIZK proof system or detected by a cut-and-choose technique,

18

which is frequently adopted in the garbled circuit scheme against malicious adversaries
[50, 51, 52].

5.2 Circuit Construction for Decentralized Setup

In the Setup algorithm in Subsection 4.2, random coins r are sampled to generate the
hardcoded keys sk, pk,K, and encrypt/compile a recursive circuit. Our MPC aims to
sample r from a PRG seed s that no one knows. If the MPC has two participants,
the XOR of the first participant’s seed s1 and the second participant’s seed s2 can
be used. To perform the obfuscation algorithm without revealing each other’s seed,
we use the BOTP scheme: the first participant compiles the setup circuit G2 which
includes s1, and the second participant evaluates it by providing the new seed s2 as
an input. This setup circuit compiles and encrypts the recursive circuit with random
coins generated from s1 ⊕ s2. The second participant cannot record s2 itself onto
the blockchain because s2 would be revealed. Instead, the second participant records
its commitment and includes its actual seed and its opening in the witness for the
witness encryption scheme. Notably, this technique has already been proposed in
[35] as an input-hiding technique. Let s and ropen be an actual seed and an opening
of the recorded commitment, respectively, where the seed s is provided by the j-
th participant. Then, the NP language L′ used in the setup process is modified as
follows: a pair of the instance x = (B1, 1

ℓ1 , 1ℓ2 , 1n, β, i, b ∈ {0, 1}, cId, j) and witness
w = (B2, s, ropen) satisfies an NP relation RL′ corresponding to L′, iff the following
properties are satisfied.

1. Both B1 and B2 are valid blockchains.

2. B1 is an ancestor chain of B2. In other words, the first different block between
B1 and B2 follows the latest block in B1.

3. There is a unique block B∗ in the different blocks between B1 and B2 such
that

• In a transaction associated with the contract of cId and included in B∗,
an input commitment c is recorded, and s = Open(c, ropen) holds, i.e., c is
a valid commitment for s.

• The i-th bit of s ∈ {0, 1}n is equivalent to b.

• When ℓ′ denotes the block height of B∗, ℓ′ ≥ ℓ1+ ℓ2 holds and the fraction
of unique stakes for the latest ℓ′ − ℓ1 blocks is larger than β.

The above scheme is easily generalized to the case of N participants (Figure 2).
The PRG seed s after the setup process will be XOR of each participant’s seed: s =
s1⊕ s2⊕ · · · ⊕ sN . In the setup process among N > 2 participants, the setup between
two parties is performed continuously. The first participant samples the seed s1, and
compiles the setup circuit GN that includes s1 as the hardcoded seed. It also takes as
input another seed s2, but instead of the recursive circuit Crec, it compiles GN whose
hardcoded seed is s1 ⊕ s2. Therefore, the third participant can feed a new seed s3 to
the compiled circuit, and generate a compiled circuit that includes s1 ⊕ s2 ⊕ s3.

Formally, the setup circuit GN evaluated by the j-th participant is defined as
follows:

• GN [1λ,B1, 1
ℓ1 , 1ℓ2 , 1n, β, cId, N, j, s1](s2, ctC):

1. rpre ← PRG(s1).

19

Figure 2: Decentralized trusted setup for a smart contract obfuscation scheme.

2. (skpre, ·, ·)← KeyGen(1λ; rpre).

3. C ← PKE.Dec(skpre, ctC)

4. s← s1 ⊕ s2.

5. r ← PRG(s).

6. If j < N ,

(a) Hardcode [1λ,B1, 1
ℓ1 , 1ℓ2 , 1n, β, cId, N, j + 1, s] to C.

(b) ct′C ← PKE.Enc(1λ, pk, C; r).

(c) For each i ∈ [n] and b ∈ {0, 1},
xb
i = (B1, 1

ℓ1 , 1ℓ2 , 1n, β, i, b, cId, j + 1) ∈ L′.

(d) CC ← BOTP.Compile(1λ, C, {xb
i}i∈[n],b∈{0,1}, (ctC = ct′C); r).

(e) Output (CC, ct′C).

Otherwise,

(a) (sk, pk,K)← KeyGen(1λ; r).

(b) Hardcode [1λ,B1, 1
ℓ1 , 1ℓ2 , 1n, β, cId, sk, pk,K] to C.

(c) ct′C ← PKE.Enc(1λ, pk, C; r).

(d) For each i ∈ [n] and b ∈ {0, 1},
xb
i = (B1, 1

ℓ1 , 1ℓ2 , 1n, β, i, b, cId, 0) ∈ L.
(e) CC ← BOTP.Compile(1λ, C, {xb

i}i∈[n],b∈{0,1}, (ctC1 = ct′C , nc = 0); r).

