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Abstract. An ℓ-server Private Information Retrieval (PIR) scheme al-
lows a client to retrieve the τ -th element aτ from a database a =
(a1, . . . , an) which is replicated among ℓ servers. It is called t-private
if any coalition of t servers learns no information on τ , and b-error cor-
recting if a client can correctly compute aτ from ℓ answers containing b
errors. This paper concerns the following problems: Is there a t-private
ℓ-server PIR scheme with communication complexity o(n) such that a
client can detect errors with probability 1 − ϵ even if ℓ − 1 servers re-
turn false answers? Is it possible to add error correction capability to
it? We first formalize a notion of (1 − ϵ)-fully error detecting PIR in
such a way that an answer returned by any malicious server depends on
at most t queries, which reflects t-privacy. We then prove an impossi-
bility result that there exists no 1-fully error detecting (i.e., ϵ = 0) PIR
scheme with o(n) communication. Next, for ϵ > 0, we construct 1-private
(1−ϵ)-fully error detecting and (ℓ/2−O(1))-error correcting PIR schemes
which have no(1) communication, and a t-private one which has O(nc)
communication for any t ≥ 2 and some constant c < 1. Technically, we
show generic transformation methods to add error correction capability
to a basic fully error detecting PIR scheme. We also construct such basic
schemes by modifying certain existing PIR schemes which have no error
detection capability.

1 Introduction

Private Information Retrieval (PIR) was introduced by Chor, Goldreich, Kushile-
vitz, and Sudan [7]. In an ℓ-server PIR scheme, a client can retrieve the τ -th
element aτ of a database a = (a1, . . . , an) replicated among ℓ servers without
revealing any information on the index τ to the servers. A trivial solution is that
servers send the entire database to the client. However, it results in communica-
tion complexity O(n), which is shown to be optimal in the information-theoretic
setting when ℓ = 1 [7]. To get around this, Chor et al. [7] considered ℓ-server



PIR schemes for ℓ ≥ 2 in which servers do not collude. More generally, a PIR
scheme is called t-private if any coalition of t servers learns no information on τ .

Since then, many ℓ-server PIR schemes have been developed to improve com-
munication cost [1, 4, 3, 6, 7, 10, 11, 14, 23]. Currently, the most communication-
efficient schemes are 1-private 2O(r)-server PIR schemes with sub-polynomial
(in n) communication complexity Ln[1/r,Or(1)] [6, 10], where Ln[s, c] denotes
a function exp(c(log n)s(log log n)1−s) and the notation Or(·) hides constants
that depend on r only.5 To achieve t-privacy for t ≥ 2, Woodruff and Yekhanin
[21] proposed a t-private ℓ-server PIR scheme with communication complexity

n⌊(2k−1)/t⌋
−1

ℓO(1) for any 1 ≤ k ≤ ℓ.
As more servers are involved, there is a higher possibility that servers are

malicious or fault, or that the databases are not updated simultaneously. It is
then important to enable a client to detect or even correct errors when part of
servers return false answers. Beimel and Stahl [5] introduced b-error correcting
PIR, which enables a client to retrieve a correct value aτ even if b (or less)
servers return false answers. They showed that a b-error correcting PIR scheme
can be generically obtained from any k-server PIR scheme if b ≤ (ℓ− k)/2 while
the time complexity of error correction is proportional to

(
ℓ
k

)
. Kurosawa [15]

proposed a more time-efficient error correction algorithm specialized for the t-
private PIR scheme in [21] and as a result, it performs ⌊(ℓ−k)/2⌋-error correction
in polynomial time in ℓ for any 1 ≤ k ≤ ℓ.

However, as pointed out in [5], b-error correcting PIR is possible only if
b < ℓ/2. It is therefore important to consider a weaker notion of error detecting to
tolerate more malicious servers. Specifically, we define (1−ϵ)-fully error detecting
PIR as the one which enables a client to detect errors with probability 1−ϵ even
if ℓ − 1 out of ℓ answers are false. To the best of our knowledge, there are no
fully error detecting PIR schemes in the literature except for the trivial scheme
or the one implicitly used in [22] both of which have communication cost O(n).
This paper concerns the following problem:

Is there a t-private (1−ϵ)-fully error detecting ℓ-server PIR scheme with
communication complexity o(n)? Is it possible to add error correction
capability to it?

1.1 Our Results

We first formalize the notion of (1− ϵ)-fully error detecting PIR. We then prove
an impossibility result that there exists no 1-fully error detecting (i.e., ϵ = 0) PIR
scheme with o(n) communication. Next, for ϵ > 0, we construct 1-private (1−ϵ)-
fully error detecting and (ℓ/2 − O(1))-error correcting PIR schemes with no(1)

communication. For t ≥ 2, we also propose a t-private (1−ϵ)-fully error detecting
and (ℓ/2 − O(1))-error correcting PIR scheme with O(nc) communication for
some constant c < 1. Here, we ignore a factor of log ϵ−1 in communication cost.
Our constructions are based on the following technical contributions:

5 If c = O(1), Ln[1, c] is polynomial in n and Ln[0, c] is polylogarithmic in n. For
0 < s < 1, Ln[s, c] is sub-polynomial in n.
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– We prove that the transformations [5], which add error correction capability
to PIR schemes, preserve full error detection capability and even reduces the
probability of failure.

– We construct (1− ϵ)-fully error detecting PIR schemes by modifying certain
existing schemes.

In what follows we briefly discuss each of these contributions.

Formalization of Fully Error Detecting PIR. Let Π be a t-private ℓ-server
PIR scheme. In our model, a set of at most ℓ−1 malicious servers T is partitioned
into pairwise disjoint subsets T = T1 ∪ · · · ∪ Tm such that |Th| ≤ t for any h,
and servers in each Th can collude to generate their false answers. Our model is
natural since due to the t-privacy, no malicious server is allowed to see more than
t queries and hence its false answer should not depend on more than t queries.
We say that Π is (1 − ϵ)-fully error detecting if a client can detect errors with
probability 1 − ϵ for any T = T1 ∪ · · · ∪ Tm satisfying the above condition. We
prove that there exists no 1-fully error detecting (i.e., ϵ = 0) PIR scheme with
o(n) communication (Theorem 1). This implies that it is necessary to consider
(1− ϵ)-fully error detecting PIR with ϵ > 0.

Transformation to Increase Robustness of Fully Error Detecting PIR.
To transform a k-server PIR scheme Π to an ⌊(ℓ−k)/2⌋-error correcting ℓ-server
PIR scheme Π ′, Beimel and Stahl [5] presented a naive method, which executes
an independent instance of Π for each group of k servers, and a more refined
method, which uses perfect hash families.6 We prove that the two transformation
methods preserve full error detection capability and even reduces the probability
of failure. Therefore, they can be used to add ⌊(ℓ− k)/2⌋-error correction capa-
bility to a fully error detecting PIR scheme.More specifically, the method using
a perfect hash family transforms a 1-private (1− ϵ)-fully error detecting k-server
PIR scheme Π to a 1-private (1 − ϵ)-fully error detecting ℓ-server PIR scheme
Π ′ (Theorem 2). The overhead in communication cost is 2O(k)ℓ log ℓ. The naive
method can be used to transform a t-private (1−ϵ)-fully error detecting k-server
PIR scheme Π to a t-private (1− ϵM )-fully error detecting ℓ-server PIR scheme
Π ′, where M = ⌈(ℓ− k+ 1)/(k+ t− 2)⌉ (Theorem 3). The communication cost
of Π ′ is

(
ℓ
k

)
times larger than Π. Although the method in Theorem 2 is more

communication-efficient for large k, the naive transformation in Theorem 3 has
the following advantages:

– From any 1-private 2-server (1− ϵ)-fully error detecting PIR scheme, we can
obtain a 1-private ℓ-server (1 − ϵ)-fully error detecting one which has lower
communication cost by a factor of O(log ℓ) than if Theorem 2 is applied.

– It works for any t ≥ 1, where t is the number of servers who can collude.

6 We note that their method shown in [5, Section 3.1] is a special case of the latter
based on perfect hash families.
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Constructions of Fully Error Detecting PIR Schemes.

1-Private two-server PIR scheme. Dvir and Gopi [10] showed a 1-private 2-
server PIR scheme with communication complexity Ln[1/2, O(1)] by using a
matching vector family and a kind of polynomial interpolation. Based on their
scheme, we construct a 1-private (1−ϵ)-fully error detecting 2-server PIR scheme
with communication complexity Ln[1/2, O(1)] · log ϵ−1 (Theorem 4). Our tech-
nical novelty is modifying the scheme [10] in such a way that a client chooses
interpolation points at random and carefully analyzing its error detection capa-
bility. By applying the naive transformation in Theorem 3, we obtain a 1-private
ℓ-server (1− ϵ)-fully error detecting and ⌊(ℓ−2)/2⌋-error correcting PIR scheme
with communication complexity Ln[1/2, O(1)] · ℓ log ϵ−1 (Corollary 1).

1-Private ℓ-server PIR scheme for larger ℓ. We show that the communication
complexity of fully error detecting PIR can be further reduced by increasing the
number of servers. We invoke a basic PIR scheme based on a matching vector
family shown in [9], which uses Lagrange interpolation to retrieve aτ . We care-
fully choose parameters for the matching vector family and let a client choose
interpolation points at random. As a result, for any fixed r ≥ 2, we obtain a
1-private (1 − ϵ)-fully error detecting kr-server PIR scheme with communica-
tion complexity Ln[1/r,Or(1)] · log ϵ−1, where kr is a constant depending on
r (Corollary 2). By applying the transformation in Theorem 2, we obtain a 1-
private (1−ϵ)-fully error detecting and ⌊(ℓ−kr)/2⌋-error correcting ℓ-server PIR
scheme with communication complexity Ln[1/r,Or(1)] · 2O(kr)ℓ log ℓ log ϵ−1 for
any ℓ ≥ kr (Corollary 3). By setting r = 3, we obtain a (1− ϵ)-fully error detect-
ing ℓ-server PIR scheme with communication cost Ln[1/3, O(1)] · ℓ log ℓ log ϵ−1
for ℓ ≥ 217.

t-Private ℓ-server PIR scheme for t ≥ 2 and ℓ ≥ 2. Our construction for t ≥ 2
is based on the best known t-private ⌊(ℓ − k)/2⌋-error correcting ℓ-server PIR
scheme [21] with communication complexity O(dndℓ log ℓ), where 1 ≤ k ≤ ℓ
and d = ⌊(2k − 1)/t⌋. Their scheme uses Hermite interpolation [18] to retrieve
aτ . By choosing interpolation points randomly, we obtain a t-private (1 − ϵ)-
fully error detecting and ⌊(ℓ − k)/2⌋-error correcting ℓ-server PIR scheme with
communication complexity O(dn1/dℓ log ℓ log ϵ−1) (Theorem 6). We note that
the polynomial-time error correction algorithm [15], which was originally pro-
posed for the scheme [21] with no error detection, is applicable to our fully
error detecting scheme. Hence, this scheme achieves error correction without the
transformations in Theorems 2 and 3.

