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Abstract—This paper proposes a new single-trace side-channel
attack on lattice-based post-quantum protocols. We target the
ω-small polynomial sampling of NTRU, NTRU Prime, and
CRYSTALS-DILITHIUM algorithm implementations (which are
NIST Round-3 finalist and alternative candidates), and we
demonstrate the vulnerabilities of their sub-routines to a power-
based side-channel attack. Specifically, we reveal that the sorting
implementation in NTRU/NTRU Prime and the shuffling in
CRYSTALS-DILITHIUM’s ω-small polynomial sampling process
leaks information about the ‘-1’, ‘0’, or ‘+1’ assignments made to
the coefficients. We further demonstrate that these assignments
can be found within a single power measurement and that reveal-
ing them allows secret and session key recovery for NTRU/NTRU
Prime, while reducing the challenge polynomial’s entropy for
CRYSTALS-DILITHIUM. We execute our proposed attacks
on an ARM Cortex-M4 microcontroller running the reference
software submissions from NIST Round-3 software packages.
The results show that our attacks can extract coefficients with a
success rate of 99.78% for NTRU and NTRU Prime, reducing the
search space to 241 or below. For CRYSTALS-DILITHIUM, our
attack recovers the coefficients’ signs with over 99.99% success,
reducing rejected challenge polynomials’ entropy between 39 to
60 bits. Our work informs the proposers about the single-trace
vulnerabilities of their software and urges them to develop single-
trace resilient software for low-cost microcontrollers.

Index Terms—Side-channel attacks, Post-quantum cryptogra-
phy, NTRU, CRYSTALS-DILITHIUM

I. INTRODUCTION

Quantum computers are proven to solve the discrete log-
arithm [1] and integer factorization [2] problems with expo-
nential speedup [3]. Unfortunately, classical digital signature
and public-key encryption schemes such as RSA [4] and
elliptic curve cryptosystems [5] rely on these problems, which
motivates the need for alternatives. To address this issue,
the National Institute of Standards and Technology (NIST)
has started a standardization process for quantum-resilient
(a.k.a., post-quantum) cryptographic schemes that can survive
quantum cryptanalysis [6]. This standardization is an ongoing
process that is currently in its final phase. The remaining
finalists include 3 digital signature schemes [7], [8], [9] and
4 public-key encryption and key establishment protocols [10],
[11], [12], [13]. There are also 8 candidates that are still being
considered as alternatives [14].

Lattice-based cryptosystems are the most popular ones
among Round-3 candidates. This can be mainly attributed to
the theoretical promise of lattices and the practicality of the
resulting cryptosystems in terms of hardware and software im-

plementation efficiency. Several prior works have investigated
the performance and area-cost efficiency of lattice cryptogra-
phy (and particularly NIST candidates) through software and
hardware implementations [15]. At the same time, there is a
significant effort put into quantifying the theoretical security
using classical and quantum computers [16]. By contrast,
the works that focus on the side-channel security assessment
of lattice-based cryptography implementations schemes are
limited. Although theoretical security and performance have
been the main criteria for the NIST selection process, side-
channel analysis is also taken into account [17].

The side-channel attacks and countermeasures are espe-
cially important for the Round-3 finalists given that they are
close to real-world deployment. These attacks allow extracting
secret values from the implementation characteristics such
as execution time, power consumption, and electromagnetic
radiation [18]. An attacker can perform the attacks with only
a few side-channel measurements monitored from the physical
device. An extreme case of these attacks is called single-
trace attacks where the adversary can extract the secrets with
a single execution’s measurement. These attacks are more
dangerous than the ones needing multiple traces because they
can evade popular defenses such as masking [19].

Prior works on single-trace side-channel analaysis of lattice
cryptosystems have targeted the Number Theoretic Transform
(NTT) [20], [21], [22], discrete Gaussian sampling [23], [24],
[25], rejection procedure [26], polynomial multiplication [27],
[28], [29], [30], message encoding/decoding [31], [19], [32],
[33], [34], and other related components such as the hash func-
tion [34], [19]. The ω-small polynomial sampling sub-routine
is, however, overlooked. Several NIST Round-3 candidates use
this operation during the key generation, key encapsulation,
and signature generation processes.

In this paper, we propose single-trace side-channel attacks
on the ω-small polynomial sampling of NTRU, NTRU Prime,
and CRYSTALS-DILITHIUM reference software implementa-
tions. Our attack is the first one to target ω-small polynomial
sampling and thus expose an orthogonal vulnerability com-
pared to earlier works. We identify multiple types of side-
channel vulnerabilities that exist in the reference implemen-
tations of NIST Round-3 candidates for the key establish-
ment (NTRU and NTRU Prime) and digital signature scheme
(CRYSTALS-DILITHIUM). We then present an attack that
exploits the vulnerabilities in these implementations to recover
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the secret and session keys.
Our attack targets the one-time polynomials used in key

generation and encapsulation of NTRU/NTRU Prime, and
the signing procedure in CRYSTALS-DILITHIUM. First, we
identify that the ω-small polynomial sampling software com-
puting these one-time values contain side-channel vulnerable
steps that can potentially leak the ‘-1’, ’0’, or ’+1’ assign-
ments made to polynomial coefficients. Then, we propose a
novel attack strategy that locates those operations and exploits
vulnerabilities. We demonstrate that the recovered variables
allow extracting the secret and session keys of NTRU and
NTRU Prime, while reducing the entropy of the challenges for
CRYSTALS-DILITHIUM’s signatures. Finally, we quantify
our attack success rate on the reference software implementa-
tions and illustrate its effect on the security of NTRU, NTRU
Prime, and CRYSTALS-DILITHIUM cryptosystems.

The contributions of this paper are as follows.
• We propose the first side-channel attack on ω-small

polynomial sampling software and show that the attack
is applicable to two NIST Round-3 finalists and one
alternative candidate.

