
The Case of Small Prime Numbers Versus the
Joye-Libert Cryptosystem

George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro
2 Simion Stoilow Institute of Mathematics of the Romanian Academy

21 Calea Grivitei, Bucharest, Romania

Abstract. In this paper we study the effect of using small prime num-
bers within the Joye-Libert public key encryption scheme. We introduce
two novel versions and prove their security. We further show how to
choose the system’s parameters such that the security results hold. More-
over, we provide a practical comparison between the cryptographic algo-
rithms we introduced and the original Joye-Libert cryptosystem.

Keywords: public key encryption, gap 2k-residuosity, provable security
MSC: 11T71, 94A60, 68P25, 11A07, 11A15

1 Introduction

The Joye-Libert cryptosystem was introduced in [7,20] as a generalisation of the
Goldwasser-Micali public key encryption scheme [18, 19]. The main advantage
of the Joye-Libert scheme compared to Goldwasser-Micali is that the first men-
tioned supports a larger message space, and thus it considerably decreases the
expansion of the ciphertext. Regarding security, the authors prove that invert-
ing the encryption function is equivalent to breaking the quadratic residuosity
problem modulo n = pq, where p and q are prime numbers. Another important
security result is that the scheme is semantically secure if the gap 2k-residue
assumption modulo n holds. We underline that the Joye-Libert cryptosystem is
partially homomorphic with respect to message addition and supports ciphertext
randomization.

In this paper, we aim at finding a way to improve decryption times for the
Joye-Libert scheme. Therefore, we introduce two variants of the system: an un-
balanced version and a multiprime one. In the first version we show how to
decrease the size of p, while keeping the system secure and implicitly decreasing
the complexity of decryption. The only cryptosystem related to this version is
called the unbalanced RSA [31]. Just like our version, the scope is to reduce p,
while keeping the system secure.

In the multiprime version, we increase the number of factors while keeping the
size of the modulus constant and we manage to prove that inverting encryption

https://orcid.org/0000-0003-3953-2744

2

is equivalent to a vectorial form of the quadratic residuosity assumption. We can
find only a related cryptosystem in the literature: the multiprime RSA [4, 30].
The philosophy behind the multiprime RSA is the same as ours: uses parallelism
to speed up decryption. A bonus of the multiprime Joye-Libert is that we can
also use multiple threads to improve encryption time, while in the case of RSA
this is not possible.

In the final section of our paper, we analyze the complexity of the two novel
variants. Then we compare the decryption time complexities for all versions of
the Joye-Libert scheme. If parallelization is possible, then the multiprime variant
is to be preferred since it has faster encryption and decryption. Otherwise, the
unbalanced version should be used.

Previous work. Note that a preliminary version of this proposal was presented
in [27].

Structure of the paper. In Section 2 we provide the notations used in our paper.
Then we recall several definitions needed to describe our proposals. The original
Joye-Libert scheme is detailed in Section 3. In Sections 4 and 5 we present two
novel versions of the Joye-Libert scheme. A performance analysis of the Joye-
Libert variants is provided in Section 6. Conclusions and open problems are
given in Section 7.

2 Preliminaries

Notations. In this paper, λ represents a security parameter. By |n| we denote
the size of n in bits. The action of selecting a random element x from a sample
space X is denoted by x

$←− X. The assignment operator x ← y initialises
variable x with value y. Let E be an event, then Pr[E] represents the likelihood
of E occurring. Probabilistic polynomial-time algorithms are referred to as PPT
algorithms. In this paper, the set of natural numbers {0, . . . , a−1} is denoted by
[0, a). To simplify notations we denote the set [0, a+1) by [0, a]. Multidimensional
vectors v = (v0, . . . , vs−1) are represented as v = {vi}i∈[0,s).

2.1 Computational Complexity

In this subsection we present the reader with computational complexities of mul-
tiplication, exponentiation and modular inverse. These complexities are needed
in order to determine the efficiency of our proposed schemes. Note that the
asymptotic values are given in Table 1 and are taken from [15, 28]. To simplify
our presentation, we use the notation M(·) for the complexity of the multipli-
cation algorithm. Note that while discussing the complexity of performing an
exponentiation we assume that the exponent’s length is k bits.

3

Operation Complexity
Multiplication M(µ) = O(µ log µ log log µ)

Exponentiation O(kM(µ))

Modular inverse O(µM(µ))

Table 1: Computational complexity for µ-bit numbers

2.2 Number Theoretic Prerequisites

The Joye-Libert encryption scheme is based on a generalisation of the Legendre
symbol, namely the 2k-th power residue symbol. Note that the Legendre symbol
is obtained when k = 1 and, for simplicity, we further denote it by Jp(a). We
recall the definition of the 2k-th power residue symbol and some of its properties
as stated in [33].

