
MARSHAL: Messaging with Asynchronous Ratchets and
Signatures for faster HeALing∗

Olivier Blazy

LIX, CNRS, Inria, École Polytechnique,

Institut Polytechnique de Paris

91120 Palaiseau, France

olivier.blazy@polytechnique.edu

Pierre-Alain Fouque

IRISA

Rennes, France

Pierre-Alain.Fouque@ens.fr

Thibaut Jacques

Orange Labs, IRISA, XLIM

Rennes, France

thibaut.jacques@orange.com

Pascal Lafourcade

Université Clermont-Auvergne, CNRS,

Mines de Saint-Étienne, LIMOS

Clermont-Ferrand, France

pascal.lafourcade@uca.fr

Cristina Onete

XLIM

Limoges, France

cristina.onete@gmail.com

Léo Robert

Université Clermont-Auvergne, CNRS,

Mines de Saint-Étienne, LIMOS

Clermont-Ferrand, France

leo.robert@uca.fr

ABSTRACT
Secure messaging applications are deployed on devices that can be

compromised, lost, stolen, or corrupted in many ways. Thus, recov-

ering from attacks to get back to a clean state is essential and known

as healing. Signal is a widely-known, privacy-friendly messaging

application, that uses key-ratcheting mechanism updates keys at

each stage to provide end-to-end channel security, forward secrecy,

and post-compromise security. We strengthen this last property,

by providing a faster healing. Signal needs up to two full chains of

messages before recovering, our protocol enables recovery after the

equivalent of a chain of only one message. We also provide an extra

protection against session-hijacking attacks. We do so, while build-

ing on the pre-existing Signal backbone, without weakening its

other security assumptions, and still being compatible with Signal’s

out-of-order message handling feature. Our implementation results

show that, while slower than Signal (as expected), MARSHAL’s
spectacular gain in healing speed comes at a surprisingly low cost,

with individual stages (including key-derivation, encryption, and

decryption) taking less than 6 ms.

CCS CONCEPTS
• Security andprivacy→Public key (asymmetric) techniques;
Security protocols;

KEYWORDS
Secure messaging, Signal, Healing, E2E encryption.

ACM Reference format:
Olivier Blazy, Pierre-Alain Fouque, Thibaut Jacques, Pascal Lafourcade,

Cristina Onete, and Léo Robert. 2022. MARSHAL: Messaging with Asyn-

chronous Ratchets and Signatures for faster HeALing. In Proceedings of The
37th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, , April
25–29, 2022 (SAC ’22), 8 pages.
https://doi.org/10.1145/3477314.3507044

∗
This study was partially supported by the French ANR, grants 16-CE39-0012 (SafeTLS)

and 18-CE39-0019 (MobiS5). There are also the French government research program

“Investissements d´Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP

20-25), the IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01), the French ANR

project DECRYPT (ANR-18-CE39-0007) and SEVERITAS (ANR-20-CE39-0009).

1 INTRODUCTION
Asynchronous messaging protocols like Signal [13] or OTR [6]

allow two parties that are not always simultaneously online to

communicate securely. The protocol must guarantee the confiden-

tiality and authenticity of the exchanged messages with respect

to a PitM
1
. Forward security additionally requires that if a party is

compromised (loses its long-term keys), past communications are

still secure. Signal pioneered a new property, formalized by Cohn-

Gordon et al. as post-compromise security2 (PCS) [9]. It entails a
renewal of the protocol’s original security guarantees even after a

complete compromise of a party’s secrets. Cohn-Gordon et al. later
showed that Signal attains PCS [8] under certain assumptions.

Currently used in messaging apps, Signal is designed for long-

term conversations between two peers. In fact, implementations of

this protocol tend to create a single session between the two peers,

which will last for the entire lifetime of their communication. This

is why post-compromise security is such an important property in

Signal: if one peer is compromised and thus the confidentiality of

its conversations fails, PCS guarantees that in the near future, that

confidentiality will heal and become as strong as before the attack.

Clearly, the faster the conversation is able to heal, the more useful

this protocol will prove in real life.

Signal’s healing ability follows from the gradual insertion of fresh

Diffie-Hellman material into the current session secrets, which is

done every time speakers change. This provides healing once speak-

ers have changed twice, assuming the adversary has not inserted

cryptographic material in the session, thus hijacking it. We aim to

do better, providing healing within one single message.