• We reveal that the ω-small polynomial sampling imple-
mentations of NIST submissions contain side-channel
vulnerabilities within their sub-routines (sorting in
NTRU/NTRU Prime and shuffling in CRYSTALS-
DILITHIUM) that can leak valuable information. We
identify those regions of interests from the power mea-
surements and show that the leakages can allow an
adversary to recover the secret key and session key.

• We apply the proposed attack on the reference software
of the three NIST Round-3 candidates taken from NIST’s
website and execute the attack on an off-the-shelf device
containing an ARM-Cortex-M4 microcontroller. Our at-
tacks extract the targeted coefficients with a success rate
of 99.78% for NTRU and NTRU Prime, and 99.99% for
CRYSTALS-DILITHIUM. This success rate reduces the
brute-force search space of finding the secret key to 241 or
below for NTRU and NTRU Prime, and reduces rejected
challenge polynomials’ entropy between 39 to 60 bits for
CRYSTALS-DILITHIUM.

Our results show that both sampling techniques leak infor-
mation through single-trace side-channels but the vulnerability
in CRYSTALS-DILITHIUM is less significant. The software
developers including the NIST proposer teams, therefore,
should consider such leakages and incorporate some defenses
that can address the vulnerability.

II. PRELIMINARIES

A. ω-small Polynomial Sampling

This work focuses on the generation of polynomials whose
coefficients are −1, 0, or +1 and whose number of non-zero
coefficients are defined as a part of the protocol parameters.
Throughout the paper, we call those polynomials as ω-small
polynomials where ω represents the non-zero coefficients’
amount, which is smaller than 2

3 of the degree of the poly-
nomial ring. Several NIST post-quantum project candidates

Algorithm 1 Generation of random ω-small polynomials with
small ω: SampleSparse()
Require: Number of non-zero coefficients (ω), degree of the

ring (N ).
Ensure: Random ω-small polynomial a.

1: initialize coefficients of c with 0
2: for i← N − ω to N do
3: repeat
4: b

$← Random(0, N)
5: until b < N − ω
6: ai ← ab
7: ab

$← {−1, 1}
8: end for
9: return a

Algorithm 2 Generation of random ω-small polynomials:
SamplePerm()
Require: predefined polynomial p with ω non-zero coeffi-

cients, degree of the ring (N ).
Ensure: Random ω-small polynomial a.

1: a← p
2: P

$← {0, 1, . . . , 230 − 1}N
3: Permute a while sorting P
4: return a

TABLE I
PARAMETER SETS OF NTRU.

Scheme security level N q ω

ntruhps2048509 −(1) 509 2048 254
ntruhrss701 1(3) 701 8192 −
ntruhps2048677 1(3) 677 2048 254
ntruhps4096821 3(5) 821 4096 510

use ω-small polynomials. As part of their proposal to the
standardization project, two algorithms have been defined to
generate random ω-small polynomials.

Algorithm 1, SampleSparse(), shows the first technique,
which uses a modified, “inside-out”, version of Fisher-Yates
shuffling [35]. The algorithm first selects a random position
between 0 and the degree of the input polynomial and swaps
the coefficient at that position with a coefficient that is known
to be zero. The algorithm then randomly assigns the same
coefficient to either -1 or 1. This is repeated ω times so that
the resulting polynomial has ω non-zero coefficients.

Algorithm 2, SamplePerm(), is the second technique to
generate ω-small polynomials when ω is closer to 2N

3 . It
generates a predefined ω-small polynomial and then permutes
its coefficients with a sorting algorithm. The input predefined
polynomial p is usually selected as its first ω coefficients
to be 1 or −1, while the remaining coefficients are set to
0. The algorithm, then, generates an array with N elements
that are uniformly random 30-bit integers and replicates swap
operations for coefficients of a while sorting the random array.

B. NTRU and NTRU Prime
NTRU is a public-key encryption and key-establishment

algorithm, which allows to safely transfer a session key be-
tween two (or more) parties over an insecure medium. NTRU
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Algorithm 3 Key Generation

Require: seed
Ensure: (pk, sk) = (h, (f, f3, hq, s)).

1: f
$← Ternary(seed),

2: g
$← SamplePerm(seed)

3: fq ← (1/f) mod Z/(Xn−1 +Xn−2 + · · ·+ 1)
4: h← (3 · g · fq) mod Zq/(Xn − 1)
5: hq ← (1/h) mod Zq/(Xn−1 +Xn−2 + · · ·+ 1)
6: f3 ← (1/f) mod Z3/(X

n−1 +Xn−2 + · · ·+ 1)

7: s
$← {0, 1}256

8: return (h, (f, f3, hq, s))

Algorithm 4 Encapsulation

Require: pk = h
Ensure: C = (c, k)

1: coins
$← {0, 1}256

2: r
$← Ternary(coins)

3: m
$← SamplePerm(coins)

4: c← r · h+ Lift(m) mod Zq/(Xn − 1)
5: k ← H1(r,m)
6: return (c, k)

is one of the four remaining finalists of NIST post-quantum
project [36]. The submission consists of two versions, namely
NTRU-HPS and NTRU-HRSS: while NTRU-HPS has three
parameter sets, NTRU-HRSS has a single parameter set. In
this work, we will focus on the NTRU-HPS that uses ω-small
polynomials during the secret and session key generation.
Proposed parameters for NTRU are given in Table I.

