
Maliciously Circuit-Private FHE from
Information-Theoretic Principles

Nico Döttling1 and Jesko Dujmović1,2

1 Helmholtz Center for Information Security (CISPA)
{doettling, jesko.dujmovic}@cispa.de

2 Saarland University

Abstract. Fully homomorphic encryption (FHE) allows arbitrary com-
putations on encrypted data. The standard security requirement, IND-
CPA security, ensures that the encrypted data remain private. However,
it does not guarantee privacy for the computation performed on the en-
crypted data. Statistical circuit privacy offers a strong privacy guarantee
for the computation process, namely that a homomorphically evaluated
ciphertext does not leak any information on how the result of the com-
putation was obtained. Malicious statistical circuit privacy requires this
to hold even for maliciously generated keys and ciphertexts. Ostrovsky,
Paskin and Paskin (CRYPTO 2014) constructed an FHE scheme achiev-
ing malicious statistical circuit privacy.
Their construction, however, makes non-black-box use of a specific under-
lying FHE scheme, resulting in a circuit-private scheme with inherently
high overhead.
This work presents a conceptually different construction of maliciously
circuit-private FHE from simple information-theoretical principles. Fur-
thermore, our construction only makes black-box use of the underlying
FHE scheme, opening the possibility of achieving practically efficient
schemes. Finally, in contrast to the OPP scheme in our scheme, pre- and
post-homomorphic ciphertexts are syntactically the same, enabling new
applications in multi-hop settings.

1 Introduction

Fully Homomorphic Encryption Fully homomorphic encryption (FHE) [Gen09]
has caused a paradigm shift in achieving round and communication efficient
secure computation. FHE allows an untrusted server to publicly evaluate any
function over encrypted data without the help of a secret key. FHE has become
a tremendous success story in the last ten years, with constructions from in-
creasingly weaker assumptions and achieving better efficiency [vGHV10, BV11,
BGV12, GSW13, BV14, AP14]. By now (levelled) FHE is even considered a
standard cryptographic primitive, which can be based on the standard Learning
with Errors (LWE) problem [Reg05] with polynomial modulus-to-noise ratio. An
important feature of FHE is ciphertext compactness, which means that homo-
morphically evaluated ciphertexts do not grow with the size of the evaluated

circuit. Furthermore, a recent line of work [DGI+19, BDGM19, GH19] has suc-
ceeded in achieving FHE with essentially optimal rate, i.e. for sufficiently long
messages, the size of ciphertexts is only an additive amount larger than the
encrypted plaintext. Thus, we say that these schemes achieve (or approach)
plaintext-size to ciphertext-size ratio 1; we call this a rate-1 scheme for short.

Circuit-Private FHE The standard security notion of FHE, IND-CPA security,
guarantees the privacy of encrypted data. But it does not guarantee any concrete
security for the evaluator beyond the guarantee that a ciphertext can convey only
a limited amount of information about the computation from which it resulted
due to compactness. In a circuit-private FHE scheme, an evaluator holding a
circuit C has the following security guarantee. Assume that c is a ciphertext
encrypting a message x, and assume the evaluator homomorphically evaluates
C on c, resulting in a ciphertext d. The evaluator has the guarantee that d
encrypts the output C(x) of the homomorphic computation but does not convey
any further information about the circuit C. We say that an FHE scheme satisfies
semi-honest circuit privacy if this property holds for honestly generated keys
and ciphertexts. Gentry [Gen09] describes a simple drowning-based mechanism
to achieve semi-honest circuit privacy (which typically leads to poor parameters
for the underlying hardness assumption). Later works [DS16, BdMW16] provided
transformations adding semi-honest circuit privacy with very little overhead and
without parameter deterioration.

In essence, circuit privacy can be seen as a property of a specific homomorphic
evaluation algorithm. A circuit-private evaluation algorithm must be random-
ized, while non-circuit private evaluation algorithms can be deterministic.

Ostrovsky, Paskin and Paskin [OPP14] provided the first maliciously circuit-
private FHE scheme. This scheme was later generalized to the multi-key setting
by Chongchitmate and Ostrovsky [CO17]. Malicious circuit privacy requires that
the above property holds even for maliciously generated keys and ciphertexts.
On a technical level, the notion of malicious statistical circuit privacy requires
the existence of an (unbounded) ciphertext extractor, which extracts a plaintext
from a given pair of public key and ciphertext, and a simulator which, given
an output C(x) simulates a homomorphically evaluated ciphertext encrypting
C(x). In the presence of a common reference string (CRS), the well-formedness
of both keys and ciphertexts can be enforced by requiring keys and ciphertexts
to include non-interactive zero-knowledge proofs of knowledge (NIZKPoK) of
their well-formedness, such that plaintexts can be extracted using the knowledge
extractor for the NIZKPoK.

However, [OPP14] provide a maliciously circuit-private FHE scheme in the
plain model (i.e. without CRS) and guarantee statistical circuit privacy. The
main idea of their construction is to leverage a conditional disclosure of se-
crets protocol [AIR01] instead of NIZK proofs. That is, an input ciphertext c
contains additional encrypted well-formedness information γ, which they use in
the maliciously circuit-private evaluation algorithm to enforce that the output
ciphertext d is independent of the circuit C if c was not well-formed. This well-
formedness information γ is consumed by the maliciously circuit-private evalu-

ation algorithm, and the output ciphertext d contains no such well-formedness
information. Hence, d cannot be used as input for the maliciously circuit-private
evaluation algorithm but can still serve as input for standard (non-maliciously-
circuit-private) homomorphic evaluation.

We will outline the main ideas of [OPP14] in Appendix A.

Multi-Hop FHE We say that an FHE scheme is single-hop if ciphertexts re-
sulting from a homomorphic evaluation cannot be used as input ciphertexts for
further homomorphic evaluations. We refer to FHE schemes where homomor-
phically computed ciphertexts can again be used as input ciphertexts for further
homomorphic computation as multi-hop (a notion introduced by [GHV10]).

The basic scheme of [OPP14] is only single-hop, but they show how to modify
it to support multi-hop (non-maliciously-circuit-private) homomorphic evalua-
tion. By the discussion in the last paragraph and as we will detail in Appendix
A, this means that in the multi-hop setting, circuit privacy is only guaranteed
if all evaluators are honest. Furthermore, it seems hard to establish that their
techniques could yield a scheme that satisfies malicious circuit privacy even if
some evaluators are malicious. That is, consider a scenario in the 2-hop setting,
where we have a malicious key-generator and encryptor as well as a malicious
first evaluator E1 and an honest second evaluator E2. The basic issue is that
while the techniques of [OPP14] enforce that both keys and ciphertexts produced
by the encryptor are well-formed, they cannot provide a similar guarantee for
ciphertexts produced by the first evaluator E1. Consequently, E1 may pass an
arbitrarily malformed ciphertext to E2. Then all circuit privacy guarantees for
E2 are lost.

1.1 Our Results

This work provides a conceptually simple construction of a fully homomorphic
encryption scheme with malicious circuit privacy. As a bonus, ciphertexts gener-
ated by the encryption algorithm and ciphertexts produced by the homomorphic
evaluation procedure are syntactically the same. This means our scheme supports
malicious circuit privacy even if the input ciphertexts themselves are potentially
the result of a homomorphic evaluation. Our construction significantly departs
from the blueprint of [OPP14]. On a technical level, our constructions build on
and leverage rate-1 FHE schemes [GH19, BDGM19], but also inherit the rate-1
property. As we will explain below, our construction equips a rate-1 FHE scheme
with a novel evaluation algorithm but otherwise leave the underlying construc-
tion unmodified and is black-box in the underlying rate-1 FHE scheme. This
means, in particular, that our maliciously circuit-private evaluation algorithm
also supports input-ciphertexts which themselves are the result of homomor-
phic evaluations. We call such a scheme a multi-hop-secure maliciously circuit-
private FHE scheme. Note that this property solely comes down to the type
of input-ciphertext supported by the maliciously circuit-private homomorphic
evaluation algorithm but otherwise leaves the definition of malicious statistical
circuit-privacy unchanged.

Compared to the construction of [OPP14], our construction can be considered
a more direct way of achieving malicious circuit privacy.

1.2 Applications

We will briefly discuss two related applications we envision as use-cases for our
multi-hop-secure MCP-FHE scheme.

• Encrypted Databases with privacy for Write-Queries: Consider a sce-
nario where a cloud server holds a database encrypted under an FHE scheme.
The owner of the database, who generated the FHE keys goes offline, but
several mutually mistrusting workers perform homomorphic computations
on the database, and these computations involve sensitive data held by the
workers. While the IND-CPA security of the FHE scheme protects the pri-
vacy of the database, the privacy of the workers’ operations is ensured by the
circuit privacy of the FHE scheme. However, if a malicious database owner
and several malicious workers collude against a worker, then single-hop cir-
cuit privacy does not offer any guarantee to this worker. Consequently, to
protect the privacy of this worker’s operation, we need a multi-hop-secure
MCP-FHE scheme.

• Federated Learning with Model-Privacy: In the machine-learing sub-
field of federated learning [LSTS20], the training data is distributed among
several (physically) separated servers. A central server, coordinating a learn-
ing process sends partially-trained models to the training servers, who com-
pute model-updates using their local training data and send the updates
back to the central server. The purpose of this separation of the training
data is two-fold. First, by ware-housing the training-data locally with the
servers and only communicating (relatively small) model updates, an enor-
mous amount of bandwidth can be saved which would otherwise be needed
to transfer vast quantities of training data. Second, and maybe more impor-
tantly, each server is in control of the amount of outgoing data and therefore
has the guarantee that his local data cannot be retrieved entirely by the
central server.
Now consider a scenario where a model-owner, in possession of a partially
trained model, wants the training servers to compute updates on his model.
However, the model may contain sensitive data which should not be leaked
to the training servers. Consequently, encrypting the model under an FHE
scheme protects the privacy of this model. To protect the privacy of the train-
ing servers’ training data, we need to require circuit privacy. However, if the
model owner colludes with some of the training servers, standard malicious
circuit privacy is insufficient to protect the privacy of any of the training
servers training-data. By using a multi-hop-secure MCP-FHE scheme, the
training servers have the guarantee that even if the model owner colludes
with other users, they will not learn more about this users data than they
would have in a plain federated learning protocol (i.e. without the additional
layer of homomorphic encryption).

