
Security of Truncated Permutation
Without Initial Value

Lorenzo Grassi and Bart Mennink

Radboud University, Nijmegen, The Netherlands
l.grassi@cs.ru.nl, b.mennink@cs.ru.nl

Abstract. Indifferentiability is a powerful notion in cryptography. If a
construction is proven to be indifferentiable from an ideal object, it can
under certain assumptions instantiate that ideal object in higher-level
constructions. Indifferentiability is a particularly useful model for cryp-
tographic hash functions, and myriad results are known proving that a
hash function behaves like a random oracle under the assumption that
the underlying primitive (typically a compression function, a block ci-
pher, or a permutation) is random. Recently, advances have been made in
proving indifferentiability of one-way functions with fixed input length.
One such example is truncation of a permutation. If one evaluates a
random permutation on an input value concatenated with a fixed initial
value, and truncates the output, one obtains a construction that is indif-
ferentiable from a random function up to a certain bound (Dodis et al.,
FSE 2009; Choi et al., ASIACRYPT 2019). Security of this construction,
however, is in part determined by the length of the initial value; omission
of this fixed value yields an insecure construction.
In this paper, we reconsider truncation of a permutation, and prove that
the construction is indifferentiable from a random oracle, even if this
fixed initial value is replaced by a randomized value. This randomized
value may be the same for different evaluations of the construction, or
freshly generated, up to the discretion of the adversary. The security level
is the same as that of truncation with fixed initial value, up to collisions
in the randomized value.
We show that our construction has immediate implications in the con-
text of parallel variable-length digest generation. In detail, we describe
Cascade-MGF, that operates on top of any cryptographic hash function
and uses the hash function output as randomized initial value in trunca-
tion. We demonstrate that Cascade-MGF compares favorably over earlier
parallel variable-length digest generation constructions, namely Counter-
MGF and Chained-MGF, in almost all settings.

Keywords: Random permutation – Truncation – Indifferentiability –
MGF – Digest generation

1 Introduction

A cryptographic hash function is a one-way function (that is, a function which
is practically infeasible to invert) that maps data of arbitrary size to an output



of a fixed size (the “hash value”). Cryptographic hash functions are amongst
the most-studied and most-used cryptographic functions. They are used to pro-
vide integrity and authenticity in a large number of applications and protocols,
including digital signatures, message authentication codes (MACs), and other
forms of authentication.

The first hash functions appeared in the 70s, when Rabin introduced his it-
erative hash function design [39] and Merkle his ideas on tree hashing [35]. The
iterative Merkle-Damg̊ard construction, independently described by Damg̊ard
and Merkle [17, 34], later became the predominant approach in hash function
design. Given a compression function F that maps 2n bits to n bits, the con-
struction first pads and splits an arbitrarily sized input M ∈ {0, 1}∗ injectively
into n-bit blocks M0,M1, . . . ,Mµ. The hash value is obtained by compressing
these blocks one-by-one into an n-bit state:

hi+1 = F(hi,Mi) for i = 0, . . . , µ , (1)

where h0 = IV ∈ {0, 1}n is an initial value. Classical hash functions, including
SHA-1, SHA-2, and MD5, are of this form.

In more recent years, the approach of permutation based hashing has gained
popularity, mainly due to the rise of the sponge hash function construction [4,6],
that is (among others) used as mode in the SHA-3 construction Keccak [8].
The sponge construction accommodates for both arbitrarily sized inputs and
arbitrarily sized outputs. Let P be a permutation over {0, 1}b, and let b = r+ c,
where c denotes the capacity and r the rate. As before, an input message M ∈
{0, 1}∗ is first injectively padded and split into r-bit blocks M0,M1, . . . ,Mµ.
Then, the message blocks are compressed one-by-one into a b-bit state:

hi+1 = P(hi ⊕ (Mi‖0c)) for i = 0, . . . , µ , (2)

where h0 = IV ∈ {0, 1}b is an initial value. Let hi+1 = P(hi) for i ≥ µ+1. After
the absorption of the last message block, the output is of the form

leftr(hµ+1) ‖ leftr(hµ+2) ‖ leftr(hµ+3) ‖ · · · ,

where leftr(·) denotes the r leftmost bits of its input.
All of these constructions have faced extensive security analysis. Whereas

originally the focus was collision resistance, preimage resistance, and second
preimage resistance, the current trend is to argue that a hash function construc-
tion is secure in the indifferentiability model, described and recalled in detail in
Section 2.1. This model, introduced by Maurer et al. [28] and tailored to hash
functions by Coron et al. [13], considers a security game where an adversary has
access to either the hash function construction and an idealized primitive, or it
has access to a random oracle and a simulator with the same interface as the
hash function primitive. The goal of the simulator is to “mimic” the behavior
of the idealized primitive so that any transcript an adversary has from commu-
nication with the random oracle and the simulator is hard to distinguish from
a transcript that it may obtain from the actual construction and the idealized
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primitive. Although the plain Merkle-Damg̊ard construction was not indiffer-
entiable (see Coron et al. [13]), several variations of it have been proven to be
indifferentiable up to around 2n/2 queries [11, 13]. Likewise, Bertoni et al. [6]
proved that the sponge construction (based on a random function or a permu-
tation) is indifferentiable from a random oracle up to around 2c/2 queries.

The Merkle-Damg̊ard indifferentiability result was proven under the assump-
tion that the underlying function F is a random compression function. In prac-
tice, however, compression functions are built from invertible primitives such as
block ciphers or permutations, e.g., the PGV compression functions [10,38]. Such
compression functions are often easy to differentiate from random, which makes
the aforementioned indifferentiable result futile. Instead, the research commu-
nity had to resort to proving indifferentiability of Merkle-Damg̊ard constructions
based on a block cipher directly [13].

1.1 State of the Art on Compression Function Design

Having said that, there do exist compression functions based on block ciphers or
permutations that are indifferentiable from a random function, up to a proper
bound, and that can be used to instantiate F in the Merkle-Damg̊ard con-
struction. Two notable block cipher based examples are a double block length
compression function of Mennink [29, 30] and the compression function used in
BLAKE2 [2, 26]. Both constructions achieve indifferentiability by operating on
an internal state that is larger than the block size of the compression function.

A notable permutation based example is the compression function used in the
MD6 hash function [40]. Given P a permutation over {0, 1}b, the compression
function consists of truncating (TRUNC) the output of the permutation:

TRUNC(I) = leftn (P(IV ‖I)) , (3)

where IV ∈ {0, 1}m is an initial value, I ∈ {0, 1}b−m is the input, and where
leftn(·) returns the n leftmost bits (where n < b). Dodis et al. [18] proved that
this compression function is hard to distinguish from random. Choi et al. [12]
recently derived an improved bound and proved that (3) is indifferentiable from

a random function up to around min
{

2
2b−n

3 , 2
b−n

b−n , 2
m
}

queries.

Note that the TRUNC construction is not a compression function in the strict
sense of the word: its input may be larger or smaller than its output, or they may
be of the same size, depending on the parameter choice, and it should rather
be named a one-way function. Another well-known permutation based one-way
function design that is proven to be indifferentiable from a random function is
the sum of independent permutations (SOP) construction, that operates based
on two permutations P1 and P2 over {0, 1}b:

SOP(I) = P1(I)⊕ P2(I) , (4)

where I ∈ {0, 1}b is the input. The earliest analysis of a construction of this
kind (in which the random permutations are publicly available to the adversary)
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is by Mandal et al. [27], who proved 2b/3-bit security. The proof turned out to
have a subtle but non-negligible flaw which has been fixed by Mennink and Pre-
neel [31]. Later, Lee [25] proved improved security for the general construction,
and Bhattacharya and Nandi [9] improved all these known bounds and proved
(full) b-bit indifferentiability of the sum of k ≥ 2 independent permutations.

1.2 Improving Truncation

Common to all aforementioned compression function constructions is that they
operate on an increased internal state and/or make multiple primitive calls to
achieve indifferentiability. In addition, TRUNC has the property of additionally
taking an initial value IV ∈ {0, 1}m as input. This fixed initial value is, in fact,
crucial for the indifferentiability proof: if omitted, the TRUNC construction (3)
can be easily distinguished from random. (To wit, also the proven security bound
becomes void for m = 0.)

Still, intuitively, the initial value is overkill. To see this, assume for the sake
of example that we drop the initial value. In other words, we consider TRUNC
of (3) with m = 0. If we set n = c, we obtain a compression function from b
to c bits, and we can use it in the Merkle-Damg̊ard construction (1) with state
c and message block size b − c. The resulting construction is very similar to
the sponge construction (2), the only difference is that message blocks are not
added to the outer part but rather substituted, and this construction is known
to be secure [6]. (This is known as the Grindahl construction [24].) Bottom line
is that this initial value in TRUNC helps us in proving indifferentiability of the
compression function and making it possible to instantiate the Merkle-Damg̊ard
construction with TRUNC. On the other hand, it is overkill in the sense that
it is not strictly necessary for guaranteeing the security of the hashing scheme
(equivalently, its omission does not make the resulting hashing scheme insecure).