The NTRU scheme defines several parameters: for all pa-
rameter sets, n is a prime number where both 2 and 3 are order
of n−1 in (Z/n)×, the multiplicative group of integers modulo
n, and q is power of 2. Lf , Lg , Lr, and Lm are sets of integer
polynomials defined for f , g, r, and m respectively. Lift is
an injection Lm → Z[x] for NTRU-HRSS and the identity
thus Lift(m) = m for NTRU-HPS. In NTRU-HPS, Lf and
Lr defined as non-zero polynomials, whose coefficients are in
−1, 0, 1, of degree at most n − 2 and Lg and Lm defined as
a subset of Lf , consisting of polynomials that have exactly
ω/2 coefficients equal to +1 and ω/2 coefficients equal to
−1. NTRU-HPS also defines Ternary() function to generate
random polynomials in Lf and uses SamplePerm() function
to generate random polynomials in Lg .

Algorithm 3 shows the steps of the Key Generation pro-
cedure in NTRU-HPS. The algorithm takes in a random
seed and calculates the public key pk and the secret key
sk needed for the later steps of key establishment. This
algorithm first generates the secret key polynomials f and
g using Ternary() and SamplePerm() functions, where
Ternary() randomly selects each coefficient from {0, 1, 2}
at uniform, and SamplePerm() uses Algorithm 2. Then,
it computes two inverses of f as fq , f3 and calculates the
public key h = (3 · g · fq) mod Zq/(Xn − 1) as well as its

TABLE II
PARAMETER SETS OF CRYSTALS-DILITHIUM.

security level 2 3 5

q 8380417 8380417 8380417
ω 39 49 60
(k, l) (4, 4) (6, 5) (8, 7)

log
(256

ω

)
+ ω 192 225 257

inverse hq . The definition of Lg and Lm ensures that both
h ≡ 0 (mod (Zq/(X − 1)) and c ≡ 0 (mod (Zq/(X − 1)).
Therefore the polynomial inverses are computed modulo
(Xn − 1)/(X − 1) = Xn−1 +Xn−2 + · · ·+ 1.

Algorithm 4 shows the steps of encapsulation in NTRU-
HPS. The algorithm takes in the public key pk and calcu-
lates the ciphertext c and the shared session key k. It first
generates fresh r and m at random from Lr and Lm again
using SamplePerm() and Ternary(), respectively. Then, it
determines the ciphertext c = r ·h+m modulo Zq/(Xn−1).
The shared key is computed as k = H1(r,m).

The decapsulation gets the ciphertext c and the secret key
sk, and it returns a key k2 that is equal to the encapsulated,
shared session key k if the ciphertext is valid. We omit the
details of decapsulation for brevity as it is not needed/targeted
with our attack.

Although we describe NTRU, SamplePerm() function is
also used in the streamlined NTRU Prime, which is part of
another NIST candidate, NTRU Prime. This protocol likewise
calls SamplePerm() function for creating f and r polynomi-
als [36]. Since both algorithms sample and use the polynomials
with the same manner, we show just one of them in this paper
for brevity.

C. CRYSTALS-DILITHIUM

Digital signature schemes generate a valid signature on a
message using a secret key and the signature’s authenticity
can be verified with the associated public key. CRYSTALS-
DILITHIUM is one of the three finalists running for the
NIST’s post-quantum digital signature standard. The scheme
uses matrices and vectors of polynomials in R = Zq/(X256+
1). CRYSTALS-DILITHIUM defines 10 parameters but 3
of them are related to input/output of the SampleSparse()
function. Thus we list only those parameters in Table II for
brevity. The last line of the table provides the theoretical
challenge entropy for the output of SampleSparse() function
for ω-small polynomials.

Algorithm 5 shows the Key Generation operations that
computes the secret key sk and the public key pk. This
algorithm first generates a bitstring θ uniformly random and
uses it to derive ρ, ζ, and K where ρ used to derive the
public polynomial A, K is the part of sk and ζ is used
to derive the secret key polynomials s1 and s2. Then, it
computes t = As1 + s2. Power2Round function splits
coefficient-wise most and least significant bits of t as t1 and
t0, respectively. While t1 becomes part of the public key, t0
is treated as a component of the secret key. H is instantiated
as SHAKE − 256 hash function and CRH is a collusion
resistant hash function.
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Algorithm 5 Key Generation

Ensure: (pk, sk) = ((ρt1), (ρ,K, tr, s1, s2, t0)).
1: θ ← {0, 1}256,
2: (ρ, ζ,K) ∈ {0, 1}3×256 ← H(θ)
3: (s1, s2) ∈ Slν × Skν ← H(ζ)
4: A ∈ Rk×lq ← ExpandA(ρ)
5: t← As1 + s2
6: (t1, t0)← Power2Round(t, d)
7: tr ∈ {0, 1}384 ← CRH(ρ||t1)
8: return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0))

Algorithm 6 Sign

Require: sk,M
Ensure: σ = (z, h, c̃)

1: A ∈ Rk×lq ← ExpandA(ρ)
2: µ ∈ {0, 1}384 ← CRH(tr||M)
3: κ← 0, (z, h)←⊥
4: ρ′ ∈ {0, 1}384CRH(K||µ)
5: while (z, h) ⊥ do
6: y ∈ Slγ1 ← ExpandMask(ρ, κ)
7: c̃ ∈ {0, 1}256 ← H(µ,HighBitsq(Ay, 2γ2))
8: c ∈ Bω ← SampleSparse(c̃)
9: z ← y + cs1

10: if ||z||γ1−β or ||LowBitsq(Ay− cs2, 2γ2)||γ2−β then
11: (z, h)←⊥
12: else
13: h←MakeHintq(−ct0, Ay − cs2 + ct0, 2γ2)
14: if ||ct0||γ2 of 1’s in h is greater than hw then
15: (z, h)←⊥
16: κ← κ+ l
17: return σ ← (z, h, c̃)

Algorithm 6 gives the steps of Sign algorithm, which creates
the signature σ on an input message M by using the secret
key sk. The algorithm uses rejection sampling: it generates
uniformly random y and ω-small polynomial c, checks if they
reveal any information about secret key, and calculates new y
and c till it finds proper candidates that does not reveal any
information about the secret key. When the algorithm finally
finds such c and y values, it creates the signature z = y +
cs1, h = MakeHintq(−ct0, Ay − cs2 + ct0, 2γ2), and c̃ =
H(µ,HighBitsq(Ay, 2γ2)), where MakeHintq determines
the distance caused by t0 and HighBitsq returns high-order
bits of each coefficients of the input.

