
On Valiant’s Conjecture:
Impossibility of Incrementally Verifiable Computation

from Random Oracles

Mathias Hall-Andersen∗, Jesper Buus Nielsen†

Abstract

In his landmark paper at TCC 2008 Paul Valiant introduced the notion of “incre-
mentally verifiable computation” which enables a prover to incrementally compute a
succinct proof of correct execution of a (potentially) long running process. The paper
later won the 2019 TCC test of time award. The construction was proven secure in
the random oracle model without any further computational assumptions. However,
the overall proof was given using a non-standard version of the random-oracle method-
ology where sometimes the hash function is a random oracle and sometimes it has a
short description as a circuit. Valiant clearly noted that this model is non-standard,
but conjectured that the standard random oracle methodology would not suffice. This
conjecture has been open for 14 years. We prove that under some mild extra assump-
tions on the proof system the conjecture is true: the standard random-oracle model
does not allow incrementally verifiable computation without making computational as-
sumptions. Two extra assumptions under which we can prove the conjecture are 1) the
proof system is also zero-knowledge or 2) when the proof system makes a query to its
random oracle it can know with non-negligible probability whether the query is fresh
or was made by the proof system earlier in the construction of the proof.

1 Intro

Incrementally Verifiable Computation. In his landmark paper Paul Valiant [Val08] in-
troduced the notion of “incrementally verifiable computation” (IVC) which enables a prover
to incrementally compute a succinct proof of correct execution of a (potentially) long run-
ning process. At any time the prover can suspend the computation and return a proof of

∗Funded by the Concordium Foundation.
†Partially funded by The Concordium Foundation; The Danish Independent Research Council under

Grant-ID DFF-8021-00366B (BETHE); The Carlsberg Foundation under the Semper Ardens Research
Project CF18-112 (BCM).

1

correct execution leading up to the present state. This paper inspired a lot of later construc-
tions, including modern recursive SNARK constructions, and won the 2019 TCC test-of-time
award.

The methodology applied by Valiant is incremental. The computation applies the same
step function T a number of ℓ times. There is an initial state M0 and Mi = T (Mi−1). There
is also an initial proof π0, the empty string say. To construct the proof πi that Mi = T i(M0)
one constructs a proof of knowledge of (Mi−1, πi−1) for which it holds that Mi = T (Mi−1)
and that πi−1 verifies the statement Mi−1 = T i−1(M0).

1 The soundness of the recursive proof
system is proven in the random oracle model without any further computational assumptions.
However, Valiant need to apply a non-standard version of the random oracle model. When
proving soundness of the proof system extending a proof by one step it is assumed that the
hash function is a random oracle. However, when recursively proving that πℓ−1 verifies it is
assumed that the hash function has a short description as a circuit. This gives a somewhat
interesting model where the hash function at different times has contradicting properties.
The paper is very up front about this and justifies it by the conjecture that it seems that
the standard random oracle methodology is not enough.

. . . When we try to recursively embed this system the recursion breaks down
because, even at the first level of recursion, we are no longer trying to prove
statements about classical computation but rather statements of the form “M
with oracle access toO accepts the following string...” Thus standard applications
of random oracles do not appear to help. [our emphasis]. . . .

–Paul Valiant[Val08]

In [CL20] Chiesa and Liu show impossibility results for proofs in relativized worlds,
i.e., proof of the form “M with oracle access to O accepts the following string...” They
show that DTIME(t)O ∕⊆ PCP(o(t), o(t))O and NTIME(t)O ∕⊆ PCP(poly(t), o(t))O, which
can informally be interpreted as not all statements of the form “M with oracle access to
O accepts the following string...” can have a non-trivial proof where not all the oracle
queries of M are checked by the verifier. As noted in [CL20] this “gives strong evidence that
Valiant’s approach was in some sense justified.” However, it does not conclusively rule out
that Valiant’s approach can be instantiated in the standard random oracle model. It cannot
be ruled out that a proof system can be constructed where the verifier is simple enough that
it does not fall prey to the Chiesa-Liu results, as they only rule out that not all statements
have such a proof. And the end result of Valiant’s approach is to give non-trivial PCPs
about random oracle devoid computation, which is not ruled out by the Chiesa-Liu results
either.

And even if we could rule out the explicitly recursive strategy, where we extend a proof by
proving knowledge of an accepting sub-proof, then it might still be possible to do incremental
PCPs in the random oracle model using some other strategy, as already noted by Valiant.

1This description is oversimplified but will suffice for our discussion. The real recursive strategy is m ore
involved to tame the complexity of knowledge extraction.

2

. . . It remains an interesting question whether the goals of this paper may be
attained in some other way using random oracles. . . .

–Paul Valiant[Val08]

In the present paper we show that Valiant was correct and that indeed the standard
random oracle model is not sufficient for incremental proofs. We rule out not just explicitly
recursive designs, but general incremental designs. As we discuss below we do not prove
impossibility for the exact setting studied by Valiant: we need to assume additional but
natural properties of the proof system. We discuss these assumptions below.

The first additional assumption we need is that the ongoing computation can receive a
long witness as input in an incremental manner. The verifier is assumed to only have access
to a short instance. In a modern setting this could be a verifier knowing only the genesis
block and a recent block of a blockchain and the prover wants to succinctly prove that the
blockchain has some property, like the verifier having been paid a certain amount. Here
the genesis block plus the recent block is the short instance and the blockchain is the long
witness. It is a natural question whether the proof can be computed incrementally, say by
consuming the blockchain block-by-block.

The original notion of IVC considers only deterministic computation: the verifier is
provided with a Turing machine and the prover convinces the verifier that the provided
state is reached after executing the Turning machine for some number of steps. Motivated
by “distributed computation” Chiesa and Tromer [CT10] subsequently generalized IVC to
the powerful notion of “Proof-Carrying Data” (PCD) in which the correct computation
of a function taking multiple inputs can be proven given proofs of correctness for each of
the inputs, e.g., the computation of F (G1(w1), G2(w2)) can be proven given y1 = G1(w1),
y1 = G2(w2) and corresponding proofs-of-knowledge π1, π2 for w1, w2. Note in particular
that PCD implies “non-deterministic” computation: where the witness can be provided
piecemeal during the computation.

For our impossibilities we use the abstraction of “non-deterministic incrementally verifi-
able computation”, which is a special case of PCD with “fan-in” 1 with the same function
applied in each step, or a generalization of IVC where each step of the Turning machine may
take a witness.

Note that for the setting of proof carrying data it makes sense to require that each proof is
zero-knowledge in itself: different steps of the computation could be performed by mutually
distrustful parties which do not want to share their secrets. As discussed in more detail
later, one of our additional assumptions will be that the proof is zero-knowledge.

Our impossibility result applies only to the setting where a large witness is consumed
piecemeal. Since the original construction of Valiant easily generalises to give a construction
for “non-deterministic” computation this seems like a mild relaxation of the impossibility
result. And it certainly applies to many modern uses of incremental proofs.

PCD via Recursion. In Valiant’s original paper [Val08] IVC is constructed using a tree
of linear-time extractable CS proofs [Mic94]: in which the leafs each prove a step of the

3

execution, while the parents (a CS proof) proves the correct execution of the verifier on
the two children (CS proofs). By maintaining just log(T) such proofs the computation can
be extended in the obvious way. The tree structure is essential to ensuring polynomial-
time extraction, since the linear-time knowledge extractor need only be applied log(T) times
recursively to extract the entire computational trace. In later works [BCCT13] [BCTV14]
from zk-SNARKS the proofs are composed iteratively, which implies that the proof is only
sound for computation of constant depth. Lately, in practical schemes/deployments, the
efficiency of the recursive extraction is largely ignored: instead showing that a single level
of recursion is extractable [BCMS20a, BCL+20]. Common to all known constructions is the
non-blackbox use of (parts of) the verifier.

Incremental PCD. Our results apply not only to recursive proofs but to succinct incre-
mental proofs in general. We look at incremental proofs produced by some ℓ number of
succinct steps. By succinct we mean that the state of the prover passed on from one step
to the next has size poly(|R|,λ, log ℓ), where R is the PPT relation checking that one step
was computed correctly, λ is the security parameter, and ℓ is the number of steps. Each
computation of a proof need not be state bounded, only the state passed on to the next step.
We also require that the verifier has running time poly(|R|,λ, log ℓ).

In This Paper. In this paper we show that succinct non-deterministic IVC from random
oracles is impossible in the following three cases.

1. There exist collision resistant hash functions and the proof system has knowledge
soundness (possibly with non-blackbox extraction) and is zero-knowledge. Knowledge
soundness and zero-knowledge may depend on standard-model falsifiable computation
assumptions.

2. There exist perfectly binding rerandomizable commitments and the proof system has
soundness and is zero-knowledge. Both soundness and zero-knowledge may depend on
standard-model falsifiable computation assumptions.

3. There exists collision resistant hash functions and the proof system has blackbox knowl-
edge soundness and the proof system has a property informally stated as follows: it
can with non-negligible probability be predicted for all queries made by the prover
whether they are fresh or were made before.

The first two results assume that the incremental proof is also zero-knowledge. This seems
like a mild additional assumption. Succinct arguments already information theoretically
hides most of the witness, as the proof is much shorter than the witness. It it hard to imagine
techniques allowing this information theoretic partial hiding but not full zero-knowledge. For
general PCD zero-knowledge is even a natural requirement. The third result complements
the first two results by showing that even if we drop the assumption of zero-knowledge one
cannot get incremental proofs, but now using an assumption that the freshness of queries can
be determined with non-negligible probability. Note that this assumption is non-trivial as

4

the proof system is succinct, so it cannot just remember all queries of all previous steps. We
believe that the freshness assumption is not needed but is an artefact of our proof techniques.

Technical Overview We sketch the main ideas behind the impossibility results. For all
results the witness for an ℓ-step proof is a long random vector $w = (w1, . . . , wℓ), where wi is
given (only) in step i. Each wi is security parameter long.

Results 1 and 2. In the first two results we first prove that no adversary (cheating prover)
can produce an accepting proof if there is some index i such that we do not give it wi. We
sketch why this is true.

For the case of collision resistant hash functions the computation computes a Merkle-
Damg̊ard hash of $w, consuming one wi per step. If the prover could succeed in producing
an accepting proof without using wi, then we could apply the knowledge extractor to the
accepting proof and recover wi. It is easy to see that this can be used to break collision
resistance.

For the case of perfectly binding rerandomizable commitments each step gets as input an
in-commitment ci−1 and and out-commitment ci and the witness is the randomness used to
produce ci as a rerandomisation of ci−1. The in-commitment c0, of step 1, is a commitment
of 0. By perfect binding it follows that for true instances the out-commitment cℓ of step
ℓ is also a commitment of 0. The missing witness will now be the randomness used for
a rerandomisation in some step i. If the prover is not given this randomness it cannot
distinguish an out-commitment ci of 0 from an out-commitment of 1. Hence we can do a
switch from an in-commitment ci−1 of 0 to an out-commitment ci of 1. So if for a true
instance the prover could succeed without wi then it could also succeed for a false instance,
breaking soundness.

We then finish the proofs of the first two results by showing that if the verifier does not
make Θ(ℓ) queries then there exists an adversary producing an accepting proof and which
does not use all witnesses, giving a contradiction.