1.3 Truncation Without Fixed IV

In this work, we take a closer look at the TRUNC construction, and particularly
the role of the initial value IV . Concretely, we consider TRUNC of (3) where the
fixed initial value IV is replaced by a random value. The adversary may choose
to evaluate TRUNC multiple times for the same random value, it may choose
to evaluate TRUNC for a different random value each query, and it may learn
all random values used. We prove that this construction is still indifferentiable
from a random oracle up to a comparable bound: the only difference occurs in
the event of collisions in the random initial values.

More detailed, our proof incorporates an additional random oracle H, and
queries that the adversary makes to the TRUNC construction do not just consist
of an input value I ∈ {0, 1}b−m, but also include a message M . The IV is
subsequently replaced by H(M). Formally, for a hash function H with range
{0, 1}m and a permutation P over {0, 1}b, our construction RTRUNC is defined
as

RTRUNC(M, I) = leftn (P(H(M)‖I)) . (5)
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Under the assumption thatH is a random oracle and P is a random permutation,
we prove that the RTRUNC construction is indifferentiable from a random oracle
up to around

min

{
2

2b−n
3 , 2

m
2 ,

2b−n

b− n

}
≈ min

{
2

2b−n
3 , 2

m
2 , 2b−n

}
(6)

queries. The proof is given in Section 4. It is inspired by the proof of Choi et al.
for their isolated compression function, but deals with the complicating factor
that comes with the presence of the hash function outputs.

1.4 Application: Parallel Digest Generation

Despite the fact that the applicability of earlier compression function indiffer-
entiability results was negligible, mostly due to its expensive internal operation
to make the indifferentiability proof work, our construction has direct practical
applications. The main application, in fact, immediately comes from the proof
approach: RTRUNC allows to extend any cryptographic hash function H into
a parallel eXtendable Output Function (XOF) [37] that generates arbitrarily
sized outputs. Note that, indeed, the Merkle-Damg̊ard construction only out-
puts a fixed sized digest; the sponge construction does allow for arbitrarily sized
outputs, but this output generation is inherently sequential. Parallel digest gen-
eration can lead to a significant speed-up in certain implementations, and would
particularly be relevant in use with parallel tree hashing.

The quest for parallel digest generation is not new. Indeed, evaluating several
permutations simultaneously in modern CPUs is faster than evaluating them in
sequence. Hence, it is desirable to have schemes that can be efficiently paral-
lelized. In the case of PRFs, this goal has been achieved by, e.g., the Farfalle
construction proposed by Bertoni et al. [5] at ToSC 2017. For hashing, there al-
ready exist several constructions for achieving such a goal, which are commonly
called “Mask Generation Functions” (MGFs).

Counter-MGF. To the best of our knowledge, the first construction – denoted
as MGF1 (“Mask Generating Function 1”) – was introduced by Kaliski and
Staddon [23] in 1998 for use in public key cryptography. The majority of existing
MGFs [1,21,22,41] follow the counter-based design and have been standardized
by ANSI, IEEE, and ISO/IEC. Focusing on the MGF1 construction, it is built
on top of a hash function H : {0, 1}∗ → {0, 1}m. It takes as input an arbitrarily
sized message M , glues a counter 〈i〉l of fixed size l to it, and outputs

H(M‖〈0〉l) ‖ H(M‖〈1〉l) ‖ H(M‖〈2〉l) ‖ · · · . (7)

This construction is also known as Counter-MGF. Its indifferentiability from a
(variable output length) random oracle follows from the indifferentiability of H
from a (fixed output length) random oracle. See also Suzuki and Yasuda [42].
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Chained-MGF. A comparable approach is Chained-MGF [36]. This mask gen-
eration function is built on top of a hash function H : {0, 1}∗ → {0, 1}m and a
one-way function F : {0, 1}m+l → {0, 1}n. It evaluates H on the message M ,
glues a counter 〈i〉l of fixed size l to this digest, and outputs

F(H(M)‖〈0〉l) ‖ F(H(M)‖〈1〉l) ‖ F(H(M)‖〈2〉l) ‖ · · · . (8)

This construction is proven to be indifferentiable from a random oracle up to
the random oracle security of H and F by Suzuki and Yasuda [42]. Note, in
particular, that security is capped by 2m/2 because security breaks in case one
finds collisions in the output of H.

Clearly, Chained-MGF has a disadvantage over Counter-MGF in that it uses
two independent primitives. On the other hand, it does allow for more freedom
in the choice of the finalizing one-way function F , and the design is ignorant of
the actual hash function in use. This is an advantage that will become clearer if
we apply these modes to permutation-based hashing.

Cascade-MGF. The transition of our construction RTRUNC to a new MGF,
which we dub Cascade-MGF, is immediate. For a hash function H : {0, 1}∗ →
{0, 1}m and a permutation P : {0, 1}b → {0, 1}b, it plainly evaluates RTRUNC
on message M and counter 〈i〉l of fixed size l = b−m, and outputs

RTRUNC(M, 〈0〉l) ‖ · · · ‖ RTRUNC(M, 〈i〉l) ‖ · · ·
= leftn (P(H(M)‖〈0〉l) ‖ · · · ‖ leftn (P(H(M)‖〈i〉l) ‖ · · · ,

(9)

where 〈i〉l ∈ {0, 1}l denotes the bit representation of i ∈ Z2b−m . Note that
Cascade-MGF of (9) is exactly equal to Chained-MGF of (8) instantiated with
the construction (3) of Choi et al., but with the IV removed.

Comparison. In Section 5 we perform a generic comparison of Cascade-MGF
with Counter-MGF and Chained-MGF with the focus on parallelizable permutation-
based hashing and achieving k-bit security. It appears that Cascade-MGF com-
pares favorably in most cases. An overview of this general comparison is given in
Table 1. For the sake of exemplification, we now restrict our focus to k = 128-bit
security with the use of a 384-bit permutation such as GIMLI [3] or Xoodoo [14].
In this case, the hash function H outputs digests of size m = 256 bits.

It appears that Cascade-MGF now achieves the exact same level of security
as Chained-MGF instantiated with TRUNC (3). The only difference is that
our construction does not use/need an initial value whereas Chained-MGF with
TRUNC requires a k = 128-bit initial value. Due to this, our construction allows
for a counter of size l = b−m = 128 bits whereas Chained-MGF with TRUNC
allows for a counter of size l = b−m−k = 0 bits. As a concrete application, the
squeezing phase in the recent tree-sponge construction proposed by Gunsing [19]
can be instantiated via Cascade-MGF instead of Chained-MGF.

Chained-MGF instantiated with SOP (4) allows for the generation of more
output blocks. Keeping the security parameters as in above choices, Chained-MGF
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with SOP can generate 384-bit digests at a time as opposed to 256-bit digests in
Cascade-MGF. The price to pay is that SOP makes two permutation evaluations
per digest blocks instead of one, effectively making it less efficient.

The comparison of Cascade-MGF with Counter-MGF is less trivial. The
reason is that Cascade-MGF is more versatile and is defined regardless of the
hash function H in use, whereas Counter-MGF processes the counter 〈i〉l by
the hash function. This means that a comparison between Cascade-MGF and
Counter-MGF can only be made for a specific hash function choice. In Sec-
tion 5.2, we instantiate both constructions with a minimal
parallelizable permutation-based tree hash construction that is proven to be
indifferentiable [15,20], and argue that even in this case, Cascade-MGF has ad-
vantages. First of all, and more importantly, the cost in terms of the number
function/permutation calls for generating an output of arbitrary length is in-
dependent of the size of the input message for Cascade-MGF, while it depends
on it for Counter-MGF. In particular, we show that the cost in term of func-
tion/permutation calls of Counter-MGF is at least double with respect to the cost
necessary for Counter-MGF, but such factor can even be much bigger depend-
ing on the size of the input message. Secondly, in Cascade-MGF one can take
a smaller permutation for digest generation. On the downside, Counter-MGF
would then be based on only one primitive whereas Cascade-MGF takes two.
This can be remedied by instantiating the primitives using a single permutation
with different round constants.

2 Preliminaries

Notation. For m,n ∈ N, {0, 1}n denotes the set of bit strings of length n. By
{0, 1}∗ we denote the set of arbitrarily sized strings, and by {0, 1}∞ the set of
infinitely long strings. We denote by Hw(x) the Hamming Weight of a binary
string x ∈ {0, 1}∗. We denote by func(m,n) the set of all functions from {0, 1}m
to {0, 1}n and by perm(n) the set of permutations on {0, 1}n. Abusing notation,
we denote by func(∗, n) the set of all functions from {0, 1}∗ to {0, 1}n. For a

finite set X, x
$←− X denotes the uniform random sampling of an element x from

X. The definition extends to func(∗, n) by lazy sampling.

A random oracle RO gives access to a function that takes as input binary
strings of arbitrary length and returns a random infinite string for each input,
that is, RO : {0, 1}∗ → {0, 1}∞. In a slightly more practical view, RO gets both
a binary string and a length parameter ` ∈ N as inputs, and it outputs a random
string of length `. If it is queried twice for the same message but for different
length parameters `, `′ ∈ N, the shorter output is a substring of the longer one.

