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Abstract

Quantum computers will break cryptographic primitives that are based on integer factorization
and discrete logarithm problems. SABER is a key agreement scheme based on the Learn-
ing With Rounding problem that is quantum-safe, i.e., resistant to quantum computer attacks.
This article presents a high-speed silicon implementation of SABER in a 65nm technology as
an Application Specific Integrated Circuit. The chip measures 1mm2 in size and can operate
at a maximum frequency of 715MHz at a nominal supply voltage of 1.2V. Our chip takes
10µs, 9.9µs and 13µs for the computation of key generation, encapsulation, and decapsulation
operations of SABER. The average power consumption of the chip is 153.6mW . Physical mea-
surements reveal that our design is 8.96x (for key generation), 11.80x (for encapsulation), and
11.23x (for decapsulation) faster than the best known silicon-proven SABER implementation.
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1 Introduction

Using Shor’s quantum factoring algorithm [1], the
most prevalent public-key cryptographic primi-
tives such as RSA [2], Diffie-Hellman [3], and Ellip-
tic Curve Diffie-Hellman protocols [4] are vulner-
able to attacks by sufficiently powerful quantum
computers [5, 6]. These protocols are extensively
used, in practice, to protect secure web pages,
encrypt emails, and other sensitive information.
Therefore, breaking these systems would have
significant consequences for digital security and

privacy. To secure future information and commu-
nication systems, researchers and developers are
constructing new reliable quantum-resistant cryp-
tographic protocols. In this context, in 2017, the
National Institute of Standards and Technology
(NIST) initiated a new competition process to
standardize post-quantum public-key algorithms.
Currently, the competition is in its third round
[7] and SABER remains one of the competing
quantum-resistant key encapsulation mechanisms.
A silicon demonstration of SABER is the central
piece of this work.
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The design characteristics of SABER have
been investigated over different implementa-
tion platforms. Field-programmable gate array
(FPGA) accelerators are described in [8–10].
Performance-oriented implementations of SABER
on a RISC-V processor and on a GPU are shown
in [11] and [12], respectively. Some resource-
constrained implementations on ARM platforms
are given in [13–15]. Side-channel protected
software implementations are presented in [16,
17]. Similarly, a side-channel protected hardware
implementation of SABER is described in [18].
An efficient implementation of SABER on an
embedded microcontroller is presented in [19].

Additionally, SABER has been considered and
demonstrated as an application-specific integrated
circuit (ASIC) in [20–23]. ASICs provide a plat-
form that is specialized to compute a specific
cryptographic operation and thus yield superior
performance than other platforms. In turn, the
effort and cost to produce an ASIC is much higher.
For this reason, the authors of [20, 23] report
implementation results from simulations instead
of physical measurements.

An energy-efficient crypto processor architec-
ture for supporting all variants of SABER is
described in [20]; the authors perform energy
optimizations by employing a hierarchical Karat-
suba framework for multiplying polynomial coef-
ficients. Moreover, they have presented a layout
implementation of SABER on 40nm technology
with an area of 0.38mm2 and a maximum fre-
quency of 400MHz. Recently, in [21], the authors
present a low-area and low-power silicon-verified
SABER design on 65nm commercial technology.
For SABER 256-degree polynomial multiplica-
tions, their chip incorporates a Toom-Cook multi-
plier with a striding of 4.

For several hard mathematical problems, i.e.,
lattice, code, and multivariate, a flexible crypto
processor design is fabricated on a 28nm process
technology in [22]. The supported cryptographic
algorithms are SABER, NTRU, Dilithium, Rain-
bow, Kyber and McEliece. At a 0.9V supply
voltage, their design can operate up to a maximum
frequency of 500MHz and displays a chip size of
3.6mm2.

Earlier in [23], we have performed a design
space exploration of SABER on a 65nm commer-
cial technology with the goal to maximize per-
formance. Our pre-silicon results indicated that a

1GHz clock frequency could be achieved with the
careful use of pipelining, some notion of resource
sharing, and different memory arrangements. This
work expands on these initial results.

In this article, we have chosen the most
promising architectures from our design space
exploration of [23] in order to execute a silicon
validation on a commercial 65nm technology1.
Therefore, the contributions of this article include:
(i) physical synthesis of the SABER core on
a targeted 65nm technology (i.e., chip design);
(ii) more realistic results for area, timing, and
power characteristics after physical measurements
on the fabricated ASIC; and (iii) a fair com-
parison against other works that also perform
measurements instead of simulations.

The key findings after physical measurements
revealed that the fabricated chip can operate in
the range of 0.6V to 1.4V. At nominal 1.2V, a
frequency of 715MHz is achieved. The average
power consumption and chip size are 153.66mW
and 1mm2, respectively. For security equiva-
lent to AES-192, the processing time for one
key-generation, encapsulation, and decapsulation
operation are 10µs, 9.98µs, and 13.28µs, respec-
tively.

The structure of this paper is organized as fol-
lows: Section 2 describes the related background.
Our chip’s architecture is presented in Section
3. Chip measurements and results are shown
in Section 4. The comparison to state-of-the-
art SABER implementations is given in Section
5. Finally, the critical findings of this work are
discussed in Section 6.