1.2 Related Work

Beimel and Stahl [5] introduced (k, ℓ)-robust PIR, which allows a client to re-
trieve a correct value from answers of any k out of ℓ honest servers. They pre-
sented generic transformations from any k-server PIR scheme to (k, ℓ)-robust
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PIR scheme. They also showed that any (k, ℓ)-robust PIR scheme achieves b-
error correction for b ≤ (ℓ − k)/2 while the time complexity of error correction
is proportional to

(
ℓ
k

)
. Any (k, ℓ)-robust PIR scheme implies an ℓ-server PIR

scheme that detects errors if at most ℓ− k servers are malicious, by letting the
client recover data from answers of every k servers and check the consistency.
However, it cannot be better than the trivial scheme if there are ℓ− 1 malicious
servers.

Yang, Xu, and Bennett [22] proposed a PIR scheme which achieves b-error
correction by performing error detection for all subsets of servers of size b + 1
for b = ⌊(ℓ− 1)/2⌋. Their scheme satisfies our definition of fully error detecting
PIR. However, the communication complexity is O(n) and it is not better than
the trivial scheme downloading the whole database. Although it can be reduced
to O(

√
n) by the balancing technique of [7], the communication complexities of

our schemes are still lower than theirs.
Goldberg [12] proposed a list decodable ℓ-server PIR scheme with commu-

nication complexity O(
√
n), in which a client outputs a list including a correct

value instead of just one. However, the scheme tolerates at most ℓ− ⌊
√
ℓ⌋ mali-

cious servers and hence it cannot detect errors in the presence of ℓ− 1 malicious
servers. Devet, Goldberg, and Heninger [8] considered a different scenario where
a client performs multiple queries and runs a decoding algorithm on multiple an-
swers simultaneously. In this setting, they proposed a list decodable ℓ-server PIR
scheme for ℓ−O(1) malicious servers with communication complexity O(

√
n).

Sun and Jafar [19, 20] and Banawan and Ulukus [2] considered error correc-
tion in the setting where the size of each block of a database is very large, and
hence only the download cost is of interest.

2 Preliminaries

Notations. For m ∈ N, define [m] = {1, . . . ,m}. For a vector x, let xi denote
the i-th entry of x. Let f ∈ Fq[X1, . . . , Xm] be an m-variate polynomial over a
finite field Fq of size q. We say that f is a degree-d polynomial if its total degree
is at most d. Define the partial derivative of f with respect to Xj as

∂Xjf =
∑

e=(ei)i∈[m]∈I

ceejX
ej−1
j

∏
i∈[m]\{j}

Xei
i

if f =
∑

e∈I ce
∏

i∈[m] X
ei
i , where ce ∈ Fq and I is a finite set of m-tuples of non-

negative integers. For a univariate polynomial f , we denote by ∂f the derivative
of f with respect to its unique variable. We write u←$U if u is randomly chosen
from a set U . For two vectors x = (xi)i∈[m],y = (yi)i∈[m] over a ring U , we
define ⟨u,v⟩ =

∑
i∈[h] uivi and wt(u) = |{i ∈ [m] : ui ̸= 0}|. Let Ln[s, c] denote

the function of n defined as

Ln[s, c] = exp(c(log n)s(log n)1−s),

where 0 ≤ s ≤ 1 and c > 0. Note that if c = O(1), Ln[1, c] is polynomial in n
and Ln[0, c] is polylogarithmic in n. For 0 < s < 1, Ln[s, c] is sub-polynomial in
n.
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2.1 Lagrange and Hermite Interpolation

Lagrange interpolation recovers a polynomial using its values on given points.
Let ℓ ∈ N and Fp be a prime field such that p ≥ ℓ+1. Let α1, . . . , αℓ be ℓ pairwise
distinct non-zero elements of Fp and let yj ∈ Fp for each j ∈ [ℓ]. Then, there
exists an explicit formula for finding a unique polynomial g ∈ Fp[X] such that
deg g ≤ ℓ − 1 and g(αj) = yj for all j ∈ [ℓ]. For variables T and X = (Xi)i∈[ℓ],
define polynomials as follows:

Pi(T,X) =
∏

j∈[ℓ]\{i}

(T −Xj), Li(X) =
Pi(0,X)

Pi(Xi,X)
. (1)

It then holds that

g(0) =

ℓ∑
i=1

Li(α1, . . . , αℓ)g(αi) (2)

for any polynomial g of degree less than ℓ.
Hermite interpolation is a generalization of Lagrange interpolation, which

recovers a polynomial using its derivatives and values on given points. Let yj,w ∈
Fp for each j ∈ [ℓ] and w ∈ {0, 1}. Then, there exists an explicit formula for
finding a unique polynomial g ∈ Fp[X] such that deg g ≤ 2ℓ−1 and g(αj) = yj,0
and ∂g(αj) = yj,1 for all j ∈ [ℓ] [18]. For variables T and X = (Xi)i∈[ℓ], define
polynomials as follows:

Qi(T,X) =
∏

j∈[ℓ]\{i}

(T −Xj)
2,

Qi(T,X) = ∂TQi(T,X) = 2
∑

j∈[ℓ]\{i}

(T −X1) · · · (T −Xℓ)

(T −Xi)(T −Xj)

∏
u∈[ℓ]\{i}

(T −Xu),

H
(0)
i (X) =

Qi(0,X)

Qi(Xi,X)

(
1 +

Qi(Xi,X)Xi

Qi(Xi,X)

)
, (3)

H
(1)
i (X) = −Qi(0,X)Xi

Qi(Xi,X)
. (4)

According to [18], it holds that

g(0) =

ℓ∑
i=1

(
H

(0)
i (α1, . . . , αℓ)g(αi) +H

(1)
i (α1, . . . , αℓ)∂g(αi)

)
(5)

for any polynomial g of degree less than 2ℓ.

3 Private Information Retrieval (PIR)

3.1 Definitions

In an ℓ-server PIR scheme, each server has a copy of a database a = (a1, . . . , an) ∈
{0, 1}n. A client can obtain aτ by interacting with ℓ servers without revealing
any information on τ to the servers.
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Definition 1 (Syntax). An ℓ-server PIR scheme Π consists of three algo-
rithms Π = (Q,A,R), where Q is probabilistic while A and R are deterministic.

– A query algorithm Q takes τ ∈ [n] as input and outputs ℓ queries que1, . . . , queℓ
together with auxiliary information aux. A client computes

Q(τ ; r)→ (que1, . . . , queℓ; aux)

and then sends quei to the i-th server for i ∈ [ℓ], where r is a random string.
– An answer algorithm A takes as input an index i ∈ [ℓ], a query quei and a

database a = (a1, . . . , an) ∈ {0, 1}n, and outputs an answer ansi. The i-th
server computes

A(i, quei,a)→ ansi

and then returns ansi to the client.
– A reconstruction algorithm R takes as input ℓ answers ans1, . . . , ansℓ and

auxiliary information aux, and outputs ã ∈ {0, 1}. The client computes

R(ans1, . . . , ansℓ; aux)→ ã

and outputs ã.

We say that Π is correct if for any database a = (a1, . . . , an) ∈ {0, 1}n and
any τ ∈ [n], it holds that R(ans1, . . . , ansℓ; aux) = aτ , where (que1, . . . , queℓ; aux)←
Q(τ) and ansi ← A(i, quei,a) for i ∈ [ℓ]. The (total) communication complexity

of Π is given by
∑ℓ

i=1 |quei| +
∑ℓ

i=1 |ansi|, where |quei| and |ansi| are the bit
lengths of quei and ansi, respectively.

We say that an ℓ-server PIR scheme is t-private if any t servers learn no
information on the client’s secret index τ even if they collude. Formally,

Definition 2 (t-Privacy). An ℓ-server PIR scheme Π = (Q,A,R) is said to
be t-private if for any t indices i1, . . . , it ∈ [ℓ] and any τ, τ ′ ∈ [n], the joint
distributions of (quei1 , . . . , queit) and (que′i1 , . . . , que

′
it
) are perfectly identical,

where (que1, . . . , queℓ; aux)← Q(τ) and (que′1, . . . , que
′
ℓ; aux

′)← Q(τ ′).

Beimel and Stahl [5] introduced the notion of robust and error correcting
PIR.

Definition 3 (Robust PIR). An ℓ-server PIR scheme Π is said to be (k, ℓ)-
robust if for any K = {i1, . . . , ik} ⊆ [ℓ], there exists an algorithm RK that
correctly computes aτ from k answers ansi1 , . . . , ansik .

Definition 4 (Error correcting PIR). An ℓ-server PIR scheme Π = (Q,A,R)
is said to be b-error correcting if R can correctly compute aτ even if b (or less)
answers among (ans1, . . . , ansℓ) are false.

In [5, Theorem 6.2], it is shown that a (k, ℓ)-robust PIR scheme is ⌊(ℓ−k)/2⌋-
error correcting while the time complexity of error correction is proportional to(
ℓ
k

)
since R needs to perform RK for all subsets K of size k.
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3.2 Known Transformation from k-Server PIR to (k, ℓ)-Robust PIR

Beimel and Stahl [5] showed a generic transformation from any k-server PIR
schemeΠ into a (k, ℓ)-robust PIR scheme Π ′ for any ℓ > k. Their transformation
is based on a minimal perfect hash family.

Definition 5. Let ℓ ≥ k. An (ℓ, k)-minimal perfect hash family H = {h1, . . . , hw}
is a family of functions of the form hj : [ℓ] → [k] such that for each A ⊆ [ℓ] of
size k, there exists an index j such that hj(A) = [k].

Let Π = (Q,A,R) be any k-server PIR scheme and H = {h1, . . . , hw} be an
(ℓ, k)-minimal perfect hash family. Beimel and Stahl [5] construct a (k, ℓ)-robust
PIR scheme Π ′ = (Q′,A′,R′K) where R′K is a reconstruction algorithm for a set
K of k servers, as follows:

Q′(τ). To obtain aτ , a client executes w times Π independently and generates w

query vectors que(j) = (que
(j)
1 , . . . , que

(j)
k ), j ∈ [w] along with auxiliary infor-

mation aux(j). For each i ∈ [ℓ], the client sends quei = (que
(1)
h1(i)

, . . . , que
(w)
hw(i))

to the i-th server.
A′(i, quei,a). The i-th server replies to each query q = que

(j)
hj(i)

for j ∈ [w] as

the hj(i)-th server would reply to q in the original k-server PIR scheme Π.

The i-th server returns ansi = (A(hj(i), que
(j)
hj(i)

,a))j∈[w] to the client.

R′K(ansi1 , . . . , ansik ; aux). If the client receives answers from a set of k servers
K = {i1, . . . , ik} ⊆ [ℓ], let hj ∈ H be a function such that hj(K) = [k]. Due

to the correctness ofΠ, the client can obtain aτ from {A(hj(i), que
(j)
hj(i)

,a)}i∈K
and aux(j).

A construction of H with w = 2O(k) log ℓ is also given in [5]. Therefore,
the communication complexity of Π ′ is c · 2O(k)ℓ log ℓ if Π has communication
complexity c per server. Since each execution of Π is independent, if Π is t-
private, so is Π ′.

4 Matching Vector Family

4.1 Definitions and Constructions

Definition 6. Let m ∈ Z and S ⊆ Zm \ {0}. We say that U = (u1, . . . ,un) and
V = (v1, . . . , vn), where ui,vi ∈ Zh

m, form an S-matching vector family if the
following condition is satisfied:

– ⟨ui,vi⟩ = 0 for every i ∈ [n];
– ⟨ui,vj⟩ ∈ S for every i ̸= j.

We say that an S-matching vector family is d-bounded if s ≤ d for all s ∈ S in
terms of the usual order on Z.