1.3 Technical Outline of our Approach

Our construction significantly departs from the OPP approach [OPP14]. On a
very high level, our approach is to augment a given FHE scheme to natively
support malicious function privacy for a very basic class of functions, namely
affine functions, without resorting to tools which enforce the well-formedness of
input ciphertexts. We will then be able to amplify this to the class of all functions
by relying on the machinery of affine randomized encodings [IK00, AIK04], aka
information-theoretically secure garbled circuits.

Statistically Sender-Private OT from High-Rate OT We will first describe how a
high-rate FHE scheme can be augmented to support malicious function privacy
for affine functions. As described above, such high-rate FHE schemes were re-
cently constructed by Gentry and Halevi [GH19] and Brakerski et al. [BDGM19].

Our starting point is a recent work of Badrinarayanan et al [BGI+17], who
observed that high rate (sender-input to sender-message ratio) can be leveraged
to achieve statistical sender privacy. This is similar in spirit to the work of
[DFR+07], who build an OT protocol in the bounded-quantum-storage model.
In more detail, [BGI+17] observed that any string-OT with high rate (i.e. greater
than 1/2) yields a statistically sender private OT protocol (called weak OT in
[BGI+17]) via a simple information-theoretic transformation. Specifically, the
high-rate OT is used to transfer two random strings r0 and r1. But since the
OT has high rate, the OT-sender message ot2 is shorter than the concatenation
of the two random strings. Consequently, one can argue that one of the two
strings r0 and r1 must have high conditional min-entropy given ot2. Thus, using
a suitable randomness extractor Ext, one can derive two masks k0 = Ext(r0, s0)
and k1 = Ext(r1, s1) (for two seeds s0 and s1) and argue that either k0 or k1
must be statistically close to uniform conditioned on ot2. The sender then also
sends (m0⊕k0,m1⊕k1), i.e. the actual messages blinded with the corresponding
mask. An honest receiver will then be able to recover the mb corresponding to
his choice-bit b.

Note that this argument did not assume the well-formedness of the OT-sender
message ot1

3. So consequently, no matter how malformed ot1 is, the message ot2
must lose information about either r0 or r1, and consequently one of the masks
k0, k1 is uniformly random from the view of the receiver.

While the high-level idea of the proof and the statement of the corresponding
theorem in [BGI+17] is true, there is a subtle loophole in their proof, which we
will briefly explain here. To establish malicious statistical sender privacy, one
needs to show the existence of an (unbounded) extractor which extracts the
receiver’s choice bit from the ot1 message. In [BGI+17], this is achieved via the
following argument: For a fixed ot2 it holds that H∞(r0, r1|OT2(ot1, r0, r1) =
ot2) ≥ n, thus it must either hold that H∞(r0|OT2(ot1, r0, r1) = ot2) > n/2 or
H∞(r1|OT2(ot1, r0, r1) = ot2) > n/2. The unbounded extractor then computes
both hb = H∞(rb|OT2(ot1, r0, r1) = ot2) for b ∈ {0, 1}, and sets the extracted
bit b∗ to 0 if h0 < h1, otherwise to 1.

3 Indeed, we haven’t even mentioned it yet.

This reasoning assumes that conditional min-entropy obeys a chain-rule,
i.e. the conditional min-entropy of (r0, r1) must split into the conditional min-
entropies of r0 and r1. However, in general this is not the case. There are (con-
trived) choices of the ”leakage function” OT2(ot1, ·, ·), for which even though
H∞(r0, r1|OT2(ot1, r0, r1) = ot2) > n, it holds that

H∞(r0|OT2(ot1, r0, r1) = ot2) = H∞(r1|OT2(ot1, r0, r1) = ot2) ≈ 1,

i.e. even (r0, r1) have n bits of min-entropy, each of them individually only has
a single bit of min-entropy4.

Essentially, the problem is that it might depend on (r0, r1) which one of r0
or r1 is leaked by OT2(ot1, r0, r1), i.e. the choice of the bit b is not necessarily
fixed by the function OT2(ot1, ·, ·) as implicitly assumed in the above argument.
In other words, the function OT2(ot1, ·, ·) does not fix a choice bit b, but rather
a distribution of choice-bits b(r0, r1) which may depend on r0, r1 in arbitrary
ways.

Consequently, a more involved extraction strategy is required to make the
proof rigorous. This can indeed be achieved by resorting to the min-entropy
splitting lemma of [DFR+07]. In essence, translated to our context, this lemma
states that for every leakage function OT2(ot1, ·, ·) there does exist an explicit
random variable b = b(r0, r1) such that H∞(rb|OT2(ot1, r0, r1) = ot2, b) > n/2−
15.

Thus, we can adapt the extractor of [BGI+17] to extract based on the con-
ditional min-entropies H∞(r0|OT2(ot1, r0, r1) = ot2, b = 0) and
H∞(r1|OT2(ot1, r0, r1) = ot2, b = 1) and make the proof strategy of [BGI+17]
work.

FHE with Statistical Function Privacy for Affine Functions Our core-observation
is that this very same approach also works if we replace the high-rate OT by
a high-rate FHE scheme. As explained above, such FHE schemes with a rate
approaching 1 were recently constructed in [GH19] and [BDGM19].

We remark that these schemes have two different ciphertext types. Type 1
ciphertexts are decompressed and allow for homomorphic operations, but these
ciphertexts have a poor rate, as each ciphertext encrypts (say) just a single bit6.
Type 2 ciphertexts are in a compressed format, and each ciphertext encrypts
say ` bits, and these ciphertexts have a rate approaching 1, but do not support
homomorphic computations. These have a public compression procedure, which
takes a vector of ` type 1 ciphertexts and produces a single type 2 ciphertext.
Likewise, there is a public decompression procedure which takes a single type 2

4 Example: If first bit of r0 is 0, leak last n − 1 bits of r0, otherwise leak last n − 1
bits of r1. See also [KPW13, Skó19].

5 The actual statement holds for smooth min-entropy, but we omit this somewhat
technical detail for the sake of this outline.

6 In both [GH19] and [BDGM19] the ciphertexts in this mode are essentially GSW
ciphertexts [GSW13]

ciphertext and returns a vector of ` type 1 ciphertexts. We remark that com-
pressing type 1 into type 2 ciphertexts is fairly efficient, but decompressing type
2 into type 1 ciphertexts involves a rather expensive bootstrapping operation in
current schemes [GH19, BDGM19].

In essence, we will harness the compress operation to lose information about
strings which should remain private. Specifically, assume we have such a com-
pressible FHE scheme Π. Now let c = Enc(pk, b) be a ciphertext encrypting a bit
b under Π. We obtain malicious statistical function privacy for affine functions
via the following evaluation procedure, which mimics an oblivious transfer in Π.
The evaluator chooses two uniformly random strings r0, r1 ∈ {0, 1}` and evalu-
ates the affine function f(x) = x · r1 + (1− x) · r0 on c, obtaining an encryption
of c′ = Enc(f(b)). The ciphertext c′ is of type 1 and has thus low rate. The
evaluator now compresses c′ into a high-rate type 2 ciphertext and immediately
decompresses it into a type 1 ciphertext d, which is an encryption of rb. As
above, the evaluator now chooses two extractor seeds s0 and s1 and computes
v0 = m0 ⊕ Ext(k0, s0) and v1 = m1 ⊕ Ext(k1, s1). Finally, It homomorphically
evaluates the function g(x, y) = (Ext(y, s1) ⊕ v1) · x + (Ext(y, s0) ⊕ v0) · (1 − x)
on the ciphertexts c and d, obtaining an encryption e of

g(b, rb) = (Ext(rb, s1)⊕ Ext(r1, s1)⊕m1) · b
+ (Ext(rb, s0)⊕ Ext(r0, s0)⊕m0)(1− b)

= mb,

and the ciphertext e is the output of the homomorphic evaluation.
Thus, correctness follows from the derivation above. To argue statistical func-

tion privacy, we argue analogously as in the last paragraph. Namely, even if both
the public key and the ciphertext c are arbitrarily malformed, we observe that
when we compress c′ into a type 2 ciphertext, call it ĉ, then since ĉ is high-
rate, it cannot fully determine both r0 and r1. Consequently, as in the argument
above, either r0 or r1 must have high conditional min-entropy given ĉ7. Since d
is computed from ĉ, the same holds for d, i.e. conditioned on d either r0 or r1
has high min-entropy. Consequently, by the extraction property of Ext either v0
or v1 is statistically close to uniform conditioned on d. Thus, e does not depend
on both m0 and m1. To make the argument formal, we can argue as above that
a bit b can be extracted from the ciphertext c (via an unbounded extractor) and
that the output ciphertext e can be simulated given only mb.

Note that our construction makes no additional non-black-box of underlying
cryptographic primitives beyond whatever the underlying FHE scheme does.
That is, given the current high-rate FHE constructions [GH19, BDGM19] the
only operation in the above construction which needs to do any heavy lifting is
the decompression step, which in these constructions involves a bootstrapping
operation.

We remark, however, that even though bootstrapping involves making non-
black-box use of the decryption circuit of the underlying FHE scheme. This

7 Where the same caveat as above applies, i.e. we need to condition on an additional
spoiling bit b.

non-black-box use typically comes to just performing a rounding operation ho-
momorphically. Furthermore, it is conceivable that there might exist construction
of high-rate FHE schemes which deviate from the blueprint of [GH19, BDGM19]
and do not rely on bootstrapping to achieve high rate.

Malicious Statistical Circuit Privacy for NC1 Circuits We will now outline how
malicious statistical circuit privacy for affine functions can be amplified to ma-
licious statistical circuit privacy for NC1 circuits. The go-to tool to achieve this
are decomposable affine randomized encodings (DARE), also known as garbled
circuits. A garbling scheme allows us to encode a computation into an affine
and a non-affine part. For any input it holds that the output of the affine part
together with the non-affine part does not leak more than the result of this com-
putation on this input. Information-theoretically DAREs are known for NC1
circuits (i.e. circuits of logarithmic depth) [Kil88, IK00, AIK04]. Randomized
encodings have, e.g. been used to bootstrap KDM security for affine functions
to KDM security for bounded-size circuits [App11].