For m,n ∈ N with m ≥ n, we denote by leftn : {0, 1}m → {0, 1}n the function
that outputs the leftmost n bits of the input. Likewise, rightn : {0, 1}m → {0, 1}n
outputs the rightmost n bits of the input. For a set X ⊆ {0, 1}m, we write
leftn(X) = {leftn(x) | x ∈ X}, rightn(X) = {rightn(x) | x ∈ X}, and X‖∗n =
{x‖y ∈ {0, 1}m+n | x ∈ X ∧ y ∈ {0, 1}n}.
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Fig. 1: The indifferentiability model.

2.1 Indifferentiability Model

Consider a hash function construction C built on top of an ideal component I.
To measure how good this hash function behaves like a random oracle RO, we
adopt the indifferentiability framework of Maurer et al. [28], and more precisely
its version tailored to hash functions by Coron et al. [13]. In this framework,
we consider a distinguisher D. This distinguisher has access to either of two
worlds: the real world (C[I], I) and the simulated world (RO,S[RO]), where S
is a simulator that has the same interface as I and that has as goal to mimic
its behavior in such a way that transcripts appearing in the ideal world are
hard to distinguish from transcripts appearing in the real world. The goal of
the distinguisher is to determine, for a given simulator S, which world it is
communicating with. If this is computationally hard, we say that C[I] behaves
like a random oracle, or simply that it is indifferentiable from a random oracle
(up to a certain bound). Formally, we have the following definition.

Definition 1. Let C by a cryptographic hash function with access to an ideal
component I. Let RO be a random oracle with the same interface as C. We say
that C is (Q, q, ε)-indifferentiable from RO if there exists a simulator S such
that

AdvC,S(D) =
∣∣∣Pr
(
DC[I],I = 1

)
− Pr

(
DRO,S[RO] = 1

)∣∣∣ < ε ,

for any distinguisher D making at most Q queries to the outer construction (C[I]
in the real world and RO in the simulated world) and at most q queries to the
inner construction (I in the real world and S[RO] in the simulated world).

The indifferentiability model is depicted in Figure 1.

In our work, we will consider hash functions C built on top of a set of com-
ponents I, namely a hash function H and a random permutation P. In this
case, S will also consist of two collaborating sub-simulators, and we split the
inner complexity q into qH and qP . Also, as we consider information-theoretic
distinguishers and maximize over all of them, we will consider deterministic dis-
tinguishers only (without loss of generality).
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2.2 χ2 Method

At Crypto 2017, Dai et al. [16] introduced the chi-squared method (χ2 method),
which can be exploited to obtain an upper bound on the statistical distance
between two joint probability distributions.

Let W0 and W1 be two random systems over a sample space Ω. Let D be a
deterministic distinguisher that makes ρ oracle queries to one of the two random
systems. For each j ∈ {1, . . . , ρ}, we denote by ZW,j the random variable over Ω
that follows the distribution of the j-the answer obtained by D interacting with
W. Let

ZjW = (ZW,1, ZW,2, . . . , ZW,j) ,

and for each zj−1 = (z1, z2, . . . , zj−1) ∈ Ωj−1, let

p
zj−1

W,j (z) = Pr
(
ZW,j = z | Zj−1W = zj−1

)
.

Assume that W0 and W1 are such that p
zj−1

W0,j
(z) > 0 whenever p

zj−1

W1,j
(z) > 0.

Define, for any j ∈ {1, . . . , ρ} and any zj−1 = (z1, z2, . . . , zj−1) ∈ Ωj−1,

χ2(zj−1) =
∑

z∈Ω such that p
zj−1
W0,j

(z)>0

(
p
zj−1

W0,j
(z)− pzj−1

W1,j
(z)
)2

p
zj−1

W0,j
(z)

.

Dai et al. [16] proved that the distinguishing advantage between W0 and W1,
denoted |ZW0 −ZW1 |, is upper bounded as follows:

|ZW0
−ZW1

| ≤

1

2

ρ∑
j=1

Ex
(
χ2(zj−1)

) 1
2

.

3 The RTRUNC and Cascade-MGF Constructions

In this section, we describe the RTRUNC construction that we are going to
analyze, as well as the Cascade-MGF hash function mode that can naturally be
built on top of RTRUNC.

Let b,m, n ∈ N such that m,n ≤ b, and let l = b −m. Let H ∈ func(∗,m)
be a hash function and P ∈ perm(b) a permutation. The function RTRUNC is
defined as

RTRUNC : {0, 1}∗ × {0, 1}l → {0, 1}n ,
(M, I) 7→ leftn (P(H(M)‖I)) .

(10)

As already informally explained in Section 1, this construction immediately
yields an MGF, which we dub Cascade-MGF. This construction is built on the
same primitives, namely a hash function H ∈ func(∗,m) and a permutation
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P ∈ perm(b), and it consists of concatenating multiple evaluations of RTRUNC
for different inputs I = 〈i〉l for i = 0, 1, 2, . . .:

RTRUNC(M, 〈0〉l) ‖ RTRUNC(M, 〈1〉l) ‖ RTRUNC(M, 〈2〉l) ‖ · · · . (11)

If we prove that the RTRUNC construction of (10) is indifferentiable from a
fixed output length random oracle, then (11) is indifferentiable from a variable
length random oracle. It thus suffices to prove the former, and this is the topic
of next section.

Before proceeding with that proof, we admit that, even after concatenating
outputs, (11) is not variable output length, as the counter can take at most 2l

values. Nevertheless, if l is large enough, for example if l is at least as much as
the targeted security parameter, this is sufficient. Note that a similar limitation
holds, e.g., for the sponge construction: in theory it can output an arbitrary
amount of output blocks, but the security proof dictates that its security cannot
be guaranteed once the permutation is evaluated more than 2c/2 times.

4 Indifferentiability of the RTRUNC Construction

In this section, we prove the indifferentiability of the RTRUNC construction.

Theorem 1. Let b,m, n ∈ N such that m,n ≤ b, and let l = b −m. Let H $←−
func(∗,m) be a random hash function and P $←− perm(b) a random permutation.
Consider the RTRUNC construction of (10), which we denote by C. Let RO
be a random oracle with the same interface as C. There exists a simulator S,
explicitly constructed in the proof, such that

AdvC,S(D) ≤
(
qH
2

)
+ 3 · qH · qP

2m
+
Q · qP
2b−3

+
(3 · ln(Q) + 3n+ 1) · qP

2b−n−1

+

(
6 · (Q+ qH + qP)3

22b−n
+

3 · (Q+ qH + qP)2

2m
+

5 · (Q+ qH + qP)

2b−n

) 1
2

(12)

for any distinguisher D making Q queries to the outer construction and qH and
qP to the inner constructions, where Q+ qH+ qP ≤ 2m−1 and 1 + qP ≤ 2b−n−1.

An interpretation of the security bound will be given in Section 5.
The first step of the proof will be to design a simulator S. This will be done in

Section 4.1. Note that, in fact, this simulator must simulate multiple functions:
a hash function SH as well as the forward and inverse interfaces SP and S−1P .
The next step is to bound the distance AdvC,S(D) of Definition 1 for the given
simulator and for any computationally unbounded distinguisher that can make Q
queries to the outer construction and qH and qP to the inner constructions. This
is done in Section 4.2. This bounding itself relies on a triangle inequality with
an intermediate world, by bounding the two distances from the real and from
the simulated world to this intermediate world. These two bounds are derived
in separate lemmas in Sections 4.3 and 4.4.
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4.1 Simulator

The first step is to design a simulator S[RO], which consists of three algorithms:
SH, SP , and S−1P . These three algorithms are related, i.e., any algorithm might
have access to the query history of another algorithm. In addition, they may
query RO. The goal is to design algorithms that are hard to distinguish from
random functions H, P, and P−1, respectively, and that are consistent with the
random oracle RO.

Simulators. To store input-output tuples of SH,SP and S−1P , we maintain the
following initially empty sets CH and CP :

CH = {(M,x) ∈ {0, 1}∗ × {0, 1}m | SH(M) = x} ,
CP = {(X,Y ) ∈ {0, 1}b × {0, 1}b | SP(X) = Y and S−1P (Y ) = X} .

We additionally define the domain and range values respectively of CH and CP
as follows:

DH = {M ∈ {0, 1}∗ | ∃x ∈ {0, 1}m such that (M,x) ∈ CH} ,
RH = {x ∈ {0, 1}m | ∃M ∈ {0, 1}∗ such that (M,x) ∈ CH} ,
DP = {X ∈ {0, 1}b | ∃Y ∈ {0, 1}b such that (X,Y ) ∈ CP} ,
RP = {Y ∈ {0, 1}b | ∃X ∈ {0, 1}b such that (X,Y ) ∈ CP} .

Moreover, for each y ∈ {0, 1}n, we define Ry
P as follows:

Ry
P = {y′ ∈ {0, 1}b−n | y‖y′ ∈ RP} .

Likewise, to store the input-output tuples of C, we maintain the following
initially empty set CC :

CC = {((M, I), y) ∈ {0, 1}∗ × {0, 1}l × {0, 1}n | C(M, I) = y} .

We additionally define the domain and range values of CC as follows:

DC = {(M, I) ∈ {0, 1}∗ × {0, 1}l | ∃x ∈ {0, 1}n such that ((M, I), y) ∈ CC} ,
RC = {y ∈ {0, 1}n | ∃(M, I) ∈ {0, 1}∗ × {0, 1}l such that ((M, I), y) ∈ CC} .