There exists an explicit construction of a matching vector family.
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Proposition 1 ([13]). Let p < q be two primes and set m = pq. For any
integer n > 1, there exist a constant θm depending on m only and an S-matching
vector family U = V = (u1, . . . ,un) over Zh

m such that h = Ln[1/2, θm] and
S = {p, q, p+ q}.

There also exists an explicit construction of a bounded matching vector fam-
ily.

Proposition 2 ([9]). Let p1, . . . , pr be r ≥ 2 pairwise distinct primes and set
m = p1 · · · pr. Let u,w be positive integers such that u ≥ w. For each i ∈ [r],
let ei be the smallest integer such that peii > w1/r. Set c = maxi∈[r] p

ei
i and

d = m
∑

i∈[r] p
−1
i . Then, there exists a d-bounded matching vector family of size

n over Zh
m such that n =

(
u
w

)
and h =

(
u
≤c
)
:=
∑c

i=0

(
u
i

)
.

4.2 Basic PIR Based on a Matching Vector Family

Following [9], we can construct a (d+1)-server PIR scheme Π = (Q,A,R) based
on a d-bounded S-matching vector family U = (u1, . . . ,un) and V = (v1, . . . , vn)
over Zh

m as follows. Let q be a prime such that q = 1 mod m. Let γ be an m-
th root of unity of Fq. Let α1, . . . , αd+1 be distinct elements of Zm. Let a =
(a1, . . . , an) ∈ {0, 1}n be a database.

Q(τ). To obtain aτ , the client chooses w ∈ Zh
m randomly. He then computes

ρi = (ρi1, . . . , ρih) = w + αiuτ , sends quei = (γρi1 , . . . , γρih) to the i-th
server for i ∈ [d+ 1], and stores aux = w.

A(i, quei,a). The i-th server returns

ansi = ξi =
∑
σ∈[n]

aσ(γ
ρi1)vσ1 · · · (γρih)vσh =

∑
σ∈[n]

aσγ
⟨ρi,vσ⟩

to the client for i ∈ [d+ 1], where vσj is the j-th coordinate of vσ.
R(ans1, . . . , ansd+1; aux). The client computes aτ from ξ1, . . . , ξd+1 as follows.

Note that

ξi =
∑
σ∈[n]

aσγ
⟨ρi,vσ⟩

=
∑
σ∈[n]

aσγ
⟨w+αiuτ ,vσ⟩

= aτγ
⟨w,vτ ⟩ +

∑
σ ̸=τ

aσγ
⟨w,vσ⟩γαi⟨uτ ,vσ⟩

= c0 +
∑
s∈S

cs(γ
αi)s

where cs =
∑

σ∈[n]:⟨uτ ,vσ⟩=s aσγ
⟨w,vi⟩ for each s ∈ S and c0 = aτγ

⟨w,uτ ⟩.

Let f(x) = c0+
∑

s∈S csx
s. The degree of f is at most d and ξi = f(γαi) for

i ∈ [d+ 1]. By using Lagrange interpolation (see Section 2.1), the client can
compute f(0) = c0 = aτγ

⟨w,uτ ⟩ from ξ1, . . . , ξd+1 and obtain aτ .

9



5 Formalization of Fully Error Detecting PIR

5.1 Definitions

We formally define error detecting PIR. In a t-private PIR scheme, any t servers
learn no information on τ even if they collude, where τ is the secret index of
the client. In a t-private error detecting ℓ-server PIR scheme, we require that
the client can detect errors even if ℓ − 1 servers return false answers. We allow
only t servers to collude when computing their false answers, which is the same
condition as that for t-privacy. Namely a set of malicious servers T is given by a
union of pairwise disjoint subsets T = T1∪· · ·∪Tm in such a way that |T | ≤ ℓ−1,
|Th| ≤ t for h ∈ [m] and the servers in each Th can collude. We formalize such
malicious servers by using a tampering function f such that

f(que1, . . . , queℓ,a) = (ãns1, . . . , ãnsℓ), (6)

where quei is a query sent to the i-th server and a = (a1, . . . , an) ∈ {0, 1}n is a
database.

Definition 7 (Tampering function). Let T1, . . . , Tm ⊆ [ℓ] be pairwise disjoint
subsets. We say that a function f given by Eq. (6) is a tampering function for
an ℓ-server PIR scheme Π = (Q,A,R) with respect to (T1, . . . , Tm) if for each
i ∈ [ℓ], it holds that

ãnsi =

{
A(i, quei,a), if i /∈ T1 ∪ · · · ∪ Tm,

fi({quei′}i′∈Tj ,a), if i ∈ Tj for some j ∈ [m],
(7)

for some function fi. We denote the family of all such tampering functions by
FΠ

T1,...,Tm
.

Definition 8 (Error detecting PIR). We say that an ℓ-server PIR scheme
Π = (Q,A,R) is (1 − ϵ)-error detecting with respect to (T1, . . . , Tm) if Π is
correct and

Pr[EDΠ(a, τ, f) = 1] ≥ 1− ϵ

for any database a = (a1, . . . , an) ∈ {0, 1}n, any τ ∈ [n] and any f ∈ FΠ
T1,...,Tm

,
where the experiment EDΠ(a, τ, f) is defined as follows:

1. Let (que1, . . . , queℓ; aux)← Q(τ);
2. Let f(que1, . . . , queℓ,a) = (ãns1, . . . , ãnsℓ);
3. Return 1 if R(ãns1, . . . , ãnsℓ; aux) ∈ {aτ ,⊥} and return 0 otherwise.

We say that a t-private ℓ-server PIR scheme Π is (1− ϵ)-fully error detecting if
it is (1− ϵ)-error detecting with respect to any tuple of pairwise disjoint subsets
(T1, . . . , Tm) such that |T1 ∪ · · · ∪ Tm| ≤ ℓ− 1 and |Ti| ≤ t for i ∈ [m].

Remark 1. Although tampering functions are supposed to be deterministic, it
can be seen that they capture randomized behavior of malicious servers. This is
because the success probability is considered over a random string of Q, which
is independent of servers’ randomness, and also because servers are assumed to
be computationally unbounded.
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Remark 2. In a t-private fully error detecting PIR scheme, incorrect answers are
allowed to depend on at most t queries. In particular, if t = 1, this means that
the incorrect answers are generated independently. We note that this somewhat
restricted adversarial model is still practically important. For example, consider
a situation where a database a is updated frequently. If an honest server i has
an old database b ̸= a, then it returns an incorrect answer A(i, quei, b). Such
errors can be detected by a 1-private fully error detecting PIR scheme.

5.2 Impossibility of 1-Fully Error Detecting PIR

The trivial scheme clearly achieves 1-full error detection, i.e., ϵ = 0. Theorem 1
shows that we cannot do better than the trivial scheme in the case of ϵ = 0.

Theorem 1. Let Π = (Q,A,R) be a 1-private 1-fully error detecting ℓ-server
PIR scheme for a universe of databases {0, 1}n. Then, the bit length of an answer
of any server is at least n.

Proof. Suppose that A outputs a c-bit string and the set of random strings for Q
is {0, 1}ρ. We show that c ≥ n. Let r(1) ∈ {0, 1}ρ be any random string for Q and

let (q
(1)
1 , . . . , q

(1)
ℓ ; aux(1)) = Q(1; r(1)). Since Π is 1-private, for any τ ∈ [n] \ {1},

there exists r(τ) ∈ {0, 1}ρ such that q
(τ)
1 = q

(1)
1 , where (q

(τ)
1 , . . . , q

(τ)
ℓ ; aux(τ)) =

Q(τ ; r(τ)). We define q1 := q
(1)
1 = q

(2)
1 = · · · = q

(n)
1 .

We define a function ϕ : {0, 1}n → {0, 1}c as ϕ(a) = A(1, q1,a). It is sufficient
to show that ϕ is injective. Assume that A(1, q1,a) = A(1, q1, b) for some a ̸=
b ∈ {0, 1}n. Let τ ∈ [n] be such that aτ ̸= bτ . Then, we have that A(1, q(τ)1 ,a) =

A(1, q(τ)1 , b). Set T = [ℓ] \ {1}. Let f ∈ FΠ
{2},...,{ℓ} be any tampering function

such that

f(q
(τ)
1 , q

(τ)
2 , . . . , q

(τ)
ℓ ,a) = (A(1, q(τ)1 ,a), (A(i, q(τ)i , b))i∈T ).

Consider the experiment EDΠ(a, τ, f) in Definition 8. If r(τ) is chosen, we have

that Q(τ ; r(τ)) = (q
(τ)
1 , . . . , q

(τ)
ℓ ; aux(τ)) at Step 1. At Step 2, it holds that ãns1 =

A(1, q(τ)1 ,a) and ãnsi = A(i, q(τ)i , b) for i ∈ T . Then, EDΠ(a, τ, f) returns 0 since

R(ãns1, (ãnsi)i∈T ; aux(τ)) = R(A(1, q(τ)1 ,a), (A(i, q(τ)i , b))i∈T ; aux
(τ))

= R(A(1, q(τ)1 , b), (A(i, q(τ)i , b))i∈T ; aux
(τ))

= bτ /∈ {aτ ,⊥}.

Hence Pr[EDΠ(a, τ, f) = 0] ≥ Pr
[
r(τ)←$ {0, 1}ρ

]
> 0, which contradicts the

1-full error detection of Π. ⊓⊔

In view of Theorem 1, we will consider (1− ϵ)-fully error detecting PIR with
ϵ > 0 in the following sections.
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6 Transformation to Increase Robustness of Fully Error
Detecting PIR

Beimel ans Stahl [5] presented two generic transformations from a k-server PIR
scheme Π to (k, ℓ)-robust (and hence ⌊(ℓ − k)/2⌋-error correcting) PIR scheme
Π ′. One is based on a perfect hash family and the other simply executes Π
for all groups of k servers. We prove that these methods preserve full error
detection capability and can be used to add error correction capability to fully
error detecting PIR schemes. Specifically, let Π be a (1− ϵ)-fully error detecting
k-server PIR scheme and Π ′ be an ⌊(ℓ − k)/2⌋-error correcting ℓ-server PIR
scheme obtained by applying one of the transformations [5] to Π. We prove that
Π ′ is (1 − ϵ′)-fully error detecting for a certain ϵ′ ≤ ϵ. Although the method
based on a perfect hash family is more communication-efficient for large k, the
naive method has the following advantages:

– From any 1-private 2-server (1− ϵ)-fully error detecting PIR scheme, we can
obtain a 1-private ℓ-server (1 − ϵ)-fully error detecting one which has lower
communication cost by a factor of O(log ℓ) than if Theorem 2 is applied;

– It works for any t ≥ 1, where t is the number of servers who can collude.

First, we consider the transformation based on a perfect hash family H =
{hi : [ℓ] → [k] : i ∈ [w]} (see Definition 5). In Π ′, a client executes w inde-
pendent instances Π1, . . . , Πw of Π and sends to Server i ∈ [ℓ] a query sent to
Server hj(i) ∈ [k] in Πj for all j ∈ [w]. We show that if Server i is honest, for
any subset S ⊆ [ℓ] of size k containing i, the (1 − ϵ)-full error detection of Π ′

follows from that of Πj , where j is an index such that hj(S) = [k]. We note
that this transformation does not provide a t-private (1− ϵ)-fully error detecting
ℓ-server PIR scheme for t ≥ 2, that is, Π ′ is not necessarily t-private (1− ϵ)-fully
error detecting even if Π is. Roughly speaking, this is because the answer of a
malicious server may depend on the query which is sent to an honest server. In
summary the followng theorem holds. See Appendix A for the proof.

