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Abstract

In this note we study the limitations of incompressible encodings with information-theoretic security. We
demonstrate a flaw in the existing proof of the impossibility of constructing incompressible encodings
information-theoretically. Our main contribution is a full proof of impossibility of existence of non-trivial
information-theoretically secure incompressible encoding schemes.
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1 Introduction

The focus of this note is a primitive called incompressible encoding scheme, recently introduced by Moran
and Wichs [MW20]. An incompressible encoding scheme gets some data as an input message and encodes it
into an effectively incompressible code word. The original data can be easily decoded from the code word by
anyone. However, it is not possible for any probabilistic polynomial-time adversary to compress the code
word so that they can later decompress it to the code word, even knowing the original message.

In their article, Moran and Wichs provided constructions of incompressible encodings under various
computational hardness assumptions as well as negative results regarding their security. They also studied
various other properties of incompressible encodings, such as their composability.

1.1 Our contributions

Moran and Wichs conjectured that it is not possible to create a non-trivial information-theoretically secure
incompressible encoding, i.e., without any computational restrictions on the adversary. In this note, we
show that the sketch of a proof given in [MW20] has a few significant issues, which we describe in detail in
Section 3. We present our own full proof of the impossibility of existence of information-theoretically secure
incompressible encodings in the plain model in Section 4. (See Section 4 also for a high-level overview of our
proof.)

Our results are somewhat analogous to the limitation of perfectly secure symmetric encryption. The
one time pad scheme is secure against unbounded attackers, but the key must be as long as the message.
A classical result by Shannon shows that this cannot be improved - every symmetric encryption scheme
resilient to unbounded attackers cannot have the key shorter than the message. That gives solid ground to the
studies of “weaker” encryption schemes that rely on computational hardness assumptions and are secure only
against computationally bounded adversaries. Our full proof of the impossibility of non-trivial incompressible
encoding scheme resilient against computationally unbounded adversaries substantiates focused research of
incompressible encodings relying on computational hardness assumptions.
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Figure 1: Compression experiment CompExpΠA, β(1
λ)

For all encoding schemes Π = (Enc, Dec), and adversaries A = (A .Select(1λ),A .Compress(aux, c),
A .Expand(aux, w)), and β = β(λ, k), the compression experiment CompExpΠA, β(1

λ) is defined as follows:

CompExpΠA, β(1
λ)

1. (m, aux)← A .Select(1λ).

2. c← Enc(1λ,m).

3. w ← A .Compress(aux, c).

4. c′ ← A .Expand(aux, w).

5. Output 1 if and only if c = c′ and |w| ≤ β(λ, |m|).

2 Incompressible encodings

We use λ ∈ N to denote the security parameter.

Definition 2.1. An Encoding scheme Π = (Enc,Dec) for a message space M = {m; m ∈ {0, 1}k} consist
of a pair of Probabilistic Polynomial Time (PPT) algorithms Encode (Enc : M → {0, 1}∗) and Decode
(Dec : {0, 1}∗ →M).

Definition 2.2 (p-correctness). Let p : N → [0, 1] be a function. An encoding scheme Π = (Enc,Dec) is
p-correct if: ∀λ ∈ N,∀m ∈M,Pr[Dec(Enc(1λ,m)) = m ] ≥ p(λ).

Definition 2.3. We define a negligible function as a function f : N → R satisfying that for every n ∈ N
there exists Kn ∈ N such that for every λ ∈ N, λ ≥ Kn it holds that λ−n > |f(λ)|. We denote the set of all
negligible functions as negl(λ).

Definition 2.4 ((α, β)-incompressibility). Let α, β : N×N → N be functions. Then encoding scheme
Π = (Enc,Dec) is (α, β)-incompressible if the following holds:

1. α-Bounding: ∀m ∈ {0, 1}k,∀λ ∈ N : Pr[ |Enc(1λ,m)| ≤ α(λ, k)] = 1

2. β-Incompressibility: For each adversary A = (A .Select, A .Compress, A .Expand), it holds that
Pr[CompExpΠA,β(1

λ) = 1] ∈ negl(λ), where the CompExpΠA,β denotes a compression experiment defined
in Figure 1 and visualized in Figure 2.