This proof only uses that there is a zero-knowledge simulator in the random oracle model:
it can simulate a given step if allowed to reprogram the random oracle. The indistinguishabil-
ity of the real view and the simulated view may depend on other computational assumptions.
For each step m and each step n > m we use that the simulator works by programming the
oracle to argue that the verifier of step n must make a check related to the proof of step m.
To see this note that if we simulate step m and the simulator reprograms the points Sm then
the verifier of step n must check a point x ∈ Sm. Namely, if we simulate step m then we do
not need wm. Therefore the proof must reject: we already argued that all successful provers
use all witnesses. But if the verifier of step n does not query x ∈ Sm, then the reprogrammed
random oracle will look like the real random oracle to this particular verifier and it must
therefore accept the proof (as it accepts the proof when the oracle is reprogrammed, by
definition of zero-knowledge). Let xm,n denote this query by verifier n related to proof m.
There are Θ(ℓ2) of these. The main challenge of the proof is to prove that they are disjoint
enough that we force some verifier to make Θ(ℓ) queries, which is not allowed as we assume

5

the verifier has running time in poly(|R|,λ, log ℓ). The main challenge in proving this is that
we cannot make a world where we simulate all proofs, as some verifier will then surely check
some reprogrammed point and reject. Also, we cannot easily define xm,n in the real world
where step m is run honestly, as there is no notion of Sm. We therefore need to capture xm,n

in the world where step m is simulated using some poly-time observable. The observable we
use is essentially “x was not queried before step m and it got queried after step m”. We
show this captures xm,n when step m is simulated. We then argue that this xm,n must exist
in the real world too, or zero-knowledge was broken. We then argue that the definitions of
the poly-time observables are such that the θ(ℓ2) points xm,n are disjoint enough. This is
done in Lemma 5 using a so-called blocking set argument.

Result 3. For result 3 we use a different approach. Here we observe that if the final verifier,
of step ℓ, is succinct, then it makes a number of queries to its oracle essentially independent
of ℓ. So by setting ℓ large enough we can create a polynomially long stretch from step p1 to
step p2 such that no fresh query made by a proof in steps [p1, p2] will be queried by the final
verifier. A fresh query is one which was not also made before the stretch. We then create an
adversary which picks the witnesses used in steps [p1, p2] independent of the witnesses used
outside the interval and independent of all queries made before steps [p1, p2].

During the stretch we let the adversary use a simulated (pseudo-random) oracle instead
of the real one for all fresh queries. This will still give an accepting proof as the final verifier
does not make queries corresponding to fresh queries by the prover during the stretch. Hence
the real oracle and the simulated one will look the same to the final verifier. Letting the
adversary use a simulated oracle during the stretch ensures that the blackbox extractor gets
no information on the stretch witnesses: the adversary makes no queries to its oracle during
the stretch and is therefore opaque to the blackbox extractor.

Furthermore, the stretch witnesses are picked on-the-fly by the adversary using a pseudo-
random function applied to the transcript of the proof up to position p1. This ensures that
the extractor cannot use rewinding to get information on the stretch witnesses used in the
main execution which needs to be extracted. In particular, if the adversary is rewound and
given different replies to oracle queries then it will use other witnesses during the stretch
[p1, p2] than the ones used in the main execution which needs to be extracted.

Hence all the information that the extractor gets on the stretch witnesses is via queries
made by the adversary to its oracle during the proofs after step p2 in the main execution.
Intuitively this information can be no larger than the state σ2 of the proof system after step
p2. We could give p2 to the extractor and let it finish the proof itself. If the proof system is
succinct then we can pick p2 − p1 > |σ2| to ensure that σ2 information theoretically cannot
encode all the stretch witnesses. This uses poly-time incompressibility of pseudo-random
strings. This shows that a blackbox extractor cannot compute the stretch witnesses from
blackbox access to the adversary, violating knowledge soundness.

While it seems intuitively clear that if we have a random witness of length p2−p1 and the
only information passed to the extractor about it is of size |σ2| < p2 − p1, then the extractor
cannot compute the witness, the proof is more subtle. In particular, when we do the proofs

6

from step p2 till ℓ, we need that queries identical to fresh queries made during the stretch are
answered using the simulated oracle used during the stretch. Otherwise we cannot appeal
to correctness of the proof system and conclude that the final proof must be accepting. And
we need that the proof is accepting to be able to apply the extractor. We cannot a priori
pass the set of fresh queries on to future proofs: It might be so large that it could encode the
stretch witnesses. We can pass on a description of the simulated oracle, as it it independent
of the stretch witnesses. However, the queries themselves might encode information about
the stretch witnesses. We therefore need to assume that there is a concise mechanism to
determine whether or not a query made by a later step in the proof is fresh, so we know
whether to reply with the real random oracle or the simulated one. The mechanism need
not be perfect. If it works with non-negligible probability we can still get a contradiction
to extracting the stretch witnesses when the mechanism works, by making the stretch long
enough.

Generalizations Our results apply directly to schemes which only rely on random oracles,
like that of Valiant [Val08] (based on CS proofs) and recursive Fractal [COS20]. However, we
emphasise that our results are not oracle separation results. We do not give the adversary
access to for instance an NP oracle which can break all cryptography except the random or-
acle. As a result the impossibility results apply even in presence of additional computational
assumptions.

Specifically in results 1 and 2 the zero-knowledge may depend on computational assump-
tions, as long as these are not phrased via relativized worlds extra to the random oracle
model. Results 1 and 2 therefore stand also if there exist for instance trapdoor permutations
or indistinguishability obfuscation. Our results do not rule out constructions where zero-
knowledge is proven in for instance the generic group model, as it is relativized. Similarly, in
result 1 knowledge soundness, and in result 2 the soundness, may depend on computational
assumptions, as long as these are not phrased via relativized worlds extra to the random
oracle model

Result 3 also stands if knowledge soundness is proven using additional computational
assumptions, as long as these are blackbox and are not phrased via a relativized world. This
still forces all information on the stretch witness to pass to the extractor via random oracle
queries. Technically we quantify the extractor before the adversary and only give the extrac-
tor blackbox access to the adversary, so extraction of information need to pass via the queries
to the random oracle. However, the proof that the extraction strategy works is allowed to
depend on additional computational assumptions like existence of collision resistant hash
function. Technically the proof may also depend on non-falsifiable assumptions, but they
are probably hard to utilise when the extractor is quantified before the adversary.

Although we primarily focus on random oracles, the result can easily be generalized to
O(poly(λ))-local oracles, i.e., where responses to queries might be dependent in a bounded
manner: All queries can be divided into disjoint sets Pi of size |Pi| = O(poly(λ)) and replies
to queries in different sets are independent. For a given verifier we can simply look at the
one which if it queries x ∈ Pi then it queries all x′ ∈ Pi. This still gives it running time

7

O(poly(|R|,λ, log ℓ)). And we can now look at the proof system as using a 1-local oracle
with larger replies. And it is easy to see that our results still apply to such 1-local oracles.
Note that for instance oracles like “generic (bilinear) groups” are not O(poly(λ))-local, as
the group law correlates all replies.

It is interesting to investigate how simple an oracle may allow incremental PCD, and our
results show that we must look for non-local oracles.

Relation to Other Impossibilities. Chiesa and Liu [CL20] showed that it is impossible
to construct non-trivial PCPs of random oracle computation (e.g., circuits with RO gates).
This rules out most hope constructing IVC by proving the correct execution of a verifier in
the random oracle model but does not exclude that other design would allow for IVC in the
RO model. Since in particular the impossibility of Gentry-Wichs [GW11] for (adaptively
sound) zk-SNARGs applies, one could not hope to construct non-deterministic IVC from
falsifiable assumptions. However, this does not rule out a construction of IVC in the RO
model. In particular, unlike non-deterministic IVC, there are known constructions of zk-
SNARKs in the random oracle model, e.g., classic CS proofs [Mic94] from PCPs and the
compiler of Ben-Sasson et al. [BCS16] applied to round-by-round sound Holographic IOPs
like Fractal [COS20] and zk-STARKs [BBHR18].

2 Definitions

Formally our model of computation is repeated application of a Boolean circuit T which
encodes the “transition function”. Formally, we show impossibility of O-IVC supporting
particular sets of transition functions T , in particular we show impossibility for schemes
supporting all Boolean circuits.

Definition 1 (Transition Functions). Let T be a set of Boolean circuits, T ∈ T :

T : {0, 1}|M | × {0, 1}|w| → {0, 1}|M |

Definition 2 (Repeated Application of T). We denote by T ℓ the function that applies T
ℓ-times to a state M0 with witnesses w1, . . . , wℓ. Formally, let T 0 = id (the identity function)
and define T ℓ for ℓ > 0 recursively as:

T ℓ(M0, $w = (w1, . . . , wℓ))

1 : Mℓ−1 ← T ℓ−1(M, (w1, . . . , wℓ−1))

2 : return T (Mℓ−1, wℓ)

We define the relation/language defined by T as follows:

(x, $w) ∈ RT ⇐⇒ x = (T,M0,Mℓ, ℓ) ∧Mℓ = T ℓ(M0, $w)

x = (T,M0,Mℓ, ℓ) ∈ LT ⇐⇒ ∃$w st. (x, $w) ∈ RT

8

Definition 3 (Non-Deterministic O-IVC.). A non-deterministic O-IVC scheme for a set of
transition functions T consists of two PPT O-algorithms:

PO(T,M,w, π) +→ π′. Takes a description of the state transition T , the current state M ,
some additional input w and a proof π of (M0,M) ∈ L(T,ℓ). Let M ′ = T (M,w), the
algorithm returns a proof π′ of (M0,M

′) ∈ L(T,ℓ+1).

VO(x = (T,M0,Mℓ, ℓ), π) +→ {⊤,⊥}. Verifies a proof π of the statement (M0,Mℓ) ∈ L(T,ℓ);
i.e., there exists a sequence of witnesses $w which takes M0 to Mℓ in ℓ steps.

We assume for notational convenience (and without loss of generality) that the proof for the
trivial statement x = (T,M0,M0, 0) (i.e. application of T zero times to M0 yields M0) is
π0 = ε (the empty string). Additionally we require that PO and VO satisfy completeness:

(Perfect) Completeness: Informally states that if a proof is produced correctly, it verifies.
Formally: for all (T, $w,M0, ℓ)

Pr

!
VO(xℓ = (T,M0,Mℓ, ℓ), πℓ) = ⊥

"""""
∀i ∈ [ℓ] : Mi = T (M0, wi);

∀i ∈ [ℓ] : πi ← PO(T,Mi−1, wi, πi−1)

#
= 0

We assume perfect completeness for simplicity, however all our results generalize to
the slightly weaker case where the scheme has a negligible probability of failure.

Remark 1. An alternative definition (similar to [BCMS20b]) would instead have PO and VO

take a description of an NP relation R rather than a description of a poly-time computable
function T . In which case P proves knowledge of a w st. (x = (M,M ′), w) ∈ R (rather
than M ′ = T (M,w)). We note that these two definitions are trivially equivalent, but find
the definition presented here simpler notationally: in particular the knowledge extractor does
not need to explicitly extract a sequence of statements.