2 Related Background

2.1 Notations

This section presents the symbols used throughout
the paper. Let p and q are moduli powers of 2.
Set of integers is presented with Z. The rings of
integers modulo p and q is Zp and Zq, respectively.
Similarly, the ring of polynomials for an integer
N is presented with Rp = Zp[x]/⟨xN + 1⟩ and
Rq = Zq[x]/⟨xN + 1⟩ where N is a fixed power of
2. Vectors are shown in bold and lower case font
(e.g., a).

1The Verilog HDL code is already available in our saber-chip
repository on GitHub [24].
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2.2 Security hardness

The security strength of SABER depends on the
hardness of the module Learning With Rounding
(Mod-LWR) problem [9]. A Mod-LWR sample is
given as follows:

(
a, b =

⌊
p

q
(aT s)

⌉)
∈ Rl×1

q ×Rp (1)

Where a is a vector of uniformly random poly-
nomials in Rq, s is a secret vector of polynomials
with coefficients from an error distribution, and
the modulus p < q. The result of the vector-vector
multiplication aT.s is a polynomial in Rq. It is
then rounded using the scaling by p

q where p < q
to produce b in Rp. The rounding operation intro-
duces a noise to system. The decision mod-LWR
problem asks to distinguish between mod-LWR
samples generated using Eq. 1 for a fixed secret,
and uniformly random samples in Rl×1

q ×Rp. The
Mod-LWR problem is presumed to be computa-
tionally infeasible to solve using classical as well
as quantum computers.

2.3 Supported operations

SABER is a Chosen-Ciphertext Attack, i.e., IND-
CCA, resistant key encapsulation mechanism
(KEM) built on module lattices. Moreover, it
uses the Mod-LWR problem with both p and
q power-of-two to construct a Chosen Plaintext
Attack, i.e., IND-CPA, secure public-key encryp-
tion (PKE) scheme. The related cryptographic
operations for PKE are the generation of a pair of
public and private keys (PKE.KeyGen), encryp-
tion (PKE.ENC) and decryption (PKE.DEC) and
the corresponding algorithms are 1, 2, 3. Similar to
PKE operations, the supported KEM operations
are a generation of pairs of public and private keys
(KEM.KeyGen), encapsulation (KEM.ENCAPS)
and decapsulation (KEM.DECAPS) and the
respective algorithms are 4, 5, 6. Some minor
details for associated PKE and KEM operations
are presented in the following.

Algorithm 1 SABER.PKE.KeyGen() [9]

Require: SABER Parameter Lengths
Ensure: pk ⇐ (seedA, b), sk ⇐ (s)
1: seedA ⇐ U({0, 1}256)
2: A ⇐ gen(seedA) ∈ Rl×l

q

3: r ⇐ U({0, 1}256)
4: s ⇐ βµ(Rl×l

q ; r)

5: b ⇐ ((AT s + h) mod q) ≫ (ϵq − ϵp) ∈ Rl×l
p

Algorithm 2 SABER.PKE.ENC() [9]

Require: pk ⇐ (seedA, b),m ∈ R2; r)
Ensure: c ⇐ (cm, b ′)
1: A ⇐ gen(seedA) ∈ Rl×l

q

2: if r is not specified then
3: r ⇐ U({0, 1}256)
4: end if
5: s ′ ⇐ βµ(Rl×l

q ; r)

6: b ′ ⇐ ((As ′ + h) mod q) ≫ (ϵq − ϵp) ∈ Rl×1
p

7: v′ ⇐ bT (s ′ mod p) ∈ Rp

8: cm ⇐ (v′+h1− 2ϵp−1m mod p) ≫ (ϵp− ϵT ) ∈
RT

Algorithm 3 SABER.PKE.DEC() [9]

Require: sk ⇐ s, c ⇐ (cm, b ′)
Ensure: m′

1: v ⇐ b ′T (s mod p) ∈ Rp

2: m′ ⇐ ((v−2ϵp−ϵT cm+h2)mod p) ≫ (ϵp−1) ∈
R2

KeyGen. PKE.KeyGen begins by randomly
generating a seed that defines an l × l matrix A
comprising l2 polynomials in Rq.A function gen of
Algorithm 1 is used to generate a matrix from the
seed based on SHAKE-128. A secret vector s of
polynomials is also generated. These polynomials
are sampled from a centered binomial distribution.
The generated public key contains a matrix seed
and rounded product AT s, while the secret key
contains a secret vector s. KEM.KeyGen follows
the same acts as used for the PKE.KeyGen, except
that it appends a secret key with a hash of the
public key and a randomly generated string z.

ENC and ENCAPS. The PKE.Enc oper-
ation consists of generating a new secret s′ and
adding message to the inner product between the
public key and the new secret s′. This forms
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Algorithm 4 SABER.KEM.KeyGen() [9]

Require: SABER.PKE.KeyGen()
Ensure: pk ⇐ (seedA, b), sk ⇐ (s,z,pkh)
1: pk ⇐ (seedA, b)
2: pkh ⇐ F(pk)
3: z ⇐ U({0, 1}256)

Algorithm 5 SABER.KEM.ENCAPS() [9]

Require: pk ⇐ (seedA, b)
Ensure: c,K
1: m ⇐ U({0, 1}256)
2: (K̂, r) ⇐ G(F(pk),m)
3: c ⇐ SABER.PKE.ENC(pk,m; r)
4: K ⇐ F(K̂, c)

Algorithm 6 SABER.KEM.DECAPS() [9]

Require: sk ⇐ (s, z, pkh), pk ⇐ (seedA, b), c
Ensure: K
1: m′ ⇐ SABER.PKE.DEC(s, c)
2: (K̂ ′, r′) ⇐ G(pkh,m′)
3: c′ ⇐ SABER.PKE.ENC(pk,m′; r′)
4: if c = c′ then
5: K ⇐ H(K̂ ′, c)
6: else
7: K ⇐ H(z, c)
8: end if

the first part of the ciphertext while the sec-
ond part contains the rounded product As′. The
KEM.Encaps operation starts by randomly gen-
erating a message m and obtaining from that
the public key. The ciphertext c contains the
encrypted message and a value achieved from the
message and public key.

