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Abstract— In this paper, we propose the method to speed up signature generation in RSA with small public exponent. We first divide 

the signing algorithm into two stages. One is message generating stage and the other is signing stage. Next, we modify the RSA signature 

so that the bulk of the calculation cost is allocated to message generating stage. This gives the possibility to propose the RSA signature 

schemes which have fast signature generation and very fast verification. Our schemes are suited for the applications in which a message 

is generated offline, but needs to be quickly signed and verified online. 
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1. INTRODUCTION 

RSA[1] is a public key cryptosystem based on the difficulty of integer factorization problem, where 𝑛-bit composite number 𝑁(=
𝑝𝑞: 𝑝 and 𝑞 are the 𝑛/2-bit prime numbers) is used as a modulus number. The public key 𝑒 and private key 𝑑 of RSA satisfy the 

following equation. 

𝑒 𝑑 ≡ 1 𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1)                                                                                         (1) 

To sign a message 𝑚 ∈ 𝑍𝑁
∗ , the signer calculates 𝑠 = 𝑚𝑑  𝑚𝑜𝑑 𝑁. Verification of a signature 𝑠 on a message 𝑚 is carried out by 

checking whether or not 𝑚 = 𝑠𝑒  𝑚𝑜𝑑 𝑁.  

It is easy to increase the signature verification speed by using small public exponent (e.g., 𝑒 = 3 or 𝑒 = 65537) in RSA  In this 

case, 𝑑 is full sized (on the order of 𝑁) and so, most of calculation costs are allocated to signature generation. CRT (Chinese 

Remainder Theorem) can be used[2] for the speed up of signature generation, but signature generation is still not so fast. 

From this, many researches have been done to increase the signature generation speed by transferring the calculation costs to 

signature verification.  

In [3], [6], [8] and [9], it is proved that RSA with small private exponent 𝑑 is insecure and so, rebalanced RSA that reduces the 

CRT exponents 𝑑𝑝(= 𝑑 𝑚𝑜𝑑 (𝑝 − 1)) and 𝑑𝑞(= 𝑑 𝑚𝑜𝑑 (𝑞 − 1)) instead of 𝑑 has been proposed in [10].  

More recent researches [12, 13, 16, 17] have occurred to propose the variants of rebalanced RSA which allow the cost of signature 

generation and verification to be balanced. However, for the following problems, there is no significant improvement to speed up 

RSA signature generation in practice. 

First, the key generation schemes of [12], [13], [16] and [17] are not practical, because they cannot use the typical prime generation 

module.(mentioned in Section2.2.) 

Second, it becomes to be difficult to reduce the CRT exponents even if public exponent is full sized (on the order of 𝑁), because  

powerful lattice based attacks[26, 27, 28] have been proposed in recent years. 

Note. In RSA, it is difficult to reduce both public exponent and CRT exponents after selecting the proper prime numbers[12, 13, 

16, 17]. And referring to [10], it is possible to use 224-bit CRT exponents, but referring to [27], it is not possible to use CRT 

exponents below 250-bit for 2048-bit modulus in rebalanced RSA with full sized public exponent 

From the above considerations, we focused on making both signature generation and verification high speed in RSA.  

For this purpose, we modified RSA with 𝑒 = 65537(noted as typical RSA) as follows. 

We converted the private exponent 𝑑 = 65537−1 𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1) into ℎ, 𝑑1 and 𝑑0 by modifying the RSA equation to  

𝑒(ℎ𝑑1 + 𝑑0) ≡ 1 𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1)                                                                                  (2) 

Note. In this case, ℎ𝑑1 + 𝑑0 ≡ 𝑑 𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1) is satisfied and so, ℎ𝑝𝑑1𝑝 + 𝑑0𝑝 ≡ 𝑑𝑝 𝑚𝑜𝑑 (𝑝 − 1) and ℎ𝑞𝑑1𝑞 + 𝑑0𝑞 ≡

𝑑𝑞 𝑚𝑜𝑑 (𝑞 − 1)  are satisfied for 𝑑𝑝 = 𝑑 𝑚𝑜𝑑 (𝑝 − 1), 𝑑𝑞 = 𝑑 𝑚𝑜𝑑 (𝑞 − 1), 𝑑0𝑝 = 𝑑0 𝑚𝑜𝑑 (𝑝 − 1), 𝑑0𝑞 = 𝑑0 𝑚𝑜𝑑 (𝑞 −

1), 𝑑1𝑝 = 𝑑1 𝑚𝑜𝑑 (𝑝 − 1), 𝑑1𝑞 = 𝑑1 𝑚𝑜𝑑 (𝑞 − 1), ℎ𝑝 = ℎ 𝑚𝑜𝑑 (𝑝 − 1) and ℎ𝑞 = ℎ 𝑚𝑜𝑑 (𝑞 − 1). 

In the signing stage, public parameter ℎ is additionally used and signature generation protocol is changed as follows.  

First, message generator calculates 𝑚1 = 𝐻(𝑚)
ℎ𝑚𝑜𝑑 𝑁 from plaintext 𝑚 and sends 𝑚||𝑚1 to signer. (𝐻 denotes full domain 

hash function and || denotes concatenation. ) 

Next, signer calculates signature 𝑠 = 𝐻(𝑚)𝑑0𝑚1
𝑑1  𝑚𝑜𝑑 𝑁(= 𝐻(𝑚)(ℎ𝑑1+𝑑0) 𝑚𝑜𝑑 𝑁) by using private key 𝑑0 and 𝑑1 instead of 

original private key 𝑑 and return 𝑚||𝑠. In this case, calculation of 𝑠 can be done fast by CRT as follows. 

Step1. Calculate 𝑚0𝑝 = 𝐻(𝑚)𝑚𝑜𝑑 𝑝,𝑚0𝑞 = 𝐻(𝑚)𝑚𝑜𝑑 𝑞,𝑚1𝑝 = 𝑚1𝑚𝑜𝑑 𝑝 and 𝑚1𝑞 = 𝑚1𝑚𝑜𝑑 𝑞. 

Step2. Calculate 𝑠𝑝 = 𝑚0𝑝
𝑑0𝑝𝑚1𝑝

𝑑1𝑝𝑚𝑜𝑑 𝑝(= 𝑚0𝑝
ℎ𝑝𝑑1𝑝+𝑑0𝑝𝑚𝑜𝑑 𝑝) and 𝑠𝑞 = 𝑚0𝑞

𝑑0𝑞𝑚1𝑞
𝑑1𝑞𝑚𝑜𝑑 𝑞(= 𝑚0𝑞

ℎ𝑞𝑑1𝑞+𝑑0𝑞𝑚𝑜𝑑 𝑞). 