Note that the simulator has no access to CC ; we will need it later to bound the
indifferentiability advantage.

Based on this, simulator SH is now given in Algorithm 1, simulator SP in
Algorithm 2, and simulator S−1P in Algorithm 3.

Discussion. We briefly elaborate on some design choices of the simulator.
Regarding SH, the output is chosen from the set {0, 1}m \(RH ∪ leftm(DP)).

One of our goals is to avoid a collision at the output of SH. The problem is not
about collisions itself (note that a collision can also occur in the real world), but
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Algorithm 1: Simulator SH
Data: input M ∈ {0, 1}∗
Result: output x ∈ {0, 1}m

1 if M ∈ DH then
2 return x such that (M,x) ∈ CH

3 x
$←− {0, 1}m \ (RH ∪ leftm(DP))

4 CH ← CH ∪ {(M,x)}
5 return x

Algorithm 2: Simulator SP
Data: input X ∈ {0, 1}b
Result: output Y ∈ {0, 1}b

1 if X ∈ DP then
2 return Y ∈ RP such that (X,Y ) ∈ CP
3 parse X = x‖I where x = leftm(X) ∈ {0, 1}m
4 if x ∈ RH then
5 let M ∈ {0, 1}∗ be such that (M,x) ∈ CH
6 y ←RO(M, I)

7 y′
$←− {0, 1}b−n \Ry

P
8 Y ← y‖y′

9 else

10 Y
$←− {0, 1}b \RP

11 CP ← CP ∪ {(X,Y )}
12 return Y

Algorithm 3: Simulator S−1
P

Data: input Y ∈ {0, 1}b
Result: output X ∈ {0, 1}b

1 if Y ∈ RP then
2 return X ∈ DP such that (X,Y ) ∈ CP

3 X
$←− {0, 1}b \

(
DP ∪RH‖∗b−m

)
4 CP ← CP ∪ {(X,Y )}
5 return X

rather about the fact that the two outputs of the overall construction C[H,P]
would be equal, and this could be problematic when defining SP .

In a similar way, we want to avoid that calls to SH create collisions between
the outputs of SH and the leftmost m bits of the inputs to SP . This type of
collisions is also explicitly avoided in calls to S−1P . The problem of collisions
between the outputs of SH and the inputs to SP is related to the consistency
between the inner constructions and the outer one, in this case the random
oracle RO. For example, assume that SH(M) returns a value x that already
belongs to leftm(DP), or in a similar way that S−1P returns a value X such that

12



leftm(X) ∈ RH. Let I ∈ {0, 1}l be such that rightl(X) = I. In this case, an
attacker can check the consistency of these two simulator queries with RO, by
verifying if RO(M, I) = leftn(Y ). This equality would hold with probability 1
in the real world.

Besides these two collisions, no other types of collisions are avoided, and the
simulators SH and S±P behave like a random hash function and permutation,
respectively, with one difference: if the simulator SP is queried on an input X
such that leftm(X) ∈ RH, the simulator must maintain oracle consistency, i.e.,
query its random oracle RO to generate a response to the query.

4.2 Proof of Theorem 1

Let C be the construction of (10) defined via a random hash function H and a
random permutation P. Let RO be a random oracle with the same interface as
C, and let S be the simulator of Section 4.1. Let WS = (RO,SH[RO],S±P [RO])
and WR = (C[H,P],H,P) denote the simulated world and the real world, re-
spectively. Let D be any distinguisher that makes at most Q construction queries
(to RO or C[H,P]), qH queries to the first primitive oracle (SH[RO] or H) and
qP queries to the second primitive oracle (SP [RO] or P). Assume that D never
makes redundant queries, i.e., query an oracle twice on the same input. From
Definition 1, our goal is to bound

AdvC,S(D) =
∣∣Pr
(
DWS = 1

)
− Pr

(
DWR = 1

)∣∣ . (13)

Additional World. First, we will consider the differences between the two
worlds. Focusing on SH and H, it is obvious that the former never results in
collisions, but they might occur in the latter. This means that there exist com-
munication transcripts that can occur in WR but not in WS. At the same time,
the random oracle RO in WS outputs random strings, whereas in WR the out-
puts of the function C[H,P] depend on the details of the function H and of the
permutation P. Hence, there exist communication transcripts that can occur in
WS but not in WR.

As our goal is to apply the chi-squared method, our first step is to introduce
an intermediate world WI = (C[H?,P?],H?,P?), which has the same oracle
interface as WS and WR. The idea is that the world WI behaves closely to WR,
and thatWI is in the support ofWS, and this world reminds of the intermediate
world introduced by Choi et al. [12], though it is more involved as a hash function
interface is added. These functions maintain initially empty sets to store input-
output tuples C?H,C

?
P and C?C , in a similar vein as in Section 4.1, with D?

H, R?
H,

D?
P , R?

P , R?
P
y, D?

C , and R?
C defined analogously as before. The algorithms H?,

P?, and P?−1 are now given in Algorithms 4, 5, 6, respectively.
In a nutshell, the world WI operates as WR but instantiates it with lazily-

sampled primitives H? and P? that slightly deviate from H and P. In particular,
H? never samples any element in R?

H ∪ leftm(D?
P), and P?−1 never samples any

element of D?
P ∪ (R?

H‖∗b−m). The world uses flags denoted by bad1, bad2, and
bad3 (all initialized as false), to mark events in which WI differs from WR.
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Algorithm 4: Procedure H? with appended bad events

Data: input M ∈ {0, 1}∗
Result: output x ∈ {0, 1}m

1 x
$←− {0, 1}m

2 if x ∈ R?
H or x ∈ leftm(D?

P) then
3 if x ∈ R?

H then
4 bad1 ← true
5 if x ∈ leftm(D?

P) then
6 bad2 ← true

7 x
$←− {0, 1}m \ (R?

H ∪ leftm(D?
P))

8 C?H ← C?H ∪ {(M,x)}
9 return x

Algorithm 5: Procedure P? with appended bad events

Data: input X ∈ {0, 1}b
Result: output Y ∈ {0, 1}b

1 Y
$←− {0, 1}b \R?

P
2 C?P ← C?P ∪ {(X,Y )}
3 return Y

Algorithm 6: Procedure P?−1 with appended bad events

Data: input Y ∈ {0, 1}b
Result: output X ∈ {0, 1}b

1 parse Y = y‖y′ where y = leftn(Y ) ∈ {0, 1}n
2 if Y /∈ R?

P then

3 X
$←− {0, 1}b \D?

P
4 if leftm(X) ∈ R?

H then
5 bad2 ← true

6 X
$←− {0, 1}b \

(
D?
P ∪R?

H‖∗b−m
)

7 C?P ← C?P ∪ {(X,Y )}
8 else
9 bad3 ← true

10 let X ′ ∈ {0, 1}b be such that (X ′, Y ) ∈ C?P

11 X
$←− {0, 1}b \

(
D?
P ∪R?

H‖∗b−m
)

12 y′
$←− {0, 1}b−n \R?

P
y

13 Y ′ ← y‖y′
14 C?P ← (C?P \ ({X ′, Y }) ∪ {(X,Y ), (X ′, Y ′)}
15 return X

A significant change is in the oracle P?−1, where it makes a distinction be-
tween whether or not Y /∈ R?

P . Recall that the adversary never evaluates re-
peated queries. This means that if Y ∈ R?

P holds, necessarily there had been
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a query (M, I) to C(M, I) that returned y = leftn(Y ). In this case, the distin-
guisher did not obtain any information on the b − n rightmost bits of Y , yet.
The only thing it knows, is that there should be an evaluation

P?(∗̂‖I) = y‖∗

for unknown ∗̂ ∈ {0, 1}n and ∗ ∈ {0, 1}b−m. When this inverse query P ?−1(y‖∗)
is made later during the attack, the rightmost bits rightb−n(y‖∗) are replaced

by a new element y′, and P ?−1(y‖∗) is also given a new element X outside
D?
P ∪R?

H‖∗b−m.

Triangle Inequality. Using intermediate worldWI, a triangle inequality yields
for (13):

AdvC,S(D) ≤∣∣Pr
(
DWS = 1

)
− Pr

(
DWI = 1

)∣∣+
∣∣Pr
(
DWI = 1

)
− Pr

(
DWR = 1

)∣∣ . (14)

Bounds on the remaining two terms are derived separately. In Lemma 1, a bound
on the distance between WI and WR is derived, and in Lemma 2, a bound on
the distance between WS and WI is derived.

Lemma 1. Let WI = (C[H?,P?],H?,P?) and WR = (C[H,P],H,P) be respec-
tively the intermediate and the real world, as defined before. Then,

∣∣Pr
(
DWI = 1

)
− Pr

(
DWR = 1

)∣∣ ≤ (qH2 )+ 3 · qH · qP
2m

+
Q · qP
2b−3

+
(3 · ln(Q) + 3n+ 1) · qP

2b−n−1

for any distinguisher D making Q queries to the outer construction and qH and
qP to the inner constructions, where Q+ qH + qP ≤ 2b−1.