DEC and DECAPS. PKE.Dec requires the
secret key s to extract original message from
the inner product between the public and secret
keys. PKE.Dec is the counterpart to PKE.Enc.
KEM.Decaps re-encrypts the obtained message
with the randomness associated with it and checks
whether the ciphertext corresponds to the one
received.

2.4 Supported variants and their
parameters

For security equivalent to AES-128, AES-192, and
AES-256, SABER supports three different vari-
ants: LightSABER, SABER, and FireSABER. All
three variants use polynomial degree N = 256
and moduli q = 213 & p = 210. They differ only
in the module dimension, binomial distribution
parameter (µ), and the message space. For addi-
tional details about security parameters, PKE and
KEM operations, we refer readers to the SABER
specification [25].

3 Architecture of our SABER
Design

First, we clarify that in order to demonstrate a
chip that implements the SABER protocol, our
design has to be augmented with appropriate
interfaces for control purposes and debug pur-
poses. At the center of our chip lies a coprocessor-
styled crypto core and its many specialized blocks
for SABER. The entire architecture of our SABER
accelerator design is shown in Fig. 1. At the high-
est level, it consists of a wrapper, a serial-in/out
interface, and the SABER crypto core itself.

The wrapper acts as a controller to oper-
ate the required cryptographic operations. As
the name implies, serial-in/out bears inputs seri-
ally from outside to the chip and also results in
a serialized output. The SABER crypto core is
responsible for the computations of correspond-
ing operations such as KeyGen, ENCAPS and
DECAPS. Moreover, it comprises a data memory,
a routing network, a pipeline register, a shared
shift buffer, several specific building blocks, and
an FSM-based dedicated controller. The building
blocks of SABER read input operands from the
data memory and, after computations, write the
result back onto the same memory. The used data
memory is of 8KB size such that all SABER vari-
ants (LightSABER, SABER, and FireSABER)
can be operated. An essential design parameter
is the word size of inferred memory. We use the
same word size of 64-bit as utilized in the SABER
accelerators described in [9, 23]. All the blocks
of Fig. 1 support 64-bit data for reading/writing
operations.
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Fig. 1 Block diagram of our fabricated SABER chip. The I/O pins are not shown for clarity.

More insights and details of several blocks of
our SABER chip architecture are described in the
following subsections.

3.1 Wrapper

The wrapper of our chip contains 16 single-bit I/O
pins, not shown in Fig. 1 for the sake of clarity.
The input pins are clk1, clk2, rst, start, we, cont,
addr, addr ready, din, lad1, lad2, crypto op 1,
crypto op 2 and crypto op 3. Similarly, the output
pins are dout and done.

The clk1 pin drives a slower clock that feeds
the serial I/O interface of the chip. Similarly, clk2
drives the faster clock that is connected to the
inner SABER crypto core. The names of vari-
ous other I/O pins are intuitive: rst is a reset
signal, start is a trigger signal for starting cryp-
tographic operations, we is a write-enable, din is
data in, dout is data out, addr is address. The pins
addr ready and done inform when operations are
finalized, either loading an address or an entire
crypto operation.

The purpose of the use of a cont pin is to mea-
sure the power consumption of our chip when the
KeyGen, ENCAPS and DECAPS operations are
executed continuously (i.e., in an infinite loop). By
doing so, we make sure that the power measure-
ment is not affected by I/O limitations.

The combined use of lad1 and lad2 allow us to
drive four possible combinations: (i) 2’b00 means
“no-operation”, (ii) 2’b01 means load read/write
address on the chip using addr, (iii) 2’b10 means
load input data vector from outside on the chip
using din, and (iv) 2’b11 means reading data
back from the chip on dout. The crypto op 1,
crypto op 2, and crypto op 3 signals are used
to select the crypto operation, either KeyGen,
ENCAPS, or DECAPS.

The wrapper of our chip is an FSM-based ded-
icated controller. It is responsible to execute the
KeyGen, ENCAPS and DECAPS operations by
properly orchestrating the sequential use of the
SABER blocks. The chip remains in an IDLE
mode until the start signal is asserted. Next, based
on the values of crypto op 1, crypto op 2, and
crypto op 3, the FSM begins to execute the corre-
sponding sequence of instructions for computation
of KeyGen, ENCAPS and DECAPS operations.
When the required KEM operation completes its
execution, the FSM switches back the chip into an
IDLE mode (if cont is 0, otherwise the operation
is continuously executed non-stop when cont is 1).