Definition 1. Let p be an odd prime such that 2k|p− 1. Then the symbol

Jp,2k(a) = a
p−1

2k mod p

is called the 2k-th power residue symbol modulo p, where a
p−1

2k ∈ Zp, where
Zp = {−(p− 1)/2, . . . ,−1, 0, 1, . . . , (p− 1)/2}.

Lemma 1. The 2k-th power residue symbol satisfies the following properties

1. If a ≡ b mod p, then Jp,2k(a) = Jp,2k(b);
2. Jp,2k(a

2k) = 1;
3. Jp,2k(ab) = Jp,2k(a)Jp,2k(b) mod p;
4. Jp,2k(1) = 1 and Jp,2k(−1) = (−1)(p−1)/2k .

Let n = p1 . . . pt. We further denote by Jn(a) = Jp1(a) . . . Jpt(a) the Jacobi
symbol of an integer a modulo an integer n. Jn and QRn denote the set of
integers modulo n with Jacobi symbol 1 and, respectively, the set of quadratic
residues modulo n.

2.3 Public Key Encryption

The three PPT algorithms specific to a public key encryption (PKE) scheme
are: Setup, Encrypt and Decrypt. Given as input a security parameter, the Setup
algorithm outputs the public key and the corresponding secret key. To encrypt
a message, Encrypt also needs the public key as input in order to output the
correlated ciphertext. To recover the original message the Decrypt algorithm
takes as input the secret key and the ciphertext. Note that if decryption fails,
Decrypt returns an invalidity symbol.

Definition 2 (Indistinguishability under Chosen Plaintext Attacks -
ind-cpa). The security model against chosen plaintext attacks for a PKE scheme
is described using the following game:

4

Setup(λ): In this phase, challenger C first computes the public key, while keeping
the corresponding secret key to himself. Then C sends only the public key to
adversary A.

Query: Adversary A chooses two equal length messages m0,m1 and sends them
to C. After flipping a coin b ∈ {0, 1}, the challenger encrypts mb and sends
to A the resulting ciphertext.

Guess: In this phase, the adversary outputs a guess b′ ∈ {0, 1}. A wins the
security game if b′ = b.

The advantage of an adversary A attacking a PKE scheme is defined as

ADV ind-cpa
A (λ) = |Pr[b = b′]− 1/2|

where the probability is computed over the random bits used by C and A. A
PKE scheme is ind-cpa secure if for any PPT adversary A, the advantage
ADV ind-cpa

A (λ) is negligible.

3 The Joye-Libert PKE scheme

The Joye-Libert encryption scheme was initially introduced in [20]. Its security
was improved in [7]. The authors proved that inverting the encryption function
is as hard as the quadratic residuosity assumption. Joye et al. also showed that
in the standard model the ind-cpa security of the PKE is equivalent to the gap
2k-residuosity assumption. We shortly present the algorithms of the Joye-Libert
cryptosystem.

Setup(λ): Set an integer k ≥ 1. Randomly generate two distinct large prime
numbers p, q such that |p| = |q| = λ and p ≡ 1 mod 2k. Output the public
key pk = (n, y, k), where n = pq and y ∈ Jn \QRn. The corresponding secret
key is sk = (p, q).

Encrypt(pk,m): To encrypt a message m ∈ [0, 2k), we choose x
$←− Z∗

n and
compute c ≡ ymx2k mod n. Output the ciphertext c.

Decrypt(sk, c): Compute the value z ≡ Jp,2k(c) and find m such that the re-
lation

[
Jp,2k(y)

]m ≡ z mod p holds. Efficient methods to recover m can be
found in a subsequent section.

4 The Unbalanced Joye-Libert PKE scheme

In the unbalanced Joye-Libert scheme we reduce the size of p (denoted by λp)
while keeping the size of n constant (denoted by λn). This modification only
impacts the description of the Setup algorithm, which we briefly describe below.
Therefore, we have λn = λp + λq, where λq = |q| and λp ≤ λq. Note that when
λp = λq we obtain the Joye-Libert cryptosystem, which we further refer to as
the balanced Joye-Libert scheme.

5

Setup(λp, λq): Set an integer k ≥ 1. Randomly generate two distinct large prime
numbers p, q such that |p| = λp, |q| = λq and p ≡ 1 mod 2k. Output the
public key pk = (n, y, k), where n = pq and y ∈ Jn\QRn. The corresponding
secret key is sk = (p, q).

Remark 1. Modifying the size of p does not impact the security proofs discussed
in [7,20]. Therefore, as long as factoring is hard, the unbalanced version is secure.
We show how to choose λp such that factoring remains difficult in Section 6.

5 The Multiprime Joye-Libert PKE scheme

5.1 Description

We further describe the multiprime Joye-Libert encryption scheme. In this case
we split up n into multiple primes. Therefore, we have that λn = tλp + λq. Note
that when λp = λq and t = 1 we obtain the original cryptosystem from [7, 20]
and, moreover, when in addition we set k = 1 we obtain the Goldwasser-Micali
cryptosystem [18]. Also, if we set t = 1 we obtain the unbalanced version.