Consider the following construction. We can append a random string of length r to any message m of
length k. The random part cannot be compressed and, thus, α(k) = k + r and β(k) = r. Therefore, encoding
schemes satisfying β ≤ α(k)− k are easy to obtain. From now on, we will focus solely on non-trivial encoding
schemes satisfying β(k) > α(k)− k.

Definition 2.5. A non-trivial (α, β)-incompressible encoding scheme is a p-correct (α, β)-incompressible
encoding scheme with β(λ, k) > α(λ, k)− k, and (1− p(λ)) ∈ negl(λ).

In the rest of the note we rely on the following notation.

Notation 2.6.
For k, λ ∈ N :

• M := {0, 1}k is a set of all possible messages with length equal to k.
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Figure 2: Compression experiment flow

• W :=
⋃α(λ,k)−k

i=0 {0, 1}i is a set of all bit strings with a length less than or equal to α(λ, k)− k.

• C := {c ∈
⋃α(λ,k)

i=0 {0, 1}i; ∃m ∈ {0, 1}k, Pr[Enc(1λ,m) = c ] > 0} is the set of all possible code words
for messages of a length k with respect to the security parameter λ.

For m ∈ {0, 1}k, λ ∈ N :

• Cm :=
{
c ∈ C; Pr[Enc(1λ,m) = c ] > 0

}
is the set of all possible code words of the message m with

respect to the security parameter λ.

• Dm := {c ∈ C; Dec(c) = m} is the set of all code words that are decoded to the message m.1

The use of the notation is depicted in Figure 3. The message m1 can be encoded to any code word c from
Cm1

, which is a subset of the set of all code words C. Every code word from the set Dm2
is decoded to the

message m2.

1Note that we use the notation Dm only when we assume the algorithm Dec being deterministic.
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Figure 3: Encoding and decoding sketch

3 Issues in the proof-sketch in [MW20]

Statement 3.1 (Original sketch of proof by Moran and Wichs). “It is easy to see that non-trivial incom-
pressible encodings cannot be constructed information theoretically. This is because, there are at most 2α(k)−k

possible code words per message on average, and therefore also certainly for the worst-case message m. A
pair of inefficient compression/ decompression procedures can enumerate the list of all such code words (e.g.,
in lexiographic order) and compress/decompress any code word in the list just by writing down its index using
β(k) = α(k)− k bits.”

In their article, Moran and Wichs presented a broad definition of incompressible encodings and provided
two possible constructions. The statement above holds for those constructions, but it does not hold for every
construction possible that the definition allows. We identified two main issues.

The problematic part of the sketch is this sentence: “This is because, there are at most 2α(k)−k possible
code words per message on average, and therefore also certainly for the worst-case message m”. The first
issue is that, in a probabilistic encoding (respectively decoding), each message can be encoded to (respectively
decoded from) any number of code words with non-zero probability. Although to satisfy the p-correctness,
some of those probabilities must be negligible. We provide a scheme that violates the above assumption from
the proof sketch of [MW20] in the next section.

The second issue is that the notation of α(k) allows different lengths of code words. Therefore, there are
more than 2α(k) possible code words. This issue is a technical one and can be solved in the following way.
The adversary A is allowed to use the length of a bit sequence as an additional information, i.e., A is able to
distinguish between “101” and “00101”. Then the effects of the variable code word length cancel out (with
slight technical difficulties). However, both of those issues show that the intuition presumed by [MW20] is
unsubstantiated because there could be more than 2α(k)−k possible code words per message on average.