3.2 Serial-in/out interface

The purpose of the serial interface is to load or
read data serially. The same interface is used for
loading user input and for debugging purposes.
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For this reason, the serial interface gives access
to the entire 8KB memory addressing space. To
achieve this, the interface accumulates incoming
bits into desired vector lengths (i.e., 10-bits for
read/write addresses, and 64-bits for read/write
data). To accumulate a 10-bit address or a 64-
bit input/output data, the serial-in/out interface
employs three shift registers: (i) one for read/write
address, (ii) one for data input and (iii) one for
data output. More precisely, the addr, din, and
dout pins of our fabricated chip are connected to
the corresponding read/write address, data input,
and data output shift registers. The corresponding
values on lad1 and lad2 are utilized to mux the
corresponding shift register to the right pins.

3.3 SABER crypto core

The intention of the SABER crypto core is to
perform the related cryptographic operations, i.e.,
KeyGen, ENCAPS, and DECAPS, of the SABER
protocol. As shown in Fig. 1, it consists of sev-
eral blocks, i.e., a data memory, routing network,
a pipeline register, a shared shift buffer, building
blocks and a dedicated controller. We provide the
relevant details of these blocks in the following
subsections.

3.3.1 Data memory

In [9], a BRAM-based dual-port data memory of
size 1024×64 is utilized in a coprocessor archi-
tecture. Recently, we have optimized this FPGA-
targeted coprocessor architecture of [9] for evalua-
tion as an ASIC on a commercial 65nm technology
[23]. We replace the BRAM with an SRAM with
the same overall size of (1024×64) but differ-
ent implementation. The SRAM is generated by
using a commercial memory compiler of a part-
ner foundry. Moreover, a smart memory synthesis
process is (also) explored to minimize the crit-
ical path and eventually to maximize the clock
frequency. The concept of smart synthesis deter-
mines that smaller and distributed memories in an
ASIC design could be more advantageous as the
smaller memories require simpler address decoder
units (which are faster and leads to performance
improvements with area and power overheads).
Based on this observation, five optimized archi-
tectures of SABER with different memory config-
urations are presented in [23]. The highest clock
frequency is achieved when using four instances of

a single-port SRAM-based RegFile. The RegFile
is not an array of flip-flops. It is a “high-speed”
variant of SRAM according to its vendor.

Based on the aforesaid concept, and as also
highlighted in Fig. 1, our architecture utilizes four
instances of 256× 4 size of a single-port SRAM-
based RegFile as a data memory to retain initial,
intermediate, and final results for the execution of
required cryptographic operations. The total size
of our four memory instances is (256× 4) × 4 =
65Kbits.

3.3.2 Routing network

The proposed SABER chip splits the memory
address space in multiple memory blocks. How-
ever, each memory requires a unique write enable,
read/write address and input/output data signals.
Thus, a unified routing network is necessary for
several building blocks of the SABER to commu-
nicate with the corresponding memory instance(s)
transparently. Consequently, the routing network
of our proposed architecture consists of several
multiplexers to deal with the corresponding mem-
ory instances for reading and writing operations.

3.3.3 Pipeline register

The use of different memory configurations results
in a change in the critical path of the SABER
design, as presented in [23]. In our architecture,
the critical path becomes from the output of a
memory instance to dout (a chip output) through
the binomial sampler. Therefore, to shorten the
critical path and to eventually improve the clock
frequency, we have placed a pipeline register
between the routing network and the binomial
sampler, as shown in Fig. 1.

3.3.4 Shared shift buffer

The several building blocks of SABER, i.e.,
AddRound, AddPack, BS2POLVECp, and multi-
plier, require shift registers with different lengths
to acquire data from many memory addresses and
then accumulate into local registers. For example,
a 320-bit long register is required in AddPack and
BS2POLVECp while a 64 and 676-bit register is
required in AddPack and multiplier, respectively.
Similar to our previous work, published in [23],
we have shared a single 676-bit register across
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AddRound, AddPack, BS2POLVECp, and multi-
plier in our SABER chip architecture. This saves
area at no cost in performance since the critical
path lies elsewhere.

3.3.5 SABER building blocks

As shown in Fig. 1, the required building
blocks are, polynomial multiplier wrapper, vari-
ants of secure hash algorithms, (i.e., SHA3-256,
SHA3-512, and SHAKE-128), a binomial sam-
pler, AddRound, AddPack, Unpack, Constant-
time Move (CMOV), CopyWords, BS2POLVECp

and Verify. Some more insight details for these
building blocks are given as follows.

The multiplier wrapper incorporates a central-
ized multiplier architecture based on a schoolbook
multiplication for multiplying polynomial coef-
ficients. The idea for the centralized multiplier
architecture is precomputation of several multi-
ples of multiplicand at once and then forwarding
of these multiples to the parallel MAC (multiply-
and-accumulate) units. Next, the employed MAC
instances select their right multiple of a multipli-
cand depending on their corresponding bits of the
multiplier and then add to the accumulator. It
is important to note that the proposed SABER
chip architecture utilizes the centralized multipli-
cation architecture of [26]. Therefore, we direct
readers to [26] for complete algorithmic and archi-
tectural details of centralized schoolbook-based
polynomial multiplication.