The generated signature can be verified using the public key
pk. We omit the details of this verification process for brevity
since it is not needed/targeted with our attack.

D. Threat Model

Our attack follows the standard assumptions in single-
trace side-channel attacks [37], [20]. First, the attacker has
physical access to the identical device and can configure
it with known-keys to capture power traces. Therefore, the
adversary can capture multiple measurements to create tem-

plates corresponding to known keys or intermediate values.
Second, we assume that the adversary has sufficient knowledge
about the details of the target software implementation, i.e.,
the adversary downloads and inspects the publicly available
software packages of candidates submitted to NIST. When
running the attack, the adversary is limited to a single mea-
surement. Note that this has two advantages for the attacker:
(1) key generation and encapsulation can be targeted because
they use one-time values and (2) the masking defenses be-
come ineffective [19]. In our scenario, the attacker targets
“one-time” variables used in NTRU-HPS, NTRU Prime, and
CRYSTALS-DILITHIUM. These occur during NTRU Prime’s
and NTRU-HPS’s key generation for extracting secret keys,
and also encapsulation for extracting session keys, and during
CRYSTALS-DILITHIUM’s signing.

III. THE PROPOSED ATTACKS

This section presents the proposed attack strategy for recov-
ering the secret and session keys on NTRU-HPS (and Stream-
lined NTRU Prime) and CRYSTALS-DILITHIUM schemes.
We will first describe the intermediate computations we target
and why extracting those variables enables recovering session
or secret keys. We then analyze how those variables are
generated and identify vulnerabilities.

A. The Attack on NTRU Prime and NTRU-HPS

Our attack targets the random polynomial sampling within
the NTRU-HPS key generation shown in Algorithm 3 line 5
and encapsulation in Algorithm 4 line 3. We argue that (i) a
single-trace side-channel attack on these generated polynomi-
als g and m is possible and (ii) that capturing the coefficients
of those polynomials with the side-channel attack allows the
adversary to recover the secret key and session key. Since both
NTRU-HPS and Streamlined NTRU Prime employ the same
function to sample polynomials, we demonstrate our attack
steps only on NTRU-HPS for simplicity. The proposed attack
is applicable for both algorithms.

1) The Targeted Operation SamplePerm() and Rationale
We argue that an adversary can recover the secret key in

NTRU-HPS by targeting the random polynomial generation
during NTRU-HPS key generation phase. NTRU-HPS key
generation algorithm returns a secret key sk and a public key
pk. The secret key consist of two random polynomials. One
of them is in Lf and the other one is in Lg . NTRU-HPS key
generation algorithm uses these two random polynomials to
generate public key pk relying on the equation h = 3g/f ∈
R/q where h is the public key pk (see Algorithm 3 line
6). The secret key sk hardness also relies upon the secrecy
of the polynomial f . Therefore, if the adversary knows the
polynomial g, it can reverse public key equations h = g/(3f),
derive the polynomial f , and successfully rebuild the secret
key sk.

Another key observation is that the random polynomial
generation exists in NTRU-HPS encapsulation implementation
as well. Therefore, the attacker can extract the generated
random polynomial m and then reconstruct the session key
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Listing 1. NTRU Sorting Reference Implementation

1 void crypto_sort_int32(
2 int32 *array, size_t n)
3 {
4 ...
5 for (p = top;p >= 1;p >>= 1){
6 i = 0;
7 while (i + 2 * p <= n){
8 for (j = i;j < i + p;++j){
9 int32_MINMAX(x[j],x[j+p]);

10 }
11 i += 2 * p;
12 }
13 ...
14 }

Listing 2. NTRU Comparison Reference Implementation

1 #define int32_MINMAX(a,b) \
2 do { \
3 int32_t ab = (b) ˆ (a); \
4 int32_t c = \
5 (int32_t)((int64_t)(b) \
6 - (int64_t)(a)); \
7 c ˆ= ab & (c ˆ (b)); \
8 c >>= 31; \
9 c &= ab; \

10 (a) ˆ= c; \
11 (b) ˆ= c; \
12 } while(0)

using the known h and c. The encapsulation algorithm first
generates a random polynomial m with the SamplePerm()
function (see Algorithm 4). This polynomial m is also known
as the message that the encapsulation algorithm uses to create
the session key. The polynomials m and r are the private
elements needed to generate the session key of encapsulation
algorithm. This can be achieved by hashing r = (c−m) · hq
mod Zq/(Xn−1 + Xn−2 + · · · + 1) and m where hq is the
inverse of the public key (see line 5 of Algorithm 4).

We argue that targeting this random polynomial generation
requires performing a single-trace side-channel attack. Indeed,
these algorithms generate fresh random polynomials so the
attacker can acquire only a single power measurement trace for
the targeted polynomials g and m. We next conduct analysis
for the single-trace side-channel vulnerability of SamplePerm
that generates these polynomials.