To summarise, the proof sketch works only for incompressible encoding schemes where the decoding is
deterministic and p from the definition of p-correctness is equal to one.
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3.1 Counterexample

Idea. We leverage an arbitrary encoding scheme and “weaken” its encoding algorithm in a way that allows
every message to be encoded into any possible code word. Clearly, this scheme is of no practical interest but
it is an explicit counterexample to the assumptions of [MW20]

Lemma 3.2. For all p-correct (α, β)-incompressible encoding scheme Π there exists a p̂-correct (α, β)-

incompressible encoding scheme Π̂, such that (p− p̂) ∈ negl(λ) and for all λ ∈ N, m ∈ {0, 1}k, Cm = C, i.e.,
each message can be encoded into any possible code word with a non-zero probability.

Proof. Let Π = (Enc,Dec) be a p-correct, (α, β)-incompressible encoding scheme. For this example, we need
an arbitrary efficiently computable negligible function, which we denote as q(λ).

We define the encoding algorithm Ênc in the following way. Before encoding a message m, Ênc generates
a uniformly random number p ∈ [0, 1]. Then it encodes the message m in the following way:

Ênc(m) =

{
Enc(m) if p ∈ (q(λ), 1],
ĉ, if p ∈ [0, q(λ)],

where ĉ is a uniformly chosen random code word satisfying | ĉ | ≤ α(λ, k) generated “on the fly”.

Ênc(m) is correctly defined, because ∀λ > 1, q(λ) ∈ [0, 1). Next, we discuss the properties of Π̂ =

(Ênc, Dec).

First, we verify that Π̂ is indeed an (α, β)-incompressible encoding scheme. The α-bounding property

holds by the definition of Ênc. Next, we focus on β-incompressibility. We know from the definition of Π
that an arbitrary adversary A wins the compression experiment against the Enc algorithm with at most
negligible probability. In the Π̂ scheme, the probability of the message being encoded as a randomly chosen
code word is negligible. In all other cases, the message is encoded via the Enc algorithm. Therefore, the
chance of success of the adversary A against the Ênc algorithm is also negligible.

The Π̂ scheme is p̂-correct, where p̂(λ) ≥ (1 − q(λ))p(λ) = p(λ) − p(λ)q(λ) because the Dec algorithm
correctly decodes a code word encoded by Enc with the probability p(λ) and the Enc algorithm is used for
encoding with the probability (1− q(λ)). It follows from the definition of negligible function that p(λ)q(λ) is

negligible. Thus, the Π̂ scheme satisfies the definition of a p̂-correct (α, β)-incompressible encoding scheme.

Let us denote C the set of all possible code words. From the definition of Ênc follows that

∀c ∈ C,∀m ∈M : Pr[Ênc(m) = c ] ≥ q(λ)

|C|
.

That means that every message could be encoded to any possible code word with a non-zero probability,
thus the proof is complete.

4 Impossibility of information-theoretic security

Theorem 4.1. Let Π be a p-correct, α-bounded encoding scheme. Then

∀β(λ, k) > α(λ, k)− k ∃A : Pr[CompExpΠA,β(1
λ) = 1] ≥ p(λ).

If an α-bounded encoding scheme Π satisfies that (1− p(λ)) ∈ negl(λ), then from Theorem 4.1 it follows
that β(λ, k) ≤ α(λ, k)− k. Hence, Π does not satisfy the definition of non-trivial incompressible encoding
scheme. Thus, the following corollary holds.

Corollary 4.2. It is not possible to construct a non-trivial incompressible encoding scheme information-
theoretically.
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In the followings sections, we prove Theorem 4.1. For an easier understanding of the proof, we start with
some additional assumptions on the encoding scheme. First, we assume perfect correctness and deterministic
decoding. It allows us to leverage the idea from [MW20] because their proof sketch works for restricted
schemes where the p from the definition of p-correctness is equal to 1 and the decoding is deterministic.