SABER requires variants of hash functions
(SHA3-256/512) that were standardized in [27].
Moreover, to generate pseudorandom numbers, an
extendable output function SHAKE-128 is also
required and is standardized in [27]. Since all of
these functions utilize the Keccak sponge func-
tion [27], we operate the SHA3-256, SHA3-512
and SHAKE-128 like a wrapper in our SABER
chip architecture as implemented in [9]. For the
detailed unified architecture of SHA3-256, SHA3-
512 and SHAKE128, we redirect readers to [9].

A sampler is mandated to compute the sample
from a pseudo-random input string for all (sup-
ported) PKE and KEM operations. Similar to [9],
the binomial sampler in our proposed SABER chip
architecture is a combinational block that directly
maps pseudo-random bits from an input buffer to
a sample value.

The verify block of the SABER crypto core is
only required during the decapsulation operation
of KEM. It is responsible to provide a word-by-
word comparison between the received ciphertext
and re-encrypted ciphertext. The result of ver-
ify block is stored in a register that is used by
CMOV to either copy the decrypted session key
or a pseudo-random string at a specified memory
address. The AddPack performs coefficient-wise
addition with a constant followed by the gen-
erated message, and it packs the resultant bits
into a byte string. Similar to the Addpack block,
AddRound computes coefficient-wise addition of
a constant followed by coefficient-wise rounding.
The conversions from byte into a bit string are the
responsibility of unpack unit. The BS2POLVECp

block converts the byte string into a polynomial
vector.

For more insight into the details and architec-
tures of the building blocks of SABER, we refer
readers to [9, 23].

3.3.6 Controller

Based on the instructions from the wrapper for the
computation of KeyGen, ENCAPS and DECAPS,
the controller generates the corresponding con-
trol signals to the inner SABER core. Moreover,
it control the use of the shared shift buffer and
the routing network. Since the binomial sampler
is connected through a pipeline reg (highlighted
with green color in Fig. 1), this creates exe-
cution bubbles. The controller also handles the
synchronization effort between blocks.

4 Results and Chip
Measurements

The silicon demonstration of our proposed
SABER architecture is carried out in a 65nm
CMOS technology. For RTL (register-transfer
level) description and verification, the proposed
SABER architecture is implemented in Verilog.
Next, the top-level design was synthesized using
Cadence Genus and a foundry-provided 65nm
standard cell library. After that, the generated
netlist was loaded for physical implementation in
Cadence Innovus. For physical verification (DRC
and LVS), we have used Calibre from Mentor
Graphics. Later on, the GDSII file was submit-
ted to the foundry for fabrication. The design



Springer Nature 2021 LATEX template

8

implementation was completed in August 2021,
the chip underwent fabrication in the September–
November time frame, fabricated parts were deliv-
ered in December 2021 and finally, we finished
with the testing and measurements in February
2022. A total of one hundred chips was fabri-
cated, but only twenty-five were packaged in a
Dual-In-Line-28 (DIP-28) form factor.

In Fig. 2, we show the layout of our chip in
which the four memory instances are highlighted
around the corners across the core. We used M2 to
M7 for signal routing purposes. M7 is also utilized
for creating a power ring around the core. More-
over, the power is distributed across the core using
stripes in M8 and M9. The die size is 960µm ×
960µm.The SABER design barely fits in this size.
The placement density of the core area is 93.4%,
with the remaining 6.6% occupied by decap and
filler cells. This incredibly high density made the
design very challenging for timing closure. Note
the high density zone shown by the yellow dot-
ted lines in Fig. 2. The image inset shows the few
empty spaces in orange. For the sake of visibility,
all signal routing layers were excluded. Moreover,
the I/O pins (seven on each side of the chip) and
power stripes routed across the entire chip, hor-
izontally and vertically, are visible. Similarly, we
show a die shot of an unpackaged chip taken with
the aid of a microscope in Fig. 3. It is possible to
recognize the same power routing stripes and IOs
as in the layout. In figures 2 and 3, pins of the
lower right corner of the chip are highlighted for
orientation.

The testing setup utilized to bring-up our chip
is shown in Fig. 4. A custom PCB was fabricated
to facilitate the test and enable measurements.
The packaged chip is placed on the PCB on a
DIP-28 socket. Two power sources are connected
to the PCB via BNC connectors. Then, the PCB
distributes power to the core logic (1.2V) and IO
cells (2.5V). On the PCB, small decoupling capac-
itors are mounted manually for both VDDs. The
STM32F446RE [28] microcontroller is integrated
with the PCB to drive all the input signals except
the faster clock (i.e., clk2). The microcontroller
also collects the outputs of the chip. To generate
the fast clk2, we have used a high frequency gen-
erator (shown between the two power sources in
Fig. 4). Our chip does not contain an internal clock
generator.

Fig. 2 Screenshot of the chip layout from Cadence
Innovus.

Fig. 3 Microscope view of an unpackaged die where we
can identify the IOs (7 on each side) and horizontal & ver-
tical power stripes on the top metal layers.
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Fig. 4 Testing setup used to validate our fabricated
SABER chip.

0.1 0.15 0.2 0.25 0.3 0.35 0.4
Leakage current (mA)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

ili
ty

Normal distribution
( 7 = 0.2099, < = 0.0409)
Leakage current (Measured)
Leakage current (Simulation)

Worst case

Best case

Fig. 5 Average leakage current measurement plotted as a
normal distribution. Each red circle corresponds to a single
sample or chip. Best and worst values are highlighted.