(f) Output (pk, cId, CC, ct′C).

5.3 Modification of the On-Chain Program

When the setup is processed with MPC, the on-chain program described in Subsection
4.2 additionally stores the latest index j′ of the participant who already recorded the

20

commitment, a mapping mapc from j′ to the commitment c, and a mapping mapcc

from j′ to the compiled circuit CC. Besides, the on-chain program implements the
RecordCommitOnChain and UpdateCircuit functions:

• RecordCommitOnChain(c):

1. j′ ← j′ + 1.

2. Store a commitment c in mapc at j′.

• UpdateCircuit(CC):

1. Store a compiled circuit CC in mapcc at j′.

5.4 New Setup Process with MPC

The setup process differs for the first participant (j = 1), the latest participant (j =
N), and the other participants; the first participant directly compiles the setup circuit
GN in which the seed s1 is hardcoded, and the latest participant inputs the recursive
circuit Crec to the compiled setup circuit, which outputs the compiled recursive circuit.
Specifically, the j-th participant performs the following algorithm. (We assume that
the on-chain program defined in Subsection 5.3 is already deployed before the MPC,
and its contract id is cId.)

• Setup(1λ, cId, N, j):

1. Select apposite public parameters (B1, 1
ℓ1 , 1ℓ2 , β) for the security param-

eter 1λ.

2. Sample a random seed s
U←− {0, 1}∗.

3. r ← PRG(s).

4. If j = 1,

(a) Construct a setup circuit GN [1λ,B1, 1
ℓ1 , 1ℓ2 , 1n, β, cId, N, 2, s].

(b) (·, pk, ·)← KeyGen(1λ; r).

(c) ctGN ← PKE.Enc(1λ, pk,GN ; r).

(d) For each i ∈ [n] and b ∈ {0, 1},
xb
i = (B1, 1

ℓ1 , 1ℓ2 , 1n, β, i, b, cId, 2) ∈ L′.

(e) CC2 ← BOTP.Compile(1λ, GN , {xb
i}i∈[n],b∈{0,1}, (ctC = ctGN); r).

If 1 < j < N ,

(a) Obtain the latest index j′ from the on-chain program.

(b) If j′ ̸= j − 1, throw an error.

(c) Obtain a compiled circuit C′
1 stored in mapcc at j′.

(d) (c, ropen)← Commit(1λ, s; r).

(e) w ← BOTP.Record(C′
1, c). In this process, a transaction to call

RecordCommitOnChain(c) is broadcast. A blockchain B2 including
that transaction is used as a witness for the decryption of encrypted
wire keys.

(f) (CC2, ctGN)← BOTP.Eval(CC1, w).

If j = N ,

(a) Obtain the latest index j′ from the on-chain program.

21

(b) If j′ ̸= j − 1, throw an error.

(c) Obtain a compiled circuit CC1 stored in mapcc at j′.

(d) (c, ropen)← Commit(1λ, s; r).

(e) w ← BOTP.Record(CC1, c). In this process, a transaction to call
RecordCommitOnChain(c) is broadcast. A blockchain B2 including
that transaction is used as a witness for the decryption of encrypted
wire keys.

(f) (pk, cId, CC2, ctGN)← BOTP.Eval(CC1, w).

5. Broadcast a transaction to call UpdateCircuit(C′
2).

6. If j = N , Output (pk, cId, CC2, ctGN) as the output of the setup process.

6 Conclusion

We developed smart contract obfuscation based on the BOTP scheme. It protects data
privacy and function privacy for a wider class of smart contracts than NIZK-based
privacy-preserving smart contracts. Its privacy protection is more secure than the
SMPC and TEE-based solutions because it only requires existing secure blockchains.
Our construction still depends on an impractical cryptographic scheme, i.e., witness
encryption, but its computational complexity depends on only the circuit input size
so that it is superior to obfuscating an entire program of the smart contract in terms
of efficiency. Although our scheme requires a trusted setup, we can decentralize it via
MPC.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work has been supported by the Mohammed bin Salman Center for Future Science
and Technology for Saudi-Japan Vision 2030 at The University of Tokyo (MbSC2030).

References

[1] How obfuscation can help ethereum - cryptography - ethereum re-
search, https://ethresear.ch/t/how-obfuscation-can-help-ethereum/7380,
(Accessed on 03/26/2022).

[2] B. Bünz, S. Agrawal, M. Zamani, D. Boneh, Zether: Towards privacy in a smart
contract world, in: International Conference on Financial Cryptography and Data
Security, Springer, 2020, pp. 423–443.