The core idea behind our proof for general incompressible encodings is the following. We look for a subset
S of the set of all code words that satisfies two conditions. The first is that there exists a message m∗, such
that the message is encoded into this subset S with probability at least p. The second requirement is that the
subset is small enough, i.e., |S| < 2α(k)−k+1, so that it can be indexed using at most α(k)− k bits. Using the
subset S, we create an adversary that is able to break the scheme with probability at least p. The adversary
lets the challenger encode the message m∗. With probability at least p, the resulting code word is an element
of the subset S. Then the adversary compresses the code word by using only its index in S, which is at most
α(k)− k bits long. Thus, the adversary succeeds in the compression experiment CompExp with probability
at least p, which proves Theorem 4.1. Showing that a subset satisfying the above conditions must exist in
every encoding scheme of our interest is the technical part of the generalised proof in Section 4.3.

4.1 Schemes with perfect correctness and deterministic decoding

Definition 4.3. An encoding scheme Π = (Enc, Dec) has perfect correctness, if it is p-correct scheme with
p(λ) = 1 ∀λ ∈ N.

Definition 4.4. An encoding scheme Π = (Enc, Dec) has deterministic decoding if the algorithm Dec is
deterministic, i.e., for each code word c ∈ C there exists a unique message m ∈ M such that Dec(c) = m
with probability one.

In Lemma 4.5, we show that when the decoding is deterministic there exists a message m such that the
set of code words Dm is small enough that all its members can be indexed using at most α(λ, k)− k bits.

Lemma 4.5. Let Π = (Enc,Dec) be an encoding scheme with deterministic decoding and message space
M = {0, 1}k. If |C| ≤ 2α(λ,k)+1 − 1, then minm∈M |Dm| ≤ 2α(λ,k)−k+1 − 1.

Proof. Suppose to the contrary that minm∈M |Dm| > 2α(λ,k)−k+1−1. Therefore, minm∈M |Dm| ≥ 2α(λ,k)−k+1.
Subsequently,

|C| =
∑
m∈M

|Dm| ≥
∑
m∈M

min
m∈M

|Dm| = 2k min
m∈M

|Dm| ≥ 2k
(
2α(λ,k)−k+1

)
> 2α(λ,k)+1 − 1,

where the first equality follows from Dec being deterministic and the second equality follows from |M | = 2k.
We derived that |C| > 2α(λ,k)+1 − 1, a contradiction to the assumption about the cardinality of C. Hence,
the Lemma holds.

Using Lemma 4.5, we construct an adversary that wins the compression experiment CompExp using the
index of a code word c in Dm as a form of compression.

Theorem 4.6. Let Π = (Enc,Dec) be an α-bounded encoding scheme with deterministic decoding and perfect
correctness. Then

∀β(λ, k) > α(λ, k)− k ∃A : Pr[CompExpΠA,β(1
λ) = 1] = 1,

i.e., it is not a non-trivial (α, β)-incompressible encoding scheme.

Proof. Our construction of the adversary A = (A .Select,A .Compress,A .Expand) is given in Figure 4. The
A .Select algorithm chooses a message m such that every member of Dm can be uniquely represented using
an index (bit string) with a length less than or equal to β bits. Then the algorithm chooses an injective
function f from Dm to the set of indices. The A .Compress gets a code word c from the Enc algorithm and
returns its index w = f(c). Finally, the A .Expand returns f−1(w), which is equal to c.
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Figure 4: Adversary A

Adversary A = (A .Select(1λ),A .Compress(aux, c),A .Expand(aux, w))

A .Select(1λ):

• Choose m∗ = argminm∈M |Dm|.

• Choose an injective f : Dm∗ →W .

• Compute f−1 : f(Dm∗)→ Dm∗ from f .

• Output (m∗, aux = (f, f−1)).

A .Compress(aux, c):

• Parse aux as aux = (f, f−1).

• Output w = f(c)

A .Expand(aux, w):

• Parse aux as aux = (f, f−1).