We make use of DAREs/GCs as follows, starting with an FHE scheme with
malicious function privacy for affine functions as described in the previous para-
graph. Assume that the evaluator wants to homomorphically evaluate an NC1
circuit C on a potentially maliciously generated input ciphertext c. First, the
evaluator computes a randomized encoding of C consisting of an affine part T
and a non-affine part C̃. Then, it evaluates the affine function T on the ci-
phertext c using the maliciously function private evaluation procedure for affine
functions, resulting in a ciphertext d. Finally, it evaluates the non-affine part C̃
on d, resulting in an output ciphertext e. Correctness follows immediately from
the correctness of the FHE scheme and the DARE. To argue malicious circuit
privacy, first note that by the malicious function privacy for affine functions, the
ciphertext d does not leak more than T (x) (where x is the value which can be
extracted from c) about T . Consequently, it holds that e does not leak more
than T (x) and C̃ about C, which by the security of the DARE scheme does not
leak more than C(x).

We remark that in our construction the output ciphertext e potentially leaks
the same information about the circuit C that T (x) and C̃, i.e. essentially the size
of C. This is somewhat in contrast to the construction of [OPP14], which ensures
that no information about the evaluator’s circuit is leaked. Whether leaking the
size of the evaluator’s circuit is inherent in multi-hop-secure MCP-FHE remains
an (in our opinion interesting) open problem.

Malicious Statistical Circuit Privacy for all Circuits We will briefly outline how
the above techniques can be leveraged to handle arbitrary polynomial depth
circuits. To achieve this, we will resort to an idea of Kilian [Kil88]. Specifically,
given a polynomial-depth circuit C, we will slice C into layers C1, . . . , Ck such
that each Ci is an NC1 circuit and C = Ck ◦ · · · ◦ C1 (i.e. we can evaluate C by
sequentially evaluating the Ci). The circuits Ci can now be evaluated using the
techniques described in the previous section. However, this basic idea has an
issue as the intermediate outputs of the Ci are not protected and may therefore

leak information about the Ci and therefore C. To deal with this issue, we will
replace the circuits Ci by circuits Di which encrypt their output wires using a
one-time pad. Specifically, the circuit D1 first computes C1, but xors a one-time
pad K1 on the output, i.e. D1(x) = C1(x) ⊕ K1. The circuit D2 first decrypts
its input using the key K1 and encrypts its output using a key K2, i.e. D2(x) =
C2(x ⊕ K1) ⊕ K2. We continue in the same fashion, until we reach Dk which
computes Dk(x) = Ck(x ⊕ Kk−1). By the security of the one-time pad, the
outputs of the Di leak no information about the outputs of the Ci.

We will further show that if one is willing to settle for computational rather
than statistical circuit privacy, then the transformation described in the previ-
ous paragraph can be implemented using computational garbled circuits, which
means that the most expensive step, the function private evaluation of the affine
function, only needs to be performed once. In this setting, some care has to be
taking in the security proof as our input-extractor is unbounded but security
of the garbled circuits only holds computationally. However, this issue can be
dealt with using a standard trick which moves the information obtained by the
unbounded extractor into non-uniform advice, which is provided to the non-
uniform reduction against the garbling scheme.

This concludes the overview.

Roadmap In Section 2 we recall the most important concepts for our work. Then,
in Section 3 we show how to turn any high-rate FHE into one, which allows for
circuit private evaluation of affine functions. We use this in Section 4 to build a
circuit private scheme for NC1, which we extend to arbitrary circuits in Section
5.

2 Preliminaries

In this chapter, we define the concepts and notation that we use in the paper.

2.1 Notation

Assignments Assignment of a value to a variable is denoted by ← and ←$ is
used for choosing a value from a set uniformly at random.

Algorithms Some algorithms use randomness, which we will not make explicit in
the input unless it is crucial. If the randomness of an algorithm is made explicit,
it is the last argument and separated from the other values by a semicolon. A
probabilistic polynomial-time (PPT) algorithm takes an input and randomness
string, and its runtime is polynomial in the size of the input.

Oracles The execution of algorithm A with oracle access to O we denote by AO.
It will be clear from its context whether an oracle is only for one-time use.

Negligible Functions A function f : N → R is negligible in λ if there exists no
positive polynomial p such that f(λ) < 1

p(λ) for all but finitely many λ.

Logarithms The base of every logarithm in this document is 2.

Functions Some algorithms in this document will be taking the string represen-
tation of a function as an input. Since it is clear from the context whether we
mean the string representation of a function or the function itself, we will not
distinguish between them in notation. For example, if we mean ”Algorithm A
takes a string representation of f as input” we write A(f).

Circuits Typical implementations of FHE evaluate using circuit representation
for functions. Therefore, we create circuits and then evaluate them. If C[a] is a
circuit, a is a value which we hardwire into the circuit. The input size of a circuit
C is called in(C).

2.2 Public-Key Encryption Schemes

A public-key encryption scheme uses two keys, a public key pk and a secret
key sk. We use the public key to encrypt messages, the result of which is called
ciphertext. Without knowledge of the secret key, it is virtually impossible to
recover the message from the ciphertext. The secret key, however, enables the
holder to reliably retrieve the message from the ciphertext.

Definition 1 (Public-Key Encryption). The following PPT algorithms de-
scribe a public-key encryption scheme:

KeyGen(1λ) : The key-generation algorithm takes the security parameter λ as
input and outputs a key pair (pk, sk).

Enc(pk,m) : The encryption algorithm takes a public key pk and a message m
as input and outputs a ciphertext c.

Dec(sk, c) : The decryption algorithm takes a secret key sk and a ciphertext c as
input and outputs a message m. It rarely requires randomness.

In the rest of the document, every encryption scheme will be public key. Therefore
we will not mention it again.

Definition 2 (Correctness). An encryption scheme (KeyGen,Enc,Dec) is cor-
rect if for all message m and security parameters λ

Pr
[
m = Dec(sk,Enc(pk,m))

∣∣(pk, sk)← KeyGen(1λ)
]

= 1

The most popular notion of security for encryption schemes is CPA security
(also known as IND-CPA security or semantic security).

Definition 3 (CPA Security). An encryption scheme (KeyGen,Enc,Dec) is
cpa secure if for all PPT adversary pairs (A1,A2)∣∣∣∣∣∣∣∣Pr

b = b′

∣∣∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(m0,m1, σ)← A1(1λ, pk)
b←$ {0, 1}
b′ ← A2(Enc(pk,mb), σ)

− 1

2

∣∣∣∣∣∣∣∣
is negligible in λ

The rate is trying to capture the size comparison between a ciphertext and
its corresponding plaintext.

Definition 4 (Rate). An encryption scheme (KeyGen,Enc,Dec) has rate ρ if
there exists a polynomial µ such that for all security parameters λ, possible out-
puts of KeyGen(1λ) (pk, sk), and messages m with |m| ≥ µ(λ)

|m|
|Enc(pk,m)|

≥ ρ(λ)

We call an encryption scheme high rate if it has a rate greater than 1/2.

2.3 Homomorphic Encryption

In homomorphic encryption the decryption algorithm is a homomorphism. Cer-
tain changes on a ciphertext change the underlying plaintext in a structured
way.

Definition 5 (Homomorphic Encryption). These four PPT algorithms de-
scribe a homomorphic encryption scheme:

KeyGen(1λ) : The key-generation algorithm takes the security parameter λ as
input and outputs a key pair (pk, sk).

Enc(pk,m) : The encryption algorithm takes a public key pk and a message m
as inputs and outputs a ciphertext c.

Eval(1λ, pk, f, c1, ..., cn) : The evaluation algorithm takes a security parameter λ,
a public key pk, a string representation of a function f and n where n is the
input size of f ciphertexts c1, . . . , cn as inputs and outputs a new ciphertext
c.

Dec(sk, c) : The decryption algorithm takes a secret key sk and a ciphertext c as
input and outputs a message m. It rarely requires randomness.

Definition 6 (Homomorphic Correctness). Let F be a set of functions, f
be an arbitrary element of F , and n = in(f). An F-homomorphic encryption
scheme (KeyGen,Enc, Eval, Dec) is correct if (KeyGen,Enc,Dec) is a correct en-
cryption scheme, and for all messages m1, . . . ,mn, security parameters λ, and
(pk, sk) from the support of KeyGen(1λ)

Pr
[
f(m1, . . . ,mn) = Dec(sk,Eval(1λ, pk, f,Enc(pk,m1), . . . ,Enc(pk,mn)))

]
= 1

Definition 7 (Linearly-Homomorphic Encryption). A linearly-homomorphic
encryption scheme (LHE) is an F-homomorphic encryption scheme where F is
the set of all multivariate linear functions.

Definition 8 (Fully-Homomorphic Encryption). A fully-homomorphic en-
cryption scheme (FHE) is an F-homomorphic encryption scheme where F is the
set of all computable functions.

CPA security is the same as above.

Definition 9 (CPA Security). If (KeyGen, Enc, Dec) is cpa-secure then we
also call the F-homomorphic encryption scheme (KeyGen,Enc, Eval, Dec) cpa-
secure.

The ability to use a homomorphic evaluation on a ciphertext which has al-
ready gone through evaluation is called multi-hop. To define the correctness
of a multi-hop HE we need to define a set Cpk correctly generated ciphertexts.
Each ciphertext comes from encryption or homomorphic evaluation on a correct
plaintext.

Definition 10 (Multi-Hop Homomorphic Encryption). Just like a F−HE
scheme, a multi-hop F−HE scheme is a quadruple of PPT algorithms (KeyGen,
Enc,Eval,Dec). Let λ be a security parameter, (pk, sk) be the output of KeyGen(1λ)
then

Cpk =

{
c

∣∣∣∣m ∈M∧ c = Enc(pk,m)∨
f ∈ F ∧ n = in(f) ∧ c1, . . . , cn ∈ Cpk ∧ c = Eval(1λ, pk, f, c1, . . . , cn)

}
is a set of correctly generated ciphertexts under public key pk. Such a quadruple
of algorithms is a multi-hop F−HE scheme if it is a F−HE and for all security
parameters λ, outputs of the KeyGen(1λ) (pk, sk), functions f ∈ F , n = in(f),
and ciphertexts c1, . . . cn ∈ Cpk

Pr[f(Dec(sk, c1), . . . ,Dec(sk, cn)) = Dec(sk,Eval(1λ, pk, f, c1, . . . , cn))] = 1

Typically a HE is also defined with compactness. For compactness, we require
the ciphertext to be independent in size from the functions evaluated to arrive
at the ciphertext.