2) Identifying the Vulnerabilities of crypto_sort
The random polynomial generation follows two sub-

routines: sampling and sorting as shown in Algorithm 2. The
sorting algorithm follows a permuting sequence to determine
the secret information. The permuting sequence strategy is
as follows. First, the polynomial generation algorithm gets a
predefined polynomial p as input, which is the polynomial
with the first ω/2 coefficients are 1, the next ω/2 coefficients
are 2, and other coefficients are 0. Second, the sequence gen-
erates a uniformly random polynomial P whose coefficients
are 30-bits—these coefficients gets multiplied by 4. Third,
the coefficients of secret polynomial, which are in {0, 1, 2},
encoded into the least significant 2-bits of polynomial P .
Fourth, the polynomial P is sorted as if it consists of 32-
bit integers. Fifth, coefficients of secret polynomials extracted

Fig. 1. (a) The full power trace, (b) the sub-trace showing the full innermost
loop, (c) the sub-trace for the 6 iterations of the innermost loop. The regions of
interests are detectable from the full power measurement and the comparison
results can be identified.

from P ’s least significant 2-bits. Since the poly p is pre-
defined and public in the implementation, recovering the secret
a requires attacking the comparison operation and figuring out
the sorting order. Therefore, our attack targets the permuting
sequence’s implementation with the goal of extracting the
generated polynomial a.

Listing 1 shows the NTRU-HPS scheme’s reference imple-
mentation of sorting algorithm in C, which is obtained from
the Round-3 NIST submission package. Note that although the
crypto_sort_int32 function has other steps in its imple-
mentation, these steps are not shown for brevity as they are not
needed to describe our attack. The crypto_sort_int32
function requires two inputs: a polynomial and its size. Then,
this function compares the two coefficients at a time and
replaces the smaller one’s location with the big one. This is
repeated for all the coefficients of the polynomial such that
upon termination of this loop the entire polynomial is sorted.
The int32_MINMAX function performs this comparison op-
eration.

The Listing 2 shows the NTRU HPS’s int32_MINMAX
function implementation in reference software. This function
sorts the two inputs such that the first element is less than
or equal to the second element. If the two inputs are already
in this order, the function should not perform the swapping.
Else, if the first input is greater, the contents are swapped.
The function performs this sorting in a sequence of logical
operators and in constant time in several steps. The two input
coefficients first go through logical operations such as XOR,
AND, and OR. Then, a logical shift operation at line 8 decides
if the first coefficient is greater than the second coefficient.
If this is the case, the shift operation then results in −1.
Otherwise, it returns 0. If the attacker is able to separate
these two cases, it can recover the coefficients since the input
polynomial is known.
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Fig. 2. The mean of sub-traces for different comparison results. There is a
significant power consumption difference between these comparison results.

3) Pinpointing Regions of Interest
A major challenge in performing our proposed attack is

identifying and isolating each coefficient’s individual execu-
tion. NTRU-HPS encapsulation algorithm calls the comparison
function multiple times within nested loops as shown in List-
ing 1. The attacker, therefore, has to locate the innermost loop
to attack the int32_MINMAX function. Figure 1 (a) plots
the power trace for crypto_sort_int32. The rectangles
show multiple iterations of the second while-loop (Listing 1
line 7), while Figure 1 (b) shows the execution of for-loop
shown at the line 8 in Listing 1. Figure 1 (c) further depicts
the power consumption of six iterations of this for-loop. It
means that there are six int32_MINMAX function calls. The
black dashed lines correspond to the targeted comparison
operation (see line 7 in Listing 2). This figure illustrates that
we can distinguish both sorting and comparison functions’
power behaviors from other execution steps and that there is
some observable variation based on the targeted shift operation
result.

4) Inspecting the Vulnerability
We expect a significant power consumption difference be-

tween the two possible outputs 0 and −1 during the execution
of the targeted shift operation at line 7 in Listing 2. This vul-
nerability occurs due to the significant difference in the Ham-
ming weight (HW) representations. The −1 (0xFFFFFFFF)
shows a power consumption behavior for HW 32, while the
output 0 (0x00000000) behavior matches with HW 0. We
next inspect if this predicted vulnerability can be observed
on the power measurements. Figure 1 (c) demonstrates the
difference with the dashed-lined rectangles. We then captured
100K traces, half is when the result is −1 and other half is
for 0. We averaged the two power trace sets shown in Figure
2. The blue line represents the mean power consumption for
result −1 and the orange line shows the averaged power
consumption for result 0. We adopted an earlier technique [29]
to isolate these cycles and synchronize all sub-traces based on
their maximum and/or minimum power draw point. We did
not use any other post-processing on the obtained sub-traces.

Figure 2 displays that the different comparison results have
different power consumption character. This confirms our

Listing 3. Dilithium Polynomial Generation Reference Implementation

1 void poly_challenge(poly *c,
2 const uint8_t seed[SEEDBYTES])
3 {
4 ...
5 for(i = 0; i < 8; ++i)
6 signs |= (uint64_t)buf[i] << 8*i;
7 pos = 8;
8 for(i = 0; i < N; ++i)
9 c->coeffs[i] = 0;

10 for(i = N-TAU; i < N; ++i) {
11 do {
12 if(pos >= SHAKE256_RATE) {
13 shake256_squeezeblocks(buf, 1,
14 &state);
15 pos = 0;
16 }
17 b = buf[pos++];
18 } while(b > i);
19 c->coeffs[i] = c->coeffs[b];
20 c->coeffs[b] = 1 - 2*(signs & 1);
21 signs >>= 1;
22 }
23 }

base hypothesis that a single-trace side-channel attack on the
random polynomial generation is possible and feasible. Section
IV provides more details on the success rate using statistics.

B. The Attack on CRYSTALS-DILITHIUM

Our attack targets random challenge’s sampling during the
signature generation given in Algorithm 6 line 8. We argue
that (i) a single-trace side-channel attack on this challenge
polynomial c is possible and (ii) that capturing the coefficients
of those polynomials with the side-channel attack allows the
adversary to recover the signing key.