Setup(λp, λq): Set an integer k ≥ 1. Randomly generate t + 1 distinct large
prime numbers p1, . . . , pt, q such that |p1| = . . . = |pt| = λp, |q| = λq and
p1, . . . , pt ≡ 1 mod 2k. Let n = p1 . . . ptq. For each i ∈ [1, t] select yi

$←− Z∗
n

such that

Jpi
(yi) = Jq(yi) = −1 and Jpj ,2k(yi) = 1, where j ̸= i.

Output the public key pk = (n, Y, k) and the corresponding secret key sk =
P , where Y = {yi}i∈[1,t] and P = {pi}i∈[1,t].

Encrypt(pk,m): To encrypt message m ∈ [0, 2kt), first we divide it into t blocks
m = m1∥ . . . ∥mt such that for each i ∈ [1, t] we have |mi| = k. Then, we
choose randomly x

$←− Z∗
n and compute the value c ≡ x2k ·

∏t
i=1 y

mi
i mod n.

The output is ciphertext c.
Decrypt(sk, c): For each i ∈ [1, t], compute mi using Algorithm 1.

Algorithm 1: Basic decryption algorithm
Input: The secret prime pi, the value yi and the ciphertext c
Output: The message block mi

1 mi ← 0, B ← 1
2 foreach s ∈ [1, k + 1) do
3 z ← Jpi,2s(c)
4 t← Jpi,2s(yi)

mi mod pi
5 if t ̸= z then
6 mi ← mi +B
7 B ← 2B

8 return mi

6

Correctness. Let mi =
∑k−1

w=0 bw2
w be the binary expansion of block mi. Note

that

Jpi,2s(c) = Jpi,2s(x
2k ·

t∏
v=1

ymv
v) = Jpi,2s(y

mi
i) = Jpi,2s(yi)

∑s−1
w=0 bw2w

since

1. Jpi,2s(x
2k) = 1, where 1 ≤ s ≤ k;

2. Jpi,2k(yj) = 1, where j ̸= i;
3.

∑k−1
w=0 bw2

w =
(∑s−1

w=0 bw2
w
)
+ 2s

(∑k−1
w=s bw2

w−s
)

.

As a result, the message block mi can be recovered bit by bit using pi.

5.2 Security Analysis

In this section we first introduce a vectorial generalisation of the quadratic resid-
uosity problem and prove that inverting the encryption function of our proposal
is as hard as breaking this assumption. Then we generalise the gap 2k-residuosity
problem stated in [20] and prove the ind-cpa security of our proposal.

Before stating the security assumptions used to prove the security of our
proposal, we first define the following sets

Zn(i) = {x ∈ Z∗
n | Jpj ,2k(x) = 1 for any j ̸= i},

QRn(i) = {x ∈ Zn(i) | Jpi
(x) = 1 and Jq(x) = 1},

Jn(i) = {x ∈ Zn(i) | Jpi
(x)Jq(x) = 1},

where n = p1 . . . ptq and i, j ∈ [1, t].

Definition 3 (Vectorial Quadratic Residuosity - vqr). Choose t + 1 dis-
tinct large prime numbers p1, . . . , pt, q such that |p1| = . . . = |pt| = λp, |q| = λq

and p1, . . . , pt ≡ 1 mod 2k. Let n = p1 . . . ptq. Let A be a PPT algorithm that
returns 1 on input (x1, . . . , xt, n) if xi ∈ QRn(i). We define the advantage

ADV vqr
A (λp, λq) =

∣∣∣Pr[A(x1, . . . , xt, n) = 1 | xi
$←− QRn(i) for i ∈ [1, t]]

− Pr[A(x1, . . . , xt, n) = 1 | xi
$←− Jn(i) \QRn(i) for i ∈ [1, t]]

∣∣∣ .
The Vectorial Quadratic Residuosity assumption states that for any PPT algo-
rithm A the advantage ADV vqr

A (λp, λq) is negligible.

Theorem 1. Inverting the encryption function of the multiprime Joye-Libert
PKE is intractable if the vqr assumption is intractable.

Proof. Let’s assume that there exists an adversary A such that given a ci-
phertext c, it recovers the message m. We construct a PPT algorithms that
breaks the vqr assumption. More precisely, on input (y1, . . . , yt) B computes

7

c ≡ (y1 . . . yt)
2k−1

x2k , where x
$←− Z∗

n. Remark that if yi ∈ Jn(i) \QRn(i), then c
is an encryption of m2k−1 = 2k−1∥ . . . ∥2k−1. If yi ∈ QRn(i), then yi ≡ w2

i mod n,
and thus c ≡ (w1 . . . wtx)

2k mod n is an encryption of m0 = 0. According to the
above arguments, on input (y1, . . . , yt, c) algorithm A outputs either m2k−1 or
m0, and thus B outputs 0 or 1, respectively. Therefore, B breaks the vqr as-
sumption with non-negligible probability. ⊓⊔