We employ both standard soundness and knowledge soundness definitions in different
flavors of our impossibility results.

Definition 4 ((Computationally) Sound Non-Deterministic O-IVC). The probability of any
PPT adversary producing an accepting proof of a false statement is negligible:

∀A(·) : Pr
$
VO(x, π) = ⊤ ∧ x /∈ L

"" (x, π) ← AO(1λ);
%
≤ negl(λ)

Many languages are trivial (i.e., every instance is in the language), in which case knowl-
edge soundness is required for non-deterministic IVC to be non-trivial. We consider two
standard variations: (1) knowledge soundness with non-blackbox extractor (the weaker def-
inition), in which the extractor is given access to the code of the adversary. (2) knowledge
soundness with a blackbox extractor (the stronger definition), in which the extractor is given
only blackbox (rewinding) access to the adversary.

9

Definition 5 (Non-Blackbox Knowledge Sound Non-Deterministic O-IVC). There exists a
PPT algorithm E st. for all PPT AO when AO outputs an accepting proof, the extractor
given a description of the adversary, recovers a valid witness (w1, . . . , wℓ) given A(·) except
with negligible probability. Formally:

∃ E st. ∀A(·) :

Pr

!
VO(x, π) = ⊤

∧ T ℓ(M0, $w) ∕= Mℓ

"""""
(x, π) ← AO(1λ); $w ← EO(1λ, x,A(·));

x = (ℓ, T,M0,Mℓ)

#
≤ negl(λ)

Definition 6 (Blackbox Knowledge Sound Non-Deterministic O-IVC). There exists a PPT
algorithm E st. for all PPT AO when AO outputs an accepting proof, the extractor given
black-box (rewinding) access to the adversary A(·) recovers a valid witness (w1, . . . , wℓ), except
with negligible probability. Formally:

∃ E st. ∀A(·) :

Pr

!
VO(x, π) = ⊤

∧ T ℓ(M0, $w) ∕= Mℓ

"""""
(x, π) ← AO(1λ); $w ← EO,A(·)

(1λ, x);

x = (ℓ, T,M0,Mℓ)

#
≤ negl(λ)

Additionally we may require that the IVC scheme is zero-knowledge, which informally
states that any step can be simulated by programming the oracle and that simulated proofs
are indistinguishable from real proofs. Note that the statement to be simulated includes an
accepting proof of correctness for Mℓ.

Definition 7 ((Computational) Zero-Knowledge Non-Deterministic O-IVC). There exists
a PPT (in λ, |T |, ℓ) algorithm S(·) which for any T ∈ T , ℓ = poly(λ), x = (T, ℓ,M0,Mℓ) ∈
LT , w, and accepting π (VO(x, π) = ⊤), SO outputs an accepting proof and a set of
(re)programmings Q = {(Qi, Ri)}i for the oracle st. for all PPT (A1,A2):

∀T ∈ T , x = (T, ℓ,M0,Mℓ) ∈ LT , w, π st. VO(x, π) = ⊤, ∃ SO :

Pr

&

''''''(
b = b′

""""""""""""

h ← AO
1 (1

λ,M, x, π)

M ′ = T (M,w)

π′
0 ← PO(x, π, w)

(Q, π′
1) ← SO(M ′, x, π)

b←$ {0, 1}; b′ ← AOb
2 (1λ, h,M ′, π′

b)

)

******+
− 1/2 ≤ negl(λ)

Where O0 = O and O1 = [Q,O], where [Q,O] is the oracle mapping to Ri if (, Ri) ∈ Q
and O() otherwise. The probability is over O, the random tape of A(·), P and S.

Remark 2. Note that if A queried on in (T, x, π, w) ← AO(1λ), then we can assume
that except with negligible probability O1() = O(), i.e., the simulator does not reprogram
on . Namely, if O1() ∕= O() happens with non-negligible probability the adversary could
remember all queries and replies made during the first step and redo them in the second step
and guess b = 1 when O1() ∕= O() and b = 0 otherwise. This would break zero-knowledge.

10

Game
(m)
Hiding(A,λ)

1 : pp ← Setup(1λ)

2 : ((v(0),!r(0)), (v(1),!r(1)), st) ← A(find, pp, 1λ)

3 : c(0) = ReRandm(Commit(pp, v(0));!r(0))

4 : c(1) = ReRandm(Commit(pp, v(1));!r(1))

5 : b←$ {0, 1}; c′ ← ReRand(c(b))

6 : b′ ← A(guess, st, pp, c′, 1λ)

7 : return b
?
= b′

We call the property that the simulator only programs points that were never queried fresh
reprogramming below.

2.1 Rerandomizable Commitments

Definition 8 (Rerandomizable Bit Commitments). A rerandomizable bit commitment scheme
consists of three algorithms:

Setup : {1}∗ × {0, 1}∗ → P a PPT algorithm which takes a unary representation of the secu-
rity parameter 1λ and produces public parameters, i.e., pp ← Setup(1λ; r) for a random
tape r ∈ {0, 1}∗.

Commit : P × {0, 1} → C a deterministic algorithm which sends a bit to the commitment
space, i.e., c = Commit(pp, b), b ∈ {0, 1}.

ReRand : P × C × ({0, 1}∗)∗ → P takes a commitment and produces a rerandomization of
the same commitment (without knowing the opening).

Note that we do not require the rerandomizable commitments to have succinct openings, in
particular “ Open” can be constructed by simply re-executing all the rerandomizations of the

original commitment, i.e. Open(pp, b, c, r = (r1, . . . , rℓ)) := c
?
= ReRandm(pp,Commit(pp, b); r)

= ReRand(. . .ReRand(ReRand(pp,Commit(pp, b); r1); r2), . . . ; rℓ)

We require the rerandomizable commitment scheme to be perfectly binding and compu-
tationally hiding.

Definition 9 (Perfect Binding). For every pp and number of rerandomizations m, the set
of (rerandomized) commitments to 0 and 1 are disjoint, i.e.

∀m ≥ 0, ∀r(0), r(1) : Pr

&

'(c0 = c1

"""""""

pp ← Setup(1λ)

c0 = ReRandm(pp,Commit(pp, 0), r(0))

c1 = ReRandm(pp,Commit(pp, 1), r(0))

)

*+ = 0

11

We do not require this to hold if the two commitments are rerandomized a different number
of times; which is weaker than the common definition.

Definition 10 (Computational Hiding). For every m ≥ 1 and PPT adversary A, there
exists a negligible function negl(λ) such that:

Pr
,
Game

(m)
Hiding(A,λ)

-
− 1/2 ≤ negl(λ)

We do not require the scheme to hide the number (m) of times a commitment has been
rerandomized; which is weaker than the common definition.

2.2 One-Way Functions and Collision Intractable Hashes

Definition 11 (One Way Functions). A family of functions where:

Pr

!
OWF(x′) = y

"""""
OWF ← Gen(1λ); x←$ {0, 1}λ

y ← OWF(x); x′ ← A(OWF, y, 1λ)

#
≤ negl(λ)

Definition 12 (Collision Intractable Hash Functions). A family Hλ = {Hk}k∈{0,1}λ of a set
of PPT computable functions from {0, 1}∗ to {0, 1}λ indexed by the security λ is collision
intractable if for every PPT adversary A, there exist a negligible function negl(λ) st.

Pr
$
H(x) = H(x′) ∧ x ∕= x′ | H←$Hλ; (x, x

′) ← A(H, 1λ)
%
≤ negl(λ) .

2.3 Basic Notation

Definition 13 (Stretch). Let a length ℓ of a proof be fixed, i.i., ℓ is the number of times the
basic step function is run. We call (p, q) with 1 ≤ p, 0 ≤ q and p+ q ≤ ℓ a stretch of length
q with start position p.

Definition 14 (Query Sets). Consider a length ℓ and a run of a proof of length ℓ, which

proceeds as follows. For i = 1, . . . , ℓ compute Mi = T (Mi−1, wi), let P (i)
↓ be the queries

made to O in computing πi = PO(T,Mi−1, πi−1, wi; ρi) and let V (i)
↓ be the queries made to

O in computing VO(T,M0,Mi, πi). For 1 ≤ i ≤ k ≤ ℓ, let V (i,k)
∪ = ∪k

j=iV
(j)
↓ and P (i,k)

∪ =

∪k
j=iP

(j)
↓ . Define the ‘fresh’ queries made at step i as V (i)

∆ = V (i)
↓ \ V (1,i−1)

∪ and P (i)
∆ =

P (i)
↓ \ P (1,i−1)

∪ . Finally define the fresh queries during stretches as V (p,q)
∆ = ∪p+q−1

i=p V (i)
∆ and

P (p,q)
∆ = ∪p+q−1

i=p P (i)
∆ .

Definition 15 (Oracle Extension). For a set of queries Q1 and two oracles O1 and O we
define the oracle [Q1 +→ O1,O] as follows. On input , if ∈ Q1 then output O1().
Otherwise output O(). In general, let [Q1 +→ O1, . . . ,Qℓ +→ Oℓ,O] = [Q1 +→ O1, [Q2 +→
O2, . . . ,Qℓ +→ Oℓ,O]].

12

A simple, yet central, component in our proof is a simple lemma which states that for
polynomially long computations there will be polynomially long “stretches” of proof steps
where no fresh query made during the proofs in the stretch is checked by the final verifier.

Lemma 1 (Non-trivialO-IVC Implies Unchecked Stretches). Let the running time of VO(x, π)
be bounded by a polynomial ψ ∈ poly(|R|,λ, log ℓ). Then for all lengths q ∈ poly(|R|,λ, log ℓ)
there exist large enough ℓ ∈ poly(|R|,λ) and a position p ∈ [1, . . . , ℓ] such that P (p,q)

∆ ∩V (ℓ)
↓ = ∅

with non-negligible probability. The position p may depend on λ.

Proof. Let ℓ be a free variable for now, we fix it later. Since |R| ∈ poly(λ) it is sufficient to
consider any constants a, b ∈ N and thereby any polynomial q = λb(log ℓ)c. We want to show
that there exists d such that if we let ℓ = λd then there exists a position p (which might

be a function of λ) such that Prλ[P (p,q)
∆ ∩ V (ℓ)

↓ = ∅] = negl(λ), where Prλ denotes that the
probability is taken over a random run with security parameter set to λ.

For any q as above we can consider e = b + 1 and q′ = λe. We have that q′ > q for

large enough λ as ℓ = poly(λ). So for large enough λ we have that P (p,q)
∆ ⊂ P (p,q′)

∆ . It is
therefore sufficient to consider any constant e ∈ N and thereby any polynomial q′ = λe and
show that there exists d such that if we let ℓ = λd then there exists a position p such that

Prλ[P (p,q′)
∆ ∩ V (ℓ)

↓ = ∅] = negl(λ).
Now that q′ does not depend on ℓ we can for any φ ∈ poly(λ) set ℓ = qφ. Then we have

φ disjoint stretches (1, q), (q + 1, q), . . . , (ℓ− q + 1, q). This by definition gives disjoints sets

P (1,q)
∆ ,P (q+1,q)

∆ , . . . ,P (ℓ−q+1,q)
∆ .