[3] T. Kerber, A. Kiayias, M. Kohlweiss, Kachina–foundations of private smart con-
tracts, in: 2021 IEEE 34th Computer Security Foundations Symposium (CSF),
IEEE, 2021, pp. 1–16.

22

[4] S. Steffen, B. Bichsel, M. Gersbach, N. Melchior, P. Tsankov, M. Vechev, zkay:
Specifying and enforcing data privacy in smart contracts, in: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security,
2019, pp. 1759–1776.

[5] M. Andrychowicz, S. Dziembowski, D. Malinowski, L. Mazurek, Secure multiparty
computations on bitcoin, in: 2014 IEEE Symposium on Security and Privacy,
IEEE, 2014, pp. 443–458.

[6] Y. Zhu, X. Song, S. Yang, Y. Qin, Q. Zhou, Secure smart contract system built
on smpc over blockchain, in: 2018 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), IEEE, 2018, pp. 1539–1544.

[7] Z. Li, R. Zhang, P. Li, A secure and efficient smart contract execution scheme,
in: International Conference on Web Services, Springer, 2020, pp. 17–32.

[8] X. Pei, L. Sun, X. Li, K. Zheng, X. Wu, Smart contract based multi-party compu-
tation with privacy preserving and settlement addressed, in: 2018 Second World
Conference on Smart Trends in Systems, Security and Sustainability (WorldS4),
IEEE, 2018, pp. 133–139.

[9] A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts, in: 2016 IEEE
symposium on security and privacy (SP), IEEE, 2016, pp. 839–858.

[10] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig, S. Faust, A.-
R. Sadeghi, {FastKitten}: Practical smart contracts on bitcoin, in: 28th USENIX
Security Symposium (USENIX Security 19), 2019, pp. 801–818.

[11] Secret network: A privacy-preserving secret contract & dapp platform,
https://scrt.network/graypaper, (Accessed on 04/26/2022).

[12] Privacy on the blockchain — ethereum foundation blog,
https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/,
(Accessed on 03/11/2022).

[13] R. Pass, A. Shelat, Impossibility of vbb obfuscation with ideal constant-degree
graded encodings, in: Theory of Cryptography Conference, Springer, 2016, pp.
3–17.

[14] A. Jain, H. Lin, A. Sahai, Indistinguishability obfuscation from lpn over f p, dlin,
and prgs in ncˆ 0, Cryptology ePrint Archive (2021).

[15] A. Jain, H. Lin, A. Sahai, Indistinguishability obfuscation from well-founded as-
sumptions, in: Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, 2021, pp. 60–73.

[16] L. Devadas, W. Quach, V. Vaikuntanathan, H. Wee, D. Wichs, Succinct lwe
sampling, random polynomials, and obfuscation, in: Theory of Cryptography
Conference, Springer, 2021, pp. 256–287.

[17] R. Gay, R. Pass, Indistinguishability obfuscation from circular security, in: Pro-
ceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
2021, pp. 736–749.

[18] H. Wee, D. Wichs, Candidate obfuscation via oblivious lwe sampling, in: An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Springer, 2021, pp. 127–156.

23

[19] J. Groth, On the size of pairing-based non-interactive arguments, in: Annual in-
ternational conference on the theory and applications of cryptographic techniques,
Springer, 2016, pp. 305–326.

[20] A. Gabizon, Z. J. Williamson, O. Ciobotaru, Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge, Cryptology ePrint
Archive (2019).

[21] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, G. Maxwell, Bulletproofs:
Short proofs for confidential transactions and more, in: 2018 IEEE Symposium
on Security and Privacy (SP), IEEE, 2018, pp. 315–334.

[22] E. Ben-Sasson, I. Bentov, Y. Horesh, M. Riabzev, Scalable, transparent, and
post-quantum secure computational integrity, Cryptology ePrint Archive (2018).

[23] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza,
Zerocash: Decentralized anonymous payments from bitcoin, in: 2014 IEEE sym-
posium on security and privacy, IEEE, 2014, pp. 459–474.

[24] AZTEC, Aztecprotocol, https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf,
(Accessed on 03/10/2022).

[25] A. Pertsev, R. Semenov, R. Storm, Tornado cash privacy solution version 1.4
(2019).

[26] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, H. Wu, Zexe: Enabling
decentralized private computation, in: 2020 IEEE Symposium on Security and
Privacy (SP), IEEE, 2020, pp. 947–964.

[27] V. Kolesnikov, T. Schneider, A practical universal circuit construction and se-
cure evaluation of private functions, in: International Conference on Financial
Cryptography and Data Security, Springer, 2008, pp. 83–97.