Definition 4 (Vectorial Gap 2k-Residuosity - vgr). Choose t+ 1 distinct
large prime numbers p1, . . . , pt, q such that |p1| = . . . = |pt| = λp, |q| = λq and
p1, . . . , pt ≡ 1 mod 2k. Let n = p1 . . . ptq. Let A be a PPT algorithm that returns
1 on input (x1, . . . , xt, k, n) if xi ∈ Jn(i) \QRn(i). We define the advantage

ADV vgr
A (λp, λq) =

∣∣∣Pr[A(x1, . . . , xt, k, n) = 1 | xi
$←− Jn(i) \QRn(i) for i ∈ [1, t]]

− Pr[A(x2k

1 , . . . , x2k

t , k, n) = 1 | xi
$←− Z∗

n for i ∈ [1, t]]
∣∣∣ .

The Vectorial Gap 2k-Residuosity assumption states that for any PPT algorithm
A, the advantage ADV vgr

A (λp, λq) is negligible.

Theorem 2. The multiprime Joye-Libert PKE is ind-cpa secure if and only if
the vgr assumption is intractable.

Proof. The proof of the statement is obtained by simply replacing the distribu-
tion of the public key elements (y1, . . . , yt). More precisely, we select randomly
the yi values from the multiplicative subgroup of 2k residues modulo n instead
of drawing them from the Jn(i) \ QRn(i) set. Under the vgr assumption, the
adversary will not notice this change. Therefore, we removed any link between
the ciphertext c and the message m, and thus the ind-cpa security follows. ⊓⊔

5.3 Optimizations

Setup Optimization. When choosing the public key we have to meet certain
restrictions. An effective way to accomplish this is to first randomly choose the
values yi,i

$←− Z∗
pi
\QRpi , yi,t+1

$←− Z∗
q \QRq and wi,j

$←− Z∗
pj

. Then compute the
elements yi,j ← w2k

i,j mod pj . Using the Chinese remainder theorem we compute
the desired value yi ∈ Z∗

n such that yi ≡ yi,ℓ mod pℓ for all ℓ ∈ [1, t] and yi ≡
yi,t+1 mod q.

Decryption Optimization. In order to speed-up the decryption process, the au-
thors of [21] add an extra restriction when generating the prime factors of n,
and then use it to simplify decryption. Applying this to the multiprime case, we
obtain the fact that we have to generate pi such that pi ̸≡ 1 mod 2k+1 holds.

8

Let p′i = (pi− 1)/2k and αi[s] = 2k−sp′i. Then the following relation between
the ciphertext and plaintext holds

cαi[s] ≡ (x2k ·
t∏

v=1

ymv
v)αi[s]

≡ y
αi[s]

∑s−1
w=0 bw2w

i

≡ y
bs−12

k−1p′
i

i y
αi[s]

∑s−2
w=0 bw2w

i

≡ (−1)bs−1y
αi[s](mi mod 2s−1)
i mod pi

since

1. (x2k)αi[s] = x2k−s(pi−1) = 1;
2. Jpi,2k(yj) = 1, where j ̸= i;
3.

∑k−1
w=0 bw2

w =
(∑s−1

w=0 bw2
w
)
+ 2s

(∑k−1
w=s bw2

w−s
)

;
4. Jpi

(yi) = −1.

Hence, if we precompute Di = y
−p′

i
i , then we can recover message block mi.

Wrapping it all together we obtain Algorithm 2. Note that when t = 1 we
obtain [21, Algorithm 3]. The authors also propose three other optimizations3

[21, Algorithm 4, 5 and 6], but their complexity is similar with Algorithm 3’s
complexity.

Algorithm 2: Optimized decryption algorithm
Input: The secret values (pi, Di), the value yi and the ciphertext c
Output: The message block mi

1 mi ← 0, B ← 1, D ← Di

2 C ← Jpi,2k
(c)

3 foreach j ∈ [1, k − 1] do
4 z ← C2k−j

mod pi
5 if z ̸= 1 then
6 mi ← mi +B
7 C ← C ·D mod pi
8 B ← 2B, D ← D2 mod pi
9 if C ̸= 1 then

10 mi ← mi +B
11 return mi

3 Note that two of these optimizations contain a typo: in line 5, Algorithm 5 and line
6, Algorithm 6 we should have Ak−j ̸= C[k−j] mod p instead of A ̸= C[k−j] mod p.

9

6 Implementation and Performance Analysis

6.1 Parameter Selection

The fastest currently known algorithm for factoring composite numbers is the
Number Field Sieve (NFS) [26]. The expected running time of the NFS depends
on the size of the modulus n and not on the size of its factors. More precisely,
the expected running time is approximately

L[n] = e1.923(log n)1/3(log log n)2/3 .