1) The Targeted Operation SampleSparse() and Rationale
CRYSTALS-DILITHIUM scheme protects the secret key

by rejecting the random challenge polynomials that expose
the secret information. Hence, any information on the rejected
challenge polynomials can also lead to information about the
secret key. CRYSTALS-DILITHIUM creates the challenge
polynomials with SampleSparse function in Algorithm 6 line
8.

2) Identifying the Vulnerabilities of SampleSparse()
The SampleSparse function in CRYSTALS-DILITHIUM

follows Algorithm 1. This is implemented with the code shown
in Listing 3. This implementation creates a polynomial whose
only TAU number of coefficients are non-zero. The code first
initializes the random polynomial’s coefficients with zeros (see
line 9 in Listing 3). Then, it replaces the TAU number of zero
coefficients with either 1 or −1. This replacement is performed
non-deterministically based on shake256 output. At line 17,
the code decides which coefficient gets a non-zero value. Then,
line 19 shows that the chosen coefficient value is preserved
by assigning its value to another coefficient. Finally, the code
updates the chosen coefficient value with a non-zero value (1
or −1) at line 20.

An adversary can target line 20 where the implementation
determines the sign of the non-zero coefficients. This opera-
tion can leak information about how many negative and posi-
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Fig. 3. (a) The full power trace, (b) the sub-trace showing the full for-loop, (c)
the sub-trace for the 5 iterations of this for-loop. The regions of interests are
detectable from the full power measurement and the coefficient assignments
can be identified.

tive coefficients the private polynomial has, which gives a hint
about the secret challenge. We illustrate how leveraging this
information reduces the search space in Section IV.

Although line 17 may seem like a promising attack point,
it actually is not the best option. This is because the targeted
values (b) range between 0 and 255 and thus there are many
possible candidates, which complicates the attack. Another
misleading attack point is targeting line 19 where the imple-
mentation assigns 0, 1 or −1 to the coefficients whose indexes
range between 255 − TAU and 255. The implementation
here replaces the TAU number of zero coefficients non-
deterministically. Hence, it might assign a fresh coefficient
or re-use an assigned value and propagate this assigned value
to a new coefficient. This is hard to track for the propagated
coefficients and makes the attack complicated.

3) Pinpointing Regions of Interest
Identifying and isolating each coefficient’s individual ex-

ecution is again a challenge for this case just like as in
NTRU-HPS. Although CRYSTALS-DILITHIUM performs the
coefficient assignments in one loop instead of nested loops, the
attacker still has to locate the coefficient assignment operations
to perform the attack.

Figure 3 (a) shows the power trace for the implementation
of SampleSparse algorithm in CRYSTALS-DILITHIUM. The
figure shows three sub-traces divided by three braces. The
first brace represents the last two out of five shake256
function calls. The polynomial generation requires shake256
functions to fill a buffer (buf[256]) with random numbers
right before the line 5 in Listing 3. Listing 3 does not show
the shake256 functions for brevity since they are out of
our attack’s scope. The second sub-trace shows the power
measurement corresponding to operations between lines 5

Fig. 4. The mean of sub-traces for different coefficient assignments. There
is a significant power consumption difference between these assignments.

and 9, where the software creates a 64-bit random value
and initializes all coefficients with zero. The last sub-trace,
enveloped with a rectangle, exhibits the targeted for-loop
execution (lines 10 and 22).

Figure 3 (b) shows the execution of for-loop shown with
lines 10 and 22 in Listing 3, while Figure 3 (c) further depicts
the power consumption of five iterations of this for-loop. It
means that there are five non-zero coefficient assignments
(Listing 3 line 20). The black dashed lines correspond to the
targeted non-zero coefficient assignments. This figure illus-
trates that we can visually distinguish coefficient assignments’
power behaviors from other execution steps and that there is
‘some’ observable variation based on −1 vs. 1 assignments.

4) Inspecting the Vulnerability

We target a coefficient assignment operation. The as-
signment possible outcomes are −1 (0xFFFFFFFF) and 1
(0x00000001); hence, we expect two significantly different
power measurements due to the high HW difference. The
expected vulnerability requires analyzing the power measure-
ments related to the targeted operation. We, therefore, captured
100K traces for CRYSTALS-DILITHIUM’s SampleSparse al-
gorithm’s implementation.. We then chopped traces into the
parts to obtain sub-traces that exactly correspond to the power
consumption during the execution line 20 in Listing 3. Since
there are two possible outputs (1, −1) for line 20, there are
two power trace sets. Figure 4 shows these averaged trace sets.
The blue trace corresponds to the mean power consumption
for 1, while the orange one is for −1.

Figure 4 displays that the different coefficient assignments
have different power consumption character. This confirms
our base hypothesis that a single-trace side-channel attack on
the random polynomial generation is possible and feasible.
Our proposed single-trace side-channel attack can extract the
information about how many negative and positive coefficients
exists in the challenge polynomial. Section IV provides more
details on the success rate using statistics.
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IV. EXPERIMENT RESULTS

In this section, we first describe our experiment setup.
We then present our single-trace template-based side-channel
attack steps. Later, we evaluate leakage information obtained
via the single-trace power side-channel attack. This evaluation
consists of the success rate of the proposed attack. Finally, we
analyze the effects of the proposed attack on the security of
the schemes.

A. Attack Environment and Equipment

The device under attack is a development board that uses
an ARM Cortex-M4F core operating at 30 MHz. We used
the Round-3 submission package of the NIST reference soft-
ware implantation for NTRU and CRYSTALS-DILITHIUM
schemes. We compiled the code with gcc-arm-none-
eabi-4_8-2014q1 compiler tool and with -O3 flag. We
used PicoScope 3206D Oscilloscope and set the sampling rate
at 1GS/s. The oscilloscope obtained measurements through the
Tektronix CT1 passive current probe, whose bandwidth is 1–
1000 MHz at 3 dB. We did not use any external amplification
to improve the measurements.