With a slight modifiction to the definition of a correct ciphertext one can
also adjust the definition of rate.

Definition 11 (Rate). An F−HE scheme (KeyGen,Enc,Eval,Dec) has rate ρ
if there exists a polynomial µ such that for all security parameters λ, possible
outputs of KeyGen(1λ) (pk, sk), correctly generated ciphertexts c ∈ Cpk of size
≥ µ(λ)

|Dec(sk, c)|
|c|

≥ ρ(λ)

Note that the rate has to be independent from the sizes of the functions,
which lead to the ciphertext. This means, that if a homomorphic encryption
scheme has a rate the size of the ciphertexts are independent of F .

Definition 12 (Compactness). An F−HE scheme (KeyGen,Enc,Eval,Dec) is
compact if there exists a rate ρ that only depends on λ.

There also is a notion of circuit privacy that guarantees that the cipher-
text does not leak information about the function which was homomorphically
evaluated on it beyond the result.

Definition 13 (Semi-Honest Circuit Privacy). We say an F−HE scheme
is semi-honestly circuit private if for all λ, and for all (pk, sk) ← KeyGen(1λ),
messages m1, . . . ,mn, and functions f ,f ′ s.t. f(m) = f ′(m),

SD(Eval(1λ, f,Enc(pk,m1), . . . ,Enc(pk,mn)),

Eval(1λ, f ′,Enc(pk,m1), . . . ,Enc(pk,mn)))

is negligible in λ

We also define a stronger simulation-based notion, which captures the pri-
vacy guarantees if the public key and the ciphertexts are maliciously generated.
Malicious circuit privacy was defined in [OPP14] and to date only achieved in
their construction.

Definition 14 ((Malicious) Circuit Privacy). We say an F−HE scheme is
maliciously, statistically circuit private if there exists an unbounded simulator
Sim with one-time oracle access to f such that for all λ, and for all public keys
pk, functions f ∈ F , and ciphertexts c1, . . . , cn for n = in(f),

SD(Simf (1λ, pk, c),Eval(1λ, pk, f, c))

is negligible in λ

Our constructions do not quite achieve the malicious, statistically circuit
privacy guarantee of [OPP14]. However, we achieve a slightly weaker notion
defined in the following.

Definition 15 (Φ-Circuit Privacy). Let Φ : F → {0, 1}∗ be a (leakage) func-
tion. We say an F−HE scheme is Φ (maliciously) circuit private if there exists
an unbounded simulator Sim with one-time oracle access to f such that for all λ,
public keys pk, ciphertexts c = c1, . . . , cn, functions f ∈ F , and PPT adversaries
A,

|Pr[A(Simf (1λ, pk, c, Φ(f)))]− Pr[A(Eval(1λ, pk, f, c))]|
is negligible in λ

The only difference to the above notion of circuit privacy is that the simulator
gets some leaked information Φ about the circuit. In most cases, Φ would leak
some structural information such as the size of the circuit or its topology. This
notion is adapted to expose some properties of the circuit from privacy definitions
for garbled circuits.

2.4 Garbling Schemes

Garbling schemes were famously introduced by Yao in an oral presentation
[Yao86] about techniques for secure function evaluation. Our notation is adapted
from [BHR12] and also influenced the definition of Φ circuit privacy for HE. It
allows to split up the evaluation of a function such that different parties can do
parts of the computation. One party knows the input x to the function f and
encodes it such that the other party can evaluate the function on the encoding
(i.e. learn f(x)) without being able to compute the input.

Definition 16 (Garbling Schemes). A garbling scheme is described by the
following PPT algorithms:

Garble(1λ, f) : The circuit garbling algorithm takes a security parameter and the
circuit representation of a function f as inputs and outputs a garbled circuit
F and 2n bitstrings X0

1 , X
1
1 , . . . , X

0
n, X

1
n where n is the input size of f .

GarbleInput((X0
1 , X

1
1 , . . . , X

0
n, X

1
n),m) : The input garbling mechanism takes 2n

bitstrings X0
1 , X

1
1 , . . . , X

0
n, X

1
n and a message x as inputs and outputs the n

bitstrings Xx1
1 , . . . , Xxn

n .
Ev(F, (X1, . . . , Xn)) : The evaluation algorithm takes a garbled function F and

n bitstrings X1, . . . Xn as inputs and outputs f(x).

Definition 17 (Correctness). A garbling scheme (Garble,GarbleInput, Ev) is
correct if f is the representation of a function, x is an input to that function,
and λ is the security parameter then

Pr[Ev(F,GarbleInput(e, x)) = f(x)|(F, e)← Garble(1λ, f)] = 1

Definition 18 (Privacy). A garbling scheme is Φ private if there exists a un-
bounded algorithm Sim(1λ, y, Φ) such that for every PPT distinguisher D,∣∣∣∣Pr[D(Sim(1λ, y, Φ(f)))|y = f(x)]− Pr

[
D(F,X)

∣∣∣∣ (F, e)← Garble(1λ, f)
X ← GarbleInput(e, x)

]∣∣∣∣
is negligible in λ

We call the garbling scheme’s privacy statistical if the distinguisher is statistical.
These constructions are usually researched under the guise of Decomposable
Affine Randmized Encodings (DARE) [IK00, AIK04, App17].

Definition 19 (Statistical Privacy). A garbling scheme is Φ statistically pri-
vate if there exists a unbounded algorithm Sim(1λ, y, Φ) such that,

SD(Sim(1λ, y, Φ(f)))|y = f(x)],

[
D(F,X)

∣∣∣∣ (F, e)← Garble(1λ, f)
X ← GarbleInput(e, x)

]
)

is negligible in λ

An example for this is [Kil88]’s construction for branching programs.

2.5 Oblivious Transfer

String oblivious transfer (OT) is a protocol which allows two parties (sender and
receiver) to interact in the following way: The sender has two strings m0,m1 and
the receiver has a bit b. The goal is that the receiver learns mb but the sender
does not learn anything about b.

Definition 20 (Oblivious Transfer). A (two-message) OT is described by the
following PPT algorithms:

OT1(1λ, b): With the input of a security parameter λ and a bit b, the algorithm
returns ot1 and state.

OT2(1λ, ot1,m0,m1): With the input of a security parameter λ, request ot1, and
two strings of same length m0,m1, the algorithm returns a response ot2

OT3(ot2, state): With the input of a response ot2 and a state state, the algorithm
returns a string m

Definition 21 (Correctness). An OT (OT1,OT2,OT3) is correct if for all
security parameters λ, bits b, messages m0,m1,

Pr

[
mb = OT3(ot2, state)

∣∣∣∣ (ot1, state)← OT1(1λ, b)
ot2 ← OT2(1λ, ot1,m0,m1)

]
= 1

Definition 22 (Receiver’s Security). An OT (OT1,OT2,OT3) has (compu-
tational) receiver’s security if for every PPT adversary A, and security param-
eters λ ∣∣Pr[A(OT1(1λ, 0)]− Pr[A(OT1(1λ, 1)]

∣∣
is negligible in λ.

Definition 23 (Statistical Sender’s Security). An OT (OT1,OT2,OT3) has
statistical sender’s security if there exists a deterministic unbounded simulator
Sim such that for all security parameters λ, strings ot1, strings m0,m1 of length
k

SD(OT2(1λ, ot1,m0,m1),Simm(·)(1λ, ot1, k))

is negligible in λ with Sim having one time access to a m(·) oracle.

Definition 24 (Rate). An OT (OT1,OT2,OT3) has rate ρ if there exists a
polynomial µ such that for all security parameters λ, possible outputs ot1 of
OT1(1λ, b), and messages m0,m1 with |m0| = |m1| ≥ µ(λ)

|m0|
|OT(1λ, ot1,m0,m1)|

≥ ρ(λ)

For the purposes of this document every OT has computational receiver’s secu-
rity, and statistical sender’s security.

2.6 Information Theory

The statistical distance is a metric on probability distributions. It is often used
in cryptography because it is at the core of the definition of statistical indis-
tinguishability. Statistical indistinguishability is a strictly stronger notion than
computational indistinguishability, which is the most popular tool to define se-
curity notions in cryptography.

Definition 25 (Statistical Distance). Let X and Y be two distributions with
support in {0, 1}k. The statistical difference between X and Y , SD(X,Y) is given
by,

SD(X,Y) =
1

2

∑
x∈{0,1}k

|Pr [X = x]− Pr [Y = x] |

Lemma 1. The statistical distance has an equivalent definition

SD(X,Y) = maxf :{0,1}k→{0,1}|Pr [f(X) = 1]− Pr [f(Y) = 1] |

Entropy measures a lack of knowledge about a system. The most famous
entropy is the Shannon entropy H, which measures the lack of knowledge in
a system that behaves randomly. Min-entropy, on the other hand, assumes a
system which behaves maliciously.

Definition 26 (Min-Entropy). Let X be a distribution. The min-entropy of
X is

H∞(X) = −log(maxx Pr[X = x])

We define related notions to min-entropy, smooth min-entropy and condi-
tional smooth min-entropy as defined in [DFR+07].

Definition 27 (Smooth Min-Entropy). For an arbitrary ε ≥ 0, the smooth
min-entorpy Hε

∞(X) is the maximum of the standard min-entropy H∞(XE),
where the maximum is taken over all events E with Pr(E) ≥ 1− ε

Definition 28 (Conditional (Smooth) Min-Entropy). The conditional smooth
min-entropy Hε

∞(X|Y) is defined as Hε
∞(X|Y) = maxEminyH∞(XE|Y = y),

where the maximum is over all events E with Pr(E) ≥ 1− ε

The useful corollary of lemma 1 from [DFR+07] says the following:

Corollary 1. Let X,Y be distributions then Hε
∞(X|Y) > H∞(X,Y)−H0(Y)−

log(1/ε) for all ε.

Strong extractors make it possible to use one source of uniform randomness
to convert a non-uniform distribution with some min-entropy into a uniform
distribution.

Definition 29 (Strong Extractor). A function Ext : {0, 1}m × {0, 1}d →
{0, 1}n is a (k, ε)-strong extractor if for every distribution X with support in
{0, 1}m and H∞(X) = k,

SD((Ext(X,Ud), Ud), (Un, Ud)) ≤ ε

where Ud is a uniform distribution over {0, 1}d and Un is one over {0, 1}n.