In [25,26], the authors extrapolate the running time needed to factor a modulus
of size λn from the computational effort required to factor a 512-bit modulus.
Hence, a λn-bit modulus offers a security equivalent to a block cipher of d-bit
security if

L[2λn] ≃ 50 · 2d−56 · L[2512]. (1)

Since we start from a secure Joye-Libert PKE and we wish to optimize de-
cryption by decreasing the size of some of the factors of the modulus, while
keeping the size of the modulus constant, the NFS cannot be expected to factor
n. Unfortunately, this strategy can make the resulting PKEs vulnerable to the
Elliptic Curve Method (ECM) [22], if we lower the size of the factors below a
certain threshold. Compared to the NFS, the ECM has the running time deter-
mined by the size of the smallest factor. Thus, if p is the smallest factor, then
the running time of the ECM is

E[n, p] = (log2 n)
2e

√
2 log p log log p.

Similarly to the NFS, Lenstra [24] extrapolates the equivalent security provided
by a module of size λn with the smallest prime of size λp to be

E[2λn , 2λp] ≥ 80 · 2d−56 · E[2768, 2167]. (2)

From Equations (1) and (2) we can deduce the following equivalency

E[2λn , 2λp] ≥ 80 · 2log2(L[2λn]/(50·L[2512])) · E[2768, 2167]. (3)

A different model for predicting the security against the NFS and the ECM
is provided in [11]. Compared to Lenstra’s model, Brent uses known historical
factoring records to predict the year a modulus of a given size will be factored.
Using the least-squares fit, Brent obtains the following equation for the NFS

D1/3
n =

Y − 1928.6

13.24
or equivalently Y = 13.24 ·D1/3

n + 1928.6 (4)

and for the ECM

D1/2
p =

Y − 1932.3

9.3
or equivalently Y = 9.3 ·D1/2

p + 1932.3, (5)

10

where Dn is the number of digits of the factored modulus and Dp is the number
of digits of the largest prime factor found using the ECM.

Using regression analysis, we update Brent’s equations using data points
from [3,5,8,9,12,13,16,17,23,29,32] for the NFS and from [10,34] for the ECM.
These data points are presented in Figures 1 and 2.

1960 1970 1980 1990 2000 2010 2020
0

50

100

150

200

250

Fig. 1: Size of general number factored versus year

1990 1995 2000 2005 2010 2015

40

50

60

70

80

Fig. 2: Size of general number factored using ECM versus year

11

Therefore, the updated equation for the NFS is

D1/3
n =

Y − 1926

13.97
or equivalently Y = 13.97 ·D1/3

n + 1926 (6)

and for the ECM

D1/2
p =

Y − 1939

8.207
or equivalently Y = 8.207 ·D1/2

p + 1939. (7)

Equations (4) to (7) are presented in Figures 3 and 4. Note that the black
dots represent the acquired data points. We observe that in the case of the
NFS the estimates are close, while in the case of the ECM the new estimate
is more pessimistic from a security point of view. Using the updated estimates
(Equations (6) and (7)) we obtain the following equivalency

D1/2
p =

13.97 ·D1/3
n − 13

8.207
. (8)

1960 1970 1980 1990 2000 2010 2020

3

4

5

6

7 Brent
Updated

Fig. 3: D1/3 versus year Y

According to NIST [6], the recommended key sizes for composite modules
are λn = 1536/3840/15360. We preferred to use NIST recommendations instead
of the ones from [25, 26] since these key sizes are the ones used by the industry
and the key sizes from [25,26] are criticized as being too conservative [32]. There-
fore, using Equations (3) and (8) we obtain the equivalent size of the smallest
prime. The results are presented in Table 2. Note that in the parentheses we
provide the maximum number of prime factors that n can have. Based on these
equivalences, we obtain the parameters for the Joye-Libert schemes that offer
protection against the NFS and the ECM (see Table 4).

12

1990 1995 2000 2005 2010 2015 2020
6

7

8

9

10 Brent
Updated

Fig. 4: D1/2 versus year Y for ECM

Due to a powerful attack by Coppersmith [14], the size of k must be upper
bounded by 0.5λp. Otherwise, the factors of n can be found. We can easily see
that the block sizes from Table 4 offer a large enough security margin obtained
from this bound (see Table 3).