Since the running time of VO(x, π) is bounded by poly(|R|,λ, log ℓ) it is also bounded by
some φ ∈ poly(λ) for large enough λ via the same arguments as above. So for large enough

λ the verifier can make at most ψ queries to the oracle, i.e., |V (ℓ)
↓ | ≤ ψ. So if we set φ = 2ψ,

then in any given run at most half the sets P (p,q)
∆ enumerated above will contain an element

from V (ℓ)
↓ .

For each large enough λ this allows us to pick a fixed position pλ such that for a random
run P (p,q)

∆ will contain an element from V (ℓ)
↓ with probability at most 1/2. For smaller λ

simply let pλ = 1. Now let p(λ) = λ. Then ∃λ′∀λ > λPrλ[P (p,q′)
∆ ∩ V (ℓ)

↓ = ∅] ≥ 1
2
, which is

non-negligible.

Note that the function p(λ) can be computed in non-uniform PPT in λ by a simple lookup
table. This is enough for where we use the lemma as we consider non-uniform adversaries
for simplicity. We could, however, also get impossibility for uniform adversaries. If we allow
p to be randomized (and all subsequent proofs can handle a randomized p), then we can
simply set ℓ as in the proof and do λ runs of the experiment. We can then let p(λ) be any

position where P (p,q′)
∆ ∩ V (ℓ)

↓ = ∅ happens with frequency at least 1
2
. It is easy to see that

such a position exists and will have Prλ[P (p,q′)
∆ ∩ V (ℓ)

↓ = ∅] ∕= negl(λ) in a fresh run.

13

3 Impossibility from Zero-Knowledge

In the following section we prove two impossibility results for the case where the O-IVC is
zero-knowledge. One is for the case where the proof system is knowledge sound and collision
resistant functions exists. The other is for the case where the proof system has just soundness
but under a stronger computational assumption. We start with the theorem statement and
a proof appealing to future lemmas.

Theorem 1 (Impossibility of Non-Trivial ZK Non-Deterministic O-IVC). The existance of
collision intractable functions or perfectly binding rerandomizable commitments precludes the
existance of (knowledge-sound) non-trivial zero-knowledge non-deterministic O-IVC, more
formally:

• Collision Intractablity Precludes Knowledge-Soundness. Assuming the exis-
tance of a family of collision intractable functions Hλ, there exists a transition functions
TH such that any zero-knowledge, knowledge-sound O-IVC scheme for TH must have a
verifier with running time linear in ℓ.

• Rerandomizable Commitments Precludes Soundness. Assuming the existance
of perfectly binding rerandomizable commitment schemes, there exists transition func-
tions Tpp such that any zero-knowledge and computationally sound O-IVC scheme for
Tpp must have a verifier with running time linear in ℓ.

Proof. By combining Lemma 2, Lemma 4, and Lemma 5 we conclude that any proof system
for TH, we can pick the number of steps ℓ to be a large enough polynomial such that the
proof system will have some verifier of some step i make at least ℓ−1

4
queries to its random

oracle. Therefore the verifier must have running time at least ℓ−1
4

∕∈ poly(|TH|,λ, log ℓ). This
proves the first part of the theorem.

The second part is proven by combining Lemma 3, Lemma 4, and Lemma 5 similarly for
Tpp.

The following lemmas states that for certain transition functions no adversary can pro-
duce an accepting proof without knowing the witness for every step; without violating (knowl-
edge) soundness of the O-IVC scheme.

Let U ℓ
n = Un × · · · × Un be the distribution of ℓ iid. uniform n bit strings and define

$w(m̄) := (w1, . . . , wm−1,⊥, wm+1, . . . , wℓ) (i.e. a sequence where the m’th witness is removed)
for any sequence of witnesses $w. Impossibility of knowledge soundness follows from collision
intractable functions:

Lemma 2 (All Witnesses Are Required for Knowledge Soundness). For a (randomly sam-
pled) collision resistant hash function H : {0, 1}∗ → {0, 1}λ, consider the following step func-
tion TH(M,w) := H(M‖w). We now show that for any knowledge-sound O-IVC scheme,
PPT adversary Â, ℓ = O(poly(λ, |TH|)) and m ∈ [ℓ], Â produces an accepting proof π of the

14

T ℓ
H execution given all witnesses except for step m, with only negligible probability. i.e., there

exists a negligible function negl(λ) st.

Pr

&

'''(
VO(x, π) = ⊤

"""""""""

H←$Hλ; $w←$U ℓ
2λ;

M0 = ε; for i ∈ [ℓ] : Mi = TH(Mm−1, wm);

$w(m̄) = (w1, . . . , wm−1,⊥, wm+1, . . . , wℓ);

π ← ÂO(x = (TH,M0,Mℓ, ℓ), $w
(m̄),Mm)

)

***+
≤ negl(λ)

Proof. Since the O-IVC scheme is (non-blackbox) extractable by assumption, there exists
an extractor E. Now, for any ℓ ≥ 1 and m ∈ [ℓ], consider the following adversary A for the
collision game (see Definition 12):

(v1, v2) ← A(H)

// Run Â to get a proof without the pre-image of Mm

1 : !w←$U ℓ
2λ

2 : M0 = ε; for i ∈ [ℓ] : Mi = TH(Mi−1, wi);

3 : !w(m̄) := (w1, . . . , wm−1,⊥, wm+1, . . . , wℓ)

4 : x = (TH, ε,Mℓ, ℓ);π ← ÂO(x, !w(m̄),Mm)

// Run E to get preimages for each state.

5 : !w′ ← E(x, Â(·)(x, !w(m̄),Mm))

6 : M ′
0 = ε; for i ∈ [ℓ] : M ′

i = TH(M
′
i−1, w

′
i);

// Look for collision.

7 : for i ∈ [ℓ− 1] :

8 : v1 := Mi‖wi+1; v2 := M ′
i‖w′

i+1

9 : if Mi+1 = Mi+1 ∧ v1 ∕= v2

10 : return (v1, v2)

11 : return ⊥

Let f : {0, 1}2λ → {0, 1}λ be defined as f(y) +→ H(Mm−1‖y), note that the probability
that there exists ≥ 2 preimages of f(wm) is overwhelming, since wm is sampled uniformly
randomly. Hence the extractor given only Mm := f(wm) recovers w′

m st. wm ∕= w′
m with

probability at least 1/2 − negl(λ): violating collision intractability of f and in particular of
H.

If we are willing to make the stronger assumption that perfectly binding and computa-
tionally hiding rerandomizable commitments exist we can strengthen the lemma to violate
soundness of the O-IVC scheme:

Lemma 3 (All Witnesses Are Required for Soundness). For a perfectly binding rerandomiz-
able commitment scheme, consider the following step function Tpp(M,w) := ReRand(pp,M ;w)

15

– repeated rerandomization of the commitment. We now show that for any computationally
sound O-IVC scheme, PPT adversary Â, ℓ = O(poly(λ, |Tpp|)) and m ∈ [ℓ], Â produces
an accepting proof π of the T ℓ

pp execution given all witnesses except for step m, with only
negligible probability, i.e., there exists a negligible function negl(λ) st.

Pr

&

'''(
VO(x, π) = ⊤

"""""""""

pp←$ Setup(1λ); $w←$U ℓ
poly(λ);

M0 = Commit(pp, 0); for i ∈ [ℓ] : Mi = Tpp(Mm−1, wm);

$w(m̄) = (w1, . . . , wm−1,⊥, wm+1, . . . , wℓ);

π ← ÂO(x = (Tpp,M0,Mℓ, ℓ), $w
(m̄),Mm)

)

***+
≤ negl(λ)

Proof. Let p be the probability that Â outputs an accepting proof (in the original game),
we assume for contradiction that p is non-negligible (in λ). Consider the following PPT
algorithm which we use to violate soundness of the O-IVC scheme or break computational
hiding of the commitment scheme:

AHiding(find, pp, 1
λ)

// Sample randomness / witnesses for ℓ steps.

1 : !r←$U ℓ
poly(λ); st = !r

// Get rerandomisation of either 0 or 1.

2 : v(0) = 0; v(1) = 1

3 : !r(0) = !r(1) = (r1, . . . , rm−1)

4 : return ((v(0),!r(0)), (v(1),!r(1)), st)

AHiding(guess, st, pp, c
′, 1λ)

1 : !r = st

2 : !w(m̄) := (r1, . . . , rm−1,⊥, rm+1, . . . , rℓ)

3 : M0 = Commit(pp, 0);Mm = c′

4 : for i ∈ [m+ 1, ℓ] : Mi = Tpp(Mi−1, wi)

5 : x = (Tpp,M0,Mℓ, ℓ)

6 : π ← ÂO(x, !w(m̄),Mm)

7 : if VO(x,π) = 1 return 0

8 : else return 1

Observe that when b = 0 in the Game
(m−1)
Hiding game Mm = c′ is a rerandomization of the

0 commitment and hence Mℓ is as well, therefore x is true and AHiding correctly returns 0

with probability p by assumption on Â. However, when b = 1, the commitment c′ is a
rerandomization of the 1 commitment and x is false, hence VO(x, π) = 0 except with negli-
gible probability negl(λ), otherwise computational soundness is violated. This implies that

AHiding wins the Game
(m)
Hiding game with advantage at least p−negl(λ)/2; which is non-negligible,

a contradiction.

We now show that proof systems with transition functions like the ones in Lemma 2 and
Lemma 3 where all witnesses are needed will have the verifiers make many queries to the
random oracle.

In the below we use some common definitions of honest and simulated experiments. For
a given proof system we can define the honest experiment HonExp as follows.

16

Experiment HonExp:

1. Let M0 be the start state and π0 = ε. Let !w be a vector of witnesses.

2. For i = 1, . . . , ℓ compute Mi = T (Mi−1, wi), πi = PO(T,Mi−1,πi−1, wi),
VO(T,M0,Mi,πi).

Let the query sets be defined as in Definition 14.

For any 1 ≤ m ≤ ℓ we can define a simulation experiment SimExpm where everything
is defined as in the honest experiment except that we simulate in step m and then use the
reprogrammed oracle from then on.

Experiment SimExpm:

1. Let M0 be the start state and π0 = ε. Let !w be a vector of witnesses.

2. For i = 1, . . . ,m − 1 compute Mi = T (Mi−1, wi), πi = PO(T,Mi−1,πi−1, wi),
VO(T,M0,Mi,πi).

3. Compute Mm = T (Mm−1, wm). Compute a simulated proof (Q,πm) ←
SO(T,Mm,πm−1). Let O1 = [Q,O]. Let Sm be the set of query points on which
Q programs, i.e., Sm = { |∃y ((, y) ∈ Q)}. Compute VO1(T,M0,Mm,πm). Note
that we use the reprogrammed oracle from here on.

4. For i = 1, . . . ,m + 1 compute Mi = T (Mi−1, wi), πi = PO1(T,Mi−1,πi−1, wi),
VO1(T,M0,Mi,πi).

We can show that if all steps are run honestly except that step m is simulated then all
future verifiers must check one of the points that the simulator programmed in step m. More
formally:

Lemma 4 (Must Check Programmed Points). For transition functions T as described in

Lemma 2 and Lemma 3 and for all m and ℓ with 1 ≤ m ≤ ℓ it holds that Pr
,
Sm ∩ V (ℓ)

↓ = ∅
-
=

negl(λ) for a negligible function negl(λ).