Step3. Calculate 𝑠 = (((𝑠𝑝 − 𝑠𝑞)(𝑞
−1𝑚𝑜𝑑 𝑝))𝑚𝑜𝑑 𝑝) 𝑞 + 𝑠𝑝. 

Calculation of 𝑠 = 𝑚0
𝑑0𝑚1

𝑑1  𝑚𝑜𝑑 𝑁, 𝑠𝑝 = 𝑚0𝑝
𝑑0𝑝𝑚1𝑝

𝑑1𝑝 𝑚𝑜𝑑 𝑝  and 𝑠𝑞 = 𝑚0𝑞
𝑑0𝑞𝑚1𝑞

𝑑1𝑞  𝑚𝑜𝑑 𝑞  can be done fast by 

following Algorithm1[5, Algorithm14.88]. 
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Algorithm1. Simultaneous multiple exponentiation algorithm 

Input: 𝑎, 𝑏 ∈ 𝐺 and a positive integers 𝑥 = (𝑥𝑡𝑥𝑡−1⋯𝑥1𝑥0)2 and 𝑦 = (𝑦𝑡𝑦𝑡−1⋯𝑦1𝑦0)2. 

  Output: 𝑎𝑥𝑏𝑦. 

Step1. 𝑧 = 𝑥&𝑦, 𝑢 = 𝑥 ⊕ 𝑧, 𝑣 = 𝑦 ⊕ 𝑧. 
Step2. 𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑎𝑏 , 𝐷 = 1, 𝑖 = 𝑡 + 1. 

Step3. 𝑖 = 𝑖 − 1, 𝐷 = 𝐷 ⋅ 𝐷.  
Step4. if 𝑧𝑖 = 1 then 𝐷 = 𝐷 ⋅ 𝐶 else if 𝑢𝑖 = 1 then 𝐷 = 𝐷 ⋅ 𝐴 else if 𝑣𝑖 = 1 then 𝐷 = 𝐷 ⋅ 𝐵. 

Step5. if 𝑖 ≥ 1 then go to 3.  

Step6. return 𝐷.  

(𝑥 & 𝑦 denotes the bitwise AND of 𝑥 and 𝑦, 𝑥 ⊕ 𝑦 denotes the bitwise XOR of 𝑥 and 𝑦.) 

The verification (checking whether or not 𝑠𝑒𝑚𝑜𝑑 𝑛 = 𝐻(𝑚)) is identical to typical RSA. 

The above modification gives the possibility to speed up signature generation in the typical RSA when message generator and 

signer are not identical(Message generator is not the signer in some applications such as X.509 public key certificate). In this case, 

signature generation speed and security are influenced by the selection of ℎ, 𝑑0 and 𝑑1. (In [20], an attack to find 𝑑 from ℎ, 𝑒 and 

𝑁 when 𝑑0 and 𝑑1(𝑑 = ℎ𝑑1 + 𝑑0) are the small unknown integers has already been presented.) Hence, many considerations are 

needed for the selection of ℎ, 𝑑0 and 𝑑1.  

In this paper, we describe two selection schemes of ℎ, 𝑑0 and 𝑑1. One is to increase signature generation speed without effect on 

the security. (If CRT is not used in signature generation, 𝑑 = ℎ𝑑1 + 𝑑0, ℎ = 2
⌈𝑛/2⌉, 0 < 𝑑0, 𝑑1 < ℎ; else 𝑑𝑝 = ℎ𝑑1𝑝 + 𝑑0𝑝, 𝑑𝑞 =

ℎ𝑑1𝑞 + 𝑑0𝑞 , ℎ = 2⌈𝑛/4⌉, 0 < 𝑑0𝑝, 𝑑1𝑝, 𝑑0𝑞 , 𝑑1𝑞 < ℎ). 

Note. ⌈𝑥⌉ denotes the smallest integer greater than or equal to 𝑥. 

And the other is the scheme (𝑑 ≡ ℎ𝑑1 + 𝑑0 𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1): 𝑑0 and 𝑑1 are the full sized private exponents which have small 

CRT exponents) to obtain extremely fast signature generation. 
This paper is organized as follows. In Section 2, we briefly review the rebalanced RSA and small CRT exponent attacks. In 

Section 3, we propose two fast variants of RSA signature(Scheme1 and Scheme2) and analyze their security. In section 4, we 

present the performance comparison between the proposed schemes and the other RSA variants. Finally we conclude this paper in 

Section 5. 

2. REBALANCED RSA AND ITS VARIANTS 

2.1. Rebalanced RSA 

Rebalanced RSA[3, 10] is a variant of RSA designed to speed up signature generation by reducing CRT exponents 𝑑𝑝 and 𝑑𝑞 

instead of private exponent 𝑑. In key generation of rebalanced RSA, 𝑑 which has the small CRT exponents (i.e., 𝑑𝑝, 𝑑𝑞 < 𝑛
𝛿 , 𝛿 <

1/2) is first selected and then, 𝑒 is selected as a modular inverse of 𝑑. Hence, 𝑒 is usually full sized (i.e., 𝛼 = 𝑙𝑜𝑔𝑁𝑒, 𝛼 ≈ 1) [10].  

Signature generation and verification are identical to CRT-RSA and so, RSA –FDH[4] and RSA-PSS[4] can be straightly applied 

to rebalanced RSA under the assumption that it is computationally secure (i.e., 𝛿 is enough large to be secure) from the small CRT 

exponent attacks.  

2.2. Variants of rebalanced RSA and related attacks 

Rebalanced RSA has achieved the fast signature generation at the cost of a significant loss of verification performance because 

public exponent 𝑒 is full sized. Hence, the schemes to speed up signature generation without paying high price for verification (i.e., 

rebalanced RSA schemes with small public exponent) have been proposed with the small CRT exponent attacks related to 𝛼[12, 

13, 16, 17]. However, their key generation cannot use the typical prime generation module, because primes 𝑝 and 𝑞 are generated 

based on the selection of 𝑒 and 𝑑. For such a reason, the key generation schemes of [12], [13], [16] and [17] are not widely used 

in practice and usually used to describe the small CRT exponent attacks.   

Note. Much of RSA key generation time is consumed in generating prime numbers. Hence, fast and safe prime generation modules 

have been developed and used typically in RSA key generation. See the Open SSL RSA key generation for more details. 

In other words, many researches [12, 13, 15, 16, 17, 19, 26, 27, 28] for rebalanced RSA have focused on the small CRT exponent 

attacks rather than practical key generation. Especially, in recent years, more efficient attacks based on Coppersmith's lattice 

reduction technique have been proposed [21, 22, 23, 24, 25, 26, 27, 28].  

Among the above attacks, we considered the attacks applicable to rebalanced RSA variants which have two balanced primes as 

follows. (That is, attack of [11], [21], [22], [23], [24], [25], [26, Section3, 5], [27, Section3, 5] and [28] are not considered in this 

paper.) 