4.1 Leakage current measurement

In Fig. 5, we plot a normal distribution of the aver-
age leakage current measurements of the twenty
five packaged chips. We remind the reader that
leakage (or state-off) current is the level of current
that flows through a device even when the device
is not actively computing. The average leakage
current is 0.2099mA and the standard deviation
is 0.0409. The measured data points are plot-
ted as red circles over the normal distribution
(black line). The pre-silicon leakage current results
(obtained from Innovus) for three different cor-
ners, i.e., typical, worst, and best, are 0.164mA
(on 1.2V), 0.450mA (on 1.08V) and 3.20mA (on
1.32V) and these values are relative to tempera-
tures of 25◦C, 125◦C and 0◦C, respectively. The
blue vertical line in Fig. 5 shows the pre-silicon
leakage current value for typical corner. It appears
that the measurement results are a bit more pes-
simistic than the simulated value predicted, but
within the expected range. The best and the worst
measured data points are also highlighted in Fig.
5.

Table 1 Timing results for CCA-secure KEM SABER
after physical measurements at 715MHz, nominal 1.2V.
The detailed clock cycles description is available in our
earlier work [23].

Operation KeyGen ENCAPS DECAPS

Clock cyles 7154 7136 9359
Latency1 (in µs) 10.00 9.98 13.08

1The latency values are calculated using clock cycles
715MHz

.

Table 2 Top level area breakdown of our SABER chip.

Design unit(s) Utilized area (mm2)

Pads and I/O ring 0.350
Wrapper + Serial interface 0.041
SABER core 0.232
Memories 0.104

4.2 Area, timing and power results

To identify the highest possible frequency of oper-
ation and the corresponding power consumption,
we place the sample identified as ‘best case’ on the
PCB. At 1.2V, the KEM-supported operations,
i.e., KeyGen, ENCAPS, and DECAPS, of SABER
can be executed on 770, 715 and 840MHz. On
identical operational conditions, corresponding
power values for KeyGen, ENCAPS and DECAPS
operations are 151, 158 and 157mW . Therefore,
we have determined that 715MHz is the optimal
clock frequency where KEM-associated KeyGen,
ENCAPS and DECAPS operations perform cor-
rectly.

On 1.2V @ 715MHz, the consumed power of
our SABER chip is 151mW (for KeyGen), 158mW
(for ENCAPS) and 152mW (for DECAPS).
Therefore, the average power consumption is
153.6mW . The timing results in terms of clock
cycles and latency for KEM supported operations
are provided in Table 1. Similarly, the top-level
area breakdown of our fabricated SABER design
is shown in Table 2 where column one provides the
design units and column two shows the utilized
area.

Table 2 shows that the I/O placement, serial-
in/out interface, SABER crypto core, and four
instances of small memories utilize 0.350, 0.041,
0.232 and 0.104mm2 area out of the total 1mm2

chip size. If we calculate the sum of the areas
of these blocks, the net area becomes 0.727mm2.
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Fig. 6 Graphical representation of the entire range of
operation that the chip supports (Shmoo plot).

Most of the remaining area is wasted with manda-
tory empty spaces between the IO cells and the
seal ring, the IO cells and the core, and power
rings.

The graphical representation of the complete
range of operation that our fabricated SABER
chip supports is illustrated in Fig. 6. The hor-
izontal axis is the frequency of operation (in
MHz), where each tick represents an increment
of 10MHz. The supplied voltage (in V ) is shown
on the vertical axis in steps of 0.05V.

Figure 6 demonstrates that the chip is fully
operational at a very small clock frequency of
10MHz with a supplied voltage of 0.65V. The
increase in VDD (from 0.65 to 1.4) results in
an increase in the operational frequency (from
10MHz to a bit more than 800MHz).

4.3 Limitations of our chip

As illustrated in section 3.3.1, we employ four
smaller memories. The addressing ranges of the
memories are [0-255], [256-511], [512-767], and
[768-1023]. Unfortunately, due to a logic bug, the
first address of memories 2, 3, and 4 is incor-
rectly decoded and data is overwritten. This minor
logical error results in a few flipped bits on
the output of the chip when compared with the
expected results. This issue could be bypassed for
lightSABER by avoiding these memory addresses,
but the SABER and fireSABER variants would
still encounter this limitation. In either case, the
computational blocks of SABER are not affected,

nor is the number of memory accesses changed.
For this reason, we are confident that the the
power values reported in this manuscript are
representative.

5 Comparison and Discussion

The comparison of area, timing and power to
existing ASIC implementations of SABER is
shown in Table 3. The reference design (Ref) is
presented in column one. Column two provides
the targeted implementation technology (Tech).
The area utilization (in mm2) is shown in col-
umn three. Columns four and five present the
clock cycles and frequency (Freq. in MHz) val-
ues, respectively. The latency (Lat. in µs) values
are given in column six. Finally, the last column
shows the total consumed power (Pow. in mW ).

Fully parallelized architecture of [20].
On a more recent 40nm technology, the imple-
mentation results reported in [20] are after logic
synthesis. The comparison shows that our fabri-
cated SABER design on 65nm technology utilizes
2.63 times higher hardware resources because we
have presented a real chip while in [20] appears
to be a block design (i.e., no I/Os). Additionally,
we have a serialized infrastructure for communica-
tion and debug purposes that also requires a small
amount of area.