Theorem 2. Suppose that there exists a 1-private (1 − ϵ)-fully error detecting
k-server PIR scheme Π = (Q,A,R) such that the communication complexity
is c per server. Then, for any ℓ ≥ k, there exists a 1-private (1 − ϵ)-fully error
detecting ℓ-server PIR scheme Π ′ with communication complexity c ·2O(k)ℓ log ℓ.
Furthermore, Π ′ is (k, ℓ)-robust and hence ⌊(ℓ− k)/2⌋-error correcting.

Second, the naive transformation executes p =
(
ℓ
k

)
independent instances of

Π for all groups S1, . . . , Sp of k servers. Let T be a set of ℓ−1 malicious servers.
Suppose that T is partitioned into pairwise disjoint subsets T = T1 ∪ · · · ∪ Tm

such that |Th| ≤ t for any h and servers in each Th can collude. For i ∈ [p], we
show that if |Si ∩ T | ≤ k − 1, the (1− ϵ)-full error detection of Π ′ follows from
that of the instance of Π corresponding to Si. More generally, based on the fact
that a client’s randomness for Si, Sj (i ̸= j) are independent, we show that Π ′ is
even (1− ϵM )-fully error detecting if there are M subsets Si1 , . . . , SiM such that
for every pair Si, Sj , servers in Si and in Sj do not receive the same query. We
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formalize that condition in a combinatorial way and show that the maximum
number of M is at least (ℓ − k + 1)/(k + t − 2). As a result, Π ′ is t-private
(1− ϵ′)-fully error detecting for ϵ′ = ϵM . See Appendix B for the proof.

Theorem 3. Suppose that there exists a t-private (1−ϵ)-fully error detecting k-
server PIR scheme Π = (Q,A,R) with communication complexity c. Let ℓ ≥ k.
Set

M ′ =

⌈
ℓ− k + 1

k + t− 2

⌉
and ϵ′ = ϵM

′
. Then, there exists a t-private (1− ϵ′)-fully error detecting ℓ-server

PIR scheme Π ′ with communication complexity c·
(
ℓ
k

)
. Furthermore, Π ′ is (k, ℓ)-

robust and hence ⌊(ℓ− k)/2⌋-error correcting.

7 1-Private Fully Error Detecting PIR with
Sub-polynomial Communication

In this section, we show 1-private (1 − ϵ)-fully error detecting ℓ-server PIR
schemes Π ′1 and Π ′2 such that:

– For any ℓ ≥ 2, Π ′1 is ⌊(ℓ− 2)/2⌋-error correcting and has the communication
complexity Ln[1/2, O(1)] · ℓ log ϵ−1.

– For any r ≥ 2 and any ℓ ≥ k := rr2r
2+2r−3 + 1, Π ′2 is ⌊(ℓ− k)/2⌋-error cor-

recting and has the communication complexity Ln[1/r, 2
O(r)] · ℓ log ℓ log ϵ−1.

7.1 How to Construct Π ′
1

In this subsection, we show a 1-private (1− ϵ)-fully error detecting 2-server PIR
schemeΠ1 with communication complexity Ln[1/2, O(1)]·log ϵ−1. We can obtain
Π ′1 by applying Theorem 3 to Π1. The scheme Π1 is a variant of the 1-private
2-server PIR scheme of Dvir and Gopi [10] with communication complexity
Ln[1/2, O(1)]. Their scheme uses a matching vector family given by Proposi-
tion 1 with p = 2 and q = 3, and does a sort of polynomial interpolation with
fixed points β1 = γ0 and β2 = γ1. On the other hand, Π1 uses a matching
vector family with p ≥ 3 and q = 1 mod p, and does polynomial interpolation
with random points β1 = γα1 and β2 = γα2 where α1, α2 are randomly chosen
from {0, 1, . . . , p− 1}. A more formal description of Π1 is shown in Figure 1. We
obtain the following theorem. See Appendix C for the proof.

Theorem 4. For any ϵ > 0, Π1 is a 1-private (1 − ϵ)-fully error detecting 2-
server PIR scheme with communication complexity Ln[1/2, O(1)] · log ϵ−1.

By applying Theorem 3 to the (1−ϵ)-fully error detecting 2-server scheme Π1,
we obtain a (1 − ϵΘ(ℓ))-fully error detecting ℓ-server scheme Π ′1, which means
that the overhead in communication cost is only O(ℓ). Note that if we apply
Theorem 2 to Π1, then the overhead is O(ℓ log ℓ).
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Notations.
– A positive integer λ
– Two primes p < q such that q ≡ 1 mod p
– m = pq and a {p, q, p + q}-matching vector family U , V over Zh

m given by
Proposition 1

– A primitive root δ ∈ F∗
q and γ = δ(q−1)/p

– The ring homomorphism ϕ : Zm → Fq defined as ϕ(x) = x mod q
– Polynomials Fa ∈ Fq[z1, . . . , zh] and Ga ∈ (Fh

q )[z1, . . . , zh] associated with
a = (a1, . . . , an) ∈ {0, 1}n defined as Fa(z1, . . . , zh) =

∑
τ∈[n] aτz

vτ1
1 · · · zvτh

h ,

and Ga(z1, . . . , zh) =
∑

τ∈[n] aτϕ(vτ )z
vτ1
1 · · · zvτh

h , where we assume a ∈ Fn
q ,

vτj is the j-th coordinate of vτ ∈ Zh
m, and ϕ is applied on vectors entry-wise.

Q(τ). Given an input τ ∈ [n]:
1. For each j ∈ [λ]:

(a) Choose two distinct elements α
(j)
1 , α

(j)
2 ∈ {0, 1, 2, . . . , p− 1} randomly.

(b) Choose w(j) ←$Zh
m.

(c) Let (ρ
(j)
i1 , . . . , ρ

(j)
ih ) = w(j) + α

(j)
i uτ ∈ Zh

m for i ∈ {1, 2}.
2. Output quei = (γρ

(j)
i1 , . . . , γρ

(j)
ih )j∈[λ] for i ∈ {1, 2} together with aux =

((α
(j)
1 , α

(j)
2 )j∈[λ], (w

(j))j∈[λ],uτ ,vτ ).

A(i, quei,a). Given i ∈ {1, 2}, a query quei, and a database a ∈ {0, 1}n:
1. Parse quei = (γρ

(j)
i1 , . . . , γρ

(j)
ih )j∈[λ].

2. For each j ∈ [λ], let ξ
(j)
i = Fa(γ

ρ
(j)
i1 , . . . , γρ

(j)
ih ) and ζ

(j)
i = Ga(γ

ρ
(j)
i1 , . . . , γρ

(j)
ih ).

3. Output ansi = (ξ
(j)
i , ζ

(j)
i )j∈[λ].

R(ãns1, ãns2; aux). Given two answers ãnsi = (ξ̃
(j)
i , ζ̃

(j)
i )j∈[λ] ∈ (Fh+1

q )λ and auxiliary

information aux = ((α
(j)
1 , α

(j)
2 )j∈[λ], (w

(j))j∈[λ],uτ ,vτ ):
1. Let L = ∅.
2. For each j ∈ [λ]:

(a) Let η̃
(j)
i = ⟨ϕ(uτ ), ζ̃

(j)
i ⟩ and β

(j)
i = γα

(j)
i for i ∈ {1, 2}.

(b) Define an invertible matrix M (j) as

M (j) =


1 1 β

(j)
1 β

(j)
1

0 p 0 pβ
(j)
1

1 1 β
(j)
2 β

(j)
2

0 p 0 pβ
(j)
2

 ∈ F4×4
q .

(c) Find c̃
(j)
0 , c̃

(j)
p , c̃

(j)
q , c̃

(j)
p+q ∈ Fq such that

M (j)
(
c̃
(j)
0 c̃

(j)
p c̃

(j)
q c̃

(j)
p+q

)⊤
=

(
ξ̃
(j)
1 η̃

(j)
1 ξ̃

(j)
2 η̃

(j)
2

)⊤
.

(d) Add c̃
(j)
0 γ−⟨w(j),vτ ⟩ to L if c̃

(j)
0 γ−⟨w(j),vτ ⟩ ∈ {0, 1}. Otherwise, output ⊥.

3. If L = {s} for some s ∈ {0, 1}, output s. Otherwise, output ⊥.

Fig. 1. A 1-private (1− ϵ)-fully error detecting 2-server PIR scheme Π1
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Corollary 1. Let ϵ > 0. For any ℓ ≥ 2, there exists a 1-private (1 − ϵ)-fully
error detecting and ⌊(ℓ − 2)/2⌋-error correcting ℓ-server PIR scheme Π ′1 for a
universe of databases {0, 1}n such that the communication complexity is

Ln[1/2, O(1)] · ℓ log ϵ−1 (8)

and the time complexity of its reconstruction algorithm is polynomial in ℓ, n and
log ϵ−1.

7.2 How to Construct Π ′
2

In this subsection, for r ≥ 2 and k = rr2r
2+2r−3 + 1, we show a 1-private

(1−ϵ)-fully error detecting k-server PIR schemeΠ2 such that the communication
complexity is Ln[1/r, 2

O(r)] · log ϵ−1. We can obtain Π ′2 by applying Theorem 2
to Π2.

To construct Π2, we first consider a variant of the 1-private k-server PIR
scheme of Section 4.2 such that α1, . . . , αk are chosen randomly (Figure 2). The
following theorem holds. See Appendix D for the proof.

Theorem 5. Given a d-bounded matching vector family U ,V of size n over Zh
m,

there exists a 1-private (1 − ϵ)-fully error detecting k-server PIR scheme with
communication complexity O(khλ logm) for k ≥ d+ 1 and

ϵ :=

(
k − 1

m− k + 1

)λ

.

In Appendix E, we present a matching vector family that is suitable for the
scheme in Theorem 5. The following corollary can be obtained by combining
Theorem 5 and that matching vector family. See Appendix E for the details.

Corollary 2. Let r ≥ 2 and ϵ > 0. Set k = rr2r
2+2r−3 + 1. Then, there exists

a function n0 = n0(r) = exp(O(2rr)) such that the following holds: For any
n ≥ n0, there exists a 1-private (1− ϵ)-fully error detecting k-server PIR scheme
Π2 for a universe of databases {0, 1}n such that the communication complexity
is Ln[1/r, 2

O(r)]·k log ϵ−1 and the time complexity of its reconstruction algorithm
is polynomial in k, n and log ϵ−1.

By applying Theorem 2 to the k-server PIR scheme Π2, we obtain a (1− ϵ)-
fully error detecting ℓ-server PIR scheme Π ′2 while the overhead in communica-
tion cost is 2O(k)ℓ log ℓ.