In RSA, following equations are satisfied for the CRT exponents 𝑑𝑝 and 𝑑𝑞.  

𝑒𝑑𝑝 ≡ 1 𝑚𝑜𝑑 (𝑝 − 1)                                                                                        (3) 

𝑒𝑑𝑞 ≡ 1 𝑚𝑜𝑑 (𝑞 − 1)                                                                                        (4) 
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From Equation (3), for any plaintext 𝑚(𝑚 ∈ 𝑍𝑝
∗), 𝑚𝑒𝑑𝑝 ≡ 𝑚 𝑚𝑜𝑑 𝑝 is satisfied and so,  𝑔𝑐𝑑(𝑀, 𝑛) = 𝑝 is satisfied for 𝑀 =

(𝑚𝑒𝑑𝑝 −𝑚)𝑚𝑜𝑑 𝑛.  

Hence, Attack1 is resulted in finding small root 𝑥 such that 𝑔𝑐𝑑(𝐴𝑥𝑚𝑜𝑑 𝑛 − 𝑚, 𝑛) > 1 where 𝐴 = 𝑚𝑒𝑚𝑜𝑑 𝑛 in rebalanced 

RSA. Attack1 is not related to 𝛼  and can factor the modulus 𝑛  in time 𝑂(𝑧1/2𝑙𝑜𝑔𝑧 ) [10, 18, Attack8.1]. In this case, 𝑧 =

𝑚𝑖𝑛(𝑑𝑝, 𝑑𝑞). 

In RSA, 𝑒𝑑𝑝 + 𝑘𝑝 − 1 = 𝑘𝑝𝑝  and  𝑒𝑑𝑞 + 𝑘𝑞 − 1 = 𝑘𝑞𝑞 are satisfied from Equation (3) and (4). Multiplying above equations 

together, following Equation (5) is yielded.  

 𝑒2𝑑𝑝𝑑𝑞 + 𝑒𝑑𝑝(𝑘𝑞 − 1) + 𝑒𝑑𝑞(𝑘𝑝 − 1) − (𝑛 − 1)𝑘𝑝𝑘𝑞 − 𝑘𝑝 − 𝑘𝑞 + 1 = 0                                           (5) 

And reducing Equation (5) modulo 𝑒, following Equation.(6) is yielded.  

(𝑛 − 1)𝑘𝑝𝑘𝑞 + 𝑘𝑝 + 𝑘𝑞 − 1 = 0  𝑚𝑜𝑑 𝑒                                                                                (6) 

Hence, Attack2 factors the modulus by finding small root (𝑥1, 𝑥2, 𝑥3, 𝑥4) of the equation 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 0 given by 

𝑓 = 𝑒2𝑥1𝑥2 + 𝑒𝑥1𝑥4 − 𝑒𝑥1 + 𝑒𝑥2𝑥3 − 𝑒𝑥2 − (𝑛 − 1)𝑥3𝑥4 − 𝑥3 − 𝑥4 + 1                                                 (7) 
with monomials 1, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥1𝑥2, 𝑥1𝑥4, 𝑥2𝑥3, 𝑥3𝑥4 and small root 

(𝑥1
(0), 𝑥2

(0), 𝑥3
(0), 𝑥4

(0)) = (𝑑𝑝, 𝑑𝑞 , 𝑘𝑝, 𝑘𝑞), with 

{
 
 

 
 |𝑥1

(0)| < 𝑋1 = 𝑛𝛿 ,           

|𝑥2
(0)| < 𝑋2 = 𝑛𝛿 ,            

|𝑥3
(0)| < 𝑋3 = 𝑛

𝛼+𝛿−1/2,

|𝑥4
(0)| < 𝑋4 = 𝑛

𝛼+𝛿−1/2,

 

for some known upper bounds 𝑋𝑗, for 𝑗 = 1,… ,4.   

And Attack3 factors the modulus by finding small root (𝑥, 𝑦) of the modular equation  𝑓𝑒(𝑥, 𝑦) = 0 given by 

𝑓𝑒 = (𝑛 –  1)𝑥 𝑦 + 𝑥 + 𝑦 – 1 (𝑚𝑜𝑑 𝑒)                                                                                 (8) 
with monomials 1, 𝑥, 𝑦, 𝑥𝑦 and small root  

(𝑥(0), 𝑦(0)) = (𝑘𝑝, 𝑘𝑞),  with {
|𝑥(0)| < 𝑋 = 𝑛𝛼+𝛿−1/2,

|𝑦(0)| < 𝑌 = 𝑛𝛼+𝛿−1/2,
 

for some known upper bounds 𝑋 and  𝑌. 

Note. It is trivial that 𝑝(𝑞) can be found from 𝑑𝑝 and 𝑘𝑝(𝑑𝑞 and 𝑘𝑞). And if 𝑒 > 𝑛1/4 , 𝑝 can be found from 𝑘𝑝(more precisely, 

from 𝑝(= 1 − 𝑘𝑝
−1 𝑚𝑜𝑑 𝑒)) [13,Thorem1], because 𝑝 ≡ 1 − 𝑘𝑝

−1 (𝑚𝑜𝑑 𝑒) is satisfied.  

Lattice based method [14, 16] is used to solve the Equation(7), while there are two kinds of methods to solve the Equation (8). 

One is lattice based method [13,Section5.2, 16,AppendixB,18] and the other is continued fraction based method[13, Section5.1]. 

And continued fraction based method yields the same asymptotic security requirement as the lattice based 

method[13,Section5.2,16,AppendixB]. 

For the success of the Attack2, it is necessary to satisfy the following Equation (9) and (10)[16][18].  

𝛿 <
(5 + 20𝜏 + 18𝜏2) − 4𝛼(1 + 4𝜏 + 3𝜏2)

2(1 + 𝜏)(7 + 21𝜏 + 12𝜏2)
− 𝜖, (1/2 ≤ 𝛼 ≤ 1)                                                    (9) 

𝛿 <
(5 + 20𝜏 + 27𝜏2 + 12𝜏3) − 𝛼(4 + 16𝜏 + 30𝜏2 + 24𝜏3)

2(1 + 𝜏)(7 + 21𝜏 + 12𝜏2)
− 𝜖,     (1/6 ≤ 𝛼 < 1/2)                                  (10) 

And for the success of the Attack3, it is necessary to satisfy the following Equation (11) [13, 16, Appendix B].  