The clock cycles, reported in [20], for Key-
Gen, ENCAPS and DECAPS operations are 6.87,
4.95 and 5.57 times lower than our fabricated
SABER design. Let us explore the reasons for
the clock cycles utilization. For multiplying two
256-degree polynomials in SABER, a centralized
schoolbook multiplier architecture of [26] is used
in our SABER design. It takes 256 clock cycles
to perform one polynomial multiplication. On the
other hand, in [20], the use of an 8-level Karatsuba
multiplier for the same polynomial length requires
81 clock cycles rather than 256. Despite the dif-
ferent polynomial multiplier, another reason is the
use of a high-speed Keccak module comprising
two parallel sponge functions (Keccak-f) in [20]. It
performs two Keccak-f[1600] computations in each
clock cycle and each round of Keccak is performed
every 12 clock cycles. A single sponge function in
a serial fashion is incorporated in our SABER chip
architecture which requires 28 clock cycles to gen-
erate 1,344 bits of a pseudo-random string. The
lower clock cycles utilization in [20] results in lower
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Table 3 Comparison of our SABER accelerator with existing ASIC implementations. All implementation results are for
security equivalent to AES-192. Clock cycles and latency values are for KeyGen/ENCAPS/DECAPS. The area of SABER
crypto core is reported for [20] and [23] while chip size is reported for [21] and [22]. For this work (TW), chip size is also
reported as area.

Ref Tech/Fab? Area (mm2) Clock cyles Freq. (MHz) Lat. (in µs) Pow. (mW )

[20] 40nm/No 0.38 1040/1440/1680 400 2.6/3.6/4.2 –
[23] 65nm/No 0.31 7154/7136/9359 1000 7.1/7.1/9.3 185.9
[21] 65nm/Yes 1.6 14336/18704/23376 160 @ 1.1V 89.6/116.9/146.1 –
[21] 65nm/Yes 1.6 –/–/– 10 @ 0.7V –/–/– 0.334
[22] 28nm/Yes 3.6 –/–/– 500 @ 0.9V –/–/– 39–368
TW 65nm/Yes 1 7154/7136/9359 160 @ 1.2V 44.7/44.6/58.4 43.5
TW 65nm/Yes 1 7154/7136/9359 10 @ 0.7V 715.4/713.6/935.9 0.855
TW 65nm/Yes 1 7154/7136/9359 715 @ 1.2V 10/9.9/13 153.6

Note: The Fab? entry determines if the reported results are from simulation/synthesis or from measurement of fabricated chips.
For [21], we calculated clock cycles by multiplying the corresponding latency values with 160MHz clock frequency.

latency values (shown in column six of Table 3).
Naturally, these numbers have to analyzed with
the immense caveat that we are comparing pre-
silicon data in 40nm to silicon measurements in
65nm.

High-speed SABER architecture of [23].
Our SABER crypto core employs the same archi-
tecture of [23]. The difference is the real chip that
we have presented in this work where it contains
the real I/Os, serial-in/out interface and three
shift registers for accumulating inputs/outputs
to/from the fabricated chip. Then, as expected,
the utilized hardware resources in [23] is compar-
atively 3.22 times lower than our fabricated chip.
As shown in column four of Table 3, the number
of clock cycles is the same between this work and
[23].

Concerning comparison to the clock frequency,
the value obtained after logic synthesis in [23] is
1GHz which is comparatively 1.39 times higher
than our fabricated SABER chip architecture
(where we achieved 715MHz). This drop in fre-
quency is somewhat expected since logic synthesis
can be too optimistic, specially for a very dense
floorplan like the one in our chip. A portion of
the drop can also be attributed to process varia-
tion, which is also expected. Due to the reduction
in clock frequency, the total average power of
our fabricated SABER chip is 1.21 times lower
as compared to the value obtained after logic
synthesis in [23]. In summary, in this work, the
presented results for area, timing, and power are
more realistic than the synthesis results reported
in [23].

SABER design fabricated in [21]. To pro-
vide a realistic comparison on an equivalent 65nm
technology, as shown in Table 3, we have also used
the same conditions (160MHz @ nominal 1.2V
and 10MHz @ 0.7V) for measurement results as
used in [21]. The comparison is given below.

F=160MHz, VDD=1.2V. For the computa-
tion of KeyGen, ENCAPS and DECAPS oper-
ations of SABER, our chip is 2, 2.62 and 2.50
times faster in terms of clock cycles and compu-
tational time (latency). Because, for multiplying
two 256-degree polynomials in SABER, we used
a centralized schoolbook multiplier of [26] which
requires 256 clock cycles to perform one polyno-
mial multiplication. On the other hand, in [21],
the use of Toom-cook with striding of 4 is uti-
lized to reduce the memory requirement to half
but with an excess of clock cycles (i.e., 1298 for
one polynomial multiplication). As investigated
in [29], the Toom-Cook multiplier is inherently
more expensive in the hardware area as compared
to the schoolbook multiplier. Then, the use of a
schoolbook multiplier and a shared shift buffer
across various building blocks of SABER results in
1mm2 chip size which is comparatively 1.6 times
lower as compared to [21]. The power comparison
is not possible as the relevant information is not
reported.