In Fig. 1, we give a toy-example of a Signal conversation between

an initiator Alice and the responder Bob. Each message comes at

a protocol stage3, denoted by (𝑥,𝑦). The 𝑦 value increases when

the speaker changes (Alice starts at 𝑦 = 1, then 𝑦 turns to 2 when

Bob speaks, etc.). The 𝑥 value increases with each new message

from the same speaker, and is reset to 1 for each new value of 𝑦.

Each stage (𝑥,𝑦) is associated with a message key mk𝑥,𝑦 , used to

encrypt and authenticate that stage’s message. To evolve from a key

1
Person-in-the-Middle is a politically-correct version of Man-in-the-Middle.

2
This property is also called healing.

3
We use a different notation of stages from [8].

https://doi.org/10.1145/3477314.3507044

SAC ’22, April 25–29, 2022, Virtual Event, O. Blazy et al.

mk𝑥,𝑦 to mk𝑥+1,𝑦 (next message, same speaker), the two peers use

a key-derivation function (KDF) with no further freshness. This is

called a symmetric ratchet, denoted by [S] in Fig. 1. To update a key

mk𝑥,𝑦 to mk1,𝑦+1 (new speaker), a DH share is used as freshness

into the KDF. This is called the asymmetric ratchet, denoted by [A].
Signal’s PCS guarantee is limited by two main factors: the lack

of persistent authentication (noticed by Blazy et al. [5]) and the

frequency of asymmetric ratchets, which is our key motivation.

Persistent authentication [5]. In Signal, the two parties initially

use long-term identity-keys to authenticate. However, subsequent

authentication only relies on knowledge of a previous stage-specific

key. This allows an adversary to impersonate entities by only com-

promising a party’s ephemeral state; then the adversary hijacks

the session by forcing a ratchet. Two events follow: (i) the keys

between the honest endpoints diverge irrevocably from those de-

rived by the adversary and the non-compromised endpoint; and

(ii) the non-compromised endpoint is unaware of this. In Fig. 1, an

adversary can compromise Alice after her second message, learning

the private key rchk1A corresponding to the public key
4 Rchpk1A.

The attacker then blocks all messages from Alice to Bob, and waits

for Bob to ratchet (with “Hi Alice”). The adversary, impersonating

Alice, forces a ratchet by sending a new message. At this point, Bob

and the adversary ratchet to keys depending on the DH product

of RchpkA and Rchpk2B. Alice, however, can no longer ratchet to

those keys, even given Bob’s and the adversary’s transcript.

Frequency of asymmetric ratchets. In Signal, parties asymmet-

rically ratchet whenever the speaker changes. The private key for

that ratchet can, however, be leaked to an adversary. A compromise

of, say Alice, compromises the security of Alice’s entire chain of

messages, then Bob’s entire chain of responses. The protocol only

heals once Alice chooses new ratcheting material and safely sends

it to Bob. In Fig. 1, if the adversary compromises Alice after she’s

sent the first message, it obtains 30 message keys.

Contributions. Our main contribution in this paper is a protocol

calledMARSHAL (for “Messaging with Asynchronous Ratchets and

Signatures for faster HeALing"). The MARSHAL protocol reuses

Signal as a backbone, but we modify the way ratcheting is done to

provide both persistent authentication and faster healing.

In terms of its security properties,MARSHAL outperforms Sig-

nal. Healing occurs within one message after full compromise of a

user’s session-specific information. We also restrict session hijack-

ing attacks by adding persistent authentication at each message.

In MARSHAL, the parties asymmetrically ratchet at every stage,

even when the speaker has not changed. This causes two technical

challenges. First, there is the question of how Alice (the initiator)

will ratchet at the start of the protocol, before Bob comes online.

We handle this by requiring Bob to register an extra ephemeral DH

element on the semitrusted server. A second challenge concerns

out-of-order messages. To handle those, the sender will send at

each stage a concatenation of all the public ratchet keys used so far

in that chain, in order, in the associated data.

4
The adversary also has access to chain and message keys computed at this point,

and to the root key necessary for the ratchet. However, none of Alice’s long-term

information is necessary for the attack.