𝛿 <
1

2
−
2

3
𝛼 − 𝜖, (1/4 ≤ 𝛼 ≤ 3/4)                                                                    (11) 

From Equation (9), (10) and (11), for the small public exponent, Attack2 is stronger and for the large public exponent, Attack3 is 

stronger with a crossover point at 𝛼 ≈ 0.375(See [16, Section7.1, 18, Figure8.1] for more details.). And, when 𝛼 approaches to 1, 

Attack1 is the strongest among the attacks above for the 2048 bits modulus. (Of course, referring to Theorem1 of [16], Attack2 

becomes stronger when the size of the modulus increases.) Until following Attack4 was proposed, Attack 1, 2 and 3 had been 

known to be stronger [26, 27] than other small CRT exponent attacks and so, we described only Attack 1, 2 and 3. 

From Equation(3) and (4), following Equations are obtained.  

𝑒𝑑𝑞𝑝 = 𝑝 + 𝑘𝑞(𝑛 − 𝑝) = 𝑛 + (𝑘𝑞 − 1)(𝑛 − 𝑝)   

𝑒𝑑𝑝𝑞 = 𝑞 + 𝑘𝑝(𝑛 − 𝑞) = 𝑛 + (𝑘𝑝 − 1)(𝑛 − 𝑞) 

(𝑘𝑞 − 1)(𝑘𝑝 − 1) = 𝑘𝑞𝑘𝑝𝑛 (𝑚𝑜𝑑 𝑒) 

(𝑛 − 1)𝑘𝑞(𝑘𝑝 − 1) + 𝑛𝑘𝑞 + (𝑘𝑝 − 1) = 0 (𝑚𝑜𝑑 𝑒) 

(𝑛 − 1)𝑘𝑝(𝑘𝑞 − 1) + 𝑛𝑘𝑝 + (𝑘𝑞 − 1) = 0 (𝑚𝑜𝑑 𝑒) 

Hence, Attack4 is resulted in finding the root (𝑥𝑝,1, 𝑥𝑞,1, 𝑥𝑝,2, 𝑥𝑞,2, 𝑦𝑝 , 𝑦𝑞)  of the modular equations 𝑓𝑝,1(𝑥𝑝,1, 𝑦𝑝) =

𝑓𝑞,1(𝑥𝑞,1, 𝑦𝑞) = 𝑓𝑝,2(𝑥𝑝,2, 𝑦𝑝) = 𝑓𝑞,2(𝑥𝑞,2, 𝑦𝑞) = ℎ(𝑥𝑝,1, 𝑥𝑞,1, 𝑥𝑝,2, 𝑥𝑞,2) = 0 given by 

𝑓𝑝,1(𝑥𝑝,1, 𝑦𝑝) = 𝑛 + 𝑥𝑝,1(𝑛 − 𝑦𝑝) 𝑚𝑜𝑑 𝑒                                                                        (12) 
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𝑓𝑞,1(𝑥𝑞,1, 𝑦𝑞) = 1 + 𝑥𝑞,1( 𝑦𝑞 − 1) 𝑚𝑜𝑑 𝑒                                                                        (13) 

𝑓𝑝,2(𝑥𝑝,2, 𝑦𝑝) = 1 + 𝑥𝑝,2(𝑦𝑝 − 1) 𝑚𝑜𝑑 𝑒                                                                        (14) 

𝑓𝑞,2(𝑥𝑞,2, 𝑦𝑞) = 𝑛 + 𝑥𝑞,2(𝑛 − 𝑦𝑞) 𝑚𝑜𝑑 𝑒                                                                        (15) 

ℎ(𝑥𝑝,1, 𝑥𝑞,1, 𝑥𝑝,2, 𝑥𝑞,2) = (𝑛 − 1)𝑥𝑝,1𝑥𝑝,2 + 𝑥𝑝,1 + 𝑛𝑥𝑝,2 𝑚𝑜𝑑 𝑒                                           

 = (𝑛 − 1)𝑥𝑞,1𝑥𝑞,2 + 𝑛𝑥𝑞,1 + 𝑥𝑞,2 𝑚𝑜𝑑 𝑒                                 (16) 

with monomials 1, 𝑥𝑝,1, 𝑥𝑝,2, 𝑥𝑞,1, 𝑥𝑞,2, 𝑥𝑝,1𝑦𝑝, 𝑥𝑝,2𝑦𝑝 , 𝑥𝑞,1𝑦𝑞 , 𝑥𝑞,2𝑦𝑞 , 𝑥𝑝,1𝑥𝑝,2, 𝑥𝑞,1𝑥𝑞,2 and small root 

(𝑥𝑝,1
(0), 𝑥𝑞,1

(0), 𝑥𝑝,2
(0), 𝑥𝑞,2

(0) 𝑦𝑝
(0), 𝑦𝑞

(0)) = (𝑘𝑞 − 1, 𝑘𝑞 , 𝑘𝑝, 𝑘𝑝 − 1, 𝑝, 𝑞), with 

{
 
 
 
 

 
 
 
 |𝑥𝑝,1

(0)| < 𝑋𝑝,1 = 𝑛
𝛼+𝛿−1/2,   

|𝑥𝑞,1
(0)| < 𝑋𝑞,1 = 𝑛

𝛼+𝛿−1/2,   

|𝑥𝑝,2
(0)| < 𝑋𝑝,2 = 𝑛

𝛼+𝛿−1/2,   

|𝑥𝑞,2
(0)| < 𝑋𝑞,2 = 𝑛

𝛼+𝛿−1/2,   

|𝑦𝑝
(0)| < 𝑌𝑝 = 𝑛1/2,              

|𝑦𝑞
(0)| < 𝑌𝑞 = 𝑛

1/2.              

 

Attack4 also used the lattice based method and for the success of the Attack4, it is necessary to satisfy the following Equation 

(17) [27, Theorem5].  

𝛿 <
1

2
− √

𝛼

7
, (7/16 ≤ 𝛼 ≤ 1)                                                                       (17) 

When 𝛼 ≈ 1, Attack4 works for 𝛿 < 0.122 < 1/2 − 1/7 (𝑧 < 2250 for the 2048bits modulus 𝑁) which is better than Attack2 

(𝛿 < 0.073) and Attack1(𝑧 < 2224 for the 2048bits modulus 𝑁).  

Since no improvements have been introduced so far, Attack4 is known to be the state-of-the-art small CRT exponent attack.  

Note. Attack4 was generalized in [28]. However, if 𝑝 and 𝑞 are balanced then generalized attack equals Attack4[28].  

3. THE PROPOSED SCHEME 

In rebalanced RSA, signature generation speed up is obtained by transferring calculation costs to signature verification. In the 

proposed schemes, we speed up signature generation by shifting calculation costs to message generator and so, verification still 

remains fast(𝑒 = 65537). 

3.1. Scheme1 

In this scheme, we shift the signature generation costs to message generator without effect on the security of typical RSA. 

Key generation: The key generation algorithm takes a security parameter 𝑛(typically 𝑛 = 2048). 