F=10MHz, VDD=0.7V. The comparison to
clock cycles and latency parameters is not possible
as the corresponding information is not available
in [21]. Only the comparison to power is feasible.
Comparatively, our fabricated chip consumes 2.55
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times more power. The reason is that we fabri-
cated the SABER chip with aid to obtain higher
clock frequency while the objective in [21] was low
area and power reduction.

If we provide a comparison of 715MHz @
1.2V with the highest obtained clock frequency
(i.e., 160MHz @ 1.1V) of [21], our fabricated
chip is 8.96, 11.80 and 11.23 times faster for the
computation of KeyGen, ENCAPS and DECAPS
operations, respectively.

Flexible design fabricated in [22]. As
shown in Table 3, a realistic and reasonable com-
parison to area, timing, and power parameters is
not possible as the implementation technologies
are different (we use 65nm while a modern 28nm
is used in [22]). Moreover, our proposed design
is specific to SABER while a flexible design for
several cryptographic primitives (SABER, NTRU,
Dilithium, Rainbow, Kyber and McEliece) is
demonstrated in [22]. Depending on the execution
of a specific cryptographic protocol, the power val-
ues are in the range of 39–368mW . Therefore, this
comparison is also not possible to provide.

6 Conclusions

This article has presented a fabricated design of
the SABER protocol on 65nm technology. The
main features of the design are a centralized
schoolbook multiplier for 256-degree polynomial
multiplications, a shared buffer across several
building blocks, pipelining, and distributed mem-
ories. Overall, the chip size is relatively small at
1mm2, but the achieved frequency is the high-
est among the considered works. This confirms
that our smart memory strategy and pipelining
decisions appear to be very beneficial. As future
work, we believe there remain many optimizations
possible, including better using the distributed
memories for improved throughput.

Declarations

Funding

This work was partially supported by the EC
through the European Social Fund in the con-
text of the project “ICT programme”. It was also
partially supported by European Union’s Horizon
2020 research and innovation programme under
grant agreement No 952252 (SAFEST).

Conflict of interest

The authors declare that they have no conflict of
interest.

Code availability

The codes generated during and/or imple-
mented during the current study are available
in the saber-chip repository, https://github.com/
Centre-for-Hardware-Security/saber-chip

Data availability

Data sharing not applicable to this article as no
datasets were generated or analysed during the
current study.

References

[1] P.W. Shor, Polynomial-time algorithms for
prime factorization and discrete logarithms
on a quantum computer. SIAM J. Comput.
26(5), 1484–1509 (1997). https://doi.org/10.
1137/S0097539795293172

[2] R.L. Rivest, A. Shamir, L. Adleman, A
method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM
21(2), 120–126 (1978). https://doi.org/10.
1145/359340.359342

[3] W. Diffie, M. Hellman, New directions in
cryptography. IEEE Transactions on Infor-
mation Theory 22(6), 644–654 (1976). https:
//doi.org/10.1109/TIT.1976.1055638

[4] R.C. Merkle, Secure communications over
insecure channels. Commun. ACM 21(4),
294–299 (1978). https://doi.org/10.1145/
359460.359473

[5] U.S. NSA. Commercial national security
algorithm suite and quantum computing faq
(last accessed on March 17, 2022). Avail-
able at: https://cryptome.org/2016/01/
CNSA-Suite-and-Quantum-Computing-FAQ.
pdf

[6] E. Yeniaras, M. Cenk, Faster characteristic
three polynomial multiplication and its appli-
cation to ntru prime decapsulation. Journal

https://github.com/Centre-for-Hardware-Security/saber-chip
https://github.com/Centre-for-Hardware-Security/saber-chip
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/359460.359473
https://doi.org/10.1145/359460.359473
https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf
https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf
https://cryptome.org/2016/01/CNSA-Suite-and-Quantum-Computing-FAQ.pdf


Springer Nature 2021 LATEX template

13

of Cryptographic Engineering (2022). https:
//doi.org/10.1007/s13389-021-00282-7

[7] NIST. Round 3 finalists: Public-key
encryption and key-establishment algo-
rithms (last accessed on March 11,
2022). Available at: https://csrc.nist.
gov/Projects/post-quantum-cryptography/
round-3-submissions

[8] A. Basso, F. Aydin, D. Dinu, J. Friel,
A. Varna, M. Sastry, S. Ghosh. Where star
wars meets star trek: Saber and dilithium
on the same polynomial multiplier. Cryptol-
ogy ePrint Archive, Report 2021/1697 (2021).
https://ia.cr/2021/1697

[9] S. Sinha Roy, A. Basso, High-speed
instruction-set coprocessor for lattice-
based key encapsulation mechanism: Saber
in hardware. IACR Transactions on
Cryptographic Hardware and Embedded
Systems 2020, 443–466 (2020). https:
//doi.org/10.13154/tches.v2020.i4.443-466

[10] J. Maria Bermudo Mera, F. Turan, A. Kar-
makar, S. Sinha Roy, I. Verbauwhede. Com-
pact domain-specific co-processor for acceler-
ating module lattice-based kem (2020). Paper
presented at the 57th ACM/IEEE Design
Automation Conference (DAC), San Fran-
cisco, CA, USA, p. 1–6, July 20–24 2020.

[11] T. Fritzmann, G. Sigl, J. Sepúlveda. Risq-v:
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