Lemma 2. Let WS = (RO,SH[RO],S±P [RO]) and WI = (C[H?,P?],H?,P?)
be respectively the simulated world and the intermediate world, as defined before.∣∣Pr

(
DWS = 1

)
− Pr

(
DWI = 1

)∣∣ ≤ (6 · (Q+ qH + qP)3

22b−n

+
3 · (Q+ qH + qP)2

2m
+

5 · (Q+ qH + qP)

2b−n

) 1
2

for any distinguisher D making Q queries to the outer construction and qH and
qP to the inner constructions, where Q+ qH+ qP ≤ 2m−1 and 1 + qP ≤ 2b−n−1.

The proof of Lemma 1 is given in Section 4.3, and consists of bounding the
probability that a bad event occurs in WI. The proof of Lemma 2 is given in
Section 4.4, and is based on the chi-squared method. The proof of Theorem 1 is
immediately completed by plugging the bounds of Lemmas 1 and 2 into (14).
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Additional Notation. For world WI, and specifically for evaluations of P?
and P?−1, we introduce the following additional notation. Consider any query
P?−1(Y ) with y = leftn(Y ). At the point of making this query,

– Vy counts the number of elements X where P?(X) has been determined by
a function query or a distinguisher query such that P?(X) = y‖y′ for some
y′ ∈ {0, 1}b−n:

Vy = |{X ∈ {0, 1}b | ∃y′ ∈ {0, 1}b−n such that P?(X) = y‖y′}| ;

– Sy counts the number of elements X where P?(X) has been determined only
by a distinguisher query such that P?(X) = y‖y′ for some y′ ∈ {0, 1}b−n;

– Fy counts the number of elements X where P?(X) has been partially de-
termined only by a function query and P?(X) = y‖? for some unknown
? ∈ {0, 1}b−n, in such a way that Fy = Vy − Sy.

Finally, let V =
∑
y∈{0,1}n Vy. At any point in time, V = |C?P |.

4.3 Upper Bound on Distance Between WI and WR (Lemma 1)

The two worlds behave in the same way until one of the bad events is set to true
in WI. Hence, we can upper bound this term by computing the probability that
one of the bad events is set to true:∣∣Pr

(
DWI = 1

)
− Pr

(
DWR = 1

)∣∣ ≤ Pr(bad1 ∪ bad2 ∪ bad3)

≤ Pr(bad1) + Pr(bad2) + Pr(bad3) .

In the following, we compute Pr(badi) for each i ∈ {1, 2, 3}. The proof of the
lemma is then completed by a simple addition of the three terms.

Probability of bad1. This event happens if H? returns a value x that already
belongs to R?

H, or equivalently, a value x for which there exists an earlier M ′ such
that (M ′, x) ∈ C?H. As the distinguisher makes qH queries to H?, the probability
that this occurs is bounded as follows:

Pr(bad1) ≤
qH∑
j=1

j − 1

2m
≤
(
qH
2

)
2m

.

Probability of bad2. This event happens if H? returns a value x that already
belongs to leftm(D?

P) or if P?−1 returns a value X such that leftm(X) ∈ R?
H. In

a query to H?, bad2 is set with probability at most qP/2
m. In a query to P?−1,

bad2 is set with probability at most (qH · 2b−m)/(2b − qP) ≤ 2qH/2
m (provided

that qP ≤ 2b−1). After qH queries to H? and at most qP queries to P?−1, the
probability of this event to occur is upper bounded by:

Pr(bad2) ≤
qH∑
j=1

qP
2m

+

qP∑
j=1

2qH
2m

=
3 · qH · qP

2m
.
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Probability of bad3. The event is very similar to bad event E2 of Choi et
al. [12], and we adopt their reasoning. This event happens if a query Y = y‖y′
to P?−1 belongs to R?

C‖∗b−m, that is if y = leftn(Y ) is the result of a query
to the outer construction. Consider any query. Note that this query fixes y =
leftn(Y ). The probability, conditioned on the previous queries, that this query

with leftn(Y ) = y sets bad3 is at most
Fy·2n
2b−qP , as for any guess there are Fy

possible values y′ that could set the bad event, and the adversary knows at
most qP earlier outcomes of P?. Provided that qP ≤ 2b−1, and as the adversary
can choose y, the conditional probability that the j-th query sets bad3 is upper
bounded by

maxy∈{0,1}n Fy

2b−n−1
.

Thus, summing over all queries we get

Pr(bad3) ≤
qP∑
j=1

Exj

(
maxy∈{0,1}n Fy

2b−n−1

)
, (15)

where Exj(·) denotes the expectation taken over the interaction between D and
P? up to the j-th simulator query. Choi et al. [12] derived the following bound:

Exj

(
max

y∈{0,1}n
Fy

)
≤ Q

2n−2
+ 3 · ln(Q) + 3n+ 1 , (16)

provided that Q + qH + qP ≤ 2b−1. The proof of this bound is included in
Supplementary Material A for reference. By combining (15) and (16), we obtain:

Pr(bad3) ≤
qP∑
j=1

(
Q

2b−3
+

3 · ln(Q) + 3n+ 1

2b−n−1

)
=
Q · qP
2b−3

+
(3 · ln(Q) + 3n+ 1) · qP

2b−n−1
.

4.4 Upper Bound on Distance Between WS and WI (Lemma 2)

We will use the chi-squared method (recalled in Section 2.2) to provide an upper
bound of the distance between the simulated world and the intermediate world.
The analysis is inspired by Choi et al. [12], but crucially differs on certain aspects.
Most importantly, the elimination of the initial value IV and the subsequent
changes to the intermediate world have created significant differences in the
distributions between the two worlds WS and WI, as we will explain below.

Note that, by design, the support of the intermediate world WI is contained
in the support of the simulated worldWS. Let Ω = {0, 1}n×{0, 1}m×{0, 1}b be
the set that contains all possible answers for oracle queries to the simulated world
WS. For fixed j ∈ {1, . . . , Q + qH + qP} and zj−1 = (z1, z2, . . . , zj−1) ∈ Ωj−1
such that pj−1WS

(zj−1) > 0, our goal is to compute a bound on

χ2(zj−1) =
∑

z∈Ω such that p
zj−1
WS,j

(z)>0

(
p
zj−1

WS,j
(z)− pzj−1

WI,j
(z)
)2

p
zj−1

WS,j
(z)

. (17)
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Note that the distinguisher can make four types of queries:

– to the outer construction (either the function RO in world WS or C[H?,P?]
in world WI);

– to the first primitive (either the function SH[RO] in world WS or H? in
world WI);

– to the forward interface of the second primitive (either the function SP [RO]
in world WS or P? in world WI);

– to the forward interface of the second primitive (either the function S−1P [RO]
in world WS or P?−1 in world WI).

To bound χ2(zj−1) of (17), we will make a case distinction depending on the
type of oracle query, below. Afterwards, we will combine the computations and
conclude the proof using the chi-squared technique.

Query to Outer Construction. Suppose that the j-th query is an outer
construction query. For any y ∈ {0, 1}n, we have that

p
zj−1

WS,j
(y) =

1

2n
, and p

zj−1

WI,j
(y) =

2b−n − |R?
P
y|

2b − |R?
P |

.

For world WS, this is obvious as the outer construction is the random oracle.
For world WI, note that different inputs for C are mapped into different inputs

for P?, as the middle state value is drawn x
$←− {0, 1}m \ (R?

H ∪ leftm(D?
P)). The

resulting output Y of P? is drawn from a set of 2b − |R?
P | elements and exactly

2b−n − |R?
P
y| of them satisfy leftn(Y ) = y.

We thus obtain for (17) that, for outer construction queries,

χ2(zj−1) =
∑

y∈{0,1}n

(
p
zj−1

WS,j
(y)− pzj−1

WI,j
(y)
)2

p
zj−1

WS,j
(y)

=
∑

y∈{0,1}n

(2n · |R?
P
y| − |R?

P |)2

2n · (2b − |R?
P |)2

.

Using that |R?
P | ≤ Q+qP ≤ 2b−1 and subsequently using that |R?

P | =
∑
y∈{0,1}n |R?

P
y|,

we can bound this term as follows:

χ2(zj−1) ≤ 4

22b−n
·
∑

y∈{0,1}n

(
|R?
P
y| − |R

?
P |

2n

)2

≤ 4

22b−n
·

 ∑
y∈{0,1}n

(|R?
P
y|)2 +

∑
y∈{0,1}n

(|R?
P |)2

22n


≤ 4

22b−n
·


 ∑
y∈{0,1}n

|R?
P
y|

2

+
(|R?
P |)2

2n

 =
4 · (|R?

P |)2

22b−n
·
(

1 +
1

2n

)

≤ 6 · (Q+ qP)2

22b−n
, (18)

using that 1 + 1
2n ≤ 3/2.
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Query to First Primitive. Suppose that the j-th query is a query to the first
primitive. For any x ∈ {0, 1}m, we have that

p
zj−1

WS,j
(x) =


1

2m − |RH ∪ leftm(DP)|
if x ∈ {0, 1}m \ (RH ∪ leftm(DP)) ,

0 otherwise ,

p
zj−1

WI,j
(x) =


1

2m − |R?
H ∪ leftm(D?