Modulus key size 3072 7680 15360

Lenstra model 800(3) 1617(4) 2761(5)

Regression model 749(4) 1457(5) 2385(6)

Table 2: Equivalent key sizes

|p| 1536 800 749 3840 1617 1457 7680 2761 2385

0.5|p| 768 400 374 1920 808 728 3840 1380 1192

Table 3: Coppersmith’s upper bound

6.2 Complexity

Using the complexities provided in Table 1, we compute the asymptotic run times
of the decryption algorithm for each Joye-Libert variant. We also determine the
size of a block mi for each variant. The results are provided in Table 5. Note

13

|n| t |p| |q| |mi| Type Model

3072

1 1536 1536 128 Balanced -
1 800 2272 128 Unbalanced Lenstra
2 800 1472 64 Multiprime
1 749 2323 128 Unbalanced

Regression2 749 1574 64 Multiprime
3 749 825 43

7680

1 3840 3840 192 Balanced -
1 1617 6063 192 Unbalanced

Lenstra2 1617 4446 96 Multiprime
3 1617 2829 64

1 1457 6223 192 Unbalanced

Regression2 1457 4766 96
Multiprime3 1457 3309 64

4 1457 1852 48

15360

1 7680 7680 256 Balanced -
1 2761 12599 256 Unbalanced

Lenstra2 2761 9838 128
Multiprime3 2761 7077 86

4 2761 4316 64

1 2385 12975 256 Unbalanced

Regression
2 2385 10590 128

Multiprime3 2385 8205 86
4 2385 5820 64
5 2385 3435 52

Table 4: Joye-Libert parameters’ size

Scheme |m| Encryption Complexity Decryption Complexity

Balanced k O(2kM(λn))
O((2kλ+ k)M(λ))

O((λ+ k2/2 + 3k/2)M(λ))

Unbalanced k O(2kM(λn))
O((2kλp + k)M(λp))

O((λp + k2/2 + 3k/2)M(λp))

Multiprime tk O(2ktM(λn))
O(t(2kλp + k)M(λp))

O(t(λp + k2/2 + 3k/2)M(λp))

Parallel Multiprime tk O(2kM(λn))
O((2kλp + k)M(λp))

O((λp + k2/2 + 3k/2)M(λp))

Table 5: Performance analysis

14

that by parallel multiprime we mean the multiprime version in which we use
a separate thread to compute each block mi. We can easily see that for the
parameters presented in Table 4, the encryption and decryption complexities of
the unbalanced and multiprime versions are similar. Therefore, we only compare
the balanced, unbalanced and the parallel multiprime versions. Also, remark that
we choose the parameters such that the message spaces are similar for all the
variants.

The comparison of the computational complexity of the three variants is
presented in Figures 5 to 7. Note that the two sets of crosses for the multiprime
version correspond to the two equivalence models: Lenstra - right side crosses and
Regression - left side crosses. We also added a dotted red line in the case of the
basic decryption (Algorithm 1), which represent the boundary of the optimized
decryption algorithm (Algorithm 2) of the balanced version.

From the six plots we can see that the parallel multiprime version always
performs better than the (un)balanced version if multiple threads are available.
Also, the more threads we use, the faster we recover the original message. There-
fore, if additional memory is available and parallelization is possible, then the
parallel multiprime version endowed with the optimized decryption algorithm
is preferable. Nevertheless, if we only have access to parallelization, then the
parallel multiprime version equipped with the basic decryption algorithm is the
best choice. Otherwise, we should use the unbalanced variant.

6.3 Implementation Details

We further provide the reader with benchmarks for the three Joye-Libert PKE
schemes. We ran each of the three sub-algorithms on a CPU Intel i7-4790 4.00
GHz and used GCC to compile it (with the O3 flag activated for optimiza-
tion). Note that for all computations we used the GMP library [2]. To cal-
culate the running times we used the omp_get_wtime() function [1]. For the
parallel multiprime variant we used the OMP library [1] to parallelize encryp-
tion/decryption. To obtain the average running time in seconds we chose to
encrypt 100 128/192/256-bit messages. Therefore, we wanted to simulate a key
distribution scenario. The results are provided in Table 6. Note that the opti-
mized version of the decryption algorithm is denoted by Decrypt (opt).

We can see from Table 6 that the conclusions presented in Section 6.2 hold.
We can also see that the multiprime version has the shortest time to generate
the parameters, while the unbalanced version the longest time. Nevertheless,
generating parameters is a one-time operation.

7 Conclusions

In this work we introduced two novel versions of the Joye-Libert cryptosystem.
The first one, called the unbalanced Joye-Libert PKE, lowers the size of p in
order to decrease decryption time. The second one, called the multiprime Joye-
Libert PKE, increases the number of factors and achieves better decryption

15

800 1,000 1,200 1,400 1,600

0.0

2.0

4.0

6.0

8.0

·109

Balanced
Unbalanced

Parallel

(a) Basic

800 1,000 1,200 1,400 1,600
0.0

1.0

2.0

·108

Balanced
Unbalanced

Parallel

(b) Optimized

Fig. 5: Decryption complexity versus λp for λn = 3072

1,500 2,000 2,500 3,000 3,500 4,000

0.0

0.5

1.0

·1011

Balanced
Unbalanced

Parallel

(a) Basic

1,500 2,000 2,500 3,000 3,500 4,000

0.0

0.5

1.0

1.5

·109

Balanced
Unbalanced

Parallel

(b) Optimized

Fig. 6: Decryption complexity versus λp for λn = 7680

2,000 4,000 6,000 8,000

0.0

2.0

4.0

6.0

·1011

Balanced
Unbalanced

Parallel

(a) Basic

2,000 4,000 6,000 8,000

0.0

2.0

4.0

6.0

·109

Balanced
Unbalanced

Parallel

(b) Optimized

Fig. 7: Decryption complexity versus λp for λn = 15360

16

|n| t |p| Setup Encrypt Decrypt Decrypt (opt)