• Output c′ = f−1(w)

All messages are k bits long, therefore |M | = 2k. On the other hand, the code words are α bits long
at most. Hence, all code word lengths from 1 to α bits are possible. The set of all possible code words

is C ⊆
⋃α(λ,k)

i=0 {0, 1}i. Thus, |C| ≤
∣∣∣⋃α(λ,k)

i=0 {0, 1}i
∣∣∣ = 20 + 21 + · · · + 2α(λ,k) = 2α(λ,k)+1 − 1. By perfect

correctness of the scheme, for all c ∈ C there exists a unique m ∈ {0, 1}k such that c ∈ Dm. Equivalently,
C =

⋃
m∈M Dm while for all mi, mj ∈M satisfying (i ̸= j) it holds that Di ∩Dj = ∅.

Let W =
⋃α(λ,k)−k

i=0 {0, 1}i be the set of bit strings defined in Notation 2.6. Then |W | = 2α(λ,k)−k+1 − 1.
We choose m∗ = argminm∈M |Dm| and let f : Dm∗ → W be an injective function satisfying that for all
c1, c2 ∈ Dm∗ such that (c1 ̸= c2) it holds that f(c1) ̸= f(c2). This function is possible to construct, because
we have |Dm∗ | ≤ |W | from Lemma 4.5. Consequently, we construct f−1 : f (Dm∗) → Dm∗ , such that
f−1 (f(c)) = c. Then, the CompExpΠA,β follows:

•
(
m∗, aux = (f, f−1)

)
← A .Select(1λ)

• c← Enc(1λ, m∗)

• w ← A .Compress(aux, c)

• c′ = A .Expand(aux, w)

• if (c′ = c) ∧ |w| ≤ β(λ, k) output 1, else output 0

The |w| ≤ β(λ, k) holds, because w ∈ W =
⋃α(λ,k)−k

i=0 {0, 1}i. The c = c′ follows from f being injective,
which implies that the inverse f−1 is defined for all f(c) ∈W and f−1

(
f(c)

)
= c. Therefore, the compression

experiment always outputs one.

4.2 Schemes with imperfect correctness and deterministic decoding

In this section, we consider incompressible encodings schemes with imperfect correctness, i.e., where decoding
succedes only with some probability p(λ) < 1. We show that the adversary A defined in Figure 4 wins the
compression experiment with probability equal to or greater than the correctness p(λ) of the scheme.

Lemma 4.7. Let Π be a p-correct, α-bounded encoding scheme with deterministic decoding. Then

∀β(λ, k) > α(λ, k)− k, ∃A : Pr[CompExpΠA,β(1
λ) = 1] ≥ p(λ),

where A is the adversary defined in the Figure 4.
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Proof. Recall A from Figure 4. A .Select chooses the message m∗ = argminm∈M |Dm|. The algorithm Enc
outputs a code word cm∗ ∈ Cm∗ . If cm∗ ∈ Dm∗ , A .Compress will output the w = f(cm∗) and, consequently,
A .Expand will expand w to the original code word cm∗ . Therefore, if cm∗ ∈ Dm∗ , then the adversary
A will correctly compress and expand the code word cm∗ . Out of the definition of p-correctness follows
Pr[cm∗ ∈ Dm∗ ] ≥ p(λ). Hence, we get Pr[CompExpΠA,β(m

∗) = 1] ≥ p(λ).

4.3 Schemes with imperfect correctness and probabilistic decoding

In this section, we present the complete proof of the Theorem 4.1 without any additional assumptions.
Because of the decoding being probabilistic, we cannot use the argument minm∈M |Dm| ≤ 2α(λ,k)−k+1 − 1

from Lemma 4.5. Instead, we show that there exists a message m∗ and a set S ⊂ C, such that the S can be
indexed using α(λ, k)− k bits at most and the probability of Enc(m∗) ∈ S is greater than or equal to the
correctness p(λ) of the scheme. Using Lemma 4.9 we construct an adversary that succeeds when the message
m∗ is encoded into any code word in S, therefore Pr[CompExpΠA,β(m

∗) = 1] ≥ p(λ).