[28] H. Lipmaa, P. Mohassel, S. Sadeghian, Valiant’s universal circuit: Improvements,
implementation, and applications, Cryptology ePrint Archive (2016).

[29] P. Mohassel, S. Sadeghian, How to hide circuits in mpc an efficient framework for
private function evaluation, in: Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Springer, 2013, pp. 557–574.

[30] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, J. Del Cuvillo, Using innovative
instructions to create trustworthy software solutions., HASP@ ISCA 11 (10.1145)
(2013) 2487726–2488370.

[31] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, Decentralized Busi-
ness Review (2008) 21260.

[32] S. Felsen, Á. Kiss, T. Schneider, C. Weinert, Secure and private function evalu-
ation with intel sgx, in: Proceedings of the 2019 ACM SIGSAC Conference on
Cloud Computing Security Workshop, 2019, pp. 165–181.

[33] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang,
C. A. Gunter, Leaky cauldron on the dark land: Understanding memory side-
channel hazards in sgx, in: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 2421–2434.

[34] S. Goldwasser, Y. T. Kalai, G. N. Rothblum, One-time programs, in: Annual
International Cryptology Conference, Springer, 2008, pp. 39–56.

[35] R. Goyal, V. Goyal, Overcoming cryptographic impossibility results using
blockchains, in: Theory of Cryptography Conference, Springer, 2017, pp. 529–
561.

24

[36] A. C.-C. Yao, How to generate and exchange secrets, in: 27th Annual Symposium
on Foundations of Computer Science (sfcs 1986), IEEE, 1986, pp. 162–167.

[37] S. Garg, C. Gentry, A. Sahai, B. Waters, Witness encryption and its applica-
tions, in: Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, 2013, pp. 467–476.

[38] D. Beaver, S. Micali, P. Rogaway, The round complexity of secure protocols, in:
Proceedings of the twenty-second annual ACM symposium on Theory of comput-
ing, 1990, pp. 503–513.

[39] M. Naor, B. Pinkas, R. Sumner, Privacy preserving auctions and mechanism
design, in: Proceedings of the 1st ACM Conference on Electronic Commerce,
1999, pp. 129–139.

[40] V. Kolesnikov, T. Schneider, Improved garbled circuit: Free xor gates and applica-
tions, in: International Colloquium on Automata, Languages, and Programming,
Springer, 2008, pp. 486–498.

[41] S. Zahur, M. Rosulek, D. Evans, Two halves make a whole, in: Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Springer, 2015, pp. 220–250.

[42] V. Kolesnikov, P. Mohassel, M. Rosulek, Flexor: Flexible garbling for xor gates
that beats free-xor, in: Annual Cryptology Conference, Springer, 2014, pp. 440–
457.

[43] M. Ball, B. Carmer, T. Malkin, M. Rosulek, N. Schimanski, Garbled neural net-
works are practical, Cryptology ePrint Archive (2019).

[44] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, N. Zeldovich, How
to run turing machines on encrypted data, in: Annual Cryptology Conference,
Springer, 2013, pp. 536–553.

[45] C. Gentry, A. Lewko, B. Waters, Witness encryption from instance independent
assumptions, in: Annual Cryptology Conference, Springer, 2014, pp. 426–443.

[46] H. Abusalah, G. Fuchsbauer, K. Pietrzak, Offline witness encryption, in: Inter-
national Conference on Applied Cryptography and Network Security, Springer,
2016, pp. 285–303.

[47] D. Pan, B. Liang, H. Li, P. Ni, Witness encryption with (weak) unique decryption
and message indistinguishability: constructions and applications, in: Australasian
Conference on Information Security and Privacy, Springer, 2019, pp. 609–619.

[48] P. Chvojka, T. Jager, S. A. Kakvi, Offline witness encryption with semi-adaptive
security, in: International Conference on Applied Cryptography and Network
Security, Springer, 2020, pp. 231–250.

[49] P. Chvojka, Time reveals the truth-more efficient constructions of timed crypto-
graphic primitives, Ph.D. thesis, Universität Wuppertal, Fakultät für Elektrotech-
nik, Informationstechnik und … (2021).

[50] Y. Lindell, Fast cut-and-choose-based protocols for malicious and covert adver-
saries, Journal of Cryptology 29 (2) (2016) 456–490.

[51] V. Kolesnikov, J. B. Nielsen, M. Rosulek, N. Trieu, R. Trifiletti, Duplo: unifying
cut-and-choose for garbled circuits, in: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 3–20.

[52] P. Miao, Cut-and-choose for garbled ram, in: Cryptographers’Track at the RSA
Conference, Springer, 2020, pp. 610–637.

25