B. Template Based Single-Trace Side-Channel Attack

Single-trace side-channel attacks aim to extract a secret
value from one side-channel measurement. Since NTRU and
CRYSTALS-DILITHIUM schemes execute the targeted ran-
dom polynomial generation step once, we perform a single-
trace template attack.

The summary of our attack strategy is as follows. We
first analyze the entire trace to determine the sub-trace se-
lection and alignment strategy. We then use sum-of-squared-
differences (SOSD) method [38] to identify points-of-interests
(POI) that leaks information. Next, we build uni-variate Gaus-
sian template [39] with the selected POI and conduct a
template attack. We finally use a large number of samples
to build the templates and to test the accuracy of the attack,
and we report the success rate of the attacks to quantify the
vulnerability of reference implementation. The rest of this
section walks the reader through these steps with illustrators.

Mk,i =
1

Tk

Tk∑
j=1

tj,i , (1)

SOSDi =
∑
k1,k2

(Mk1,i −Mk2,i)
2 , (2)

The POI identification uses the SOSD technique described
by Equations 1 and 2 where there are k different operations
and i sample points in a number of traces t1,i...tk,i used to
calculate the mean power trace Mk,i and the SOSD trace
SOSDi. One point stands out from the experiment and we
performed an initial study to understand if there is any
meaningful vulnerability.

µi =
1

Tk

Tk∑
j=1

tj,si , (3)

vi =
1

Tk

Tk∑
j=1

(tj,si − µi)2 , (4)

To quantify the empirical effect of a potential vulnerability,
we ran a template attack using 90K measurements for profiling
and 10K measurements for tests. Note that the attack runs
independently on each of these 10K test measurements. We
picked one peak point as POI where the variation of power
consumption is maximum at this sample si. We choose a
single POIs in our case but multiple POIs might be chosen
to increase attack success rate for noisier platforms. For this
POI, we calculated average power µi with Equation 3, variance
of power vi with Equation 4.

Pk =

k∑
j=0

logN (tj,si , µi, vi) , (5)

We build the template from normal probability density
function (NPDF) using the POI of the attacked traces tj,si ,
µi and vi results of the profiling. We summed the log of
the normal distribution N with Equation 5 to avoid precision
issues that occur if the results of NPDF are too large or too
small. The index of the matrix Pk with the highest value
corresponds to the predicted coefficient.

C. Quantifying the Success Rate

We applied the single-trace side-channel attack defined
in Section III for NTRU-HPS and CRYSTALS-DILITHIUM
schemes. Although both algorithms require random poly-
nomials, they generate their polynomials in different ways.
Thus, we have different profiles and test sets for the two
implementations.

For NTRU-HPS encryption scheme, we targeted the com-
parison operation result at line 8 in Listing 2. This operation
ends with either 0 or −1. Hence, we have two groups both for
profiling and testing. Figure 2 displays two averaged power
traces for these two comparison outputs. Indeed, there is a
significant power consumption difference between the sample
points 220 and 400. Using the SOSD method, we chose the
sample point 375 as our POI. Afterward, we captured 100K
traces, 90K measurements for profiling and 10K measurements
for tests. Evaluating on this 10K tests reveals that our attack
can achieve 99,98% success rate for recovering the secret
polynomial.

Although our test result empirically gives 99,98% success
rate, we quantify the attacker success rate by modeling the
power distribution to derive a theoretical estimate. Figure 5
illustrates the distribution of 100K power values of both 0 and
−1 responses at the sample point 375 (i.e., POI). The blue line
corresponds to the power distribution of comparison result −1
with standard deviation (σ) 0.004 and mean (µ) −0.054, while
the orange distribution curve represents comparison result 0
and its σ, µ pair is 0.005, −0.023.

Figure 5 also shows that the power distributions intersect
approximately between −0.42 mV and −0.038 mV. If the
measured power trace voltage is between in this range at the
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Fig. 5. The distribution of power measurements at the POI for the two
different assignments (-1 vs. 0) during the targeted instruction in NTRU-HPS.
These two power distributions intersect with each other and the intersection
reduces the success rate.

given POI, the proposed attack might mispredict the result.
The attack success rate, therefore, depends on the intersection
area that remains between the black dash lines and under
the distribution curves. We use Equation 6 to calculate the
intersection area shown in Figure 5. The function D(x) gives
the integral of the normal distribution from the −∞ to x where
the −∞ and x represent the interval values.

D(x) =
1

σ
√
2π

∫ x

−∞
e−(x

′−µ)2/(2σ2)dx′ , (6)

We use this equation to find the intersection area by
choosing the intervals as distributions intersect. The first
interval value range is [−0.42,∞] since the first intersection’s
x-coordinate is 0 mV, while the second calculation uses
[−∞,−0.038] as the interval range. After separately calculat-
ing the two regions under each distribution curve and adding
them together, we obtain the theoretical failure rate, which
corresponds to 99.78%. Note that this theoretical estimate is
more pessimistic than our actual, empirical success rate.

For CRYSTALS-DILITHIUM signature scheme, we tar-
geted the coefficient assignment step line 20 in Listing 3.
The coefficient assignment has two possible outputs 1 or −1.
Figure 3 shows that there is a significant power consumption

Fig. 6. The distribution of power measurements at the POI for the two
different assignments (-1 vs. 1) during the targeted instruction in CRYSTALS-
DILITHIUM. Although the two power distributions theoretically intersect with
each other, the intersection cannot be seen visually.

difference between the sample points 350 and 530 during the
execution of coefficient assignment1. Using the SOSD method,
we chose the sample point 514 as our POI. For this attack
point, our test result shows that the attack success rate is
100%. We can perfectly classify the −1 and 1 coefficients
through power measurements, while the theoretical success
rate is 99.9974% based on the power distribution shown in
Figure 6.