Proof. Towards contradiction, suppose there exists (m, ℓ) st. Pr
,
Sm ∩ V (ℓ)

↓ = ∅
-
= p where

p is non-negligible in λ, then construct an adversary violating Lemma 2 and Lemma 3 as
follows:

17

π ← ÂO(x, $w(m̄),Mm); produces a proof without wm.

1 : x = (T,M0,Mℓ, ℓ);π0 = ε

2 : !w(m̄) = (w1, . . . , wm−1,⊥, wm+1, . . . , wℓ)

// Start execution using first m− 1 witnesses

3 : for j ∈ [1,m− 1] :

4 : Mj ← T (Mj−1, wj)

5 : πj ← PO(T,Mj−1, wj ,πj−1)

// Simulate step m

6 : (Qm,πm) ← SO(T,Mm,πm−1)

// Finish execution with reprogrammed oracle

7 : for j ∈ [m+ 1, ℓ] :

8 : Mj ← T (Mj−1, wj)

9 : πj ← P[Qm,O](T,Mj−1, wj ,πj−1)

10 : return πℓ

Where T,M0 are instantiated as in Lemma 2 and Lemma 3. To reach contradiction
we now argue that VO(x, π) = ⊤ with probability p: notice that when Sm ∩ V (ℓ)

↓ = ∅, then
V[Qm,O](x, π) = VO(x, π) since the verifier makes no queries inQm (Sm). Now, simply observe
that V[Qm,O](x, π) = ⊤ follows from zero-knowledge – otherwise πm could be distinguished
from a real proof by extending it ℓ−m−1 times and running the verifier. Therefore VO(x, π)
accepts with non-negligible probability contradicting Lemma 2 and Lemma 3.

The above lemma intuitively implies that some query points “belonging” to step m must
be checked by many future verifiers. If this was true for all m simultaneously and these
query points were distinct then we would be done. Too many distinct points would need to
be checked often in the future, so the query sets of the verifiers would have to get too big. It
is, however, not straight forward to generalise the above lemma to show that the query sets
of the verifiers must be large. If we simulate at many steps the set of reprogrammed points
might grow so large that we cannot argue that the verifier will not query a reprogrammed
point and reject the proof. So we do not get a contradiction to to Lemma 2 or Lemma 3. We
will therefore need a slightly more subtle strategy. We show that because Lemma 4 holds in
SimExpm we can carefully compute in HonExp a set of query points uniquely associated to
step m which must be checked often in the future. In HonExp we can then sum over all m.

Lemma 5 (Too Large Verifier Query Set). For transition functions T for which the property

in Lemma 4 holds there exists i such that the set V (i)
↓ sometimes has size at least ℓ−1

4
in

HonExp.

Proof. We describe an adversary B (the “blocking adversary”) which in each step n computes
a set Bn, the “blocking set”. For now, we assume this adversary knows witnesses for every
step, i.e., $w st. T ℓ(M0, $w) = Mℓ. The “blocking sets” produced by B will satisfy:

18

Disjointness: The blocking sets are disjoint: ∀i, j : i ∕= j =⇒ Bi ∩Bj = ∅.

Frequent Appearance: In a random run from step n until step ℓ the expected number of
elements from Bn which occur in V (i)

↓ for i ≥ n is at least (ℓ− n)/2. Formally:

E

!
ℓ.

i=n

"""Bn ∩ V (i)
↓

"""

#
> (ℓ− n)/2 .

We first argue that if we can prove the two properties then we are done. Assume dis-
jointness and frequent appearance. By linearity of expectation and Gauss’ trick we get that

E

!
ℓ.

n=1

ℓ.

i=n

"""Bn ∩ V (i)
↓

"""

#
>

ℓ.

n=1

(ℓ− n)/2 =
ℓ(ℓ− 1)

4
.

By disjointness we get that

ℓ.

n=1

ℓ.

i=n

"""Bn ∩ V (i)
↓

""" =
ℓ.

i=1

i.

n=1

"""Bn ∩ V (i)
↓

""" =
ℓ.

i=1

"""(∪i
n=1Bn) ∩ V (i)

↓

""" ≤
ℓ.

i=1

"""V (i)
↓

""" .

Combining the last two inequalities we get that E
,/ℓ

i=1 |V
(i)
↓ |

-
> ℓ(ℓ−1)

4
. This shows that

it happens with non-zero probability that
/ℓ

i=1 |V
(i)
↓ | > ℓ(ℓ−1)

4
. Therefore there must exist i

such that it happens with non-zero probability that |V (i)
↓ | > ℓ(ℓ−1)

4ℓ
, which proves the lemma.

The Blocking Adversary. The adversary B runs all ℓ steps honestly as in HonExp. The
adversary B will compute the blocking set Bn as follows in step n. First it queries the random
oracle on all points in B<n = ∪n−1

i=1 Bi. Then for a polynomial p which we specify below it
will run the proof forward honestly p times. We assume that B knows the witnesses, so it
can do this. In each step m ≥ n it computes V (m)

↓ and adds V (m)
↓ \B<n to Bn. Note that the

blocking sets are disjoint by construction. We now prove frequent appearance by appealing
to zero-knowledge.

Likely/Unlikely Queries. For m ≥ 1 let Bm be the adversary running as B except that
it simulates step m instead of using the witness for this step (as in SimExpm). Let Sm be the
set of queries programmed by the simulator. We call a point ∈ Sm likely if when Bm runs
forward from step m then appears in V (≥m)

↓ = ∪ℓ
i=mV

(i)
↓ with probability at least (q|Sm|)−1

for a polynomial q specified below. Let Lm ⊆ Sm be the set of likely points. Conversely we
call Um = Sm \ Lm the unlikely points.

Since |Um| ≤ |Sm|, it follows be a union bound that if we do a random run, then the
probability that an unlikely point is verified is low. More precisely,

Pr
,
Um ∩ V (≥m)

↓ ∕= ∅
-
≤ q−1 .

19

Collecting All Likely Queries. For all q we can set p to be a polynomial such that if Bm

does a random run from step m on, then except with negligible probability the likely points
are included in the blocking set Bm, as described now. Consider any likely point . In a
random run it appears with probability at least (q|Sm|)−1. So if we do q|Sm| independent
runs it appears in one of these except with probability about 1/e as (1− 1/n)n → 1/e with
fast convergence. So if we run for instance λq times, it appears except with probability about
e−λ. Then use that negligible probabilities are maintained by polynomial union bounds and
that the size of Sm is polynomial. This gives us that the likely point will appear in some
V (m)
↓ . It will therefore be added to the blocking set when the adversary adds V (m)

↓ \ B<n to
Bn. Namely, the query will not in B<n as the adversary queried on all points in B<n before
the simulation step was run. So by fresh reprogramming no element from Sn is in B<n, and
all likely points are in Sn by definition.

Next we argue that we can pick q large enough such that:

E

!
.

n≥m

"""Um ∩ V (n)
↓

"""

#
≤ 1/2.

For q > 2ℓ|Sm| it holds that a given unlikely point appears with probability at most 1/q, by
definition, and that when it does it contributes at most ℓ to the sum (if it is in all verifier
sets). So its contribution to the expected value is at most ℓ/q = 1/2|Sm|−1. Then use that
Un ⊂ Sn to see that there are at most |Sn| unlikely points and apply linearity of expectation.

Putting the pieces together. By Lemma 4 we have that

E

!
.

n≥m

"""Sm ∩ V (n)
↓

"""

#
≥ ℓ−m− negl(λ) .

Combining the above two inequalities and use that Lm = Sn \ Um we get that:

E

!
.

n≥m

"""Lm ∩ V (n)
↓

"""

#
≥ ℓ−m− negl(λ)− 1/2 ≥ ℓ−m− 1 .

Using that Lm ⊂ Bm we obtain:

E

!
.

n≥m

"""Bm ∩ V (n)
↓

"""

#
≥ ℓ−m− 1 .

This inequality holds in SimExpm. Now run B (HonExp) instead of Bm. Then by a reduction
to zero-knowledge we easily get that:

E

!
.

n≥m

"""Bm ∩ V (n)
↓

"""

#
≥ ℓ−m

2
.

20

Namely, the value
/

n≥m |Bm∩V (n)
↓ | can be computed in poly-time in both experiments. So,

if E
,/

n≥m

"""Bm ∩ V (n)
↓

"""
-
≥ ℓ − m − 1 in the real world and E

,/
n≥m

"""Bm ∩ V (n)
↓

"""
-
< ℓ−m

2

in the simulation we can easily make a distinguisher which computes
/

n≥m |Bm ∩ V (n)
↓ | and

uses it to guess whether we simulated in step m or not. This completes the proof.

Remark 3 (Simulation in the presence of computational assumptions). Despite its simplicity
the impossibility result above is quite general, in particular it applies to any non-deterministic
O-IVC scheme where the simulator works by only programming the random oracle – even in
the presence of arbitrary computational assumptions. In particular it applies to interactive
zero-knowledge arguments compiled in the random oracle model, like Fiat-Shamir transfor-
mations.

4 Impossibility of Blackbox Construction

In this section we prove impossibility of space bounded proofs in the random-oracle model
with the following properties:

Knowledge Soundness The proof is knowledge sound.

Blackbox The knowledge extractor only has blackbox rewinding access to the prover.

Structured Queries When the prover makes a query x to the random oracle, then with
good probability it knows whether the query x was made already or whether it is the
first time the random oracle is queried on x.

Collision Resistance There exist collision resistant hash functions.

We know that it is possible to make blackbox knowledge sound proofs in the random oracle
model, for instance Micali’s CS proofs. It is hard to imagine a world where it is reasonable
to assume a random oracle, but where collision resistance hash function cannot be assumed
to exist. Our result can therefore be interpreted as saying that it is the succinctness plus
structured queries that give the impossibility.

We discuss the structure assumption briefly. When querying random oracles in a proof
system one typically makes two types of queries. One can make a query on a fresh point to
get a fresh “challenge” that the prover is not in control over a la the Fiat-Shamir transform.
In this case it is crucial that the queried point is fresh such that the challenge is unknown
until the time of query. Typically provers makes this type of query. One can also make
a query to check the validity of a previous query, for instance when recomputing a hash
path in a Merkle tree in the CS proofs. In this case one knows that the point on which
the queries are made are not fresh, at least in an honest run of the proof system. Typically
verifiers make this type of query. However, in an iterative proof system we can imagine
that also provers make such queries. The Structured Queries assumption implies that future
proof steps can resolve the type of a query before it is made. This is in principle easy to

21

do: simply pass along the set of all queries which were already made. However, this might
break the succinctness of the proof system as a growing set is passed along in each step.
The Structured Queries assumption further says that we assume that future proof steps can
resolve the the type of a query using only a succinct state. It turns out we only need that
it can be done with non-negligible probability to get impossibility. We leave it as an open
problem whether succinctness is feasible using a proof without structured queries.