Notation 4.8. We denote the pENC(m, c) = Pr[ENC(m) = c ] and the pDEC(c,m) = Pr[DEC(c) = m ].

Lemma 4.9. Let m∗ ∈ argminm∈M

∑
c∈C pDEC(c,m

∗), then there exists a set S ⊂ C such that |S| =
2α(λ,k)−k+1 − 1 and

∑
c∈S pENC(m

∗, c) ≥ p(λ).

The proof of Lemma 4.9 uses the two following auxiliary lemmata.

Lemma 4.10. There exists m ∈M such that
∑

c∈C pDEC(c,m) ≤ 2α(λ,k)−k+1 − 1.

Proof. The |C| = 2α(λ,k)+1 − 1 and the |M | = 2k. We suppose for the contrary, that

∀m ∈M :
∑
c∈C

pDEC(c,m) > 2α(λ,k)−k+1 − 1,

that implies that

min
m∈M

∑
c∈C

pDEC(c,m) > 2α(λ,k)−k+1 − 1.

Thence minm∈M

∑
c∈C pDEC(c,m) ≥ 2α(λ,k)−k+1.

|C| =
∑
c∈C

1 =
∑
c∈C

(∑
m∈M

pDEC(c,m)

)
=
∑
m∈M

(∑
c∈C

pDEC(c,m)

)

≥
∑
m∈M

(
min
m∈M

∑
c∈C

pDEC(c,m)

)
= |M | min

m∈M

∑
c∈C

pDEC(c,m)

≥ 2k2α(λ,k)−k+1 = 2α(λ,k)+1

> |C|.

We have a contradiction, thence the lemma holds.

Lemma 4.11. Let n ∈ N, K ∈ [0, n], y = (y1, . . . , yn), such that for all i, j ∈ {1, . . . , n} yi ≥ 0 and
(i > j)⇒ (yi ≤ yj). X = {x = (x1, . . . , xn) | ∀k ∈ {1, . . . , n} xk ∈ [0, 1],

∑n
k=1 xk = K}.

Let us define z =

 1 if i ≤ ⌊K⌋,
K − ⌊K⌋ if ⌊K⌋ < i ≤ ⌊K⌋+ 1,
0 if i > ⌊K⌋+ 1.

Then

∀x ∈ X :

n∑
k=1

xiyi ≤
n∑

k=1

ziyi,

8



i.e.

z ∈ argmax
x∈X

n∑
k=1

xiyi.

Proof. First, we verify that z ∈ X .

• zk ∈ [0, 1] for all k ∈ {1, . . . , n}, because 1 ∈ [0, 1], 0 ∈ [0, 1] and K − ⌊K⌋ ∈ [0, 1].

•
∑n

k=1 zk = 1 + · · ·+ 1︸ ︷︷ ︸
⌊K⌋−times

+(K − ⌊K⌋) = ⌊K⌋+ (K − ⌊K⌋) = K.

Let us suppose to the contrary that there exists z̄ ∈ X , such that

z̄ ∈ argmax
x∈X

n∑
k=1

xkyk,

n∑
k=1

zkyk >

n∑
k=1

zkyk.

We denote i = argmink∈{1, ··· , n} zi ̸= zi. We distinguish the following cases:

• If i ≤ ⌊K⌋. Then zi = 1, zi ∈ [0, 1] and zi ̸= zi. That implies zi < zi.

• If ⌊K⌋ < i ≤ ⌊K⌋+ 1. Then zi = K − ⌊K⌋. From the definiton of i we get zk = zk∀k ∈ N, k < i. Thus∑i−1
k=1 zk =

∑i−1
k=1 zk = ⌊K⌋ and we know that

∑n
k=1 zk = K. That implies that zi ≤ K − ⌊K⌋ = zi.

Then zi ̸= zi implies zi < zi.