Many of the useful rules like the chain rule for conditional Shannon entropy
H(X|Y) = H(X,Y)−H(Y) do not hold for min-entropy. Therefore we have to
do hard work to handle claims about min-entropy.

The next lemma allows to lower bound the min-entropy using the average
conditional min-entropy.

Lemma 2 (Weakened Lemma 2.2 of [DRS04]). For all random variables
X,Y , δ > 0 the conditional min-entropy

H∞(X|Y = y) ≥ H̃∞(X|Y)− log(1/δ)

with probability 1− δ over the choice of y

The leakage lemma for min-entropy helps with bounding the min-entropy of
distributions that are conditioned on events.

Lemma 3 (Leakage Lemma for Min-Entropy of [Skó19]). For all random
variables X and events A,B

H∞(X|B,A) > H∞(X|B)− log(1/Pr(A|B))

From [DFR+07] we use corollary 4.3 (a corollary of the min-entropy-splitting
lemma).

Corollary 2. Let ε ≥ 0, and let X0,X1 and Z be random variables such that
Hε
∞(X0, X1|Z) ≥ α. Then, there exists a binary random variable C over {0, 1}

such that Hε+ε′

∞ (X1−C |Z,C) ≥ α/2− 1− log(1/ε′) for any ε′ > 0.

Lemma 4 (Smooth Min-Entropy Conversion). If Hε
∞(X) ≥ α then

H∞(X) ≥ −log(2−α + ε)

Proof. SinceHε
∞(X) ≥ α there exists a distribution Y such thatH∞(Y) ≥ α and

SD(X,Y). This means, for all y′, Pry←Y [y′ = y] ≤ 2−α. Therefore, the biggest
probability of X can only be bigger by ε. Then, for all x′, Prx←X [x′ = x] ≤
2−α + ε.

3 OT from High-Rate LHE

Here we reiterate the statistical sender private OT of [BGI+17] with slight mod-
ifications in notation and sender-privacy proof. It transforms a high-rate linearly
homomorphic encryption scheme (LHE) into a statistically sender private OT.

3.1 Construction of [BGI+17]

Let (KeyGen,Enc, Dec,Eval) be a high-rate LHE scheme where the messages are
vectors over {0, 1}. We will use the following circuit C where strings r0 and r1
are hard-wired into the circuit, and one of them is selected according to input
bit b. Notice, this circuit is a linear function over {0, 1}.

Circuit C[r0, r1](b):
• output rb

Now follows the construction. In this construction n is the size of the messages
m0, m1 and the parameter m is dependent on λ but can be chosen arbitrarily
large.

OT1(1λ, b) :
• Generate keys (pk, sk)← KeyGen(1λ)
• Let c← Enc(pk, b)
• return (pk, c)

OT2(1λ, ot1 = (pk, c),m0,m1) :
• Choose s0, s1 ←$ {0, 1}m uniformly at random
• Choose r0, r1 ←$ {0, 1}m uniformly at random
• Hardwire r0, r1 into C[r0, r1] to get circuit C′
• return s0, s1, Ext(s0, r0)⊕m0, Ext(s1, r1)⊕m1, e, and Eval(C′, c)

In the output, c is an encryption of b and Eval(C′, c) an encryption of rb.

OT3(sk, ot2) :
• Let s0, s1, x0, x1, c, and e be the content of the message ot2
• Let b← Dec(sk, c)
• Let rb ← Dec(sk, e)
• return xb ⊕ Ext(sb, rb)

3.2 Correctness

Since (KeyGen,Enc,Dec,Eval) is correct c is a correct encryption of b in that
scheme. OT2 then outputs s0, s1, Ext(s0, r0) ⊕ m0, and Ext(s1, r1) ⊕ m1 to-
gether with correct encryptions of b and rb. In OT3 we then decrypt b and rb.
Because Ext is deterministic (with a fixed seed sb) we can reconstruct mb =
mb ⊕ Ext(sb, rb)⊕ Ext(sb, rb).

3.3 Computational Receiver’s Security

The sender only ever sees encryptions of the receivers input b and the public
key of the LHE. Therefore, if the sender can learn anything about b he can also
break the CPA security of the LHE.

3.4 Statistical Sender’s Security

Theorem 1. Let (KeyGen, Enc, Eval, Dec) be an LHE with high rate, then (OT1,
OT2, OT3) as detailed in Subsection 3.1 is a statistically sender private OT
protocol.

Proof. In the following, we show an unbounded simulator Sim that does not
know m0 or m1 but has one-time access to an oracle for the function f(b) = mb.
With this oracle access, she produces an output which is statistically close to
the output of OT2, which has full access to r0 and r1.

Simf (ot1 = (pk, c)) :
• Choose s0, s1 ←$ {0, 1}m uniformly at random
• Choose r0, r1 ←$ {0, 1}m uniformly at random
• Hardwire r0, r1 into C[r0, r1] to get circuit C′
• Let e← Eval(C′, c)
• Let C be the value such that H∞(R1−C |C,E) is minimal with C being

chosen as in corollary 2.
• Query the oracle f for mC

• Choose S1−C ←$ {0, 1}n uniformly at random
• If C = 0:
◦ return s0, s1, Ext(s0, r0)⊕m0, S1−C , c, and e

• Else:
◦ return s0, s1, S1−C , Ext(s1, r1)⊕m1, c, and e

We now use a hybrid argument to show that the above construction is sta-
tistically sender private. H0 is the honest execution of the protocol.

H0(pk, c,m0,m1) :
• Choose s0, s1 ←$ {0, 1}m uniformly at random
• Choose r0, r1 ←$ {0, 1}m uniformly at random
• Hardwire r0, r1 into C[r0, r1] to get circuit C′
• return s0, s1, Ext(s0, r0)⊕m0, Ext(s1, r1)⊕m1, c, and Eval(C′, c)

In hybrid H1 we replace Ext(s1−C , r1−C) by a uniformly random S0 of same size.

H1(pk, c,m0,m1) :
• Choose s0, s1 ←$ {0, 1}m uniformly at random
• Choose r0, r1 ←$ {0, 1}m uniformly at random
• Hardwire r0, r1 into C[r0, r1] to get circuit C′
• Let e← Eval(C′, c)
• Let C be the value such that H∞(R1−C |C,E) is minimal

with C being chosen as in corollary 2.

• Choose S1−C ←$ {0, 1}n uniformly at random

• If C = 0:

◦ return s0, s1, Ext(s0, r0)⊕m0, S1−C ⊕m1 , c, and e

• Else:

◦ return s0, s1, S1−C ⊕m0 , Ext(s1, r1)⊕m1, c, and e

In H2 we remove the real sender inputs.

Hf
2 (pk, c) :
• Choose s0, s1 ←$ {0, 1}m uniformly at random
• Choose r0, r1 ←$ {0, 1}m uniformly at random
• Hardwire r0, r1 into C[r0, r1] to get circuit C′
• Let e← Eval(C′, c)
• Let C be the value such that H∞(R1−C |C,E) is minimal with C being

chosen as in corollary 2.
• Query the oracle f for mC

• Choose S1−C ←$ {0, 1}n uniformly at random
• If C = 0:
◦ return s0, s1, Ext(s0, r0)⊕m0, S1−C , c, and e

• Else:

◦ return s0, s1, S1−C , Ext(s1, r1)⊕m1, c, and e

Now we argue why the hybrids are statistically close.

H0 ≈ H1 :
In H1 we replace Ext(s1−C , r1−C) by a uniformly random chosen S1−C . Here
we argue that the statistical distance between the two hybrids is negligible
using 2.
Lemma 3 gives that

H∞(R0, R1|E = e) > H∞(R0, R1)− log(1/Pr [E = e])

≥ 2m− |e|

Then corollary 2 gives that

Hε
∞(R1−C |C,E = e) > (2m− |e|)/2− 1− log(1/ε)

for any ε. Then the smooth min-entropy conversion lemma 4 gives that

H∞(R1−C |C,E = e) ≥ −log(2−(2m−|e|)/2−1−log(1/ε) + ε)

In the following, this number will be called α. Notice that α can only be
positive if 2m−|e| is positive and e encrypts a message of size m. Therefore,
the rate ρ need to be bigger than 1/2 (i.e. 1/2 < ρ = m/|e|).
Then we use the property of the extractor to ensure that Ext(s1−C , r1−C) is
statistically close to uniform (i.e. SD(Ext(s1−C , r1−C), S1−C) ≤ ε′). Clearly,
this can be reached if the rate ρ > 1/2. Therefore, the statistical distance
between H0 and H1 is at most ε′.

H1 ≈ H2 :
In this hybrid, we altogether remove m1−C which we can do because it
is being XORed with a uniformly random string and therefore is perfectly
hidden. Thus, H1 and H2 are identically distributed in this case.

3.5 FHE with Circuit-Private OT Evaluation

Here, we show how to add a evaluation procedure EvalOT to a high-rate FHE,
which can evaluate choice functions in a circuit private manner.

The construction is the same as for the OT above but the message recon-
struction of OT3 is done on the sender’s side. Again, we use circuit C

Circuit C[r0, r1](b):
• output rb

But we also use circuit C̃ which except for decrypting takes the role of OT3

Circuit C̃[s0, s1, x0, x1](b, rb):
• output xb ⊕ Ext(sb, rb)

EvalOT(1λ, pk,m0,m1, c) :
• Choose s0, s1 ←$ {0, 1}m uniformly at random
• Choose r0, r1 ←$ {0, 1}m uniformly at random
• Hardwire r0, r1 into C[r0, r1] to get circuit C′
• Let e← Eval(1λ, pk, C′, c)
• Hardwire s0, s1, x0 = Ext(s0, r0) ⊕m0, and x1 = Ext(s0, r0) ⊕m1 into
C̃[s0, s1, x0, x1] to get circuit C̃′

• return Eval(1λ, pk, C̃′, (c, e))

Correctness and receiver’s security (in this case CPA security) stay the same as
before. For circuit privacy (previously sender privacy) we now need to argue over
the compression in e. The last step in EvalOT can be thought of as post-processing
and does not change anything about the circuit privacy.

4 Circuit-Private NC1-HE from FHE with OT

An OT is similar to a circuit private HE for affine functions. We use Decom-
poseable Affine Randomized Encodings (DARE) to increase the set of function
that we can evaluate with circuit privacy to all functions in NC1. We achieve
this by letting the OT do the affine operations and then evaluate the DARE
inside another layer of FHE.