The transition function we look at is simply collision resistant hashing. We describe
the class of transition functions T . We assume we have a family of collision resistant hash
functions H : {0, 1}λ × {0, 1}λ → {0, 1}λ. The witnesses are given by $w ∈ ({0, 1}λ)ℓ. The
step function T is represented by a hash function H. We always let M0 = 0λ and the step
function is given by Mi = T (Mi−1, wi) = H(Mi−1, wi). Since M0 is fixed we drop it from the
notation below.

Before giving the full proof, we prove a warmup case to give the intuition of the proof up
front. The lemma just says that if a long witness is hashed and then the witness extracted,
then it is original witnesses which is extracted, or collision resistance is broken. We then
later show how to exploit this to get impossibility by showing that it cannot be the case that
the original witness is extracted.

We describe a class of adversaries A(·)
H,ℓ,#w,ρ.

The adversary AO
H,ℓ,#w,ρ has the following values hard-coded. A hash function H, the number

of steps ℓ, the witnesses !w, and a random tape ρ = (ρ1, . . . , ρℓ) long enough to provide P
with randomness ℓ times. Let O denote the oracle used by the adversary. The adversary
proceeds as follows.

1. Let M0 = 0λ and π0 = ε.

2. For i = 1, . . . , ℓ compute Mi = H(Mi−1, wi) and

πi = PO(H,Mi−1,πi−1, wi; ρi) .

3. Output (H,Mℓ,πℓ).

Let A·
ℓ denote the random variable describing A·

H,ℓ,#w,ρ, where H, $w and ρ are sampled at

random. And let $w(AO
ℓ) denote the witnesses used by this adversary when run with oracle

O.

Lemma 6. There exists a PPT algorithm E such that when O is a random oracle and
(H,Mℓ, πℓ) ← AO

ℓ then EAℓ,O = $w(AO
ℓ) except with negligible probability.

Proof. Since AO
ℓ internally runs an honest proof using P we have that

VO(H,Mℓ, πℓ) = ⊤
except with negligible probability. So, by knowledge soundness we have that there exists a
PPT extractor E such that if we let

$w′ = EAℓ,O

22

then
Mℓ = Hℓ(M0, $w

′)

except with negligible probability. Let $w = $w(AO
ℓ). We have by construction that

Mℓ = Hℓ(M0, $w) .

This implies that $w′ = $w or ($w, $w′) is a collision for H. It is therefore enough to prove that
($w, $w′) is a collision for H with negligible probability. This follows from a simple reductoin
to collision resistance of H using the fact that E is a fixed PPT algorithm and H is chosen
at random after E is fixed.

The above simple case shows that if the proof system has knowledge soundness we can
make the extractor extract the long witness $w from blackbox interaction with the adversary.
The only way the extractor learns information is via the queries of the adversary to the
random oracle. We now show that it is possible for A to use a fake hardcoded oracle for a
long stretch of the proof and still have the proof be accepted with good probability. This is
because the verifier does not have queries enough to test a query from all proof steps. During
this stretch the adversary will not query the real oracle O. So there is no interaction with
the extractor. Hence the extractor does not learn enough about the witness used during the
stretch to be able to extract it. We now flesh out this intuition.

We first formalize the notion of structured queries.

Definition 16 (structured oracle queries). We say that a proof system (T ,P,V) has struc-
tured oracle queries if there exists a PPT algorithm used for which the following holds for
all PPT adversaries A. For all T ∈ T , all lengths ℓ, and all witnesses (w1, . . . , wℓ) let
M0 be an initial state, π0 = ε, πi = PO(T,Mi−1, πi−1, wi, ρi), where ρi is the possible ran-

dom tape of P, P (i)
↓ be the queries made by this i’th run of P, P (1,i)

∪ = ∪i
j=1P

(j)
↓ , and let

usedi = used(T,Mi−1, πi−1, wi, ρi) be the description of a PPT predicate. Now compute

(i,) = AO(T, $w,M0, $ρ). We say that the adversary wins if usedi() = ⊤ and ∕∈ P (1,i)
∪ or

usedi() = ⊥ and ∈ P (1,i)
∪ . We say that the proof system is pstruc-SOQ if the probability

that the adversary wins is ≤ 1− pstruc.

Below we will assume that the proof system is 1/λγ-SOQ for some constant γ > 0. This
means we essentially just need a non-negligible probability that the queries are structured.

Note that usedi is computed from the current state of the prover, so if the proof system is
succinct then so is the state needed to compute usedi which will be basis for out impossibility
result.

We describe a class of adversaries. In the proof we will need to go through some hybrids.
For simplicity we provide a single adversary with some parameters (two oracles and a binary
switch) allowing to produce all the hybrids.

23

The adversary AO
H,ℓ,(p,q),#wpre,#wpost,ρ, !O,"W,b

has the following values hard-coded. A hash function

H, the number of steps ℓ, a stretch (p, q), the pre-stretch witnesses !wpre = (w1, . . . , wp−1),
the post-stretch witnesses !wpost = (wp+q, . . . , wℓ), a random tape ρ long enough to provide P
with randomness ℓ times, an oracle !O : {0, 1}λ → {0, 1}λ called the stretch oracle, an oracle
"W : {0, 1}∗ → ({0, 1}λ)q called the witness oracle, and a switch b ∈ {0, 1}. Let O denote the
oracle which the adversary has oracle access to. The adversary proceeds as follows.

1. Let M0 = 0λ and π0 = ε.

2. Let (w1, . . . , wp−1) = !wpre.

3. For i = 1, . . . , p− 1 compute Mi = H(Mi−1, wi) and

πi = PO(H,Mi−1,πi−1, wi; ρi) .

4. Let Ppre
↓ = P(1,p−1)

∪ be the queries from P to O in the above step. Let Ostr =

[Ppre
↓ *→ O, !O]. For the i’th query i ∈ Ppre

↓ in order of appearance in the execution
let yi = O(i) be the reply given by O to the query i in the above step, let h = |Ppre

↓ |,
and define the query tag T = ((1, y1), . . . , (h, yh)).

5. Define the stretch witnesses !wstr = (wp, . . . , wp+q−1) = "W(T,Mp−1,πp−1).

6. For i = p, . . . , p+ q − 1 compute Mi = H(Mi−1, wi) and

πi = POstr
(H,Mi−1,πi−1, wi; ρi) .

7. Let usedp+q = used(H,Mi−1,πi−1, wi; ρi).

8. Let Pstr
↓ = P(p,p+q−1)

∪ \ P(1,p−1)
∪ be the queries from P to !O in the above step.

9. Let Opost
0 = [Ppre

↓ *→ O,Pstr
↓ *→ !O,O].

10. Let Opost
1 be the following oracle.

Opost
1 () =

#
!O() if usedp+q() = ⊤ ∧ ∕∈ Ppre

↓
O() otherwise

11. For i = p+ q, . . . , ℓ compute Mi = H(Mi−1, wi) and

πi = POpost
b (H,Mi−1,πi−1, wi; ρi) .

12. Output (H,Mℓ,πℓ).

For the ensuring proof we define an experiment with three binary switches a, b, c.

24

The experiment ExtExpOℓ,(p,q),a,b runs as follows.

1. Pick H, !wpre, !wpost, ρ at random.

2. Let !O0 and "W0 be uniformly random functions from their domain. Let !O1 and "W1

be pseudo-random functions over their domains, specified by uniformly random keys
O,W ∈ {0, 1}λ.

3. Let A(·) = A(·)
H,ℓ,(p,q),#wpre,#wpost,ρ, !Oa,"Wa,b

.

4. Let (H,Mℓ,πℓ) ← AO.

• Let Pstr
↓ denote the set Pstr

↓ used inside A. Similarly for other variables used

by A like Opost
b , usedp+q, and P(i,k)

∪ .

• Let NSF be the no structure failure event that it did not happen that Opost
b was

queried on an such that (usedp+q() = ⊤ and ∕∈ P(1,p+1)
∪) or (usedp+q() = ⊥

and ∈ P(1,p+1)
∪).

5. Let O0 = O and let O1 = Opost
b be the oracle used in AO.

6. For c = 0, 1 let Jc = VOc(H,Mℓ,πℓ).

• Let Vc = V(ℓ)
↓ be the queries from V(·)(H,Mℓ,πℓ) to its oracle Oc and let QFSc be

the query-free stretch event that Vc ∩ Pstr
↓ = ∅. Let QFS = QFS0.

• Let VERc be the event that Jc = ⊤.

7. Let !v = EA(·),O and let !vpre‖!vstr‖!vpost = !v, where |!vpre| = p− 1 and |!vstr| = q.

• Let XTF be the extraction of full witness event that J0 = ⊥ or !v = !w.

• Let XTS be the stretch extraction event that !vstr = !wstr.

To avoid confusion, we note that XTS is the unconditioned event that we extract the
stretch witness, whereas XTF is the event to extract the full witness conditioned on the
proof verifying. This double asymmetry is on purpose.

We now prove some technical lemmas on relationships between the probabilities that
certain events happen in the experiment depending on the setting of switches. We set up some
notation for this. An event E is just a predicate on traces of runs of ExtExpO

ℓ,(p,q),a,b. For

brevity we useEa,b,c to denote that the eventE happened in a random run ofExtExpO
ℓ,(p,q),a,b.

In particular,
Pr[Ea,b,c] = Pr

ExtExpOℓ,(p,q),a,b

[E] .

Lemma 7 (a-switch). For all E ∈ {NSF,QFS,VER0,VER1,XTS,XTF} it holds that

Pr[E0,b,c] ≈ Pr[E1,b,c] .

25

Proof. For two oracles 0O and 1W letA !O,"W,(·)
H,ℓ,(p,q),#wpre,#wpost,ρ,b be the adversaryA

(·)
H,ℓ,(p,q),#wpre,#wpost,ρ, !O,"W,b

but where 0O and 1W are accessed via oracle queries instead of being hardcoded. The main
part of the proof is to observe that by construction the adversary only accesses its hardcoded

oracles in a blackbox manner, so A !O,"W,(·)
H,ℓ,(p,q),#wpre,#wpost,ρ,b is well-defined. Clearly

A !O,"W,(·)
H,ℓ,(p,q),#wpre,#wpost,ρ,b ≡ A(·)

H,ℓ,(p,q),#wpre,#wpost,ρ, !O,"W,b
,

where ≡ denotes behavioural equivalence under blackbox access.

Let ExtExp
!O,"W,O
ℓ,(p,q),b denote the experiment ExtExpO

ℓ,(p,q),a,b, where we skip Step 2 and
where in Step 3 we let

A(·) = A !O,"W,(·)
H,ℓ,(p,q),#wpre,#wpost,ρ,b .

Define 0Oa and 1Wa as in Step 2 in ExtExp. Clearly

Pr
ExtExp

!Oa,"Wa,O
ℓ,(p,q),b

[E] = Pr
ExtExpOℓ,(p,q),a,b

[E] , (1)

as the two experiments are perfectly equivalent modulo how A accesses 0Oa and 1Wa. Now

observe that ExtExp
!Oa,"Wa,O
ℓ,(p,q),b,c can be computed in poly-time and by inspecting the trace of

a run of ExtExp
!Oa,"Wa,O
ℓ,(p,q),b,c we can for all E ∈ {NSF,QFS,VER0,VER1,XTS,XTF} compute in

poly-time whether E occurred. From this it follows by a simple reduction to the pseudo-
randomness of 0O1 and 1W1 that

Pr
ExtExp

!O0,
"W0,O

ℓ,(p,q),b

[E] ≈ Pr
ExtExp

!O1,
"W1,O

ℓ,(p,q),b

[E] . (2)

Combining (1) and (2) we get that

Pr
ExtExpOℓ,(p,q),0,b

[E] ≈ Pr
ExtExpOℓ,(p,q),1,b

[E] . (3)

From (2) we have by definition that Pr[E0,b,c] ≈ Pr[E1,b,c], as desired.