Corollary 3. Let r ≥ 2 and ϵ > 0. Set k = rr2r
2+2r−3 + 1. For a sufficiently

large n (depending on r only) and any ℓ ≥ k, there exists a 1-private (1−ϵ)-fully
error detecting and ⌊(ℓ − k)/2⌋-error correcting ℓ-server PIR scheme Π ′2 for a
universe of databases {0, 1}n such that the communication complexity is

Ln[1/r, 2
O(r)] · 2O(k)ℓ log ℓ log ϵ−1

and the time complexity of its reconstruction algorithm is
(
ℓ
k

)
·poly

(
k, n, log ϵ−1

)
.
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Notations.
– Positive integers k, d, λ
– m ≥ k and a d-bounded S-matching vector family U = (u1, . . . ,un), V =

(v1, . . . ,vn) over Zh
m

– A prime field Fq such that q ≡ 1 mod m
– A primitive root δ ∈ F∗

q and γ = δ(q−1)/m

– A polynomial Fa associated with a = (a1, . . . , an) ∈ {0, 1}n defined as

Fa(z1, . . . , zh) =
∑
τ∈[n]

aτz
vτ1
1 · · · zvτh

h ∈ Fq[z1, . . . , zh],

where we assume a ∈ Fn
q and vτj is the j-th coordinate of vτ ∈ Zh

m

Q(τ). Given an input τ ∈ [n]:
1. For each j ∈ [λ]:

(a) Choose k pairwise distinct random elements α
(j)
1 , . . . , α

(j)
k ∈ Zm.

(b) Choose w(j) ←$Zh
m.

(c) Let (ρ
(j)
i1 , . . . , ρ

(j)
ih ) = w(j) + α

(j)
i uτ ∈ Zh

m for i ∈ [k].

2. Output quei = (γρ
(j)
i1 , . . . , γρ

(j)
ih )j∈[λ] for i ∈ [k] together with aux =

((α
(j)
1 , . . . , α

(j)
k )j∈[λ], (w

(j))j∈[λ],vτ ).

A(i, quei,a). Given i ∈ [k], a query quei, and a database a ∈ {0, 1}n:
1. Parse quei = (γρ

(j)
i1 , . . . , γρ

(j)
ih )j∈[λ].

2. For each j ∈ [λ], let ζ
(j)
i = Fa(γ

ρ
(j)
i1 , . . . , γρ

(j)
ih ).

3. Output ansi = (ζ
(j)
i )j∈[λ].

R(ãns1, . . . , ãnsk; aux). Given k answers ãnsi = (ζ̃
(j)
i )j∈[λ] ∈ Fλ

q and auxiliary informa-

tion aux = ((α
(j)
1 , . . . , α

(j)
k )j∈[λ], (w

(j))j∈[λ],vτ ):
1. Let L = ∅.
2. Choose any subset A ⊆ [k] of size d+ 1.
3. For each j ∈ [λ]:

(a) Compute a degree-d polynomial g̃(j)(x) ∈ Fq[x] such that g̃(j)(γα
(j)
i ) = ζ̃

(j)
i

for all i ∈ A, using Lagrange interpolation.

(b) Add g̃(j)(0)γ−⟨w(j),vτ ⟩ to L if ζ̃
(j)
i = g̃(j)(γα

(j)
i ) for all i /∈ A and

g̃(j)(0)γ−⟨w(j),vτ ⟩ ∈ {0, 1}. Otherwise, output ⊥.
4. If L = {s} for some s ∈ {0, 1}, output s. Otherwise, output ⊥.

Fig. 2. A 1-private (1− ϵ)-fully error detecting k-server PIR scheme Π
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If we set r = 3, for any ℓ ≥ 217, there is a 1-private (1 − ϵ)-fully er-
ror detecting ℓ-server PIR scheme such that the communication complexity is
Ln[1/3, O(1)] · ℓ log ℓ log ϵ−1, which is lower than the communication complexity
(8) of Corollary 1 as functions of n.

8 t-Private Fully Error Detecting PIR with Polynomial
Communication

In this section, we show a t-private (1− ϵ)-fully error detecting and ⌊(ℓ− k)/2⌋-
error correcting PIR scheme Π with polynomial (in n) communication. Our
scheme Π is the same as the t-private ℓ-server PIR scheme [21] except that
it uses Hermite interpolation with random points αi to achieve error detection
(Figure 3). Note that Π has in common with the scheme [21] that a client can
compute {(g(αi), ∂g(αi)) : i ∈ B} for the unique polynomial g with g(0) = aτ ,
where B is a set of honest servers. This property implies that the polynomial-
time error correction algorithm of [15] is applicable to Π. We obtain the following
theorem. See Appendix F for the proof.

Theorem 6. Let ϵ > 0 and ℓ ≥ k ≥ t ≥ 1. Set d = ⌊(2k − 1)/t⌋. Then,
there exists a t-private (1 − ϵ)-fully error detecting and ⌊(ℓ − k)/2⌋-error cor-
recting ℓ-server PIR scheme for a universe of databases {0, 1}n such that the
communication complexity is O(dn1/dℓ log ℓ log ϵ−1) and the time complexity of
its reconstruction algorithm is polynomial in ℓ, n and log ϵ−1.
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d
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(1)
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p and auxiliary
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1. Let ζ̃
(1)
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i1 , . . . , ζ̃
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i = ∂g̃(αi) for all i ∈ A, using Hermite interpolation.

5. Output g̃(0) if ξ̃
(0)
i = g̃(αi) and ξ̃

(1)
i = ∂g̃(αi) for all i /∈ A and g̃(0) ∈ {0, 1}.

Otherwise, output ⊥.

Fig. 3. A t-private (1− ϵ)-fully error detecting ℓ-server PIR scheme
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A Proof of Theorem 2

Let Q′,A′ be the query and answer algorithms of the ℓ-server PIR scheme ob-
tained by applying the generic transformation based on a minimal perfect hash
family to Π (see Section 3.2). Let H = {h1, . . . , hw} be the (ℓ, k)-minimal per-
fect hash family used in the transformation. Let Πj denote the instance of Π

19



corresponding to the function hj for j ∈ [w]. Let que(j) = (que
(j)
1 , . . . , que

(j)
k )

denote a query vector corresponding to the j-th execution of Π for j ∈ [w]. Fix
S1, . . . , Sℓ ⊆ [ℓ] such that i ∈ Si and |Si| = k for any i ∈ [ℓ]. For each i ∈ [ℓ], let
ji ∈ [w] be an index such that hji(Si) = [k].

We define the reconstruction algorithm R′ as follows:

1. Let ãnsi = (ãns
(1)
i , . . . , ãns

(w)
i ) be an answer returned by the i-th server,

where ãns
(j)
i is supposed to be A(hj(i), que

(j)
hj(i)

,a) if the i-th server is honest;

2. For each i ∈ [ℓ], R′ runs R on input {ãns(ji)µ : µ ∈ Si};
3. If R outputs the same value a for every i ∈ [ℓ], then R′ outputs a. Otherwise
R′ outputs ⊥.

Then it is clear that Π ′ = (Q′,A′,R′) is correct. As noted in Section 3.2, the
communication complexity of Π ′ is cℓw = c2O(k)ℓ log ℓ and Π ′ is 1-private. It
also follows that it is (k, ℓ)-robust and hence ⌊(ℓ− k)/2⌋-error correcting.

We prove that Π ′ is (1 − ϵ)-full error detection. Without loss of generality,
we may assume that the first server is honest and all the other servers are
malicious. We assume that there is no collusion. During the execution of Πj , the

client generates Q(τ ; rj) → ({que(j)i }i∈[k]; aux(j)), where rj is a random string.

The i-th server then receives quei = {que
(j)
hj(i)
}j∈[w]. For each i ∈ [ℓ], the µ-th

server with µ ∈ Si returns

ãns
(ji)
µ =

{
ans

(ji)
1 = A(hji(1), que

(ji)
hji

(1),a), if µ = 1,

f
(ji)
µ (queµ,a), otherwise

for some function f
(ji)
µ , where a = (a1, . . . , an) is a database. It then follows

from our definition of R′ that

Pr[R′ outputs some a′ ̸∈ {aτ ,⊥} ]

≤ Pr
[
R(ans(j1)1 , {ãns(j1)µ }µ∈S1\{1}; aux

(j1)) ̸∈ {aτ ,⊥}
]
.

Therefore it is enough to show that

p0 := Pr
[
R(ans(j1)1 , {ãns(j1)µ }µ∈S1\{1}; aux

(j1)) ̸∈ {aτ ,⊥}
]
≤ ϵ

Now fix r′ = (rj)j∈[w]\{j1} arbitrarily. Then que
(ji)
µ is a fixed constant for any

i ∈ [ℓ] \ {1} and µ ∈ [ℓ] \ {1}. Therefore, for µ ∈ S1 \ {1}, we can write

ãns
(j1)
µ = f (j1)

µ (queµ,a) = gµ,r′(que
(j1)
hj1

(µ),a)
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using some function gµ,r′ . Let X denote the random variable which represents
r′ = (rj)j∈[w]\{j1}. Then we have

p0 = Prr′
[
R(ans(j1)1 , {ãns(j1)µ }µ∈S1\{1}; aux

(j1)) ̸∈ {aτ ,⊥}
]

=
∑
r′

Pr[X = r′ ] Prr1

[
R(ans(j1)1 , {ãns(j1)µ }µ∈S1\{1}; aux

(j1)) ̸∈ {aτ ,⊥}
]

≤
∑
r′

Pr[X = r′ ]× ϵ

= ϵ

since Π is (1 − ϵ)-fully error detecting with respect to a tampering function
(gµ,r′)µ∈S1 .

Obstacle to Extension to t ≥ 2. This transformation [5] can be generalized
to construct a t-private (k, ℓ)-robust PIR scheme from a t-private k-server PIR
scheme for t ≥ 2. However, we cannot use it to construct a t-private (1− ϵ)-fully
error detecting ℓ-server PIR scheme from a t-private (1− ϵ)-fully error detecting
k-server PIR scheme. The transformed ℓ-server PIR scheme Π ′ generates w
instances Π1, . . . , Πw of the k-server PIR scheme Π. Then it can happen that
there exist some instance Πi and a set of k servers such that the answer of a
malicious server depends on the query which is sent to an honest server. This
prevents us from reducing the security of Π ′ to that of Π.

We show an example. Let t = 2, k = 3 and ℓ = 5. Assume that Server 1 is
honest and all the other servers are malicious with T1 = {2, 4} and T2 = {3, 5}.
Consider a perfect hash family H = {h1, . . . , hw} such that (h1(1), . . . , h1(5)) =
(1, 2, 3, 1, 2) and the client uses h1 when reconstructing aτ from the answers of
Servers 1, 2 and 3. Note that h1(1) = h1(4) = 1. In an instance Π1 which uses

h1, the client generates (que
(1)
1 , que

(1)
2 , que

(1)
3 ) and Server 2 returns

ãns
(1)
2 = f

(1)
2 (que

(1)
h1(2)

, que
(1)
h1(4)

,a) = f
(1)
2 (que

(1)
2 , que

(1)
1 ,a)

for a function f
(1)
2 . The client then computes a′ = R(ans(1)1 , ãns

(1)
2 , ãns

(1)
3 ; aux(1)).

Now, the (1− ϵ)-full error detection of Π1 does not imply that a′ ∈ {aτ ,⊥} with
probability 1− ϵ since ãns

(1)
2 depends on que

(1)
1 sent to Server 1 who is honest.

B Proof of Theorem 3

We first show a lemma used in the proof of Theorem 3.

Lemma 1. Let T1, . . . , Tm be m pairwise disjoint subsets of [ℓ] such that T1 ∪
· · ·∪Tm = [ℓ]\{1} and |Ti| ≤ t for all i ∈ [m]. Consider the following conditions
on a family F = {S1, . . . , SN} of subsets of [ℓ]:

1. For any i ∈ [ℓ], |Si| = k and 1 ∈ Si;
2. For any h ∈ [m], there exists at most one i ∈ [N ] such that Th ∩ Si ̸= ∅.
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Define M be the maximum size of F satisfying the above conditions. Then,

M ≥M ′ =

⌈
ℓ− k + 1

k + t− 2

⌉
.