Step1. Generate two distinct (𝑛/2)-bit primes 𝑝 and 𝑞 such that gcd(65537, (𝑝 − 1)(𝑞 − 1)) = 1 and calculate 𝑁 = 𝑝𝑞.  

Step2. Select 𝑒 = 65537  and calculate 𝑑 = 𝑒−1𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1), 𝑑𝑝 = 𝑑 𝑚𝑜𝑑 (𝑝 − 1), 𝑑𝑞 = 𝑑 𝑚𝑜𝑑 (𝑞 − 1)  and ℎ =

2⌈𝑛/4⌉.  
Step3. Find 𝑑0𝑝, 𝑑0𝑞 , 𝑑1𝑝 and 𝑑1𝑞 such that 𝑑𝑝 = ℎ𝑑1𝑝 + 𝑑0𝑝, 𝑑𝑞 = ℎ𝑑1𝑞 + 𝑑0𝑞 and 0 < 𝑑0𝑝, 𝑑0𝑞 , 𝑑1𝑝, 𝑑1𝑞 < ℎ.  

Step4. Public key is (𝑒, 𝑁, ℎ) and private key is (𝑑0𝑝, 𝑑0𝑞 , 𝑑1𝑝, 𝑑1𝑞 , 𝑝, 𝑞). 

Signature generation is similar to Section1. The only difference is that the signer acts as prover in Step3 and 4, which are needed 

to be secure against the active attack.  

Signature generation: Message generator calculates hash value 𝑚1 = 𝐻(𝑚)ℎ𝑚𝑜𝑑 𝑁  from plaintext 𝑚 and sends 𝑚||𝑚1  to 

signer who returns signature 𝑠 or special symbol ⊥ (which means reject) as follows. 

Step1. Calculate 𝑚0𝑝 = 𝐻(𝑚)𝑚𝑜𝑑 𝑝,𝑚0𝑞 = 𝐻(𝑚)𝑚𝑜𝑑 𝑞,𝑚1𝑝 = 𝑚1𝑚𝑜𝑑 𝑝 and 𝑚1𝑞 = 𝑚1𝑚𝑜𝑑 𝑞. 

Step2. Calculate 𝑠𝑝 = 𝑚0𝑝
𝑑0𝑝𝑚1𝑝

𝑑1𝑝𝑚𝑜𝑑 𝑝(= 𝑚0𝑝
ℎ𝑝𝑑1𝑝+𝑑0𝑝𝑚𝑜𝑑 𝑝) and 𝑠𝑞 = 𝑚0𝑞

𝑑0𝑞𝑚1𝑞
𝑑1𝑞𝑚𝑜𝑑 𝑞(= 𝑚0𝑞

ℎ𝑞𝑑1𝑞+𝑑0𝑞𝑚𝑜𝑑 𝑞). 

Step3. Calculate 𝑡𝑝 = 𝑠𝑝
𝑒𝑚𝑜𝑑 𝑝 and 𝑡𝑞 = 𝑠𝑞

𝑒𝑚𝑜𝑑 𝑞. 

Step4. If 𝑡𝑝 ≠ 𝑚0𝑝 or 𝑡𝑞 ≠ 𝑚0𝑞 then return ⊥. 

Step5. Return 𝑠 = (((𝑠𝑝 − 𝑠𝑞)(𝑞
−1𝑚𝑜𝑑 𝑝))𝑚𝑜𝑑 𝑝) 𝑞 + 𝑠𝑝. 

Signature verification is identical to typical RSA which has the fastest verification among all the standardized signature schemes. 

Security: In Scheme1, ℎ(= 2⌈𝑛/4⌉) does not provide any information except for the bit size of private exponent, which has been 

known to be approximately equal to 𝑛 . Compared to RSA-FDH, in Scheme1, some operation (𝐻(𝑚)ℎ𝑚𝑜𝑑 𝑛) of signature 

generation (𝐻(𝑚)𝑑𝑚𝑜𝑑 𝑛) has been only pre-calculated by message generator. In RSA-FDH, unlike RSA-PSS, both message 

generator and signer can obtain the padding result by calculating hash function without random salt and so, padding by message 

generator does not influence the security of RSA-FDH. Hence, RSA-FDH can be straightly applied to this scheme and following 

theorem is satisfied.      
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Theorem1. In the random oracle model, Scheme1 is (𝑡, 𝑞ℎ𝑎𝑠ℎ , 𝑞𝑠𝑖𝑔 , 𝜀) -secure under the assumption that RSA-FDH is 

(𝑡, 𝑞ℎ𝑎𝑠ℎ , 𝑞𝑠𝑖𝑔 , 𝜀)-secure where 𝑞ℎ𝑎𝑠ℎ and 𝑞𝑠𝑖𝑔 are the number of hash queries and signature queries performed by forger and where 

𝜀 is the probability to break the scheme in time 𝑡. 

3.2. Scheme2 

In this scheme, we shift the signature generation costs to message generator to obtain extremely fast signature generation. 

Key generation: The key generation algorithm takes two security parameters 𝑛 and 𝑘 where 𝑘 ≤ 𝑛/2(typically 𝑛=2048 and 

𝑘=112).  

Step1. Generate two distinct (𝑛/2)-bit primes 𝑝 and 𝑞 such that gcd(𝑝 − 1, 𝑞 − 1) = 2 and gcd(65537, (𝑝 − 1)(𝑞 − 1)) = 1 

and calculate 𝑁 = 𝑝𝑞.  

Step2. Select 𝑒 = 65537 and calculate  𝑑 = 𝑒−1𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1), 𝑑𝑝 = 𝑑 𝑚𝑜𝑑 (𝑝 − 1) and 𝑑𝑞 = 𝑑 𝑚𝑜𝑑 (𝑞 − 1). 

Step3. Select 𝑘-bit numbers 𝑑0𝑝, 𝑑0𝑞 , 𝑑1𝑝 and 𝑑1𝑞 such that gcd(𝑑1𝑝, 𝑝 − 1) = 1, gcd(𝑑1𝑞 , 𝑞 − 1) = 1 and 𝑑0𝑝 ≡ 𝑑0𝑞 𝑚𝑜𝑑 2. 

Step4. Calculate ℎ𝑝 = (𝑑𝑝 − 𝑑0𝑝)𝑑1𝑝
−1𝑚𝑜𝑑 (𝑝 − 1) and ℎ𝑞 = (𝑑𝑞 − 𝑑0𝑞)𝑑1𝑞

−1𝑚𝑜𝑑 (𝑞 − 1). 

Step5. Find ℎ such that ℎ𝑝 = ℎ 𝑚𝑜𝑑 (𝑝 − 1), ℎ𝑞 = ℎ 𝑚𝑜𝑑 (𝑞 − 1) and 0 < ℎ < (𝑝 − 1)(𝑞 − 1). 