MARSHAL provides almost instant healing: unless it holds the

party’s long-term keys and ephemeral information, the attacker

cannot compromise more than one message at a time. As soon as

either party ratchets honestly, the adversary loses the ability to

decrypt any fresh messages. In addition, session-hijacking attacks

require long-term credentials such as the party’s identity- or signa-

ture key. By contrast, an adversary can hijack a Signal session with

only ephemeral information (e.g., message and/or chain key).

These strong properties ofMARSHAL come at a cost. Apart from

registering an additional DH element and having to perform DH

computations at each stage,MARSHAL adds to the complexity of

Signal in two ways: (1) requiring the transmission of a number

of DH elements that is linear in the maximal depth of the chain;

(2) using signatures to transmit the encrypted messages and stage

metadata. The former allows us to provide message-loss resilience:

if this is not needed, metadata size can be reduced. The second

source of complexity, the signatures, serve a double purpose: they

help preserve AKE security, and they restrict an adversary’s ability

to impersonate parties upon corruption.

Another aspect of our protocol that deserves some discussion

is the requirement of a trusted execution environment in which

the long-term identity keys are stored. A reason users might want

to keep those keys safer than others is that they are meant to last

a long time. But, one might wonder, if users are assumed to store

some of their keys, why not all? In the interest of fairness, we state

that storing long-term keys in the trusted execution environment

provides us with the attractive properties we advertise: its almost-

instant healing and persistent authentication. In our model, we treat

the corruption of long-term keys differently than we do the leakage

of ephemeral information. One reason is that storing session- and

stage-specific keys of all that user’s sessions may result in a large

quantity of data that needs storing, updating, deleting, etc., which

is something we’d like to avoid. Additionally, note that in itself,

the same strategy would not enhance the security of Signal, for

which the long-term keys and master secret value are only used

during session initialization, for the computation of the master

secret. Thus, our additional hypothesis of the existence of a trusted

execution environment does not give us an unfair advantage in

comparison to Signal.

In order to assess the comparative complexity of our protocol

with respect to Signal, we implementedMARSHAL in Java, using

libsignal. Our implementation results, described in detail in Sec-

tion 4, show that our protocol is comparatively slower than Signal

(as expected); however, all the individual stages of communication

remain fast in terms of absolute runtime. This is particularly encour-

aging since the security gain ofMARSHAL is massive, allowing a

compromised user’s keys to heal within a single stage.

Related Work. Ratcheted key-exchange (RKE) was introduced as

a unidirectional, single-move primitive by Bellare et al. [4], who
used it to define and instantiate ratcheted encryption. This security

model was later extended by work such as [11, 16] to treat double

ratchets, but also more generic RKE. A crucial difference between

generic RKE and our work is that we focus on the full message

transmission process, as in the case of [5, 8].

The work of Alwen et al. [3] provides a complete security model

for protocols like Signal, which also handles out-of-order messages

MARSHAL SAC ’22, April 25–29, 2022, Virtual Event,

Sender Key(s) AD Message MARSHAL Signal

Alice mk1,1: (1,Rchpk1A) Hi Bob ✓ ✓

[S] mk2,1 (2,Rchpk1A) How are you ? × ×
[S] mk3,1-mk17,1 (3,Rchpk1A)-(17,Rchpk

1

A) (... 15 messages) ✓ ×
[S] mk18,1 (18,Rchpk1A) Cinema tonight ? ✓ ×

Bob : [A] mk1,2 (1,Rchpk2B) Hi Alice ✓ ×
[S] mk2,2 (2,Rchpk2B) I’m good, thanks ✓ ×
[S] mk3,2-mk12,2 (3,Rchpk2B)-(12,Rchpk