D. The Effect of Success Rate on the Entropy

Table III shows claimed security of all NTRU-HPS scheme
in non-local and local (in parenthesis) assumptions as defined
in [10], number of calls to Listing 2, and the expected entropy
for a full secret/session key recovery. Our attack achieves a
99.78% success rate per each call and the number of calls
ranges from 9665 to 18493 depending on the parameters.
Since we can identify each of those potentially incorrect
classification using the intersection in Figure 5, we can recover
correct values with a brute-force search following the side-
channel attack. Therefore, the remaining entropy (i.e., security
level) reduces to 222–241 after our attack. Figure 7 depicts the
success rate vs. the remaining entropy for the ntruhps4096821.

TABLE III
ENTROPY OF A FULL KEY EXTRACTION ATTACK TO NTRU-HPS.

Scheme Claimed security # calls Listing 2 Entropy

ntruhps2048509 105(139) 9665 22
ntruhps2048677 144(205) 14473 32
ntruhps4096821 178(253) 18493 41

On CRYSTALS-DILITHIUM, our attack recovers the as-
signments made to the coefficients (-1 or +1). Therefore, it
removes the effect of τ from the logarithms (last line of the
Table II). After our attack, the entropy of c would be reduced
from 192, 225, and 257, to 153, 176, and 197 for NIST levels
2, 3, and 5, respectively. Although this can cause a concrete

1The captured trace number is 100K for CRYSTALS-DILITHIUM signa-
ture scheme as well with the same 90K profiling and 10K test split.
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Fig. 7. The success rate of our proposed attack vs. the residual entropy of the
session/secret keys in NTRU-HPS. Our per-coefficient success rate of 99.78%
reduces the search space of keys to about 241.

reduction in the security, it is not as direct or pronounced as
the attack on NTRU/NTRU Prime. Hence, our work quantifies
that the sampling approach taken in CRYSTALS-DILITHIUM
is more single-trace side-channel resilient than the one in
NTRU/NTRU Prime.

V. DISCUSSIONS

In this section, we discuss the related issues and comment
on the drawback of our attack.

A. Applicability to Other Implementations

Our proposed attack is also applicable to the assem-
bly optimized NTRU-HPS, NTRU Prime, and CRYSTALS-
DILITHIUM or their implementations in the pqm4 library.
NTRU-HPS and NTRU Prime use SUPERCOP [40] crypto
sort C implementation for SamplePerm() function, while
pqm4 uses a different function but following essentially the
same approach. Although we used the reference C implemen-
tation of the Round-3 NIST submission package as our target
implementation, the targeted vulnerability thus also exists in C
and assembly implementations of the pqm4 library. Likewise,
the software implementation of the SampleSparse() function
in CRYSTALS-DILITHIUM NIST submission package is re-
used in pqm4 library. Our proposed attack, therefore, is
suitable both for CRYSTALS-DILITHIUM NIST submission
and pqm4 library implementations.

B. Calibration Factors of the Experiments

The noise of the platform decreases with the operating
frequency of the device. We set the lowest design frequency
of the development board, i.e., 30 MHz, to reduce the noise.
Note that there are multiple prior works on single trace side-
channel attacks demonstrated with even lower frequency such
as 7.38 MHz to attack polynomial multiplication in NTRU-
HPS scheme [28] or 8 MHz to attack NTT [21]. Our clock
frequency is higher than these works. If an even higher

frequency is analyzed, a better equipment for obtaining power
measurements, an additional probe for detecting near-field
electromagnetic leakages, or amplification/post-processing for
noise reduction may be needed.
C. Drawbacks of Our Attack

Template attack has some well-known limitations and chal-
lenges, such as the cross-device and processing time limita-
tions. In our scenario, we chose one POI for each attack point
which led to a reasonable success rate and take minutes to
build the profiles. More POIs can further improve the attack’s
success rate while needing more processing time. We limit
our attack to a single device, cross-device attacks may need a
more complicated, machine-learning based profiling [41], [42].
We note that this cross-device limitation of single-trace side-
channels of post-quantum cryptosystems has been an open
problem existing in several prior works [23], [21], [33], [25],
[30], [27].

VI. CONCLUSIONS AND FUTURE WORK

Although lattice cryptography is a popular and versatile tool
providing quantum-resilience at a reasonable cost, it contains
unique operations that have not been rigorously analyzed
for side-channel vulnerabilities. This paper demonstrated the
first single-trace side-channel attack on such an operation—
ω-small polynomial sampling—used in lattice cryptography.
We focused on two different algorithms’ implementations
that samples ω-small polynomials. We revealed that the spe-
cific sub-routines employed in NIST finalists/alternatives in-
cluding NTRU, NTRU Prime, and CRYSTALS-DILITHIUM
are indeed vulnerable to a power-based side-channel attack.
Specifically, we showed that SamplePerm implementation in
NTRU can reveal positions of the coefficients with respect to
their default position, while SampleSparse implementation
in CRYSTALS-DILITHIUM could only reveal information
about the signs of non-zero coefficients, making it more secure
against single-trace side-channel attacks. The results confirm
the practicality of our attack on an off-the-shelf device.

The vulnerability we expose is orthogonal to the prior
single-trace attacks and, by definition, to multi-trace attacks.
Therefore, the defenses proposed/patched for other vulnerabil-
ities have to be re-evaluated as they will likely fail against this
specific leakage.

We emphasize that this an attack paper and that our goal
is to inform the developers of these algorithm implementa-
tion about the vulnerabilities they introduce. Some form of
countermeasure is, therefore, needed to address these attacks,
e.g., based on shuffling or other forms of randomization or
via differential circuit styles. More broadly, we argue that our
paper highlights the need for single-trace side-channel aware
software development.
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