Let event NSFa,b,c clearly does not depend on c. It can be seen by inspection that it can
be computed whether NSF occurred before c is used. We therefore denote the event simply
by NSFa,b

Lemma 8 (b-switch). NSFa,b =⇒ Opost
b = Opost

0 .

Proof. The conclusion is trivially true when b = 0, so assume b = 1. Assume NSFa,1. By
construction

Opost
0 () =

2
0O() if ∈ Pstr

↓

O() otherwise ,

Opost
1 () =

2
0O() if usedp+q() = ⊤ ∧ ∕∈ Ppre

↓

O() otherwise .

26

It is therefore enough to prove that ∈ Pstr
↓ if and only if usedp+q() = ⊤ ∧ ∕∈ Ppre

↓ .
When NSFa,1 then for all queries to the oracle Opost

1 () it holds that

∈ P (1,p+q)
∪ ⇐⇒ usedp+q() = ⊤ .

Since Ppre
↓ = P (1,p)

∪ and Pstr
↓ = P (p,p+q−1)

∪ \ P (1,p−1)
∪ we have that

P (1,p+q−1)
∪ = Ppre

↓ ∪̇Pstr
↓ .

This implies that
∈ Ppre

↓ ∪̇Pstr
↓ ⇐⇒ usedp+q() = ⊤

which in turn implies that

∈ Pstr
↓ ⇐⇒

3
∈ Ppre

↓ ∪̇Pstr
↓

4
∧ ∕∈ Ppre

↓ ⇐⇒ (usedp+q() = ⊤) ∧ ∕∈ Ppre
↓ ,

as desired.

We now define an event NSFQFS0 which does not depend on b. Specifically we define
NSFQFS0,b,c for all b and c and then show that when defined over the same probability space
then NSFQFS0,0,0 = NSFQFS0,0,1 = NSFQFS0,1,0 = NSFQFS0,1,1. We can therefore consider
them a single event NSFQFS0. Let

NSFQFS0,b,c ⇐⇒ NSF0,b ∧ QFS0,b,c

and let
NSFQFS0 = NSFQFS0,0,0 .

Lemma 9. For all b and c it holds that NSFQFS0 ⇐⇒ NSFQFS0,b,c. Furthermore,
QFS0,0,0 ⇐⇒ QFS0,0,1.

Proof. Note that NSF is the event that there is no structure failure, which is true from the
beginning of the execution and once it becomes false it remains false. Likewise, QFS is the
assumption that the verifier does not make a query which was also made in the stretch. This
too is true from the beginning and once false remains false. Therefore NSFQFS0,b,c has this
monotonicity property too. It is then sufficient to prove that as long as NSFQFS0,0,0 is true
in an execution it holds that if NSFQFS0,0,0 becomes violated then when executed over the
same randomness space, all the events NSFQFS0,b,c would become violated too.

We have by definition that

NSFQFS0 ⇐⇒ NSFQFS0,0,0 ⇐⇒ NSF0,0 ∧ QFS0,0,0 .

It is therefore enough to prove that while NSFQFS0,b,c holds true, then

NSF0,b ⇐⇒ NSF0,0 (4)

QFS0,b,c ⇐⇒ QFS0,0,0 . (5)

27

So assume that we are at a point in the execution where NSFQFS0,b,c is true. This gives us
QFS0,b,c and NSF0,b. The only place where b is used is to select between Opost

0 and Opost
1

From Lemma 8 we have that when NSF0,b then Opost
1 = Opost

0 . Therefore, while NSFQFS0,b,c

the events QFS0,b,c and NSF0,b are independent of b. This gives us QFS0,b,c ⇔ QFS0,0,c and
NSF0,b ⇔ NSF0,0. This already proves (4). Furthermore, to prove (5) it is now sufficient to
prove that QFS0,0,c ⇔ QFS0,0,0. This is trivially true when c = 0, so it is sufficient to prove
that when NSFQFS0,b,c then

QFS0,0,1 ⇐⇒ QFS0,0,0 . (6)

Note that c is only used to select the oracle Oc used by V. By construction O1 = Opost
b , and

when NSF0,b then Opost
1 = Opost

0 by Lemma 8, so

J1 = VOpost
0 (H,Mℓ, πℓ) .

By construction O0 = O, so
J0 = VO(H,Mℓ, πℓ) .

Then note that O and Opost
0 = [Ppre

↓ +→ O,Pstr
↓ +→ 0O0,O] are identical when not queried on

∈ Pstr
↓ . Specifically, as long as VO and V[Ppre

↓ (→O,Pstr
↓ (→ !O0,O] did not query on from Pstr

↓
they both get the reply O() and hence run identically. During this period both QFS0,0,0

and QFS0,0,1 are true. At the first point where they query on from Pstr
↓ the events QFS0,0,0

and QFS0,0,1 happened. Therefore, at all times QFS0,0,0 ⇔ QFS0,0,1. This proves (6) and
concludes the proof.

Lemma 10. Pr[VER0,1,0] ≥ Pr[VER0,0,1]− Pr[QFS0,0,0]− Pr[NSF0,0].

Proof. In the proof of Lemma 9 we showed that when NSFQFS0 thenO0 = Opost
0 andO1 = O

and
VOpost

0 (H,Mℓ, πℓ) = VO(H,Mℓ, πℓ)

which gives us that VER0,b,1 ⇔ VER0,b,0. For b = 0 this gives us that

Pr[VER0,0,0 |NSFQFS0] = Pr[VER0,0,1 |NSFQFS0] .

Furthermore, since Opost
b = Opost

0 until NSF0,b happens we have that

Pr[VER0,1,0 |NSFQFS0] = Pr[VER0,0,0 |NSFQFS0] .

Combining these we get that

Pr[VER0,1,0 |NSFQFS0] = Pr[VER0,0,1 |NSFQFS0] .

Using elementary probability theory this gives us that

|Pr[VER0,1,0]− Pr[VER0,0,1]| ≤ Pr[NSFQFS0] .

Using that NSFQFS0 = NSF0,0 ∪ QFS0,0,0 and a union bound it follows that

Pr[VER0,1,0] ≥ Pr[VER0,0,1]− Pr[QFS0,0,0]− Pr[NSF0,0] .

28

Lemma 11. For all q ∈ poly(|R|,λ, log ℓ) and pqfs ∈ poly(λ) we can set ℓ ∈ poly(λ) and a
position p such that Pr[QFS0,0,1] > 1− pqfs.

Proof. When a = 0 then 0Oa is a uniformly random oracle. It is easy to see that this means
that when b = 0 then

Opost
b = Opost

0 = [Ppre
↓ +→ O,Pstr

↓ +→ 0Oa,O]

is also a uniformly random oracle. Furthermore, the proof

(H,Mℓ, πℓ) ← AO
H,ℓ,(p,q),#wpre,#wpost,ρ, !Oa,"Wa,b

is computed correctly inside the adversary using this oracle Opost
b . Note that we look at the

case c = 1 and that c is used to select the oracle for V. Note then that by construction
O1 = Opost

b , so

J1 = VO1(H,Mℓ, πℓ) = V[Ppre
↓ (→O,Pstr

↓ (→ !Oa,O](H,Mℓ, πℓ)

is also computed using this same uniformly random oracle.
It then follows from Lemma 1 that for all polynomials q we can find a polynomial ℓ(λ)

such that there exists p such that (p, q) is a QRS except with probability pqfs.

We now prove the version of the warm up lemma where we see that extraction still works
when a fake witness is used during the stretch, at least if we assume that the proof accepts
(which is part of the definition of XTF).

Lemma 12. Pr[XTF1,b] = 1− negl(λ).

Proof. The only way that XTF1,b = ⊥ is that J0 = ⊤ and $v ∕= $w. So it is enough to prove
that when a = 1, then it happens with negligible probability that J0 = ⊤ and $v ∕= $w. Since
O0 = O it follows from J0 = ⊤ that

VO(H,Mℓ, πℓ) = ⊤ .

When a = 1 then by construction of Step 3 we have that

A(·) = A(·)
H,ℓ,(p,q),#wpre,#wpost,ρ, !O1,"W1,b

.

Since the hardcoded pseudo-random oracles 0O1 and 1W1 have a poly-sized description and
can be computed in poly-time, A(·) is a legal adversary for the knowledge extraction game.
Therefore except with negligible probability it holds that when

(H,Mℓ, πℓ) ← AO

(as is the case in the experiement) and VO(H,Mℓ, πℓ) = ⊤ (which holds by assumption),
then

$v = EA(·),O

29

is a valid witness, i.e.,
Mℓ = Hℓ(M0,$v) .

By construction
Mℓ = Hℓ(M0, $w) ,

which implies that $v = $w except with negligible probability by collision resistance.

Lemma 13. VERa,b,0 ∧ XTFa,b =⇒ XTSa,b.

Proof. If VERa,b,0 then Ja,b,0 = ⊤. If XTFa,b then Ja,b,0 = ⊥ or $v = $w. So, we have that
$v = $w which implies $vstr = $wstr which implies XTSa,b.

We now show that the proof indeed verifies when computed using a fake oracle during
the stretch, at least if the same oracle is used by the verifier.

Lemma 14. Pr[VER0,0,1] = 1− negl(λ).

Proof. When a = 0 then 0Oa is a uniformly random oracle. It is easy to see that this means
that when b = 0 then

Opost
b = Opost

0 = [Ppre
↓ +→ O,Pstr

↓ +→ 0Oa,O]

is also a uniformly random oracle. Furthermore, the proof

(H,Mℓ, πℓ) ← AO
H,ℓ,(p,q),#wpre,#wpost,ρ, !Oa,"Wa,b

is computed honestly inside the adversary honestly using this oracle Opost
b . Note then that

by construction O1 = Opost
b , so

J1 = VO1(H,Mℓ, πℓ) = V[Ppre
↓ (→O,Pstr

↓ (→ !Oa,O](H,Mℓ, πℓ)

is also computed using this same uniformly random oracle. By completeness, a proof honestly
generated and verified using the same uniformly random oracle will verify. Therefore J1 = ⊤
except with negligible probability. Then use that VER0,0,1 = J1.

Lemma 15. There exists a polynomial pstruc = 1/λO(1) such that Pr[NSF0,0] > pstruc.

Proof. We have assume that the proof system is 1/λO(1)-SOQ. This essentially means that
if a proof is computed honestly using a uniformly random oracle O, then with probability
pstruc = 1/λO(1) it happens that usedp+q() = O′() for all that an adversary can compute.
When a = 0 and b = 0 then the proof computed by A is computed honestly using the
uniformly random oracle

O′ = [Ppre
↓ +→ O,Pstr

↓ +→ 0O,O] .