Step6. Public key is (𝑒, 𝑁, ℎ) and private key is (𝑑0𝑝, 𝑑0𝑞 , 𝑑1𝑝, 𝑑1𝑞 , 𝑝, 𝑞). 

Note. Refer to [10, Section4] for the method to find ℎ in Step5. 

Signature generation and verification are the same as in Section3.1. The only issue is that signature generation can be done faster 

than other RSA variants, because 𝑑0𝑝, 𝑑0𝑞 , 𝑑1𝑝 and 𝑑1𝑞 are extremely small. 

Security: Similar to Scheme1, some operation (𝐻(𝑚)ℎ𝑚𝑜𝑑 𝑛) of signature generation (𝐻(𝑚)𝑑𝑚𝑜𝑑 𝑛) has been only pre-

calculated in Scheme2, too. However, in Scheme2, ℎ  provides some information (i.e.,𝑑0𝑝, 𝑑1𝑝, 𝑑0𝑞  and 𝑑1𝑞  such that 𝑑𝑝 ≡

ℎ𝑝𝑑1𝑝 + 𝑑0𝑝𝑚𝑜𝑑 (𝑝 − 1)  and 𝑑𝑞 ≡ ℎ𝑞𝑑1𝑞 + 𝑑0𝑞𝑚𝑜𝑑 (𝑞 − 1) , are small) about private exponent 𝑑(= 65537−1𝑚𝑜𝑑 (𝑝 −

1)(𝑞 − 1)). Hence, unlikely Scheme1, the effect by ℎ must be considered in security analysis.  

For 𝑑0  and 𝑑1  such that 𝑑0𝑝 = 𝑑0 𝑚𝑜𝑑 (𝑝 − 1), 𝑑0𝑞 = 𝑑0 𝑚𝑜𝑑 (𝑞 − 1), 𝑑1𝑝 = 𝑑1 𝑚𝑜𝑑 (𝑝 − 1), 𝑑1𝑞 = 𝑑1 𝑚𝑜𝑑 (𝑞 − 1)  and 

0 < 𝑑0, 𝑑1 < (𝑝 − 1)(𝑞 − 1), ℎ𝑑0 + 𝑑1 ≡ 𝑑 𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1) is satisfied. And ℎ, 𝑑, 𝑑0 and 𝑑1 are usually large (on the order 

of 𝑁) [10]. From this, attack of [20] cannot be applied to Scheme2. Then, let’s consider the small CRT exponent attacks. In the 

small CRT exponent attacks, Equation (20) and (21) are used instead of (18) and (19).           

  𝑒𝑑𝑝 = 𝑘𝑝
′ (𝑝 − 1) + 1                                                                                                     (18) 

  𝑒𝑑𝑞 = 𝑘𝑞
′ (𝑞 − 1) + 1                                                                                                     (19)    

𝑒(ℎ𝑑1𝑝 + 𝑑0𝑝) = 𝑘𝑝(𝑝 − 1) + 1       (ℎ𝑑1𝑝 + 𝑑0𝑝 > 𝑑𝑝)                                                   (20) 

𝑒(ℎ𝑑1𝑞 + 𝑑0𝑞) = 𝑘𝑞(𝑞 − 1) + 1       (ℎ𝑑1𝑞 + 𝑑0𝑞 > 𝑑𝑞)                                                   (21) 

It is an open problem whether there exists any efficient small CRT exponent attack to Scheme2. However, the only clear thing is 

that known small CRT exponent attacks to RSA such as Attack1, 2, 3 and 4 cannot be applied to Scheme2 because Equation (20) 

and (21) are used.   

The best known attack can be described in the following theorem. 

Theorem2. Let (𝑁, 𝑒)  be an RSA public key with 𝑁 = 𝑝𝑞 ( 𝑝 and  𝑞  are primes such that gcd(𝑝 − 1, 𝑞 − 1) = 2  and 

gcd(65537, (𝑝 − 1)(𝑞 − 1)) = 1) and 𝑒 = 65537.  

Further, let 𝑑, 𝑑𝑝, 𝑑𝑞 , ℎ, 𝑑0, 𝑑1, ℎ𝑝, ℎ𝑞 , 𝑑0𝑝, 𝑑0𝑞 , 𝑑1𝑝, 𝑑1𝑞  and 𝑟  be the integers such that 𝑑 = 𝑒−1𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1), 𝑑𝑝 =

𝑑 𝑚𝑜𝑑 (𝑝 − 1), 𝑑𝑞 = 𝑑 𝑚𝑜𝑑 (𝑞 − 1), 𝑑 ≡ ℎ𝑑1 + 𝑑0𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1), 𝑑0𝑝 = 𝑑0𝑚𝑜𝑑 (𝑝 − 1), 𝑑0𝑞 = 𝑑0𝑚𝑜𝑑 (𝑞 − 1), 𝑑1𝑝 =

𝑑1𝑚𝑜𝑑(𝑝 − 1), 𝑑1𝑞 = 𝑑1𝑚𝑜𝑑 (𝑞 − 1), ℎ𝑝 = ℎ 𝑚𝑜𝑑 (𝑝 − 1), ℎ𝑞 = ℎ 𝑚𝑜𝑑 (𝑞 − 1)  and 𝑟 =

min (max (𝑑0𝑝, 𝑑1𝑝),max (𝑑0𝑞 , 𝑑1𝑞)).   

Then given (𝑁, 𝑒, ℎ) an adversary can expose the private key 𝑑 in time 𝑂(𝑟𝑙𝑜𝑔𝑟). 

Proof. Let 𝑟 = max (𝑑0𝑝, 𝑑1𝑝) . From 𝑑𝑝 ≡ ℎ𝑝𝑑1𝑝 + 𝑑0𝑝 ≡ ℎ𝑑1𝑝 + 𝑑0𝑝 𝑚𝑜𝑑 (𝑝 − 1) , 𝑚𝑒(ℎ𝑝𝑑1𝑝+𝑑0𝑝) ≡ 𝑚𝑒(ℎ𝑑1𝑝+𝑑0𝑝) ≡

𝑚 𝑚𝑜𝑑 𝑝 is satisfied and so, gcd(𝑐0
𝑑0𝑝𝑐1

𝑑1𝑝  𝑚𝑜𝑑 𝑁 − 𝑚,𝑁) = 𝑝 is satisfied for 𝑐0 = 𝑚
𝑒𝑚𝑜𝑑 𝑁 and 𝑐1 = 𝑚

𝑒ℎ𝑚𝑜𝑑 𝑁. That is, 

attack is resulted in finding small roots 𝑖 and 𝑗 such that gcd(𝑐0
𝑖𝑐1

𝑗𝑚𝑜𝑑 𝑁 − 𝑚,𝑁) > 1 and 0 ≤ 𝑖, 𝑗 ≤ 𝑟. Referring to [10, 18, 

Attack8.1], the attack can succeed in time 𝑂(𝑟𝑙𝑜𝑔𝑟). (end of proof) 

Theorem2 shows that, to obtain 2112 security, 𝑟 must be at least 112 bits long. Consequently, 𝑘 should not be less than 112 in 

Scheme2. Under the assumption that Scheme2 is computationally secure, RSA-FDH can be safely applied to Scheme2 as in 

Scheme1. 