2

B) (... 10 messages) ✓ ×

Alice : [A] mk1,3 (1,Rchpk3A) Great ✓ ✓

Figure 1: Toy example for Signal and MARSHAL. Messages are encrypted with the keys in the second column (indexed by
the stage) and have the associated data (AD) in the third column. The labels [A] and [S] indicate asymmetric and symmetric
ratcheting respectively. The security (✓) and insecurity (×) of messages is given, assuming Alice is compromised at message 2.
Italics show that several messages are sent in the same chain.
(which they call immediate decryption). Alwen et al. view asyn-

chronous messaging protocols as a composition of three parts: a

hash function that generates pseudorandom output (PRF-PRNG), a

primitive called forward-secure AEAD (FS-AEAD) which captures

symmetric ratchets, and continuous key-agreement (CKA) which

captures asymmetric ratchets. While this work does capture Signal

and allows for modular security proofs, it is not so well suited to the

analysis of our protocol, for three main reasons. First,MARSHAL
does not employ any symmetric ratcheting; second, we want to

capture the properties of the actual message transmission; third,

we do not use AEAD solely, but rather combine it with a public-key

authentication mechanism. This would minimally indicate a need

to modify the FS-AEAD primitive. We therefore prefer a security

model that is less modular, but comes closer to the protocol (as

in [5]). We have adapted one of the properties they consider to our

security model, namely that of message-loss resilience.

The works of Jost et al. [10, 12] provide efficient instantiations of

bidirectional ratcheted key-exchange by using relatively inexpen-

sive primitives (unlike previous work such as e.g., that of Poettering
and Rössler [16]). However, these protocols are different and do

not follow the structure of Signal. In addition, features such as

out-of-order messages are not included, because some of these

constructions require the parties to receive each message. Starting

from Signal’s structure, we preserve properties such as out-of-order

messages, and have stronger healing by persistent authentication

and more frequent asymmetric ratchets.

Our work comes closest to the SAID protocol of Blazy et al. [5],
whose notion of persistent authentication prevents hijacking at-

tacks. SAID therefore authenticates each ratchet by using identity

keys. As long as the identity keys are safely stored, session-hijacking

cannot happen because the adversary cannot convince Bob he is

ratcheting with the correct person. While we also ensure persis-

tent authentication, our work uses the backbone of Signal and its

security assumptions: public-key cryptography and a semi-trusted

middle server. By contrast, Blazy et al. constructed their protocol

in the paradigm of identity-based cryptography.

An interesting work, but which is orthogonal to ours was pre-

sented at CCS ’19 by Chase et al. [7]. They focus on the long-term

keys of two parties, and present a way of updating those in case

access is lost to a user’s current account. We did not consider up-

dates to long-term key in this paper; instead we focus on the actual

session and message keys.

2 BACKGROUND

Notations. Let𝑔 be a generator of a cyclic groupG of prime order𝑞.

A user’s Diffie-Hellman public key is an exponentiation of 𝑔 to the

private exponent 𝑘 : 𝑝𝑘 = 𝑔𝑘 mod 𝑝 for a large prime 𝑝 . Like [8]

we end names of public keys in pk and private keys ending in k. For
instance Rchpk is a ratchet public key with corresponding private

key rchk. Let 𝐷𝐻 (𝑥,𝑦) = 𝑥𝑦 denote the exponentiation of 𝑥 ∈ G to

a power𝑦 ∈ Z𝑞 . A key generated by party P is denoted by ikP while

the public key is denoted ipkP . Stage-specific keys have stages as
superscript e.g., , mk1,1. In this paper we assume that all signature

schemes involve hashing, and omit the hashing in the notation, i.e.,
SIGNsk (𝑚) := Signsk (𝐻 (𝑚)) for a hash function 𝐻 . We use the

notations AEAD.Enc and AEAD.Dec for encryption and decryption

respectively of an AEAD-scheme. Finally, for simplification, we use

the notation HKDF (HMAC Key Derivation Function) to represent

several key derivation functions taking either one input or two

inputs.

The Signal Protocol. We briefly describe the Signal protocol,

see [8] for details. Signal can be described in terms of four main

steps:

Registration. Each party P registers by uploading on a semi-trusted

server a number of (public) keys: a long-term key denoted ipkP , a
medium-term key prepkP signed with ikP , and optional ephemeral

public keys ephpkP .

Session Setup. Alice wants to initiate communication with Bob.