P)|
if x ∈ {0, 1}m \ (R?

H ∪ leftm(D?
P)) ,

0 otherwise .

Note that, despite what intuition suggests, these distributions are not the same.
In world WI, any construction query adds tuples to C?H and C?P , whereas this is
not the case forWS. In the proof of Choi et al., this issue is resolved by restricting
world WI in such a way that the differences are annihilated. In our case, with
the omission of the initial value, this is not possible.1

Nevertheless, we do have that (RH ∪ leftm(DP)) ⊆ (R?
H ∪ leftm(D?

P)). Thus,
(17) satisfies, for queries to the first primitive,

χ2(zj−1) =
∑

x∈{0,1}m

(
p
zj−1

WS,j
(x)− pzj−1

WI,j
(x)
)2

p
zj−1

WS,j
(x)

=
∑

x∈(R?H∪leftm(D?
P))\(RH∪leftm(DP))

p
zj−1

WS,j
(x)

+
∑

x∈{0,1}m\(R?H∪leftm(D?
P))

(
p
zj−1

WS,j
(x)− pzj−1

WI,j
(x)
)2

p
zj−1

WS,j
(x)

,

where p
zj−1

WI,j
(x) = 0 in the first sum. As | (R?

H ∪ leftm(D?
P))\(RH ∪ leftm(DP)) | ≤

Q, we can bound this term as follows:

χ2(zj−1) ≤ Q

2m − |RH ∪ leftm(DP)|

+ 2m · (|RH ∪ leftm(DP)| − |R?
H ∪ leftm(D?

P)|)2

(2m − |RH ∪ leftm(DP)|) · (2m − |R?
H ∪ leftm(D?

P)|)2

≤ Q

2m − |RH ∪ leftm(DP)|
+

2m ·Q2

(2m − |R?
H ∪ leftm(D?

P)|)3

≤ 2 ·Q
2m

+
8 ·Q2

22m
, (19)

where we used that |R?
H ∪ leftm(D?

P)| ≤ Q+ qH + qP ≤ 2m−1.

1 Note that Choi et al. did not have a hash primitive, whereas we do, so the drawn
parallel here is a bit odd. The comparison with Choi et al.’s proof and the induced
difficulties become more apparent when we consider inverse queries, later on.
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Forward Query to Second Primitive. Suppose that the j-th query is a
forward query X = x‖I to the second primitive. We can distinguish three cases:

1. a query that does not complete a construction evaluation, namely a query X
for which x /∈ RH (equivalently, for which @M ∈ DH such that H(M) = x);

2. a forward query on an element related to a previous outer construction query,
namely a query X for which there exists M ∈ DH such that (i) H(M) = x
and (ii) (M, I) ∈ DC ;

3. a query that does complete a construction evaluation, namely a query X for
which there exists M ∈ DH such that (i) H(M) = x and (ii) (M, I) /∈ DC .

We will analyze these three cases separately.

First Case. For any Y ∈ {0, 1}b, we have that

p
zj−1

WS,j
(Y ) =


1

2b − |RP |
if Y ∈ {0, 1}b \RP ,

0 otherwise ,

p
zj−1

WI,j
(Y ) =


1

2b − |R?
P |

if Y ∈ {0, 1}b \R?
P ,

0 otherwise .

As for the case of queries to the first primitive, these distributions are not the
same. Nevertheless, we do have that RP ⊆ R?

P . Thus, (17) satisfies, for forward
queries to the first primitive of type 1,

χ2(zj−1) =
∑

Y ∈{0,1}b

(
p
zj−1

WS,j
(Y )− pzj−1

WI,j
(Y )
)2

p
zj−1

WS,j
(Y )

=
∑

Y ∈R?P\RP

p
zj−1

WS,j
(Y ) +

∑
Y ∈{0,1}b\R?P

(
p
zj−1

WS,j
(Y )− pzj−1

WI,j
(Y )
)2

p
zj−1

WS,j
(Y )

.

where p
zj−1

WI,j
(Y ) = 0 in the first sum. As |R?

P \RP | ≤ Q, we can bound this term
as follows:

χ2(zj−1) ≤ Q

2b − |RP |
+ 2b · (|RP | − |R?

P |)
2

(2b − |RP |) · (2b − |R?
P |)2

≤ Q

2b − |RP |
+

2b ·Q2

(2b − |R?
P |)3

≤ 2 ·Q
2b

+
8 ·Q2

22b
, (20)

where we used that |R?
P | ≤ Q+ qP ≤ 2b−1.
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Second Case. Let M ∈ DH be the unique (by design of SH and H?) value
such that (M,x) ∈ CH. Let y be such that ((M, I), y) ∈ CC . By design, in both
worlds, the response Y will be of the form y‖y′ for some y′ ∈ {0, 1}b−n. As a
matter of fact, in both worlds, the value y′ is randomly drawn in such a way
that y‖y′ does not collide with a former primitive evaluation. In other words, for
any Y ∈ {0, 1}b, we have that

p
zj−1

WS,j
(Y ) =


1

2b−n − |Ry
P |

if Y = y‖y′ with y′ ∈ {0, 1}b−n \Ry
P ,

0 otherwise ,

p
zj−1

WI,j
(Y ) =


1

2b−n − |R?
P
y|

if Y = y‖y′ with y′ ∈ {0, 1}b−n \R?
P
y ,

0 otherwise .

The case of world WI, however, needs some clarification. In principle, procedure

P? draws Y
$←− {0, 1}b \R?

P . However, as we condition on the query history, we
are given the earlier tuple including the value y. Condition on this, Y is drawn
uniformly randomly such that leftn(Y ) = y and such that Y hits no other range

value. This is equivalent to drawing y′
$←− {0, 1}b−n\R?

P
y, for given y. Note, also,

that this value might have been given a different value internally in the shuffling
of P?−1, but also here, Y is generated identically.

As for the case of queries to the first primitive, these distributions are not
the same. Nevertheless, we do have that Ry

P ⊆ R?
P
y. Thus, (17) satisfies, for

forward queries to the first primitive of type 2,

χ2(zj−1) =
∑

Y ∈{0,1}b

(
p
zj−1

WS,j
(Y )− pzj−1

WI,j
(Y )
)2

p
zj−1

WS,j
(Y )

=
∑

Y=y‖y′ with
y′∈R?P

y\RyP

p
zj−1

WS,j
(Y ) +

∑
Y=y‖y′ with

y′∈{0,1}b−n\R?P
y

(
p
zj−1

WS,j
(Y )− pzj−1

WI,j
(Y )
)2

p
zj−1

WS,j
(Y )

.

where p
zj−1

WI,j
(Y ) = 0 in the first sum. As |R?

P
y \ Ry

P | ≤ 1 (as in world WI, H?
does not output collisions), we can bound this term as follows:

χ2(zj−1) ≤ 1

2b−n − |Ry
P |

+ 2b−n ·
(|Ry
P | − |R?

P
y|)2

(2b−n − |Ry
P |) · (2b−n − |R?

P
y|)2

≤ 1

2b−n − |Ry
P |

+
2b−n

(2b−n − |R?
P
y|)3

≤ 2

2b−n
+

8

22b−2n
, (21)

where we used that |R?
P
y| ≤ 1 + qP ≤ 2b−n−1.
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Third Case. LetM ∈ DH be the unique (by design of SH andH?) value such that
(M,x) ∈ CH. In worldWS, the response Y is generated by calling y ← RO(M, I)

and generating y′
$←− {0, 1}b−n \Ry

P . Thus, for any Y ∈ {0, 1}b, we have that

p
zj−1

WS,j
(Y ) =


1

2n
· 1

2b−n − |Ry
P |

if Y = y‖y′ with y ∈ {0, 1}n, y′ ∈ {0, 1}b−n \Ry
P ,

0 otherwise .

For world WI, the response Y is generated as Y
$←− {0, 1}b \R?

P . Thus, for any
Y ∈ {0, 1}b, we have that

p
zj−1

WI,j
(Y ) =


1

2b − |R?
P |

if Y ∈ {0, 1}b \R?
P ,

0 otherwise .

As for the case of queries to the first primitive, these distributions are not the
same. Nevertheless, we do have that Ry

P ⊆ R?
P
y, and any value Y ∈ {0, 1}b \R?

P
can be written as Y = y‖y′ with y ∈ {0, 1}n, y′ ∈ {0, 1}b−n \R?

P
y. Thus, (17)

satisfies, for forward queries to the first primitive of type 3,

χ2(zj−1) =
∑

Y ∈{0,1}b

(
p
zj−1

WS,j
(Y )− pzj−1

WI,j
(Y )
)2

p
zj−1

WS,j
(Y )

=
∑

Y=y‖y′ with
y∈{0,1}n and
y′∈R?P

y\RyP

p
zj−1

WS,j
(Y ) +

∑
Y=y‖y′ with
y∈{0,1}n and

y′∈{0,1}b−n\R?P
y

(
p
zj−1

WS,j
(Y )− pzj−1

WI,j
(Y )
)2

p
zj−1

WS,j
(Y )

.

where p
zj−1

WI,j
(Y ) = 0 in the first sum. As |R?