4.1 Construction

Let (KeyGen′, Enc′, Eval′, Dec′) be an FHE with circuit private choice function
evaluation procedure Eval′OT and (Garble, GarbleInput, Ev) be a φ-private DARE.
In this construction we use a circuit C with hardcoded garbled function F which
simply evaluates the garbled function on the input.

C [F](d = (di)i∈[n]):
• return Ev(F, (di)i∈[n])

The construction then is:

KeyGen(1λ) :
• return KeyGen′(1λ)

Enc(pk,m) :
• return Enc′(pk,m)

Eval(1λ, pk, f, c = (ci)i∈[n]) :

• (F, (ri,j)i∈[n],j∈{0,1})← Garble(f, 1λ)

• For each i ∈ [n] let zi ← Eval′OT(1λ, pk, ri,0, ri,1, ci)
• Hardwire F into C[F] to get the circuit C′
• return Eval′(1λ, pk, C′, z = (zi)i∈[n])

Dec(sk, c) :
• return Dec′(sk, c)

First Eval garbles f and then emulates the encoding mechanism GarbleInput
inside of the FHE with the help of EvalOT. This works because the GarbleInput is
a choice function which is exactly what an OT calculates. With the encoded input
and the garbled circuit F we run the Ev function inside the FHE and will only
be able to leak as much information about the function as (F,GarbleInput(r,m))
would have.

The correctness of (KeyGen, Enc, Dec, Eval) follows routinely from the cor-
rectness of (Garble, GarbleInput, Ev), and (KeyGen′, Enc′, Eval′, Eval′OT, Dec′).
Likewise, CPA security of (KeyGen, Enc, Dec, Eval) follows routinely from the
CPA security of (KeyGen′, Enc′, Eval′, Eval′OT, Dec′).

4.2 Malicious Statistical Circuit Privacy

Theorem 2. Let (KeyGen′, Enc′, Eval′) be an FHE with circuit private choice
function evaluation procedure Eval′OT and (Garble, GarbleInput, Ev) be a φ-private
DARE (for some function φ) then the NC1-HE as detailed in Subsection 4.1 is
φ-circuit-private.

Proof. Let Simg
OT be the unbounded simulator for the Eval’s statistical sender’s

security with one-time oracle access to the choice function g and Simh
GC be the

simulator for the garbled circuit’s φ privacy with oracle access to the function
h. From this we construct a simulator Simf with oracle access to f proving φ
circuit privacy.

Simf (1λ, pk, c):
• For each i ∈ [n]:

◦ Run Eval′OT’s simulator zi ← Sim
(.)
OT(pk, ci) until it sends the query

xi to the oracle
• Determine v = f(x) where x = (xi)i∈[n] using the one-time f -oracle

• Let the garbled circuit simulator SimGC run (F ′, (yi)i∈[n])← SimGC(1λ, v)
• For each i ∈ [n]:

◦ Finish running Eval′OT’s simulator zi ← Sim
(.)
OT(pk, ci) by answering

the query with yi
• Hardwire F ′ into C[F ′] to get the circuit C′
• return Eval(pk, C′, (zi)i∈[n])

The output of which is indistinguishable by a statistical distinguisher proven
using hybrid arguments, in which H2 perfectly simulates Sim and H0 perfectly
simulates Eval.
The difference a hybrid and the previous is highlighted.

H0(1λ, pk, f, c = (ci)i∈[n]):

• (F, (ri,j)i∈[n],j∈{0,1})← Garble(f, 1λ)

• For each i ∈ [n] let zi ← Eval′OT(1λ, pk, ri,0, ri,1, ci)
• Hardwire F into C[F] to get the circuit C′
• return Eval′(1λ, pk, C′, z = (zi)i∈[n])

We replace Eval′OT’s executions by their simulations in hybrids H1

Hf
1,j(1

λ, pk, f, c = (ci)i∈[n]):

• (F, (ri,j)i∈[n],j∈{0,1})← Garble(f, 1λ)

• For each i ∈ [j]:

◦ Run Eval′OT’s simulator zi ← Simyi
OT(pk1, ci) where on query xi

it receives ri,xi
from its oracle.

• For each i ∈ {j + 1, . . . , n}:
◦ Let zi ← Eval′OT(1λ, pk, ri,0, ri,1, ci)

• Hardwire F into C[F] to get the circuit C′
• return Eval(pk, C′, (zi)i∈[n])

Here, we split up Eval′OT’s simulations and move the garbled circuit generation
into the middle.

H2((1λ, pk, f, c = (ci)i∈[n]):

•
• For each i ∈ [n]:

◦ Run Eval′OT’s simulator zi ← Sim
(.)
OT(pk, ci) until it sends the query

xi to the oracle .

• (F, (ri,j)i∈[n],j∈{0,1})← Garble(f, 1λ)

• For each i ∈ [n]:

◦ Finish running Eval′OT’s simulator zi ← Sim
(.)
OT(pk, ci) by

answering the query with ri,xi

• Hardwire F into C[F] to get the circuit C′
• return Eval(pk, C′, (zi)i∈[n])

Now, we replace the garbled circuit by its simulation.

Hf
3 ((1λ, pk, c = (ci)i∈[n]):
• For each i ∈ [n]:

◦ Run Eval′OT’s simulator zi ← Sim
(.)
OT(pk, ci) until it sends the query

xi to the oracle
• Determine v = f(x) where x = (xi)i∈[n] using the one-time f -oracle

• Let the garbled circuit simulator SimGC run

(F ′, (yi)i∈[n])← SimGC(1λ, v)

• For each i ∈ [n]:

◦ Finish running Eval′OT’s simulator zi ← Sim
(.)
OT(pk, ci) by answering

the query with yi

• Hardwire F ′ into C[F ′] to get the circuit C′
• return Eval(pk, C′, (zi)i∈[n])

Now we argue the why these hybrids statistically close.

H0 ≈ H1,0 :
The statistical distance between H0 and H1,0 is 0 since they are only syn-
tactically different. The first few lines don’t influence the output yet; they
only exist

H1,j ≈ H1,j+1 :
Consider the following environment:
• (F, (ri,j)i∈[n],j∈{0,1})← Garble(f, 1λ)
• For each i ∈ [j]:
◦ Run Eval′OT’s simulator zi ← Simyi

OT(pk, ci) where on query xi it
receives ri,xi from its oracle.

•
• For each i ∈ {j + 2, . . . , n}:
◦ Let zi ← Eval′OT(1λ, pk, ri,0, ri,1, ci)

• Hardwire F into C[F] to get the circuit C′
• return Eval(pk, C′, (zi)i∈[n])

If one inserts
• Let zj ← Eval′OT(1λ, pk, rj,0, rj,1, cj)

into the highlighted gap this perfectly simulates H1,j . If, on the other hand,
one inserts
• Run Eval′OT’s simulator zj ← Sim

yj
OT(pk, cj) where on query xj it receives

rj,xj from its oracle.
it perfectly simulates H1,j+1. According to the circuit privacy of Eval′OT the
two options are statistically close. Therefore, by contraposition, H1,j and
H1,j+1 are statistically close.

H1,n ≈ H2 :
The statistical distance between H1,n and H2 is 0 as the changes are only
syntactical. By splitting up the execution of the OT simulator and moving
circuit garbling in between we only swap around operations that are inde-
pendent.

H2 ≈ H3 :
Consider the following environment with red and blue gaps:
• For each i ∈ [n]:

◦ Run Eval′OT’s simulator zi ← Sim
(.)
OT(pk, ci) until it sends the query

xi to the oracle
• (F, (ri,j)i∈[n],j∈{0,1})← Garble(f, 1λ)
• Determine v = f(x) where x = (xi)i∈[n] using the one-time f -oracle

• Let the garbled circuit simulator SimGC run (F ′, (yi)i∈[n])← SimGC(1λ, v)
• For each i ∈ [n]:

◦ Finish running Eval′OT’s simulator zi ← Sim
(.)
OT(pk, ci) by answering

the query with

• Hardwire into C[] to get the circuit C′

• return Eval(pk2, C′, (zi)i∈[n])
If one inserts

• ri,xi
into the red gap and F into the blue gaps

this perfectly simulates H2. If, on the other hand, one inserts

• yi into the red gap and F ′ into the blue gaps

it perfectly simulates H3. According to the privacy of the garbled circuits
the two options are statistically close. Therefore, by contraposition, H2 and
H3 are statistically close.

4.3 Computational Circuit Privacy

If we use a computationally φ-private garbled circuit in this transformation in-
stead of its information theoretical counterpart we instantly get an FHE which is
φ-circuit-private against computational adversaries. Nothing about the construc-
tion needs to change; we only need to adjust the proof as detailed in appendix
B

4.4 Multi-Hop-Security

Since evaluating does not change the structure of the ciphertexts the NC1-HE
inherits the multi-hop-security property from the FHE (if the FHE is multi-hop
then the NC1-HE is as well).

5 Circuit-Private FHE from Circuit-Private NC1-HE

To build a circuit-private FHE from a Circuit-Private NC1-HE, we go back to
techniques from Kilian’s classic paper [Kil88]. On a high level, we split up the
circuit into NC1 circuits and encrypt the connecting wires with the one-time
pad.

Assume we want to evaluate a circuit C of polynomial depth. We show an
example of this in Figure 1.

C

Fig. 1. Circuit C

We split up that circuit into subcircuits of depth log(λ) such that they are
NC1 circuit (as in Figure 2). If the circuit-private NC1-HE scheme is multi-hop,
we can then evaluate each of these subcircuits sequentially in a circuit-private
manner. This construction is an FHE scheme which leaks the depth of the circuit
and the intermediate values.

C1

C2

C3

Fig. 2. Circuit C split into subcircuits C1, C2, and C3. We chose three subcircuits for
illustrative reasons. The amount of subcircuits depends on the depth of circuit C

We can, however, encrypt these intermediate values with a one-time pad and
then decrypt it in the next subcircuit. We demonstrate this modification of the
circuit in Figure 3.

This is possible because encrypting and decrypting the one-time pad is in-
credibly (computationally) cheap. Therefore, the subcircuits combined with en-
cryption and decryption are still in NC1. This way the intermediate values are
statistically hidden.

The result is an FHE scheme, which is Φdepth,width circuit private. Φdepth,width
leaks the depth of the circuit and the size of the intermediate values.