If NSF0,0 occurs, we can by construction easily compute such that usedp+q() = ⊤ and

∕∈ P (1,p+q)
∪ or usedp+q() = ⊥ and ∈ P (1,p+q)

∪ . This allows allows us to win the SOQ
game.

30

We now put the above lemmas together to show that

Lemma 16. For all polynomial q ∈ poly(|R|,λ, log ℓ) it is possible to set ℓ to a polynomial
and set p such that

Pr[XTS0,1] ≥ 1/λO(1) .

Proof. We have from Lemma 13 and a union bound that

Pr[XTS0,1] ≥ 1− Pr[VER0,1,0]− Pr[XTF0,1] .

By Lemma 12 with b = 1 and Lemma 7 to switch from a = 1 to a = 0 we have that

Pr[XTF0,1] < negl(λ) .

By Lemma 14 and Lemma 7

Pr[VER0,0,1] ≥ 1− negl(λ) .

By Lemma 14 we have that

Pr[VER0,1,0] ≥ Pr[VER0,0,1]− Pr[QFS0,0,0]− Pr[NSF0,0] .

Combining the last two inequalities we get that

Pr[VER0,1,0] ≤ negl(λ) + Pr[QFS0,0,0] + Pr[NSF0,0] .

From Lemma 15 we have that there exists a polynomial pstruc = 1/λO(1) such that

Pr[NSF0,0] < 1− pstruc .

By Lemma 11 we have that for all polynomials q and pqfs we can set ℓ and p such that

Pr[QFS0,0,1] < pqfs .

Using Lemma 9 we get that
Pr[QFS0,0,0] < pqfs .

If we set
pqfs = pstruc/2

then we have that
Pr[VER0,1,0] ≤ negl(λ) + 1− pstruc/2 .

Putting all the above together we have that

Pr[XTS0,1] ≥ pstruc/2− negl(λ) ∈ 1/λO(1).

31

Lemma 17. There exists a polynomial q ∈ poly(|R|,λ, log ℓ) such that it is not possible to
set ℓ to a polynomial and set p such that

Pr[XTS0,1] ≥ 1/λO(1) .

Proof. The intuition behind the proof is that $wstr is long and uniformly random and usedp+q

is short, and therefore usedp+q cannot encode all of $w
str. However, since there are no oracle

queries to O during the stretch, the only information that the extractor can get about $wstr

is usedp+q. Therefore extraction must fail. We now formalise the proof.

We first formalise the fact that we can encapsulate the use of 1W such that the only
information passed on is usedp+q.

The oracle O
H,q,ρstr, !O,"W(·) has the following values hard-coded. A hash function H, the

number of steps q, a random tape ρstr = (ρp, . . . , ρp+q−1) long enough to provide P with

randomness q times, a uniformly random oracle !O : {0, 1}λ → {0, 1}λ, and a uniformly

random oracle "W : {0, 1}∗ → ({0, 1}λ)q.

1. The input to the oracle is of the form (T,Mp−1,πp−1) (else ignore).

2. Parse T as ((1, y1), . . . , (h, yh)).

3. Let Ostr be the oracle which on returns yi if (, yi) ∈ T and otherwise returns !O().

4. Define the stretch witnesses !wstr = (wp, . . . , wp+q−1) = "W(T,Mp−1,πp−1).

5. For i = p, . . . , p+ q − 1 compute Mi = H(Mi−1, wi) and

πi = POstr
(H,Mi−1,πi−1, wi; ρi) .

6. Let usedp+q = used(H,Mi−1,πi−1, wi; ρi)

7. Return (Mp+q−1,πp+q−1, usedp+q).

We then describe a class of pruned adversaries. We take AO
H,ℓ,(p,q),#wpre,#wpost,ρ, !O,"W,b

as run by

ExtExpO
ℓ,(p,q),a,b and specialise to the case a = 0 and b = 1. At the same time we factor out

the production of the stretch witnesses using the above oracle. The oracle will be accessed
in a blackbox manner and will be called O2.

32

The adversary AO,O2

H,ℓ,(p,q),#wpre,#wpost,ρpre,ρpost, !O
has the following values hard-coded. A hash

function H, the number of steps ℓ, a stretch (p, q), the pre-stretch witnesses !wpre =
(w1, . . . , wp−1), the post-stretch witnesses !wpost = (wp+q, . . . , wℓ), random tape ρpre, ρpost

long enough to provide P with randomness p respectively ℓ − p − q times. The adversary
proceeds as follows.

1. Let M0 = 0λ and π0 = ε.

2. Let (w1, . . . , wp−1) = !wpre.

3. For i = 1, . . . , p− 1 compute Mi = H(Mi−1, wi) and

πi = PO(H,Mi−1,πi−1, wi; ρi) .

4. Let Ppre
↓ = P(1,p−1)

∪ be the queries from P to O in the above step.

5. For the i’th query i ∈ Ppre
↓ to O let yi = O(i) be the reply given by O to the query

i above. Define the query tag T = ((1, y1), . . . , (h, yh)).

6. Let (Mp+q−1,πp+q−1, usedp+q) = O2(T,Mp−1,πp−1).

7. Let Opost be the following oracle.

Opost() =

#
!O() if usedp+q() = ⊤ ∧ ∕∈ Ppre

↓
O() otherwise

8. For i = p+ q, . . . , ℓ compute Mi = H(Mi−1, wi) and

πi = POpost
b (H,Mi−1,πi−1, wi; ρi) .

9. Output (H,Mℓ,πℓ).

Consider now the following pruned experiment where we specialise to a = 0 and b = 1.

1. (H,Mℓ,πℓ) ← A
O,O

H,q,ρstr, !O,"W

H,ℓ,(p,q),#wpre,#wpost,ρpre,ρpost, !O
.

2. Let !v = EA
(·),O

H,q,ρstr, !O,"W ,O.

3. Let !vpre‖!vstr‖!vpost = !v, where |!vpre| = p− 1 and |!vstr| = q.

4. Let XTS be the stretch extraction event that !vstr = !wstr.

Recall that when b = 1 then ExtExpO
ℓ,(p,q),a,b uses the oracle Opost

1 defined via usedp+q

as does the pruned oracle. In general it is easy to verify that by construction

A
(·),O

H,q,ρstr, !O,"W

H,ℓ,(p,q),#wpre,#wpost,ρpre,ρpost, !O

33

and
A(·) = A(·)

H,ℓ,(p,q),#wpre,#wpost,ρ, !O0,"W0,1

have the same blackbox behaviour. Therefore

Pr[XTS] = Pr[XTS0,1]

by definition of XTS and XTS0,1 and the fact that extraction is blackbox. It is therefore
sufficient to prove that XTS happens with negligible probability.

Let O2 = OH,q,ρstr, !O,"W below. We can construct an algorithm 0E with

H, ℓ, (p, q), $wpre, $wpost, ρpre, ρpost, 0O

hardcoded such that

0EO,O2

H,ℓ,(p,q),#wpre,#wpost,ρpre,ρpost, !O
= EA(·),O2

H,ℓ,(p,q),%wpre,%wpost,ρpre,ρpost, !O
,O

.

We can simply let 0EO,O2

H,ℓ,(p,q),#wpre,#wpost,ρpre,ρpost, !O
construct

A(·) = A(·),O2

H,ℓ,(p,q),#wpre,#wpost,ρpre,ρpost, !O

using its own oracle access to O2. Then it outputs whatever is returned by EA(·),O. Note
that $wstr = 1W(T,Mp−1, πp−1). It follows that

Pr
,
0E
O,O

H,q,ρstr, !O,"W

H,ℓ,(p,q),#wpre,#wpost,ρpre,ρpost, !O
= 1W(T,Mp−1, πp−1)

-
= Pr[XTS] .

Notice now that 0E does not have oracle access to 1W . The only way for 0E to gain in-
formation on 1W is by its access to OH,q,ρstr, !O,"W . Note that when OH,q,ρstr, !O,"W is queried

on (T,Mp−1, πp−1) then $wstr = 1W(T,Mp−1, πp−1). This means that the witnesses used
on different inputs to the oracle are uniformly random and independent. Now note that
usedp+q is deterministically given once (T,Mp−1, πp−1) is given and $wstr are given. So
each query of OH,q,ρstr, !O,"W on (T,Mp−1, πp−1) outputs the same (Mp+q−1, πp+q−1, usedp+q).

Therefore the only information 0E has on $wstr = 1W(T,Mp−1, πp−1) is the single value
(Mp+q−1, πp+q−1, usedp+q).

Now notice that usedp+q = used(H,Mp+q−1, πp+q−1, wp+1, ρp+q), so we can compute usedp+q

from used,H,Mp+q−1, πp+q−1, wp+q, ρp+q. The value $wstr was pick uniformly at random and
independent from used, H, ρp+q and wp+q. So at most the values Mp+q−1 and πp+q−1 contain
information on $wstr. We have that |Mp+q−1| = poly(|R|,λ) and |πp+q−1| = poly(|R|,λ, log ℓ),
so

|(Mp+q−1, πp+q−1)| = poly(|R|,λ, log ℓ) .
We have that

|$wstr| = qλ .

34

We can therefore by Lemma 1 set q such that

|$wstr| > |(Mp+q−1, πp+q−1)|+ λ .

From this it is easy to show that the probability of guessing the uniformly random $wstr

from (Mp+q−1, πp+q−1) is negligible, even given unbounded running time. This concludes the
proof.

Theorem 2. If there exist collision resistant hash functions then there does not exist non-
deterministic IVC for the random oracle model (Definition 3) with blackbox knowledge sound-
ness (Definition 6) which is 1/λO(1)-SOQ (Definition 16).

Proof. Under the premises of the theorem we can prove both Lemma 17 and Lemma 16, and
these two lemmas are in contradiction.

References

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, Report 2018/046, 2018. https://eprint.iacr.org/2018/046.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive
composition and bootstrapping for SNARKS and proof-carrying data. pages
111–120, 2013.

[BCL+20] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. Cryptology ePrint
Archive, Report 2020/1618, 2020. https://eprint.iacr.org/2020/1618.

[BCMS20a] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner.
Proof-carrying data from accumulation schemes. Cryptology ePrint Archive,
Report 2020/499, 2020. https://eprint.iacr.org/2020/499.

[BCMS20b] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner.
Recursive proof composition from accumulation schemes. pages 1–18, 2020.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle
proofs. pages 31–60, 2016.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable
zero knowledge via cycles of elliptic curves. pages 276–294, 2014.

[CL20] Alessandro Chiesa and Siqi Liu. On the impossibility of probabilistic proofs in
relativized worlds. pages 57:1–57:30, 2020.

35

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2020/1618
https://eprint.iacr.org/2020/499

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum
and transparent recursive proofs from holography. pages 769–793, 2020.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay argu-
ments from signature cards. pages 310–331, 2010.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Proceedings of the Forty-Third Annual ACM
Symposium on Theory of Computing, STOC ’11, page 99108, New York, NY,
USA, 2011. Association for Computing Machinery.

[Mic94] S. Micali. Cs proofs. In 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, pages 436–453, Los Alamitos, CA, USA, nov 1994. IEEE
Computer Society.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. pages 1–18, 2008.

36