Proof (of Lemma 1). It is sufficient to construct a family F with |F| ≥ M ′

satisfying the conditions 1 and 2. We consider the following algorithm to generate
a sequence u1, u2, . . . in [m]:

1. Set i = 1 and u0 = 0;
2. Repeat the following:

(a) If
∑

ui−1+1≤h≤m |Th| ≥ k − 1, let ui be the smallest element such that

|Tui−1+1|+ |Tui−1+2|+ · · ·+ |Tui
| ≥ k − 1. Otherwise, go to Step 3.

(b) Set i← i+ 1.
3. Output u1, . . . , ui−1.

Let u0 = 0, u1, . . . , uN be an output of the above algorithm. For each i ∈ [N ],
choose any subset S′i of size k − 1 such that S′i ⊆ Tui−1+1 ∪ · · · ∪ Tui

. We define
F = {S′i ∪{1} : i ∈ [N ]}. It easily follows from the definition that F satisfies the
conditions 1 and 2. Since

∑
ui−1+1≤h≤ui−1 |Th| ≤ k − 2 and |Tui

| ≤ t, it holds

that
∑

ui−1+1≤h≤ui
|Th| ≤ k+ t−2 for any i ∈ [N ]. By adding them up, we have

that

ℓ− 1−
∑

uN+1≤h≤m

|Th| =
∑

1≤h≤uN

|Th| ≤ N(k + t− 2)

and hence

|F| = N ≥ ℓ− k + 1

k + t− 2

since
∑

uN+1≤h≤m |Th| ≤ k − 2. ⊓⊔

We consider a PIR scheme Π ′ = (Q′,A′,R′) where (Q′,A′) runs
(
ℓ
k

)
inde-

pendent instances of (Q,A) between a client and every subset of k servers. The
communication complexity of Π ′ is c ·

(
ℓ
k

)
. Since each execution of Q(τ) is done

independently, Π ′ is also t-private. Furthermore for each execution of (Q,A),
R′ runs R on the corresponding input. If R outputs the same value a for every
execution, then R′ outputs a. Otherwise R′ outputs ⊥. Then it is clear that
Π ′ is correct. It also follows that it is (k, ℓ)-robust and hence ⌊(ℓ − k)/2⌋-error
correcting.

We prove that Π ′ is (1− ϵ′)-fully error detecting. Without loss of generality,
suppose that the first server is honest and all the other servers are malicious.
Consider pairwise disjoint subsets T1, . . . , Tm such that T1 ∪ . . .∪ Tm = [ℓ] \ {1}
and |Th| ≤ t for h ∈ [m]. We assume that all the servers in each Th can collude.

Let p =
(
ℓ
k

)
and let S1, . . . , Sp be all k-sized subsets of [ℓ]. Let F be a family

of subsets of [ℓ] with |F| = M ≥ M ′ given by Lemma 1. By rearranging the
order, we may assume that F = {S1, . . . , SM}. Let Πj denote the instance of Π
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executed by the client and servers in Sj . During the execution of Πj , the client

generates Q(τ ; rj) → ({que(j)i : i ∈ Sj}; aux(j)), where rj is a random string

and que
(j)
i is sent to the i-th server for i ∈ Sj . The i-th server then receives

que′i = {que(j)i : j ∈ [p] with i ∈ Sj}. In each Πj , the i-th server with i ∈ Sj

returns

ãns
(j)
i =

{
ans

(j)
1 = A(1, que(j)1 ,a), if i = 1,

f
(j)
i ({que′i′}i′∈Th

,a), if i ∈ Th

for some function f
(j)
i , where a = (a1, . . . , an) is a database. It then follows from

our definition of R′ that

Pr[R′ outputs some a′ ̸∈ {aτ ,⊥} ]

≤ Pr
[
∀j ∈ [M ] : R(ans(j)1 , {ãns(j)i }i∈Sj\{1}; aux

(j)) ̸∈ {aτ ,⊥}
]
.

Since ϵM ≤ ϵ′, it is enough to show that

p0 := Pr
[
∀j ∈ [M ] : R(ans(j)1 , {ãns(j)i }i∈Sj\{1}; aux

(j)) ̸∈ {aτ ,⊥}
]
≤ ϵM .

Now fix r′ = (rM+1, . . . , rp) arbitrarily. Then que
(j)
i is a fixed constant for

any j ∈ {M + 1, . . . , p} and i ∈ Sj . Let j ∈ [M ], i ∈ Sj \ {1} and let h ∈ [m] be
the unique index such that i ∈ Th. Since F satisfies the condition 2 in Lemma 1,
we have that Th ∩ Sj′ = ∅ for any j′ ∈ [M ] \ {j}. Therefore, we can write

ãns
(j)
i = f

(j)
i ({que′i′}i′∈Th

,a) = gi,r′({que(j)i′ }i′∈Th
,a)

using some function gi,r′ . In particular, {ãns(j)i }i∈Sj\{1} and {ãns
(j′)
i }i∈Sj′\{1} are

independent if j ̸= j′ ∈ [M ]. Let X denote the random variable which represents
r′ = (rM+1, . . . , rp). Then, for any fixed r′ = (rM+1, . . . , rp), we have that

Prr1,...,rM

[
∀j ∈ [M ] : R(ans(j)1 , {ãns(j)i }i∈Sj\{1}; aux

(j)) ̸∈ {aτ ,⊥} |X = r′
]

≤
∏

j∈[M ]

Prrj

[
R(ans(j)1 , {ãns(j)i }i∈Sj\{1}; aux

(j)) ̸∈ {aτ ,⊥} |X = r′
]

≤ ϵM

since Π is (1− ϵ)-fully error detecting. Therefore, it holds that

p0 =
∑
r′

Pr[X = r′ ] Prr1,...,rM

[
∀j ∈ [M ] : R(ans(j)1 , {ãns(j)i }i∈Sj

; aux(j)) ̸∈ {aτ ,⊥} |X = r′
]

≤
∑
r′

Pr[X = r′ ]× ϵM

≤ ϵM .
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C Proof of Theorem 4

Using the notations in Figure 1, the 1-privacy of Π1 follows from the fact that
a random vector w(j) masks uτ for each j ∈ [λ].

First we show the correctness ofΠ1. Fix a database a = (a1, . . . , an) ∈ {0, 1}n

and a client’s index τ . Note that ξ
(j)
i at Step 2 of A in Figure 1 is computed as

ξ
(j)
i =

∑
σ∈[n]

aσγ
⟨w(j),vσ⟩+α

(j)
i ⟨uτ ,vσ⟩ = c

(j)
0 +

∑
s∈{p,q,p+q}

c(j)s (γα
(j)
i )s

for each j ∈ [λ], where c
(j)
0 = aτγ

⟨w(j),vτ ⟩ and c
(j)
s =

∑
σ∈[n]:⟨uτ ,vσ⟩=s aσγ

⟨w(j),vσ⟩.

Similarly, ζ
(j)
i at Step 2 of A is written as

ζ
(j)
i =

∑
σ∈[n]

aσϕ(vσ)γ
⟨w(j),vσ⟩+α

(j)
i ⟨uτ ,vσ⟩.

Hence, η
(j)
i at Step 2(a) of R is computed as follows:

η
(j)
i := ⟨ϕ(uτ ), ζ

(j)
i ⟩

=
∑
σ∈[n]

aσϕ(⟨uτ ,vσ⟩)γ⟨w
(j),vσ⟩(γα

(j)
i )⟨uτ ,vσ⟩

= aτϕ(0)γ
⟨w(j),vτ ⟩ +

∑
s∈{p,q,p+q}

c(j)s ϕ(s)(γα
(j)
i )s

=
∑

s∈{p,q,p+q}

c(j)s ϕ(s)(γα
(j)
i )s.

On the other hand, the matrix M (j) computed by R is written as

M (j) =


1 (β

(j)
1 )p (β

(j)
1 )q (β

(j)
1 )p+q

0 ϕ(p)(β
(j)
1 )p ϕ(q)(β

(j)
1 )q ϕ(p+ q)(β

(j)
1 )p+q

1 (β
(j)
2 )p (β

(j)
2 )q (β

(j)
2 )p+q

0 ϕ(p)(β
(j)
2 )p ϕ(q)(β

(j)
2 )q ϕ(p+ q)(β

(j)
2 )p+q


since (β

(j)
i )p = (γp)α

(j)
i = 1, (β

(j)
i )q = β

(j)
i in Fq, and ϕ(p) = p, ϕ(q) = 0, ϕ(p +

q) = p due to the definition of ϕ. We therefore have that

M (j)


c
(j)
0

c
(j)
p

c
(j)
q

c
(j)
p+q

 =


ξ
(j)
1

η
(j)
1

ξ
(j)
2

η
(j)
2

 . (9)

Furthermore, it holds that detM (j) = p2(β
(j)
1 − β

(j)
2 )2 ̸= 0 since α

(j)
1 ̸= α

(j)
2 .

Therefore R correctly recovers c
(j)
0 , c

(j)
p , c

(j)
q , c

(j)
p+q for each j ∈ [λ]. Hence L =

{aτ} and R outputs aτ . Thus the correctness of Π1 holds.
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We next show that Π1 is (1 − ϵ)-fully error detecting. The reconstruction
algorithm R computes c̃0, c̃p, c̃q, c̃p+q such that

M (j)


c̃
(j)
0

c̃
(j)
p

c̃
(j)
q

c̃
(j)
p+q

 =


ξ̃
(j)
1

η̃
(j)
1

ξ̃
(j)
2

η̃
(j)
2

 (10)

for all j ∈ [λ]. Without loss of generality, we may assume that (ξ̃
(j)
1 , η̃

(j)
1 ) =

(ξ
(j)
1 ,η

(j)
1 ) and (ξ̃

(j)
2 , η̃

(j)
2 ) ̸= (ξ

(j)
2 ,η

(j)
2 ). Namely the first server is honest and

the second server is malicious. From Eqs. (9) and (10), it holds that

M (j)


c̃
(j)
0 − c

(j)
0

c̃
(j)
p − c

(j)
p

c̃
(j)
q − c

(j)
q

c̃
(j)
p+q − c

(j)
p+q

 =


0
0

µ
(j)
2

ν
(j)
2

 (∀j ∈ [λ])

where µ
(j)
2 = ξ̃

(j)
2 −ξ

(j)
2 and ν

(j)
2 = η̃

(j)
2 −η

(j)
2 . By multiplying the adjugate matrix

adj(M (j)) from the left, we obtain the first entry as

(detM (j))(c̃
(j)
0 − c

(j)
0 ) = M

(j)
13 µ

(j)
2 +M

(j)
14 ν

(j)
2 (∀j ∈ [λ]),

where M
(j)
kℓ is the (k, ℓ)-entry of adj(M (j)). Let c̃

(j)
0 = a′γ⟨w

(j),vτ ⟩, and define

∆ := a′−aτ and δ(j) := γ⟨w
(j),vτ ⟩. By calculating the adjacent matrix adj(M (j))

directly, we have

p2(β
(j)
1 − β

(j)
2 )2∆δ(j) = (pµ

(j)
2 − ν

(j)
2 )p(β

(j)
1 − β

(j)
2 )β

(j)
1 (11)

for any j ∈ [λ]. Let x1 = β
(j)
1 = γα

(j)
1 . Then we have

p2(x1 − β
(j)
2 )2∆δ(j) − (pµ

(j)
2 − ν

(j)
2 )p(x1 − β

(j)
2 )x1 = 0

and hence

p(x1 − β
(j)
2 )

(
(p∆δ(j) − pµ

(j)
2 + ν

(j)
2 )x1 − p∆δ(j)β

(j)
2

)
= 0.