References

AIK04. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in
NC0. In 45th Annual Symposium on Foundations of Computer Science,
pages 166–175, Rome, Italy, October 17–19, 2004. IEEE Computer Society
Press.

AIR01. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer:
How to sell digital goods. In Birgit Pfitzmann, editor, Advances in Cryp-
tology – EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer
Science, pages 119–135, Innsbruck, Austria, May 6–10, 2001. Springer, Hei-
delberg, Germany.

AP14. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with poly-
nomial error. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 297–314, Santa Barbara, CA, USA, August 17–21,
2014. Springer, Heidelberg, Germany.

C1
C′1

C2 C′2

C3
C′3

k1

k1

k2

k2

Fig. 3. Subcircuits of C together with OTP encryption and decryption. Each thick wire
represents a collection of wires. We use the circuits C′1, C′2, and C′3

App11. Benny Applebaum. Key-dependent message security: Generic amplification
and completeness. In Kenneth G. Paterson, editor, Advances in Cryptology
– EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 527–546, Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg,
Germany.

App17. Benny Applebaum. Garbled circuits as randomized encodings of functions:
a primer. Cryptology ePrint Archive, Report 2017/385, 2017. http://

eprint.iacr.org/2017/385.
BD18. Zvika Brakerski and Nico Döttling. Two-message statistically sender-

private OT from LWE. In Amos Beimel and Stefan Dziembowski, edi-
tors, TCC 2018: 16th Theory of Cryptography Conference, Part II, volume
11240 of Lecture Notes in Computer Science, pages 370–390, Panaji, India,
November 11–14, 2018. Springer, Heidelberg, Germany.

BDGM19. Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Lever-
aging linear decryption: Rate-1 fully-homomorphic encryption and time-
lock puzzles. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019: 17th
Theory of Cryptography Conference, Part II, volume 11892 of Lecture Notes
in Computer Science, pages 407–437, Nuremberg, Germany, December 1–5,
2019. Springer, Heidelberg, Germany.

BdMW16. Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE
circuit privacy almost for free. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of
Lecture Notes in Computer Science, pages 62–89, Santa Barbara, CA, USA,
August 14–18, 2016. Springer, Heidelberg, Germany.

BGI+17. Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and
Akshay Wadia. Two-message witness indistinguishability and secure com-
putation in the plain model from new assumptions. In Tsuyoshi Takagi

http://eprint.iacr.org/2017/385
http://eprint.iacr.org/2017/385

and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017,
Part III, volume 10626 of Lecture Notes in Computer Science, pages 275–
303, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg, Ger-
many.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, ed-
itor, ITCS 2012: 3rd Innovations in Theoretical Computer Science, pages
309–325, Cambridge, MA, USA, January 8–10, 2012. Association for Com-
puting Machinery.

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, edi-
tors, ACM CCS 2012: 19th Conference on Computer and Communications
Security, pages 784–796, Raleigh, NC, USA, October 16–18, 2012. ACM
Press.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In Rafail Ostrovsky, editor, 52nd An-
nual Symposium on Foundations of Computer Science, pages 97–106, Palm
Springs, CA, USA, October 22–25, 2011. IEEE Computer Society Press.

BV14. Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure
as PKE. In Moni Naor, editor, ITCS 2014: 5th Conference on Innova-
tions in Theoretical Computer Science, pages 1–12, Princeton, NJ, USA,
January 12–14, 2014. Association for Computing Machinery.

CO17. Wutichai Chongchitmate and Rafail Ostrovsky. Circuit-private multi-key
FHE. In Serge Fehr, editor, PKC 2017: 20th International Conference on
Theory and Practice of Public Key Cryptography, Part II, volume 10175
of Lecture Notes in Computer Science, pages 241–270, Amsterdam, The
Netherlands, March 28–31, 2017. Springer, Heidelberg, Germany.

DFR+07. Ivan Damg̊ard, Serge Fehr, Renato Renner, Louis Salvail, and Chris-
tian Schaffner. A tight high-order entropic quantum uncertainty relation
with applications. In Alfred Menezes, editor, Advances in Cryptology –
CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages
360–378, Santa Barbara, CA, USA, August 19–23, 2007. Springer, Heidel-
berg, Germany.

DGI+19. Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour,
and Rafail Ostrovsky. Trapdoor hash functions and their applications. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryp-
tology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Com-
puter Science, pages 3–32, Santa Barbara, CA, USA, August 18–22, 2019.
Springer, Heidelberg, Germany.

DRS04. Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. In Chris-
tian Cachin and Jan Camenisch, editors, Advances in Cryptology – EURO-
CRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages
523–540, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg, Ger-
many.

DS16. Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EU-
ROCRYPT 2016, Part I, volume 9665 of Lecture Notes in Computer Sci-
ence, pages 294–310, Vienna, Austria, May 8–12, 2016. Springer, Heidel-
berg, Germany.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st Annual ACM Symposium on Theory
of Computing, pages 169–178, Bethesda, MD, USA, May 31 – June 2, 2009.
ACM Press.

GH19. Craig Gentry and Shai Halevi. Compressible FHE with applications to
PIR. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019: 17th Theory
of Cryptography Conference, Part II, volume 11892 of Lecture Notes in
Computer Science, pages 438–464, Nuremberg, Germany, December 1–5,
2019. Springer, Heidelberg, Germany.

GHV10. Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-Hop homomorphic
encryption and rerandomizable Yao circuits. In Tal Rabin, editor, Advances
in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 155–172, Santa Barbara, CA, USA, August 15–19, 2010.
Springer, Heidelberg, Germany.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Com-
puter Science, pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013.
Springer, Heidelberg, Germany.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd Annual ACM Symposium on Theory of Computing,
pages 99–108, San Jose, CA, USA, June 6–8, 2011. ACM Press.

HK12. Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-
message oblivious transfer. Journal of Cryptology, 25(1):158–193, January
2012.

IK00. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In 41st
Annual Symposium on Foundations of Computer Science, pages 294–304,
Redondo Beach, CA, USA, November 12–14, 2000. IEEE Computer Society
Press.

Kal05. Yael Tauman Kalai. Smooth projective hashing and two-message oblivi-
ous transfer. In Ronald Cramer, editor, Advances in Cryptology – EURO-
CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
78–95, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany.

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In 20th Annual
ACM Symposium on Theory of Computing, pages 20–31, Chicago, IL, USA,
May 2–4, 1988. ACM Press.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In 24th Annual ACM Symposium on Theory of Comput-
ing, pages 723–732, Victoria, BC, Canada, May 4–6, 1992. ACM Press.

KPW13. Stephan Krenn, Krzysztof Pietrzak, and Akshay Wadia. A counterexample
to the chain rule for conditional HILL entropy - and what deniable encryp-
tion has to do with it. In Amit Sahai, editor, TCC 2013: 10th Theory of
Cryptography Conference, volume 7785 of Lecture Notes in Computer Sci-
ence, pages 23–39, Tokyo, Japan, March 3–6, 2013. Springer, Heidelberg,
Germany.

LSTS20. Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Fed-
erated learning: Challenges, methods, and future directions. IEEE Signal
Process. Mag., 37(3):50–60, 2020.

Mic00. Silvio Micali. Computationally sound proofs. SIAM J. Comput.,
30(4):1253–1298, 2000.

NP01. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
S. Rao Kosaraju, editor, 12th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 448–457, Washington, DC, USA, January 7–9, 2001.
ACM-SIAM.

OPP14. Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky.
Maliciously circuit-private FHE. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of
Lecture Notes in Computer Science, pages 536–553, Santa Barbara, CA,
USA, August 17–21, 2014. Springer, Heidelberg, Germany.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual
ACM Symposium on Theory of Computing, pages 84–93, Baltimore, MA,
USA, May 22–24, 2005. ACM Press.

Skó19. Maciej Skórski. Strong chain rules for min-entropy under few bits spoiled.
In ISIT, pages 1122–1126. IEEE, 2019.

vGHV10. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In Henri Gilbert, edi-
tor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 24–43, French Riviera, May 30 – June 3,
2010. Springer, Heidelberg, Germany.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th Annual Symposium on Foundations of Computer Sci-
ence, pages 162–167, Toronto, Ontario, Canada, October 27–29, 1986. IEEE
Computer Society Press.

A Appendix: Outline of the Construction of [OPP14]

We will first outline the maliciously circuit-private FHE construction of [OPP14],
as this scheme constitutes the baseline for our scheme. We will further explain
why the [OPP14] does not achieve malicious multi-hop circuit privacy with ma-
licious evaluators and why it seems hard to achieve this property using their
techniques.

The high-level idea in [OPP14] to obtain a maliciously circuit-private scheme
Π ′ is to combine a compact FHE scheme Π with semi-honest circuit privacy with
a statistically secure conditional disclosure of secrets (CDS) scheme.

In a CDS scheme, both a sender and a receiver are given as input an NP-
statement x, the receiver gets as additional input a witness w for the validity of x,
whereas the sender gets a message m. A CDS protocol has two messages, in the
first message h the receiver commits to the witness w, and in the second message
the sender sends an encryption of the message m. In terms of functionality, we
require that the receiver learns m after protocol termination, whereas in terms
of security we require that the witness w is computationally hidden from the
sender and that even an unbounded malicious receiver learns nothing about m
if the statement x is false. We remark that every NP-language has an equivalent
witness-relation which can be verified by NC1-circuits. Consequently, statisti-
cally secure CDS can be constructed from statistically sender private oblivious

transfer [NP01, AIR01, Kal05, HK12, BGI+17, BD18] and statistically secure
decomposable randomized encodings [App17] for NC1, or more generally from
any (non-compact) FHE scheme with malicious circuit privacy.

The compact maliciously circuit-private scheme Π ′ is now obtained as fol-
lows. Assume first for simplicity that the key generator and encrypter are the
same party. Both keys pk and ciphertexts c of Π ′ are augmented with additional
information which enforces that they were honestly generated.

Homomorphic evaluation proceeds in two steps: First, the evaluator assumes
that both public key pk and ciphertext c have been honestly generated and
computes d← Π.Eval(pk, C, c). If indeed pk and c were honestly generated, then
c′ statistically hides the circuit C by the semi-honest circuit privacy of Π. In
order to ensure that pk and c were indeed generated honestly, the additional
information in the public key pk′ is a CDS receiver message h1 committing
to a witness asserting that the honest key-generation algorithm generated pk.
Likewise, the augmented ciphertext c′ contains a CDS receiver message h2 with
respect to a witness certifying that the ciphertext c was indeed generated by the
encryption algorithm of Π using the public key pk.