P
y \Ry

P | ≤ 1 for any y (as in world
WI, H? does not output collisions), we can bound this term as follows:

χ2(zj−1) ≤ 2n

2b − 2n · |Ry
P |

+
∑

y∈{0,1}n

(2n · |Ry
P | − |R?

P |)2

(2b − 2n · |Ry
P |)(2b − |R?

P |)2
.

Using that |R?
P | ≤ Q + qP ≤ 2b−1 and that |Ry

P | ≤ |R?
P
y| ≤ 1 + qP ≤ 2b−n−1,

we can bound this term as follows:

χ2(zj−1) ≤ 2

2b−n
+

8

23b−2n
·
∑

y∈{0,1}n

(
|Ry
P | −

|R?
P |

2n

)2

≤ 2

2b−n
+

8

23b−2n
·

 ∑
y∈{0,1}n

(|Ry
P |)

2 +
∑

y∈{0,1}n

(|R?
P |)2

22n


≤ 2

2b−n
+

8

23b−2n
·


 ∑
y∈{0,1}n

|Ry
P |

2

+
(|R?
P |)2

2n


22



≤ 2

2b−n
+

12 · (Q+ qP)2

23b−2n
, (22)

again using that 1 + 1
2n ≤ 3/2.

Inverse Query to Second Primitive. Suppose that the j-th query is an
inverse query to the second primitive. For any X ∈ {0, 1}b, we have that

p
zj−1

WS,j
(X) =


1

2b − |DP ∪RH‖ ∗b−m |
if X ∈ {0, 1}b \

(
DP ∪RH‖∗b−m

)
,

0 otherwise ,

p
zj−1

WI,j
(X) =


1

2b − |D?
P ∪R?

H‖ ∗b−m |
if X ∈ {0, 1}b \

(
D?
P ∪R?

H‖∗b−m
)
,

0 otherwise .

As for the case of queries to the first primitive, these distributions are not the
same. Choi et al. had a comparable case, but they managed to construct WI

in such a way that the values were drawn identically to world WS. Due to our
omission of the initial value IV , this is (again) not an option for us. Thus, we
follow a comparable reasoning as for queries to the first primitive.

We do have that
(
DP ∪RH‖∗b−m

)
⊆
(
D?
P ∪R?

H‖∗b−m
)
. Thus, (17) satisfies,

for inverse queries to the second primitive,

χ2(zj−1) =
∑

X∈{0,1}b

(
p
zj−1

WS,j
(X)− pzj−1

WI,j
(X)

)2
p
zj−1

WS,j
(X)

=
∑

X∈(D?
P∪R?H‖∗b−m)\(DP∪RH‖∗b−m)

p
zj−1

WS,j
(X)

+
∑

X∈{0,1}b\(D?
P∪R?H‖∗b−m)

(
p
zj−1

WS,j
(X)− pzj−1

WI,j
(X)

)2
p
zj−1

WS,j
(X)

.

where p
zj−1

WI,j
(X) = 0 in the first sum. As |

(
D?
P ∪R?

H‖∗b−m
)
\
(
DP ∪RH‖∗b−m

)
| ≤

2b−m ·Q, we can bound this term as follows:

χ2(zj−1) ≤ 2b−m ·Q
2b − |DP ∪RH‖ ∗b−m |

+ 2b ·
(
|DP ∪RH‖ ∗b−m | − |D?

P ∪R?
H‖ ∗b−m |

)2
(2b − |DP ∪RH‖ ∗b−m |) · (2b − |D?

P ∪R?
H‖ ∗b−m |)2

≤ 2b−m ·Q
2b − |DP ∪RH‖ ∗b−m |

+
23b−2m ·Q2

(2b − |D?
P ∪R?

H‖ ∗b−m |)3

≤ 2 ·Q
2m

+
8 ·Q2

22m
, (23)

where we used that |D?
P ∪R?

H‖ ∗b−m | ≤ 2b−m ·Q+ 2b−m · qH + qP ≤ 2b−1.
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Conclusion. The j-th query is of either of the four types outlined in the be-
ginning of this section (construction query, first primitive query, forward second
primitive query (of any type), or inverse primitive query). We can thus obtain
that the term of (17) satisfies

χ2(zj−1) ≤ max{(18), (19), (20), (21), (22), (23)}

≤ 12 · (Q+ qP)2

22b−n
+

6 ·Q
2m

+
10

2b−n
,

where we summarize that the individual terms held conditioned on the fact that
Q + qH + qP ≤ 2m−1 and 1 + qP ≤ 2b−n−1. Using the chi-squared method, we
obtain the following bound on the distance between WS and WI:

∣∣Pr
(
DWS = 1

)
− Pr

(
DWI = 1

)∣∣ ≤
1

2

Q+qH+qP∑
j=1

Ex
(
χ2(zj−1)

) 1
2

≤
(

6 · (Q+ qH + qP)3

22b−n
+

3 · (Q+ qH + qP)2

2m
+

5 · (Q+ qH + qP)

2b−n

) 1
2

.

5 Application and Comparison

We will compare the Cascade-MGF construction of (11) with the existing MGF
constructions mentioned in Section 1, Counter-MGF and Chained-MGF. In this
comparison, we aim for a security level k. Note that both Cascade-MGF and
Chained-MGF can be compared regardless of the actual hash function H in
use, and we will compare these two schemes in Section 5.1. The efficiency of
Counter-MGF depends on the actual hash function H in use, and we will mount
a comparison of our scheme with Counter-MGF in Section 5.2.

5.1 Cascade-MGF Versus Chained-MGF

The two schemes can be compared regardless of the hash function H in use, the
only thing we require of H is that it must output digests of size m = 2k bits, for
both schemes. Likewise, in order to achieve k-bit security, we set n = 2k for both
schemes. (Strictly seen, we have a log2(k) loss in the output, in the sense that
digest blocks are of size around 2k − log2(k) bits. This makes the comparison
much harder to grasp, and in addition, the same loss occurs for both schemes.)

For our construction Cascade-MGF, we can conclude from Theorem 1 that we
require the width b of the permutation P to satisfy b ≥ max

{
3k+n

2 , k + n
}

= 3k.
As the permutation P takes as input the hash result H(M) ∈ {0, 1}2k and the
counter 〈i〉l, we can conclude that in Cascade-MGF we can take l = b− 2k.

For fair comparison, we will consider Chained-MGF to be instantiated with
a permutation-based F as well. We will consider it to be instantiated with either
TRUNC of (3) or SOP of (4). The comparison is summarized in Table 1.
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Table 1: Security of existing methods for variable-length digest generation, tai-
lored to the use of a b-bit permutation with k-bit security. The size of the digest
blocks discards logarithmic factors for simplicity – see Section 5.1 for details.

(Underlying) Size of # primitive call(s) Max # of
Construction primitive(s) digest block per digest block digest blocks Reference

Chained-MGF
with TRUNC (3)

H,P b− k 1 min{2k, 2b−3k} (8), [42]

Chained-MGF
with SOP (4)

H,P1,P2 b 2 min{2k, 2b−2k} (8), [42]

Cascade-MGF H,P b− k 1 min{2k, 2b−2k} (9)

Comparison to Chained-MGF with TRUNC (3). Also in this case, we
require b ≥ 3k for the same reason as for Cascade-MGF. In order to achieve k
bits of security, it is required that the initial value IV is of size k bits. As the
b-bit hash function must absorb the hash output H(M) ∈ {0, 1}2k, the initial
value IV ∈ {0, 1}k, and the counter 〈i〉l, we can conclude that the construction
can only take l = b − 3k bits of counter. (Note that also for this construction,
we have omitted the log2(k) loss in the output, in the sense that digest blocks
are of size around 2k − log2(k) bits.)

We can observe that Cascade-MGF is exactly as secure and as efficient as
Chained-MGF with TRUNC, with the sole difference that our construction al-
lows for the generation of more output blocks: min{2k, 2b−2k} as opposed to
min{2k, 2b−3k}. The difference is particularly significant if one instantiates P
with a small permutation. For example, focusing on k = 128-bit security, one can
instantiate P using a 384-bit permutation such as GIMLI [3] or Xoodoo [14]. In
this case, Cascade-MGF can be used to generate up to 2128 digest blocks, whereas
Chained-MGF with TRUNC can only be used to generate 1 digest block (as the
counter size is 0).

As a concrete application, Gunsing [19] recently proposed the tree sponge,
a generalization of the sequential sponge construction with parallel absorbing
and squeezing. Referring to [19, Sect. 5.3], the squeezing phase is set up via a
Chained-MGF instantiated with TRUNC. Our results imply that such construc-
tion would benefit by replacing Chained-MGF with Cascade-MGF.

Comparison to Chained-MGF with SOP (4). The sum of permutation
construction achieves optimal b-bit security, and by using this function as final-
ization in Chained-MGF, one can output b-bit digest blocks in parallel. This
is more than the (b − k)-bit (or in fact, b − k − log2(k)-bit) digest blocks in
Cascade-MGF, but the downside is that two permutation calls are made for one
output block. Concretely, Cascade-MGF improves over Chained-MGF with SOP
if b/2 ≤ b− k, or equivalently if 2k ≤ b. By construction, this is always the case,
recalling that the hash function output is of size 2k bits.
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Fig. 2: The Cascade-MGF construction instantiated via a tree hash construction.