Since x1 = β
(j)
1 ̸= β

(j)
2 , it must hold that

(p∆δ(j) − pµ
(j)
2 + ν

(j)
2 )x1 − p∆δ(j)β

(j)
2 = 0. (12)

Now suppose that ∆ = a′−aτ ̸= 0. Then it must hold that p∆δ(j)−pµ(j)
2 +ν

(j)
2 ̸=

0 since p∆δ(j)β
(j)
2 ̸= 0. Furthermore x1 ̸= β

(j)
2 is randomly chosen independently

from the other values in Eq. (12). Therefore Eq. (12) holds for all j ∈ [λ] with
probability at most (p−1)−λ. This means that R adds a′ ̸= aτ to L at Step 2(d)
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with probability at most ϵ = (p−1)−λ since ∆ takes at most one value. Therefore
our PIR scheme is (1− ϵ)-fully error detecting.

Finally, a prime q satisfying q ≡ 1 mod p can be chosen as q = pO(1) from
Linnik’s theorem [16]. It then holds that λ log q = O(λ log p) = O(log ϵ−1) and
the communication complexity is given by O(hλ log q) = Ln[1/2, θm] · log ϵ−1
from Proposition 1, where θm is a constant depending on m = pq only. Since
m = pq can be chosen as a constant, we conclude that the communication
complexity is Ln[1/2, O(1)] · log ϵ−1.

D Proof of Theorem 5

Consider a PIR scheme Π shown in Figure 2. Since a prime q satisfying q ≡
1 mod m can be chosen as q = mO(1) from Linnik’s theorem [16], the communi-
cation complexity of Π is O(λ(h logm + log q)) = O(hλ logm) per server. The
1-privacy of Π follows from the fact that a random vector w(j) masks uτ for
each j ∈ [λ].

Fix a database a and a client’s index τ . For each j ∈ [λ] and s ∈ S, we define

c
(j)
s =

∑
σ∈[n]:⟨uτ ,vσ⟩=s aσγ

⟨w(j),vσ⟩ and g(j)(x) = aτγ
⟨w(j),vτ ⟩ +

∑
s∈S c

(j)
s xs ∈

Fq[x]. At Step 2 of A, it holds that ansi = (ζ
(j)
i )j∈[λ] = (g(j)(γα

(j)
i ))j∈[λ] since

ζ
(j)
i = Fa(γ

ρ
(j)
i1 , . . . , γρ

(j)
ih )

=
∑
σ∈[n]

aσγ
⟨w(j),vσ⟩+α

(j)
i ⟨uτ ,vσ⟩

= aτγ
⟨w(j),vτ ⟩ +

∑
s∈S

cs(γ
α

(j)
i )s

= g(j)(γα
(j)
i ).

Since (U ,V) is d-bounded, the degree of g(j) is at most d ≤ k − 1. Also, we

have that g(j)(0)γ−⟨w
(j),vτ ⟩ = aτ . If all servers are honest, R correctly recovers

g̃(j) = g(j) for each j ∈ [λ]. Hence, we have that L = {aτ} and R outputs aτ .
The correctness of Π then follows.

We show that Π is (1−ϵ)-fully error detecting. We may assume that the first

server is honest, i.e., ζ̃
(j)
1 = ζ

(j)
1 for every j ∈ [λ]. Observe that Eq. (2) implies

k∑
i=1

Li(γ
α

(j)
1 , γα

(j)
2 , . . . , γα

(j)
k )ζ

(j)
i = aτγ

⟨w(j),vτ ⟩ (∀j ∈ [λ]). (13)

Define δ
(j)
i = ζ̃

(j)
i − ζ

(j)
i for i ̸= 1. If R outputs a value a′ ∈ {0, 1} \ {aτ}, R

should compute a polynomial g̃(j) of degree at most d such that g̃(j)(γα
(j)
i ) = ζ̃

(j)
i

for all i ∈ [k] and g̃(j)(0) = a′γ⟨w
(j),vτ ⟩. It then holds that

k∑
i=1

Li(γ
α

(j)
1 , γα

(j)
2 , . . . , γα

(j)
k )ζ̃

(j)
i = a′γ⟨w

(j),vτ ⟩ (∀j ∈ [λ]) (14)
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due to Eq. (2). It follows from Eqs. (13) and (14) that

k∑
i=2

Li(γ
α

(j)
1 , γα

(j)
2 , . . . , γα

(j)
k )δ

(j)
i = ∆γ⟨w

(j),vτ ⟩ (∀j ∈ [λ]), (15)

where ∆ := a′ − aτ . We show that Eq. (15) holds with probability at most
((k− 1)/(m− k+1))λ. Then, the probability that R outputs an incorrect value
is at most ((k−1)/(m−k+1))λ = ϵ since∆ takes at most one value. In particular,

we upper bound the probability that Eq. (15) holds when fixing α
(j)
2 , . . . , α

(j)
k

and w(j). That is, the randomness is taken over random choices of α
(j)
1 (j ∈

[λ]), each of which is uniformly distributed over Zm \ {α(j)
2 , . . . , α

(j)
k }. Note that

δ
(j)
2 , . . . , δ

(j)
k are also fixed since they are determined by ρ

(j)
2 , . . . ,ρ

(j)
k , which are

in turn determined by α
(j)
2 , . . . , α

(j)
k andw(j). Let β

(j)
i denote γα

(j)
i for i ∈ [ℓ]\{1}

and j ∈ [λ]. For each j ∈ [λ], we define polynomials F (j)(x1), G
(j)(x1) ∈ Fq[x1]

as

F (j)(x1) =
∏

µ∈[k]\{1}

(x1 − β(j)
µ ),

G(j)(x1) = F (j)(x1)

(
k∑

i=2

Li(x1, β
(j)
2 , . . . , β

(j)
k )δ

(j)
i −∆γ⟨w

(j),vτ ⟩

)
.

We show the following claim.
Claim: For each j ∈ [λ], G(j)(x1) is a non-zero polynomial of degree at most
k − 1.
Proof: By using the notations in Section 2.1, for any i ̸= 1, it holds that

F (j)(x1)

Pi(β
(j)
i , x1, β

(j)
2 , . . . , β

(j)
k )

=

∏
µ∈[k]\{1}(x1 − β

(j)
µ )

(β
(j)
i − x1)

∏
µ∈[k]\{1,i}(β

(j)
i − β

(j)
µ )

= η
(j)
i

∏
µ∈[k]\{1,i}

(x1 − β(j)
µ ), (16)

where η
(j)
i ∈ Fq is a non-zero element. In particular, this is a polynomial of

degree k − 2. Since Pi(0, x1, β
(j)
2 , . . . , β

(j)
k ) is a polynomial of degree 1, G(j) is a

polynomial of degree at most k − 1 due to Eq. (1).

If δ
(j)
i = 0 for any i ∈ [k] \ {1}, then G(j)(x1) = −F (j)(x1)∆γ⟨w

(j),vτ ⟩ ̸= 0.

If δ
(j)
i ̸= 0 for some i ∈ [k] \ {1}, then since the polynomial of Eq. (16) vanishes

on x1 = β
(j)
ν for ν ̸= i, it holds that

G(j)(β
(j)
i ) = δ

(j)
i η

(j)
i

∏
µ∈[k]\{1,i}

(β
(j)
i − β(j)

µ )
∏

µ∈[k]\{1}

(−β(j)
µ )− F (j)(β

(j)
i )∆γ⟨w

(j),vτ ⟩

= δ
(j)
i η

(j)
i

∏
µ∈[k]\{1,i}

(β
(j)
i − β(j)

µ )
∏

µ∈[k]\{1}

(−β(j)
µ )

̸= 0
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and hence G(j) is a non-zero polynomial. ■
The polynomial G(j) has at most k − 1 roots in Fq. Since α

(1)
1 , . . . , α

(λ)
1 are

independent and each α
(j)
1 is randomly chosen from Zm \ {α(j)

2 , . . . , α
(j)
k }, the

probability that G(j)(γα
(j)
1 ) = 0 (∀j ∈ [λ]) is at most ((k − 1)/(m − k + 1))λ.

Thus, we can see that Eq. (15) holds with probability at most∑
(α

(j)
2 ,...,α

(j)
ℓ ,w(j))j∈[λ]

Pr
[
G(j)(γα

(j)
1 ) = 0 (∀j ∈ [λ])

]
Pr
[
(α

(j)
2 , . . . , α

(j)
ℓ ,w(j))j∈[λ]

]

≤
∑

(α
(j)
2 ,...,α

(j)
ℓ ,w(j))j∈[λ]

(
k − 1

m− (k − 1)

)λ

Pr
[
(α

(j)
2 , . . . , α

(j)
ℓ ,w(j))j∈[λ]

]

=

(
k − 1

m− k + 1

)λ

,

where the sum ranges over all possible tuples of (α
(j)
2 , . . . , α

(j)
ℓ ,w(j))j∈[λ].

E Proof of Corollary 2

We first prove the following theorem.

Theorem 7. For any r ≥ 2, there exists a function n0 = n0(r) = exp(O(2rr))
such that the following holds: For any n ≥ n0, there exists a d-bounded matching
vector family of size n over Zh

m such that:

– rr2r
2+2r < m < rr2r

2+3r;
– d ≤ rr2r

2+2r−3 < m/8;
– h = exp(O(2rr(log r)(log n)1/r(log log n)1−1/r)).

Proof. It follows from Bertrand’s postulate [17, Theorem 5.8] that π(2M) −
π(M) > M/(3 log(2M)) for any positive integer M , where π(M) is the number
of primes up to M . Let M = r2r+2. Since M/(3 log(2M)) ≥ r if r ≥ 2, we
can choose r pairwise distinct primes p1, . . . , pr such that M < pi ≤ 2M for all
i ∈ [r]. Define m = p1 · · · pr and d = m

∑
i∈[r] p

−1
i . It then holds that

rr2r
2+2r = Mr < m < (2M)r = rr2r

2+3r

and d =

r∑
i=1

p1 · · · pi−1pi+1 · · · pr ≤ r(2M)r−1 = rr2r
2+2r−3 <

m

8
.

Let M ′ = 4M/r = 2r+4 and define n0 = n0(r) as n0 = exp(M ′ logM ′). Note
that n0 ≥ 8 if r ≥ 2. We have that n0 = exp

(
2r+4(r + 4) log 2

)
= exp(O(2rr)).

It also holds that

log n0

log log n0
=

M ′ logM ′

log(M ′ logM ′)
≥ M ′

2
≥ 2M

r

28



and that log n/ log log n ≥ 2M/r for any n ≥ n0 since log n/ log log n is mono-
tonically increasing if n ≥ 8.

To apply Proposition 2, we set parameters as follows:

– let w = 2r log n/ log log n for n ≥ n0. We have that w ≥ 2r · (2M/r) = 4M .
We also have that ww ≥ nr since

w logw − r log n = r log n− 2r
log n log log log n

log log n
+ w(log r + log 2)

> r
log n

log log n
(log log n− 2 log log log n)

> 0.

– Let ei be the smallest integer such that peii > w1/r for each i ∈ [r]. Set
c = maxi∈[r] p

ei
i .

– Let u = w1+1/r.