Note. To the best of our knowledge the attacks applicable to the rebalanced RSA(𝛼 ≈ 1) are only the Attack1, 2 and 4. Referring 

to Attack1, we proposed Theorem2. It still remains an open problem whether it is possible to propose efficient lattice based attacks 

referring to Attack2 and 4. However, it would not be easy to propose lattice based attacks which are better than Theorem2. See 

Appendix A for more details.     



 6 

4. PERFORMANCE COMPARISON 

Table 1 shows the signature generation and verification time comparison of typical RSA, rebalanced RSA, Scheme1 and 

Scheme2. As shown in Table 1, Scheme1 and Scheme2 are approximately 1.67 and 7.56 times faster than typical RSA, respectively, 

in total processing. 

5. CONCLUSION 

We have described the method to increase the signature generation speed in RSA which has the small public exponent for the fast 

verification. The basic idea is to transfer the calculation costs from signer to message generator. Hence, proposed schemes are 

suited for the signature applications where message is not generated by signer (i.e., message is generated offline, but signed online.). 

In security, Scheme1 is identical to typical RSA, but it is an open problem that Scheme2 is identical to typical RSA. Especially, 

it remains to be further clarified whether there is any efficient small CRT exponent attack to Scheme2 and so, further studies are 

needed. Proposed schemes can also be applied to RSA signature with other small public exponents such as 3 or 17. 
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TABLE 1. SIGNATURE GENERATION AND VERIFICATION TIME COMPARISON 

 Typical RSA Scheme1 Rebalanced RSA Scheme2 

Public Exponent 17bits(216 + 1) 17bits(216 + 1) 2048 bits 17bits(216 + 1) 

Num of Multiplication in 
signature verification  

(module size) 

17 
(2048) 

17 
(2048) 

2048×1.5=3072 
(2048) 

17 
(2048) 

Secret Exponent 2048 bits 2048 bits 2048 bits 2048 bits 

CRT-Exponent 1024 bits 512 bits 250 bits 112 bits 

Num of Multiplication in 
signature generation 

(module size) 

1024×1.5×2+2=3074 
(1024) 

512×1.75×2+4+17×2
=1830 
(1024) 

250×1.5×2+2=752 
(1024) 

112×1.75×2+4+17×2
=430 

(1024) 

Signature generation Time 31ms 18.5ms 7.1ms 4.1ms 

Signature verification Time 0.8ms 0.8ms 122ms 0.8ms 

Total Processing Time= 
Max(Signature generation, 

Signature verification) 
31ms 18.5ms 122ms 4.1ms 

Note. Timings were made on 3.5GHz Core i3-4150 desktop using NTL with GMP Library and can be treated as a relative guideline. And 

delays by hash function were not considered in timing because they can be ignored compared to modular exponentiation of big integers. 



 7 

[23] L.Peng, Y.Lu, S.Sakar, J.Xu, Z.Huang, Cryptanalysis of variants of RSA with multiple small secret exponents, INDOCRYPT2015, LNCS9462 (2015), 105-

123 
[24] S.Sakar, Revisiting prime power RSA, Discrete Applied Mathematics, 203 (2016), 127-133 

[25] A.Takayasu, N.Kunihiro, How to generalize RSA cryptanalyses, PKC2016, LNCS 9615(2016), 67-97 

[26] A.Takayasu, Y.Lu, L.Peng, Small CRT-exponent RSA revisited, EUROCRYPT2017, LNCS10211 (2017), 130-159 
[27] A.Takayasu, Y.Lu, L.Peng, Small CRT-exponent RSA revisited, Journal of Cryptology, 32(4) (2019), 1337-1382 (full version of [26]) 

[28] L.Peng, A.Takayasu, Generalized cryptanalysis of small CRT-exponent RSA, Theoretical Computer Science, 795(2019), 432-458 

APPENDIX A. POSSIBILITY OF LATTICE BASED SMALL CRT EXPONENT ATTACK TO SCHEME2 

If ℎ is not used in the attacks, Scheme2 is identical to typical RSA in the security. Hence, the efficient lattice based small CRT 

exponent attack to Scheme2 (noted as Attack X) should use Equation (20) and (21), if it (i.e., Attack X) exists.  

And Attack X can also be applied to rebalanced RSA by using ℎ(= ⌈
𝛿

2
𝑙𝑜𝑔2𝑁⌉ , 𝑁 and 𝛿 are publicized) which makes 𝑑0𝑝, 𝑑1𝑝, 𝑑0𝑞 

and 𝑑1𝑞 to be small (i.e., 𝑑𝑝 = ℎ𝑑1𝑝 + 𝑑0𝑝 and 𝑑𝑞 = ℎ𝑑1𝑞 + 𝑑0𝑞).  

Meanwhile, when 𝛼 approaches 1, Attack 2 had been known as the state-of-the-art lattice based attack to rebalanced RSA before 

the proposal of Attack4[26, 27] and so, it can be seen that Attack X is not stronger than Attack 2(and 4) in rebalanced RSA.  

On the basis of such facts, we considered the relationship between Attack X to Scheme2 and Theorem2 as follows.  

First, we considered the general scenario of lattice based small CRT exponent attacks using Coppersmith technique. Coppersmith 

lattice based attacks are mounted in two stages. First stage is constructing the modular (or integer) equations, which have the small 

roots, from CRT equations. Second stage uses Coppersmith's method to solve the equations. In [7], Coppersmith describes the 

techniques to find small integer roots of polynomials in a single variable modulo 𝑁, and polynomials in two variables over the 

integers. These methods can be extended to more variables and Coppersmith's ideas of finding modular roots are reformulated by 

Howgrave-Graham as follows. 

Theorem3 (Howgrave-Graham). Let ℎ(𝑥1, … , 𝑥𝑘)  be a polynomial in 𝑘  variables with 𝜔  monomials. Suppose that 

ℎ(𝑥1
(0), … , 𝑥𝑘

(0)) = 0 𝑚𝑜𝑑 𝜙  where 𝑥𝑖
(0)
≤ 𝑋𝑖 , 𝑖 = 1, … , 𝑘  and ‖ℎ(𝑥1𝑋1, … , 𝑥𝑘𝑋𝑘)‖ < 𝜙/√𝜔 . Then ℎ(𝑥1

(0), … , 𝑥𝑘
(0)) = 0  holds 

over the integers. ‖ℎ(𝑥1, … , 𝑥𝑘)‖ denotes a Euclid norm of the coefficient vector of polynomial ℎ.  