5.2 Cascade-MGF Versus Counter-MGF

A comparison between the Counter-MGF and Cascade-MGF constructions can-
not be mounted without being specific about the hash function H : {0, 1}∗ →
{0, 1}m in use, where m = 2k for k-bit security. Since the focus of this work is
a parallel digest generation, it makes sense to consider parallelizable hashing as
well, and more specifically, tree hashing.

The idea of tree hashing [32,33] is to partition the message into blocks, which
are subsequently placed at the leaves of a tree. Each non-leaf node of the tree is
then a compression function evaluation of its child notes. The indifferentiability
of permutation-based tree hashing was analyzed by Dodis et al. [18] and Bertoni
et al. [7], and more recently by Daemen et al. [15] and Gunsing et al. [20].

Let P ′ : {0, 1}b′ → {0, 1}b′ be a permutation. Define F ′ : {0, 1}b′ → {0, 1}m
as F ′(X) = leftm (P ′(X)). The most minimalistic permutation-based tree hash-
ing construction that is proven to be indifferentiable initiates the leaves with
an m-bit initial value IV , with message bits (possibly injectively padded), and
frame bits 00. Non-leaf nodes consist of chaining bits coming from evaluations
of F ′ of the children and frame bits 10. The final evaluation takes frame bits 11.
The construction is depicted in Figure 2, where it is already used to instantiate
H in Cascade-MGF.

Daemen et al. [15] and Gunsing et al. [20] proved that if P ′ is a random
permutation, this tree hash function construction behaves like a random oracle
against distinguishers with a complexity of around min{2m/2, 2(b′−m)/2}. It fol-
lows that k-bit security is achieved for m ≥ 2k and b′ ≥ 4k. Strictly seen, putting
m = 2k, we require b′ = 4k + 2 for the frame bits {00, 10, 11} to be taken into
account.

For the permutation P in Cascade-MGF, the same restrictions as before ap-
ply, and most importantly, b ≥ 3k. This means that one can perform digest
generation with a permutation that is approximately 25% smaller than the one
used for hashing, without any security sacrifice. If necessary, we expect that
Cascade-MGF can also run on a single permutation, or strictly seen two per-
mutations that are similar, possibly instantiated with different round constants.
(Almost all permutations used in symmetric cryptography are iterated permu-
tations. Since the round constants are usually chosen at random with the main
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(a) (b)

Fig. 3: The Counter-MGF construction instantiated via a tree hash function. The
highlighted sub-trees are independent of the counter 〈i〉l. We emphasize that the
initial points represent the result of the compression between the initial value
IV and the corresponding message block/〈i〉.

Algorithm 7: Generation of t output blocks via Counter-MGF instantiated
with a tree-hash function

Data: input message M ∈ {0, 1}∗
Result: output h0, h1, . . . , ht−1 ∈ {0, 1}m for t ≥ 1

1 parse M‖10∗ = M0‖M1‖ . . . ‖Mz−1 for z ≥ 1 and M0,M1, . . . ,Mz−1 ∈ {0, 1}m

2 let ζ0, ζ1, . . . , ζblog2(z)c ∈ {0, 1} be such that z =
∑blog2(z)c
i=0 ζi · 2i

3 let S0,S1, . . . ,Sblog2(z)c be empty sets
4 l← 0

// Initially parallelizable phase

5 for i from 0 to blog2(z)c do
6 if ζi = 1 then

// Computing the hash of the subtrees

7 for j from 0 to 2ζi − 1 do
8 Si ← Si ∪ {Ml}
9 l← l + 1

10 h′i ← tree-hash(Si)

// Non-parallelizable phase

11 for i from 0 to t− 1 do
12 hi ← tree-hash(〈i〉, IV )
13 for j from 0 to blog2(z)c do
14 if ζj = 1 then
15 hi ← tree-hash(h′j , hi)

16 return h0, h1, . . . , ht−1

goal of destroying invariant subspaces, it is potentially possible to modify them
in such a way to set up several permutations without affecting the security.)

Comparison to Counter-MGF. By the generic design of the Counter-MGF
construction (7), the same truncated permutation is used both in the absorbing
and squeezing part. Hence, compared to Cascade-MGF, it is not possible to work
with a smaller permutation in the squeezing part.
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Secondly, and more importantly, the cost for generating an output of size
n · t for t ≥ 1 could be much higher for Counter-MGF than for Cascade-MGF,
depending on the size of the input message M and on the value of m = 2k.
Consider, for example, the simplified depiction of tree hashing in Figure 3:

– In case (a), the number of message blocks happens to be a power of 2. In this
case, the digest blocks are generated in parallel, since the message is fully
absorbed independently of the counter 〈i〉.

– In case (b), only part of the message can be absorbed independently of the
counter 〈i〉, and the digest blocks are only partially generated in parallel (the
extreme case showed in the picture occurs when the number of blocks that
composed M is a power of 2 minus 1).

As a result, while the cost in terms of the number of function/permutation calls
is the same for Counter-MGF and for Cascade-MGF in the first case (a), the cost
is much smaller for Cascade-MGF than for Counter-MGF in the second case (b).
In more detail, the cost for Counter-MGF is at least twice that of Cascade-MGF.
Indeed, given an input message composed of z blocks, the cost for generating t
output blocks via Cascade-MGF instantiated via a tree-hash function consists of
2 · z − 1 F ′-calls for the compression part, and t P-calls for the expansion part,
for a total of

t+ 2 · z − 1 ∈ O(t)

function/permutation calls. In the case of Counter-MGF instantiated via a tree-
hash function, the cost is

(1 + Hw(z)) · t+ 2 · z −Hw(z) ∈ O ((1 + Hw(z)) · t)

function/permutation calls, based on the algorithm given in Algorithm 7. The
difference between the two cases is approximately a factor (1 + Hw(z)) ≥ 2, and
the maximum is attained when the number of blocks z is a power of 2 minus 1.
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A Proof of Eq. (16)

The proof is based on the one proposed by Choi et al. in [12, page 187]. The
goal is to derive a bound on

Exj

(
max

y∈{0,1}n
Fy

)
, (24)

where Exj(·) denotes the expectation taken over the interaction between D and
P? up to the j-th simulator query.

Fix any y ∈ {0, 1}n. The probability that the outer function C returns y for
a particular input (M, I) satisfies

Pr(C(M, I) = y) ≤ 2b−n

2b − (Q+ qH + qP)
≤ 2b−n

2b−1
≤ 1

2n−1
,

assuming Q+ qH + qP ≤ 2b−1.
Let D be a random variable following a binomial distribution with mean

value Q and probability p = 2−(n−1):

Pr(D = d) =

(
Q

d

)
· pd · (1− p)Q−d

for d = 1, . . . , Q. Then, for any y ∈ {0, 1}n, we have

Pr(Fy ≥ d) ≤ Pr(D ≥ d) .

Due to the Chernoff bound (Pr(X ≥ (1 + δ)µ) ≤ e−
δ·µ
3 for δ ≥ 1), this term can

be bounded as

Pr(D ≥ d) ≤ e−
p·Q+3·ln( 2·Q

p )
3 = e−

p·Q
3 · p

2 ·Q
≤ p

2 ·Q

for d ≥ 2 · p ·Q+ 3 · ln
(

2·Q
p

)
, where e−z ≤ 1 for each z ≥ 0.

We can now use this bound to derive a bound on (24). Here, we will split on

whether or not d ≥ 2 · p ·Q+ 3 · ln
(

2·Q
p

)
:

Exj

(
max

y∈{0,1}n
Fy

)
=

∑
1≤d≤Q

Pr(max
y

Fy ≥ d)
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≤
∑

1≤d≤2·p·Q+3·ln( 2·Q
p )

Pr(max
y

Fy ≥ d)︸ ︷︷ ︸
≤1

+
∑

2·p·Q+3·ln( 2·Q
p )<d≤Q

Pr(max
y

Fy ≥ d)

≤ 2 · p ·Q+ 3 · ln
(

2 ·Q
p

)
+

∑
2·p·Q+3·ln( 2·Q

p )<d≤Q

Pr(max
y

Fy ≥ d)

= 2 · p ·Q+ 3 · ln
(

2 ·Q
p

)
+

∑
2·p·Q+3·ln( 2·Q

p )<d≤Q

Pr

 ⋃
y∈{0,1}n

Fy ≥ d


≤ 2 · p ·Q+ 3 · ln

(
2 ·Q
p

)
+

∑
y∈{0,1}n

∑
2·p·Q+3·ln( 2·Q

p )<d≤Q

Pr (Fy ≥ d)︸ ︷︷ ︸
≤p/(2·Q)

≤ 2 · p ·Q+ 3 · ln
(

2 ·Q
p

)
+ 2n ·Q · p

2 ·Q
.

Now, we enter p = 2−(n−1), and obtain:

Exj

(
max

y∈{0,1}n
Fy

)
≤ Q

2n−2
+ 3 · ln (Q · 2n) + 1

=
Q

2n−2
+ 3 · ln(Q) + 3n+ 1 ,

using that ln(2) ≤ 1.
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