We then have that w1/r < c = maxi∈[r](p
ei−1
i · pi) ≤ w1/r · 2M. Since w ≥ 4M ,

it also holds that

u

2
= w1/r · w

2
≥ c

2M
· w
2
≥ c.

It follows from Proposition 2 that there exists a d-bounded matching vector
family of size

(
u
w

)
over Zh

m for h =
(

u
≤c
)
. Since

(
u
w

)
≥ (u/w)w = (w1/r)w ≥ n, it

implies a matching vector family of size n. Since c ≤ u/2, it holds that

h =

c∑
i=0

(
u

i

)
≤ (c+ 1) ·

(
u

c

)
≤ (c+ 1) ·

(e · u
c

)c
≤ (c+ 1) ·

(
e · w1+1/r

w1/r

)c

≤ (c+ 1) · ec · wc

= exp (c logw + c+ log c+O(1))

≤ exp
(
O(Mw1/r logw)

)
≤ exp

(
O(M21/rr1/r(log n)1/r(log log n)−1/r(log log n)(log r))

)
≤ exp

(
O(2rr(log r)(log n)1/r(log log n)1−1/r)

)
,

where e denotes the Napier’s constant. ⊓⊔
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Now, we can show Corollary 2 by combining Theorems 5 and 7.

Let n0 be a function of r given in Theorem 7 and for any n ≥ n0, let (U ,V)
be a d-bounded matching vector family over Zh

m of size n given in Theorem 7.
It holds that h logm = exp(2O(r)(log n)1/r(log log n)1−1/r). We also have that
d+ 1 ≤ k and that

k − 1

m− k + 1
≤ m/8

m−m/8
=

1

7

since d < m/8. We then choose λ = O(log ϵ−1) such that 7−λ < ϵ. The state-
ments follow from Theorem 5.

F Proof of Theorem 6

By using the notations in Figure 3, assume that ϵ = (3ℓ − 3)/(p − ℓ) < 1.
It is sufficient to show that the scheme Π described in Figure 3 is a t-private
(1−ϵ)-fully error detecting ℓ-server PIR scheme with communication complexity
O(dn1/dℓ log p).

Since an integer m satisfying
(
m
d

)
≥ n can be chosen as m = O(dn1/d) [21],

the communication complexity of Π is O(m log p) = O(dn1/d log p) per server.
The t-privacy of Π easily follows from the fact that t random vectors v1, . . . , vt

make any set of t queries independent of τ .

Fix a database a and a client’s index τ . At Step 1 of A, it holds that Fa(qi) =
Fa(E(τ)+αiv1+ · · ·+αt

ivt). Define g(x) = Fa(E(τ)+xv1+ · · ·+xtvt) ∈ Fp[x].
The degree of g is at most dt ≤ 2k−1 ≤ 2ℓ−1 since wt(E(σ)) = d = ⌊(2k−1)/t⌋
for any σ ∈ [n]. Let ξ

(0)
i = ζ

(0)
i = Fa(qi), ζ

(1)
i = (ζ

(1)
ij )j∈[m] = (∂zjFa(qi))j∈[m]

and ξ
(1)
i = ⟨ζ(1)

i ,wi⟩ for i ∈ [ℓ]. It then holds that g(αi) = ξ
(0)
i and ∂g(αi) = ξ

(1)
i

for all i ∈ [ℓ]. It also holds that g(0) = Fa(E(τ)) = aτ . If all servers are honest,
R correctly recovers g̃ = g and hence obtain g(0) = aτ . The correctness of Π
then follows.

We show that Π is (1−ϵ)-fully error detecting. We may assume that the first

server is honest, i.e., ξ̃
(0)
1 = ξ

(0)
1 and ξ̃

(1)
1 = ξ

(1)
1 . Observe that Eq. (5) implies

ℓ∑
i=1

(H
(0)
i (α1, . . . , αℓ)ξ

(0)
i +H

(1)
i (α1, . . . , αℓ)ξ

(1)
i ) = aτ . (17)

Define δ
(0)
i = ξ̃

(0)
i − ξ

(0)
i and δ

(1)
i = ξ̃

(1)
i − ξ

(1)
i for i ̸= 1. If R outputs a value

a′ ∈ {0, 1} \ {aτ}, R computes a polynomial g̃ of degree at most td such that

g̃(αi) = ξ̃
(0)
i and ∂g̃(αi) = ξ̃

(1)
i for all i ∈ [ℓ] and g̃(0) = a′. It then holds that

ℓ∑
i=1

(H
(0)
i (α1, . . . , αℓ)ξ̃

(0)
i +H

(1)
i (α1, . . . , αℓ)ξ̃

(1)
i ) = a′ (18)
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due to Eq. (5). It follows from Eqs. (17) and (18) that

ℓ∑
i=2

(H
(0)
i (α1, . . . , αℓ)δ

(0)
i +H

(1)
i (α1, . . . , αℓ)δ

(1)
i ) = ∆, (19)

where ∆ := a′ − aτ . We show that Eq. (19) holds with probability at most
(3ℓ − 3)/(p − ℓ). Then, the probability that R outputs an incorrect value is at
most (3ℓ−3)/(p−ℓ) = ϵ since ∆ takes at most one value. In particular, we upper
bound the probability that Eq. (19) holds when fixing α2, . . . , αℓ and v1, . . . , vt.
That is, the randomness is taken over a random choice of α1, which is uniformly

distributed over Fp \ {0, α2, . . . , αℓ}. Note that δ
(0)
i and δ

(1)
i are also fixed since

they only depend on q2, . . . , qℓ. We define polynomials F (x1), G(x1) ∈ Fp[x1] as

F (x1) =
∏

κ∈[ℓ]\{1}

(x1 − ακ)
3,

G(x1) = F (x1)

(
ℓ∑

i=2

(H
(0)
i (x1, α2, . . . , αℓ)δ

(0)
i +H

(1)
i (x1, α2, . . . , αℓ)δ

(1)
i )−∆

)
.

We show the following claim.

Claim: G(x1) is a non-zero polynomial of degree at most 3ℓ− 3.

Proof: By using the notations in Section 2.1, for any i ̸= 1, it holds that

F (x1)

Qi(αi, x1, α2, . . . , αℓ)
=

∏
κ∈[ℓ]\{1}(x1 − ακ)

3

(αi − x1)2
∏

κ∈[ℓ]\{1,i}(αi − ακ)2

= ci
∏

κ∈[ℓ]\{1,i}

(x1 − ακ)
3 · (x1 − αi), (20)
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where ci ∈ Fp is a non-zero element. In particular, this is a polynomial of degree
3ℓ− 5. Also, for any i ̸= 1, it holds that

F (x1)Qi(αi, x1, α2, . . . , αℓ)

Qi(αi, x1, α2, . . . , αℓ)2

= Qi(αi, x1, α2, . . . , αℓ) ·
∏

κ ̸=1(x1 − ακ)
3

(αi − x1)4
∏

κ/∈{1,i}(αi − ακ)4

= Qi(αi, x1, α2, . . . , αℓ) ·
∏

κ/∈{1,i}(x1 − ακ)
3

(αi − x1)
· di

= 2

 ∏
λ/∈{1,i}

(αi − αλ) +
∑

κ/∈{1,i}

(αi − x1)
∏

λ/∈{1,i,κ}

(αi − αλ)


×(αi − x1)

∏
κ∈[ℓ]\{1,i}

(αi − αλ) ·
∏

κ∈[ℓ]\{1,i}(x1 − ακ)
3

(αi − x1)
· di

= d′i
∏

κ/∈{1,i}

(x1 − ακ)
3

×

(αi − x1)
∑

κ/∈{1,i}

∏
λ/∈{1,i,κ}

(αi − αλ) +
∏

λ/∈{1,i}

(αi − αλ)

 , (21)

where di, d
′
i ∈ Fp are non-zero elements. In particular, this is a polynomial of

degree at most 3ℓ− 5. Since Qi(0, x1, α2, . . . , αℓ) is a polynomial of degree 2, G
is a polynomial of degree at most 3ℓ− 3 due to Eqs. (3) and (4).

If δ
(0)
i = δ

(1)
i = 0 for any i ∈ [ℓ]\{1}, then G(x1) = −F (x1)∆ ̸= 0. If δ

(0)
i ̸= 0

for some i ∈ [ℓ] \ {1}, then since the polynomials of Eqs. (20) and (21) vanish
on x1 = αj for j ̸= i, it holds that

G(αi) = d′i
∏

κ/∈{1,i}

(αi − ακ)
3 ·

∏
λ/∈{1,i}

(αi − αλ) · δ(0)i − F (αi)∆

= d′i
∏

κ/∈{1,i}

(αi − ακ)
3 ·

∏
λ/∈{1,i}

(αi − αλ) · δ(0)i

̸= 0

and hence G is a non-zero polynomial. Assume that δ
(0)
j = 0 for any j ∈ [ℓ]\{1}

and δ
(1)
i ̸= 0 for some i ∈ [ℓ] \ {1}. Then, G(x1) =

∑
j∈[ℓ]\{1} FH

(1)
j δ

(1)
j − F∆
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and

G′(x1) :=
G(x1)∏

κ∈[ℓ]\{1}(x1 − ακ)

= −
∑

j∈[ℓ]\{1}

δ
(1)
j Qj(0, x1, α2, . . . , αℓ)αjcj

∏
κ∈[ℓ]\{1,j}

(x1 − ακ)
2

−
∏

κ∈[ℓ]\{1}

(x1 − ακ)
2 ·∆.

Therefore,

G′(αi) = −δ(1)i (−αi)
2

∏
κ∈[ℓ]\{1,i}

(−ακ)
2 · αici

∏
κ∈[ℓ]\{1,i}

(αi − ακ)
2 ̸= 0

and hence G is a non-zero polynomial. ■
The polynomial G has at most 3ℓ−3 roots in Fp. Since α1 is randomly chosen

from Fp\{0, α2, . . . , αℓ}, the probability that G(α1) = 0 is at most (3ℓ−3)/(p−ℓ).
Thus, we can see that Eq. (19) holds with probability at most∑

α2,...,αℓ,v1,...,vt

Prα1 ←$ Fp\{0,α2,...,αℓ} [G(α1) = 0] Pr[α2, . . . , αℓ,v1, . . . , vt ]

≤
∑

α2,...,αℓ,v1,...,vt

3ℓ− 3

p− ℓ
Pr[α2, . . . , αℓ,v1, . . . , vt ]

=
3ℓ− 3

p− ℓ
,

where the sum ranges over all possible tuples of α2, . . . , αℓ,v1, . . . , vt.
Finally, we show that Π is ⌊(ℓ − k)/2⌋-error correcting. Let B be a set of

honest servers and assume that |[ℓ] \B| ≤ (ℓ− k)/2. Observe that ξ̃
(0)
i = ξ

(0)
i =

g(αi) and ξ̃
(1)
i = ξ

(1)
i = ∂g(αi) for any i ∈ B. Since |B| ≥ (ℓ+ k)/2 and deg g ≤

2k − 1, g is the unique polynomial such that |{(g(αi), ∂g(αi)) ̸= (ξ̃
(0)
i , ξ̃

(1)
i ) : i ∈

[ℓ]}| ≤ (ℓ − k)/2. The algorithm proposed in [15] enables the client to recover
the unique polynomial g and hence g(0) = aτ in polynomial time in ℓ from

{(ξ̃(0)i , ξ̃
(1)
i ) : i ∈ [ℓ]}.
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