• If i > ⌊K⌋+ 1, then from the definition of i we obtain that for all k ∈ N, k < i : zk = zk. That implies∑i−1
k=1 zk =

∑i−1
k=1 zk = K. However, z̄ ∈ X . Thus for all k ≥ i : zk = 0 = zk, which contradicts the

definition of i. Hence i ≤ ⌊K⌋+ 1.

We notice that
∑i

k=1 zk <
∑i

k=1 zk ≤ K and z̄ ∈ X ⇒
∑n

k=1 zk = K. Therefore, there exists an index l > i,
such that zl > 0. We define j = argmaxk∈{1,...,n} zk ̸= 0. We choose arbitrary ε ∈ (0, min{zj , 1− zi}). We
define ẑ = (z1, . . . , zi−1, zi + ε, zi+1, . . . , zj−1, zj − ε, zj+1, . . . , zn). Then

n∑
k=1

ẑkyk =

n∑
k=1

zkyk + ε (yi − yj)︸ ︷︷ ︸
≥0

≥
n∑

k=1

zkyk.

If yi > yj , then
∑n

k=1 ẑkyk >
∑n

k=1 zkyk. Thus z̄ ̸= argmaxx∈X
∑n

k=1 xkyk. On the other hand, if yi = yj ,
then from the definition of y we obtain that

∀k ∈ {i, . . . , j}, yi = yk = yj . (1)

We show that j ≥ ⌊K⌋+ 1. Suppose to the contrary that j ≤ ⌊K⌋. K =
∑j

k=1 zk ≤
∑j

k=1 1 = j ≤ ⌊K⌋.
If K /∈ N, then ⌊K⌋ < K, thus we have a contradiction. If K ∈ N, then K = ⌊K⌋ = j and for all
k ∈ {1, . . . , j} zk = 1. Nevertheless,

zk =

{
1 if k ∈ {0, . . . , ⌊K⌋ = j},
0 if k ∈ {j + 1, . . . , n}.

Thence z̄ = z, which contradicts the definition of z̄. Now we proof that if the eq. (1) holds, than
∑n

k=1 zkyk =
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∑n
k=1 zkyk.

n∑
k=1

zkyk =

i−1∑
k=1

zkyk +

j∑
k=i

zkyk +

⌊K⌋+1∑
k=j+1

zkyk +

n∑
k=⌊K⌋+2

zkyk

=

i−1∑
k=1

zkyk + yi

j∑
k=i

zk

=

i−1∑
k=1

zkyk + yi

j∑
k=i

zk

=

n∑
k=1

zkyk,

where the second equation follows from eq. (1), the fact that j ≥ ⌊K⌋+ 1 and the definition of z. The third

equation holds because K =
∑i−1

k=1 zk +
∑n

k=i zk =
∑i−1

k=1 zk +
∑n

k=i zk, thus
∑n

k=i zk =
∑n

k=i zk. Therefore,
we have a contradiction to the supposal that

∑n
k=1 zkyk >

∑n
k=1 zkyk. Hence, the lemma holds.

Next, we proceed with the proof of Lemma 4.9.

Proof of Lemma 4.9. Suppose to the contrary that ∀S ⊂ C satisfying
|S| = 2α(λ,k)−k+1 − 1 it holds that

∑
c∈S pENC(m

∗, c) < p(λ). We denote K =
∑

c∈C pDEC(c,m
∗) ≤

2α(λ,k)−k+1 − 1, where the last inequality comes from Lemma 4.10. That implies K ≤ |S|.
The p-correctness can be expressed in the following ways:

∀λ ∈ N, ∀m ∈M,
(
Pr[Dec(Enc(1λ,m)) = m ]

)
≥ p(λ),

∀λ ∈ N,∀m ∈M,

(∑
c∈C

pENC(m, c)pDEC(c,m)

)
≥ p(λ).