3072

1 1536 0.193475 0.000782 0.325478 0.007954

1 800 0.414516 0.000783 0.046704 0.002073
2 800 0.129921 0.000584 0.025147 0.001427

1 749 0.507081 0.000782 0.038254 0.001796
2 749 0.140442 0.000567 0.020635 0.001273
3 749 0.036575 0.000419 0.014810 0.000770

7680

1 3840 6.554910 0.004791 6.516350 0.095550

1 1617 14.48600 0.004792 0.565853 0.017291
2 1617 6.103730 0.003115 0.287015 0.006300
3 1617 1.334260 0.002326 0.205834 0.004104

1 1457 17.03100 0.004790 0.390024 0.013370
2 1457 6.961240 0.003112 0.201755 0.004917
3 1457 2.030210 0.002387 0.162581 0.003348
4 1457 0.559723 0.001948 0.154818 0.002867

15360

1 7680 55.77040 0.018572 47.62750 0.472317

1 2761 184.5970 0.018570 3.337000 0.080039
2 2761 69.75550 0.010459 1.712070 0.029658
3 2761 27.77600 0.007987 1.222490 0.023583
4 2761 8.610660 0.006857 0.995357 0.018094

1 2385 183.5240 0.018564 2.183190 0.059934
2 2385 86.03020 0.010578 1.135120 0.021922
3 2385 38.94160 0.008167 0.808199 0.017175
4 2385 16.45910 0.006833 0.675422 0.012873
5 2385 5.086330 0.006127 0.702819 0.012128

Table 6: Running times

times by using multiple threads. Therefore, if parallel threads are available, we
recommend the multiprime version, otherwise, we recommend the unbalanced
variant. If additional memory is available, then we can replace the basic decryp-
tion algorithm with the optimized version, and therefore we can get even better
decryption times.

Open Problem. In [7], the authors manage to link the gap 2k-residuosity as-
sumption to the quadratic residuosity assumption, when q ≡ 3 mod 4 and to
the quadratic residuosity and squared Jacobi symbols assumptions, when q ≡
1 mod 4. Therefore, it would be interesting to find a similar link for the vqr
assumption. The main bottleneck that we encountered when trying to link it to
the vqr is that the probability of choosing an element from Jn(i) is 1/2kt−k+2,
and thus for t elements the probability is 1/2t(kt−k+2). Therefore, for practical
values of k and t, this probability is negligible.

17

References

1. OpenMP. https://www.openmp.org/
2. The GNU Multiple Precision Arithmetic Library. https://gmplib.org/
3. RSA Honor Roll. http://www.ontko.com/pub/rayo/primes/hr_rsa.txt (1999)
4. Cryptography Using Compaq Multiprime Technology in a Parallel Processing En-

vironment. https://www.compaq.com (2000)
5. Bahr, F., Boehm, M., Franke, J., Kleinjung, T.: Factorization of RSA-200. https:

//members.loria.fr/PZimmermann/records/rsa200 (2005)
6. Barker, E.: NIST SP800-57 Recommendation for Key Management, Part 1: Gen-

eral. Tech. rep., NIST (2016)
7. Benhamouda, F., Herranz, J., Joye, M., Libert, B.: Efficient Cryptosystems from

2k-th Power Residue Symbols. Journal of Cryptology 30(2), 519–549 (2017)
8. Boudot, F., Gaudry, P., Guillevic, A., Heninger, N., Thomé, E., Zimmermann, P.:

795-bit Factoring and Discrete Logarithms. https://sympa.inria.fr/sympa/arc/
cado-nfs/2019-12/msg00000.html (2019)

9. Boudot, F., Gaudry, P., Guillevic, A., Heninger, N., Thomé, E., Zimmermann,
P.: Factorization of RSA-250. https://sympa.inria.fr/sympa/arc/cado-nfs/
2020-02/msg00001.html (2020)

10. Brent, R.P.: Large Factors Found By ECM. https://maths-people.anu.edu.au/
~brent/ftp/champs.txt

11. Brent, R.P.: Some Parallel Algorithms for Integer Factorisation. In: Euro-Par 1999.
Lecture Notes in Computer Science, vol. 1685, pp. 1–22. Springer (1999)

12. Cavallar, S., Dodson, B., Lenstra, A., Leyland, P., Lioen, W., Montgomery, P.L.,
Murphy, B., Riele, H.t., Zimmermann, P.: Factorization of RSA-140 Using the
Number Field Sieve. In: ASIACRYPT 1999. Lecture Notes in Computer Science,
vol. 1716, pp. 195–207. Springer (1999)

13. Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W., Montgomery, P.L., Murphy,
B., Riele, H.t., Aardal, K., Gilchrist, J., Guillerm, G., et al.: Factorization of a
512-bit rsa modulus. In: EUROCRYPT 2000. Lecture Notes in Computer Science,
vol. 1807, pp. 1–18. Springer (2000)

14. Coppersmith, D.: Small Solutions to Polynomial Equations, and Low Exponent
RSA Vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

15. Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective. Num-
ber Theory and Discrete Mathematics, Springer (2005)

16. Denny, T., Dodson, B., Lenstra, A.K., Manasse, M.S.: On the Factorization of
RSA-120. In: CRYPTO 1993. Lecture Notes in Computer Science, vol. 773, pp.
166–174. Springer (1993)

17. Franke, J., Kleinjung, T., Montgomery, P., te Riele, H., Bahr, F., Leclair, D., Ley-
land, P., Wackerbarth, R.: Factorization of RSA-576. https://members.loria.fr/
PZimmermann/records/rsa576 (2003)

18. Goldwasser, S., Micali, S.: Probabilistic Encryption and How to Play Mental Poker
Keeping Secret All Partial Information. In: STOC 1982. pp. 365–377. ACM (1982)

19. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

20. Joye, M., Libert, B.: Efficient Cryptosystems from 2k-th Power Residue Symbols.
In: EUROCRYPT 2013. Lecture Notes in Computer Science, vol. 7881, pp. 76–92.
Springer (2013)

21. Joye, M., Libert, B.: Efficient Cryptosystems from 2k-th Power Residue Symbols.
IACR Cryptology ePrint Archive 2013/435 (2014)

https://www.openmp.org/
https://gmplib.org/
http://www.ontko.com/pub/rayo/primes/hr_rsa.txt
https://www.compaq.com
https://members.loria.fr/PZimmermann/records/rsa200
https://members.loria.fr/PZimmermann/records/rsa200
https://sympa.inria.fr/sympa/arc/cado-nfs/2019-12/msg00000.html
https://sympa.inria.fr/sympa/arc/cado-nfs/2019-12/msg00000.html
https://sympa.inria.fr/sympa/arc/cado-nfs/2020-02/msg00001.html
https://sympa.inria.fr/sympa/arc/cado-nfs/2020-02/msg00001.html
https://maths-people.anu.edu.au/~brent/ftp/champs.txt
https://maths-people.anu.edu.au/~brent/ftp/champs.txt
https://members.loria.fr/PZimmermann/records/rsa576
https://members.loria.fr/PZimmermann/records/rsa576

18

22. Jr., H.W.L.: Factoring Integers with Elliptic Curves. Annals of Mathematics pp.
649–673 (1987)

23. Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry,
P., Kruppa, A., Montgomery, P.L., Osvik, D.A., et al.: Factorization of a 768-Bit
RSA Modulus. In: CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223,
pp. 333–350. Springer (2010)

24. Lenstra, A.K.: Unbelievable Security. Matching AES Security Using Public Key
Systems. In: ASIACRYPT 2001. Lecture Notes in Computer Science, vol. 2248,
pp. 67–86. Springer (2001)

25. Lenstra, A.K., Verheul, E.R.: Selecting Cryptographic Key Sizes. In: PKC 2000.
Lecture Notes in Computer Science, vol. 1751, pp. 446–465. Springer (2000)

26. Lenstra, A.K., Verheul, E.R.: Selecting Cryptographic Key Sizes. Journal of Cryp-
tology 14(4), 255–293 (2001)

27. Maimuţ, D., Teşeleanu, G.: A New Generalisation of the Goldwasser-Micali Cryp-
tosystem Based on the Gap 2k-Residuosity Assumption. In: SecITC 2020. Lecture
Notes in Computer Science, vol. 12596, pp. 24–40. Springer (2020)

28. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC press (1996)

29. Odlyzko, A.M.: The Future of Integer Factorization. RSA Laboratories’ Crypto-
bytes 1(2), 5–12 (1995)

30. Rivest, R.L., Shamir, A., Adleman, L.M.: Cryptographic Communications System
and Method (1983), US Patent 4,405,829

31. Shamir, A.: RSA for Paranoids. RSA Laboratories’ Cryptobytes 1(3), 1–4 (1995)
32. Silverman, R.D.: A Cost-Based Security Analysis of Symmetric and Asymmetric

Key Lengths. RSA Laboratories’ Bulletin 13 (2000)
33. Yan, S.Y.: Number Theory for Computing. Theoretical Computer Science, Springer

(2002)
34. Zimmermann, P.: 50 Largest Factors Found by ECM. https://members.loria.

fr/PZimmermann/records/top50.html

https://members.loria.fr/PZimmermann/records/top50.html
https://members.loria.fr/PZimmermann/records/top50.html

	The Case of Small Prime Numbers Versus the Joye-Libert Cryptosystem