Now, in the second step of the homomorphic evaluation procedure, the eval-
uator (say) secret shares the ciphertext d into shares d = d1 ⊕ d2, and encrypts
d1 under h1 obtaining a ciphertext e1 and d2 under h2 obtaining a ciphertext
e2. The final ciphertext d′ now consists of e1 and e2.

To decrypt the decrypter runs the CDS decryption algorithm on e1 using the
witness certifying that pk is a well-formed public key and obtains the share d1.
Likewise, using the witness certifying that c is a well-formed ciphertext, the it
uses the CDS decryption algorithm to recover d2 from e2. Finally, it computes
d = d1 ⊕ d2 and decrypts d.

Correctness follows routinely from the components. To argue CPA security,
note that the CDS messages h1 and h2 computationally hide their corresponding
witnesses, thus we can reduce to the CPA security of Π. To argue malicious
statistical circuit privacy, distinguish two cases. In the first case either pk or c
is not well-formed. In this case, the statistical privacy of the CDS guarantees
that either d1 or d2 and therefore d is statistically hidden from the malicious
receiver, and therefore statistical circuit privacy follows immediately. On the
other hand, if both pk and c are well-formed, then semi-honest circuit privacy
of Π guarantees that d leaks no information about the circuit C.

[OPP14] remove the requirement that encrypter and decrypter are the same
party by introducing an additional layer of homomorphic encryption, essentially
delegating the above decryption procedure to the evaluator. Specifically, aug-
ment the public key pk′ to include an encryption of its secret key (under an in-
dependent FHE public key p̃k) and include an encryption of the well-formedness
witness of c in c′ (also under p̃k), and perform homomorphic decryption of d′

under p̃k.

Note that in the final scheme there are two levels of homomorphism and
therefore two levels of non-black-box use of cryptographic primitives. The first
level of non-black-box use is in using the CDS scheme to ensure that both the

public key pk and the ciphertext c are well-formed. The second level of non-black-
box use comes in homomorphically evaluating the CDS decryption algorithm
under the public key p̃k.

[OPP14] further argue that this scheme can be made multi-hop given that
the underlying FHE scheme Π is multi-hop. However, this only concerns func-
tionality, but they provide no guarantee if one or several malicious evaluators
collude with a malicious key generator and encrypter.

Barriers to Achieving Malicious Multi-Hop Security We argue that the approach
of [OPP14] inherently runs into a barrier when considering malicious evaluators.
The fundamental reason for this is that the above security proof crucially relies
on the CDS scheme ensuring that the ciphertext c is well-formed. However, if c
itself was the result of a homomorphic computation, then there would need to
be a mechanism in place that both c is the result of an honest computation and
that the ciphertext from which c was computed was also well-formed.

Using CDS for this purpose would create multiple issues. First, this would
cause an issue with compactness, as now a ciphertext would have to carry along
evidence that it was honestly computed, which when relying on CDS would have
to grow with the size of the overall computation that was performed to obtain this
ciphertext. However, even more problematically, it seems that such information,
necessary to validate a ciphertext is the result of an honest computation, would
undermine the circuit privacy of previous evaluators.

We further remark that even in the CRS model multi-hop maliciously circuit-
private FHE using the proof of well-formedness framework seems non-trivial to
achieve from falsifiable assumptions. Adding a NIZK proof of well-formedness
to a ciphertext would necessarily make the ciphertext grow with the number
of hops. To keep such proofs succinct it seems that tools such as succinct
non-interactive arguments (SNARKs) [Kil92, Mic00] would be required. Con-
sequently, such an approach could only provide computational security under
non-falsifiable assumptions [GW11].

B Appendix: Computational Circuit-Private FHE

In this appendix we prove that replacing the information-theoretic garbled cir-
cuit in section 4 by a computationally φ-private garbling scheme results in a
computationally φ circuit-private FHE. The construction stays the same, while
the simulator and the proof have to be adjusted slightly.

Simf (1λ, pk, c, φ(f)):
• Choose an arbitrary f ′ with φ(f ′) = φ(f)
• For each i ∈ [n] let ki be the size of ri,0 in (F ′, (ri,j)i∈[n],j∈{0,1}) ←
Garble(1λ, f ′)

• For each i ∈ [n] let xi be the input to the oracle when running OT

simulator Sim′′(.)(pk, ci, ki)
• Query f one-time oracle with (xi)i∈[n] as input and call the result v (i.e.
v ← f((xi)i∈[n]))

• Choose a new f ′ such that v = f ′((xi)i∈[n])
• Let the garbled circuit simulator Sim′ run

(F, (yi)i∈[n])← Sim′(1λ, v, φ(f ′))
• For each i ∈ [n]:
◦ Let zi ← OT2(1λ, pkOT , ci, yi, yi)

• Hardwire (zi)i∈[n] and F into C[(zi)i∈[n], F] to get the circuit C′
• return Eval(pkF , C′(.), pkB)

The following proof starts very similar to the original and only differs at H2

H0:
• (F, (ri,j)i∈[n],j∈{0,1})← Garble(f, 1λ)

• For each i ∈ [n] let zi ← OT2(1λ, pkOT , ci, ri,0, ri,1)
• Hardwire (zi)i∈[n] and F into C[(zi)i∈[n], F] to get the circuit C′
• return Eval(pkF , C′(.), pkB)

We replace the OTs by their simulations in hybrids H1

H1,j :

• Choose an arbitrary f ′ with φ(f ′) = φ(f)

• For each i ∈ [n] let ki be the size of ri,0 in

(F ′, (ri,j)i∈[n],j∈{0,1})← Garble(1λ, f ′)

• For each i ∈ [n] let xi be the input to the oracle when running OT

simulator Sim′′(.)(pk, ci, ki)

• Query f one-time oracle with (xi)i∈[n] as input and call the result v

(i.e. v ← f((xi)i∈[n]))

• Choose a new f ′ such that v = f ′((xi)i∈[n]) and φ(f ′) = φ(f)

• (F, (ri,j)i∈[n],j∈{0,1})← Garble(f, 1λ)

• For each i ∈ [j]:

◦ Let yi ← ri,xi

◦ Run the OT simulator zi ← Sim′′yi(pk, ci, ki) where it receives

the value yi from its oracle.

• For each i ∈ {j + 1, . . . , n}:
◦ Let zi ← OT2(1λ, pkOT , ci, ri,0, ri,1)

• Hardwire (zi)i∈[n] and F into C[(zi)i∈[n], F] to get the circuit C′
• return Eval(pkF , C′(.), pkB)

In H2,j we replace the OT simulator again by a real OT2 execution but now we
don’t need to know rj,0 and rj,1 but only rj,xj

.

H2,j :
• Choose an arbitrary f ′ with φ(f ′) = φ(f)
• For each i ∈ [n] let ki be the size of ri,0 in

(F ′, (ri,j)i∈[n],j∈{0,1})← Garble(1λ, f ′)
• For each i ∈ [n] let xi be the input to the oracle when running OT

simulator Sim′′(.)(pk, ci, ki)
• Query f one-time oracle with (xi)i∈[n] as input and call the result v (i.e.
v ← f((xi)i∈[n]))
• Choose a new f ′ such that v = f ′((xi)i∈[n]) and φ(f ′) = φ(f)

• (F, (ri,j)i∈[n],j∈{0,1})← Garble(f, 1λ)
• For each i ∈ [n] let yi ← ri,xi

• For each i ∈ [j]:

◦ Run the OT simulator zi ← Sim′′yi(pk, ci, ki) where it receives the
value yi from its oracle.

• For each i ∈ {j + 1, . . . , n}:

◦ For each i ∈ [n] let zi ← OT2(1λ, pkOT , ci, yi, yi)

• Hardwire (zi)i∈[n] and F into C[(zi)i∈[n], F] to get the circuit C′
• return Eval(pkF , C′(.), pkB)

In H3 we replace the circuit and input garbling by its simulation. Just like we
did in H2 for the information theoretic proof.

H3:
• Choose an arbitrary f ′ with φ(f ′) = φ(f)
• For each i ∈ [n] let ki be the size of ri,0

in (F ′, (ri,j)i∈[n],j∈{0,1})← Garble(1λ, f ′)
• For each i ∈ [n] let xi be the input to the oracle when running OT

simulator Sim′′(.)(pk, ci, ki)
• Query f one-time oracle with (xi)i∈[n] as input and call the result v (i.e.
v ← f((xi)i∈[n]))
• Choose a new f ′ such that v = f ′((xi)i∈[n]) and φ(f ′) = φ(f)

• Let the garbled circuit simulator Sim′ run

(F, (yi)i∈[n])← Sim′(1λ, v, φ(f ′))

•
• For each i ∈ [n]:
◦ Let zi ← OT2(1λ, pkOT , ci, yi, yi)

• Hardwire (zi)i∈[n] and F into C[(zi)i∈[n], F] to get the circuit C′
• return Eval(pkF , C′(.), pkB)

Now we argue for the indistinguishability between hybrids:

H0 ≈ H1,0 :
The statistical distance between H0 and H1,0 is 0 since they are only syn-
tactically different.

H1,i ≈ H1,i+1 :
If the statistical distance between H1,i and H1,i+1 is non-negligible, then a
statistical adversary has at least the same advantage when distinguishing
an honest OT execution from a simulated one. The statistical distinguisher
could always simulate the entire context around the OT to then distinguish
the real OT execution from the simulated one.

H1,n ≈ H2,n :
These two hybrids are only syntactically different.

H2,j ≈ H2,j+1 :
These hybrids are statistically indistinguishable for the same reasons as H1,j

and H1,j+1 are indistinguishable.
H2,0 ≈c H3 :

We prove this via non-uniform reduction. H2,0 and H3 are computationally
indistinguishable because if there exists a distinguisher D that wins with
non-negligible probability then there exists a distinguisher D′[f, pk] that wins
with the same probability. D′[f, pk] has f and pk hardcoded and then simu-
lates what happends in H3 after the circuit garbling simulator using its input
F , (yi)i∈[n]. If F and (yi)i∈[n] where honestly generated then this perfectly
simulates H2,n otherwise it perfectly simulates H3.

	Maliciously Circuit-Private FHE from Information-Theoretic Principles