Next, we sort the C in a way that ∀i, j ∈ {1, . . . , |C|}, (i ≤ j) ⇒ pENC(m, ci) ≤ pENC(m, cj). Let
S = {c1, . . . , c|S|}, where |S| = 2α(λ,k)−k+1 − 1. We assume that the distribution of pDEC(m

∗, ci) is as
follows

pDEC(m
∗, ci) =

 1 if i ≤ ⌊K⌋,
K − ⌊K⌋ if ⌊K⌋ < i ≤ ⌊K⌋+ 1,
0 if i > ⌊K⌋+ 1.

The proof that the sum
∑

c∈C pENC(m
∗, c)pDEC(c,m

∗) is maximized for the pDEC distribution defined above
follows from Lemma 4.11, where n = |C|, y = pENC(m

∗, c), and z = pDEC(c,m
∗). Then

∑
c∈C

pENC(m
∗, c)pDEC(c,m

∗) =

|C|∑
i=1

pENC(m
∗, ci)pDEC(ci,m

∗)

=

|S|∑
i=1

pENC(m
∗, ci)pDEC(ci,m

∗)

≤
∑
c∈S

pENC(m
∗, c)

< p(λ),

where the last inequality comes from our supposal. This contradicts the p-correctness definition, thus the
proof is complete.
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Figure 5: Adversary A

Adversary A = (A .Select(1λ),A .Compress(aux, c),A .Expand(aux, w))

A .Select(1λ):

• Choose m∗ = argminm∈M

∑
c∈C pDEC(c,m

∗).

• Choose a bijection g : S →W .

• Compute g−1 : W → S from g.

• Output (m∗, aux = (g, g−1)).

A .Compress(aux, c):

• Parse aux as aux = (g, g−1).

• Output w = g(c)

A .Expand(aux, w):

• Parse aux as aux = (g, g−1).

• Output c′ = g−1(w)

We can now proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1. Our construction of the adversary A = (A .Select,A .Compress,A .Expand) is given
in Figure 5. The A .Select algorithm chooses a message m∗ such that there exists a set S ⊂ C such that
every member of S can be uniquely represented using an index (bit string) with a length less than or equal to
β bits and Pr[c ∈ S ] =

∑
c∈S pENC(m

∗, c) ≥ p(λ). Then the algorithm chooses a bijection g from S to the

set of indices W =
⋃α(λ,k)

i=0 {0, 1}i. The A .Compress gets a code word c from the Enc algorithm and returns
its index w = f(c), if c ∈ S. If c /∈ S, it returns an arbitrary element of W . Finally, the A .Expand returns
f−1(w), which is equal to c if the c is in S.

The set S can be obtained by sorting the code words with respect to pENC(m
∗, c) and taking the first

2α(λ,k)−k+1 − 1 code words with the highest value (pENC(m
∗, c)). The bijection g is possible to construct,

because |S| = 2α(λ,k)−k+1 − 1 = |W |.
Then, the CompExpΠA,β follows:

•
(
m∗, aux = (g, g−1)

)
← A .Select(1λ)

• c← Enc(1λ,m∗)

• w ← A .Compress(aux, c)

• c′ = A .Expand(aux, w)

• if (c′ = c) ∧ |w| ≤ β(λ, k) output 1, else output 0

The bound |w| ≤ β(λ, k) holds, because w ∈W, W =
⋃α(λ,k)−k

i=0 {0, 1}i. The equality c = c′ holds if and
only if c ∈ S. We know that Pr[c ∈ S ] =

∑
c∈S pENC(m

∗, c) ≥ p(λ) from the Lemma 4.9. Therefore the proof
is complete.

5 Conclusions

We proved that there cannot exist any non-trivial incompressible encoding schemes in the plain model secure
against computationally unbounded adversaries. In the current version of the compression experiment in the
definition of β-Incompressibility, the adversary A is allowed to choose the message to be encoded, and our
impossibility results depend on it. We leave as an interesting open problem whether the results change if the
message in the compression experiment is chosen randomly.
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