She retrieves Bob’s credentials from the server, generates an ini-

tial ratchet key-pair (rchk1A,Rchpk
1

A) and an ephemeral key-pair

(EpkA, ekA), and uses the X3DH protocol [14] to generate an initial

shared secret ms (master secret): ms := (prepkB)ikA | | (ipkB)ekA | |
(prepkB)ekA | | (ephpkB)ekA . This value is used in input to a key

derivation function (KDF𝑟), outputting the root key rk1 and the

chain key ck1,1. The latter is used to derive the first message key

mk1,1 that Alice uses to communicate with Bob. The following as-

sociated data (AD) is appended to that message: the value 1 (for

SAC ’22, April 25–29, 2022, Virtual Event, O. Blazy et al.

X3DH

ms 𝐾𝐷𝐹𝑟

𝐷𝐻 (rchk0,1, prepkB)

ck1,1 𝐾𝐷𝐹𝑚 ck2,1

mk1,1

𝐾𝐷𝐹𝑚 ck3,1

mk2,1

. . . chain 𝑦 = 1

𝐷𝐻 (rchk0,1,Rchpk0,2)

𝐾𝐷𝐹𝑟

rk1

ck1,2 𝐾𝐷𝐹𝑚 ck2,2

mk1,2

𝐾𝐷𝐹𝑚 ck3,2

mk2,2

. . . chain 𝑦 = 2

𝐷𝐻 (rchk0,2,Rchpk0,3)

𝐾𝐷𝐹𝑟 ck1,3

tmp

rk2

𝐾𝐷𝐹𝑚 ck2,3

mk1,3

𝐾𝐷𝐹𝑚 ck3,3

mk2,3

. . . chain 𝑦 = 3

Figure 2: The key schedule of Signal where the DH val-
ues are marked with grey boxes. Each stage (𝑥,𝑦) has its x-
coordinate corresponding to a message (horizontal moves)
inside a chain (vertical moves) for y-coordinate. The com-
promise (in double edge) duringA setup is affecting the keys
(in thick edge) of the two first chains.

the index 𝑥), Alice’s ephemeral public key EpkA, the ratchet key
Rchpk1, as well as Alice’s and Bob’s identities.

Symmetric Ratchet.Whenever a sender P chooses a newmessage

to send, the stage changes from (𝑥,𝑦) to (𝑥+1, 𝑦). At stage (𝑥,𝑦), the
message key is mk𝑥,𝑦 , derived from ck𝑥,𝑦 . In fact, given ck𝑥,𝑦 , the
sender computed (at stage (𝑥 − 1, 𝑦)) the values ck𝑥+1,𝑦 and mk𝑥,𝑦 .
At stage (𝑥 + 1, 𝑦), the sender inputs ck𝑥+1,𝑦 to the key-derivation

function KDF𝑚 and receives the output ck𝑥+2,𝑦 and mk𝑥+1,𝑦 . The
key mk𝑥+1,𝑦 is then used for the authenticated encryption of the

sender’s message at stage (𝑥 + 1, 𝑦). The AD sent at this stage will

be the ratchet key Rchpk𝑦 and the stage index
5 𝑥 + 1. The same

process takes place on the receiving side, in order to authenticate

and decrypt messages.

Asymmetric Ratchet. If the speaker changes, the new speaker in-

serts fresh Diffie-Hellman elements into the key-derivation. Assume

that we are at stage (𝑥,𝑦) and the speaker changes (thus yielding

stage (0, 𝑦 + 1)). Different computations are made depending on

whether the new speaker is the initiator or the responder.

(1) First assume that initiator Alice was the speaker at stages

(·, 𝑦); therefore 𝑦 is even at each stage (·, 𝑦) and the encrypted mes-

sage included associated data Rchpk𝑦 . When Bob comes online, he

computes a new ratchet key pair (rchk𝑦+1,Rchpk𝑦+1). A tempo-

rary value 𝑡 and the chain key ck(0,𝑦+1) are calculated from the root

key
6 rk𝑦 and the Diffie-Hellman product (Rchpk𝑦)rchk𝑦+1 via KDF𝑟 .

Then, the chain and message keys are computed as described in the

previous item. From that point onwards, keys evolve by symmetric

ratcheting until the speaker changes again.

(2) Now assume that the responder was the speaker at stages

(·, 𝑦); therefore 𝑦 is odd and at each stage (·, 𝑦) the encrypted mes-

sage includes associated data Rchpk𝑦 . When Alice comes online,

she chooses new ratcheting information rchk𝑦+1,Rchpk𝑦+1 and

5
In the original protocol, the sender also sends the identity public keys of Alice and

Bob; since these values are public and constant for all stages, we omit them.