𝐿3-reduction algorithm is often used to find the Equations which have the coefficients small enough to satisfy Theorem3.  

Theorem4 (Lenstra, Lenstra, Lov�̀�sz). Given a basis 𝐵 = {𝑏1, … , 𝑏𝑤}, 𝐿
3-reduction algorithm outputs reduced basis vectors  

{𝑣1, … , 𝑣𝑤} that satisfy  

‖𝑣𝑗‖ ≤ 2𝑤(𝑤−1)/4(𝑤−𝑗+1)det (𝐿(𝐵))1/(𝑤−𝑗+1)  𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑤, 

in time polynomial in 𝑤 and in the bit-size of the entries in 𝐵. 

In the lattice based attacks that use the Coppersmith's technique (i.e., Theorem3 and 4), the possibility that 𝐿3-algorithm outputs 

vectors which satisfy Howgrave-Graham's theorem relates to the upper bounds of variables.  

Second, we considered the Attack X to rebalanced RSA when 𝛼 approaches 1(more precisely,𝛼 ≈ 0.95 ) and compared it with 

Attack X to Scheme2 which is secure against Theorem2 in the parameters (including the upper bounds of variables) that can be 

used in small CRT exponent attacks.  

Then, what is the reason to make 𝛼 approache 1?  

Let 𝑤 = 𝑒ℎ. Then, following Equation (A.1), (A.2), (A.3) and (A.4) are obtained from Equation (20) and (21).  

𝑤𝑑1𝑝 + 𝑒𝑑0𝑝 = 𝑘𝑝(𝑝 − 1) + 1                                                                                                (𝐴. 1) 

𝑤𝑑1𝑞 + 𝑒𝑑0𝑞 = 𝑘𝑞(𝑞 − 1) + 1                                                                                                (𝐴. 2) 

𝑘𝑝(𝑝 − 1) − 𝑒𝑑0𝑝 + 1 = 0 𝑚𝑜𝑑 𝑤                                                                                         (𝐴. 3) 

𝑘𝑞(𝑞 − 1) − 𝑒𝑑0𝑞 + 1 = 0 𝑚𝑜𝑑 𝑤                                                                                         (𝐴. 4) 

And these equations would be used as the basis equations in Attack X. In the case of Scheme2, ℎ is full sized and 𝑒 is small, so 

we considered the case of rebalanced RSA (𝛼 ≈ 0.95) in which 𝑒 is large and ℎ is small in order to adjust the balance of bit size 

of 𝑤 approximately between both cases. 

We first proved that rebalanced RSA(𝛼 ≈ 0.95, 𝛿 > 0.109) is secure against AttackX as follows. 

From [16],[18] and [27], it can be seen that rebalanced RSA(𝛼 ≈ 0.95, 𝛿 > 0.109) is secure against Attack2, but is not secure 

against Attack4. And Attack2 is known to be stronger than other small CRT exponent lattice based attacks except for Attack4 

when 𝛼  approaches 1. From this, it can be seen that  rebalanced RSA(𝛼 ≈ 0.95, 𝛿 > 0.109) is also secure against Attack X. (If 

not, Attack X that uses ℎ = ⌈
𝛿

2
𝑙𝑜𝑔2𝑁⌉ would be introduced as a small CRT exponent attack stronger than Attack2) 

Next, we compared rebalanced RSA(𝛼 ≈ 0.95, 𝛿 > 0.109) with Scheme2 which is secure against Theorem2. Table 2 shows the 

comparison of parameters between rebalanced RSA(𝛼 ≈ 0.95, 𝛿 > 0.109) and Scheme2.(𝐷0𝑝 = 𝐷1𝑝 = 𝐷0𝑞 = 𝐷1𝑞 ≥ 2112) for 

the 2048bits modulus 𝑁 . ( 𝑃, 𝑄, 𝐷𝑝 , 𝐷𝑞 , 𝐷0𝑝, 𝐷1𝑝 , 𝐷0𝑞 , 𝐷1𝑞 , 𝐾𝑝 and  𝐾𝑞  mean the upper bounds of 

 𝑝, 𝑞, 𝑑𝑝, 𝑑𝑞 , 𝑑0𝑝, 𝑑1𝑝, 𝑑0𝑞 , 𝑑1𝑞 , 𝑘𝑝 and 𝑘𝑞, respectively.) 

As shown in Table 2, Scheme2 is approximately same to rebalanced RSA in parameters and from the property of Coppersmith’s 

lattice based attacks, Scheme2 which is secure against Theorem2 would also be secure from Attack X (i.e., Attack X would not be 

better than Theorem2 in Scheme2) with high probability. 
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From all the facts above, it can be seen that it would not be easy to propose the lattice based small CRT exponent attacks better 

than Theorem2 in Scheme2 under the assumption that, except for Attack4, no attacks to rebalanced RSA(𝛼 ≈ 0.95, 𝛿 > 0.109) 
have been introduced thus far.   

 

 

 

TABLE 2. COMPARISON OF PARAMETERS THAT CAN BE USED IN ATTACK X  FOR 2048 BITS MODULUS 

 𝑒 ℎ 𝑤 = 𝑒ℎ 𝑃, 𝑄 𝐷𝑝, 𝐷𝑞  𝐷0𝑝, 𝐷1𝑝, 𝐷0𝑞 , 𝐷1𝑞 𝑲𝒑, 𝑲𝒒 

rebalanced RSA (𝛼 ≈
0.95, 𝛿 > 0.109) 

1953 bits 112 bits 2065 bits 1024 bits 224 bits 112 bits 1153 bits 

Scheme2 

(Theorem2) 
17 bits 2048 bits 2065 bits 1024 bits 1024 bits 112 bits 1153 bits 

 Note. In rebalanced RSA, 𝑑𝑝 = ℎ𝑑1𝑝 + 𝑑0𝑝 and  𝑑𝑞 = ℎ𝑑1𝑞 + 𝑑0𝑞 are satisfied but, in Scheme2, 𝑑𝑝 = ℎ𝑑1𝑝 + 𝑑0𝑝 𝑚𝑜𝑑 (𝑝 − 1) and  𝑑𝑞 = ℎ𝑑1𝑞 + 𝑑0𝑞 𝑚𝑜𝑑  

(𝑞 − 1) are satisfied. Scheme2 is superior to rebalanced RSA(𝛼 ≈ 0.95, 𝛿 > 0.109) in all parameters except for 𝑒. 
  