6
Root keys are only computed when one reverts back to the initiator, so in our notation,

on stages (0, 𝑦) for even values of 𝑦.

computes a new root key rk𝑦+1 and the base chain key ck(0,𝑦+1)

from the value 𝑡 computed at stage (0, 𝑦) (see the bullet point be-
fore) and the Diffie-Hellman product (Rchpk𝑦)rchk𝑦+1 . From here

the key derivation proceeds by symmetric ratcheting.

We depict in Fig. 2 the extent of a full compromise in the case of

the Signal protocol.We note that a compromise of Alice’s ephemeral

values (including the stage-specific ratchet key) leads to two entire

chains of messages being leaked.

3 THE MARSHAL PROTOCOL
The protocol we propose, MARSHAL, runs –like Signal– in several

stages: registration, session setup, and communication. We describe

in Fig. 3 the session-setup and communication phases ofMARSHAL.
As a novelty, MARSHAL requires two types of ratchet keys: same-
user ratchet keys, and cross-user ratchet keys. Same-user ratchet

keys are indexed by stage, and generated whenever a new message

is sent: for instance Rchpk2,1 denotes the ratchet public key at stage
(2, 1) (the second message sent in the first message chain). Cross-

user ratchet keys are only generated at the beginning of a chain of

messages and indexed only by the 𝑦-component of the stage (called

a chain index). We denote by T
𝑖
the public key generated during

the 𝑖-th message chain and by T
0
an initial public key registered by

the session’s responder.

While stages are indexed as (𝑥,𝑦) with 𝑥,𝑦 ≥ 1, special indexes

𝑥 = 0 and 𝑦 = 0 denote special ratchet keys used for initialization.

The first same-user ratchet keyRchpk0,1 is only used to compute the

master secret of a session. Additionally, a ratchet key T
0
is registered

by each user. The initiator of a session uses its correspondent’s

initial ratchet key during the first chain of communication (𝑦 = 1).

Note that this method of ratcheting uniquely associates stages and

chain indexes to the party generating them.

3.1 Registration
To use MARSHAL, each party P must first register, by generat-

ing private keys and uploading the corresponding public keys to

the server: a long-term identity key ikP ; a medium-term prekey

prekP , and a signature on that key (generated with the identity key

ikP); multiple ephemeral one-time-use prekeys ephpkP ; multiple

medium-term stage keys T
0
. The last of these keys is a cross-user

ratchet key (see above): a novelty with respect to Signal, which

will help Alice asymmetric-ratchet in the first chain of messages,

when she has not yet had a message (and therefore a ratcheting

key) from Bob. In addition to these keys users will also generate

and subsequently use a pair of long-term signature keys (𝑠𝑘𝑃 , 𝑝𝑘𝑃).
These keys will not be registered on the server, but rather included

in the associated data in each partner’s first respective chain of

messages.

3.2 Session Setup
Whenever Alice A wants to contact Bob B, she runs a protocol

similar to that of Signal and [13], with some small tweaks.

The master secret. To initiate a session with B, Alice queries

the server for Bob’s following values: the identity key ipkB, a
signed prekey prepkB, a one-time prekey ephpkB (if available), and

a medium-term stage key T0
𝐵
, denoted in short T

0
. Having received

MARSHAL SAC ’22, April 25–29, 2022, Virtual Event,

Alice (ikA, ipkB, prepkB, ephpkB, T
0
) Bob (ikB, ipkA, prekB, ephkB, T

0
)

Session initialization: initiator Alice, responder Bob.

ekA, rchk0,1, t
1
, rchk1,1

$←− Z𝑞 ;
T
1
= 𝑔𝑡1 ; EpkA = 𝑔ekA ;

Rchpk0,1 = 𝑔rchk
0,1

;Rchpk1,1 = 𝑔rchk
1,1

𝑚𝑠 = prepkikAB | |ipk
ekA
B | |prepk

ekA
B | |ephpkB

ekA

ck1,1 = HKDF
(
prepkrchk

0,1

B | |𝑚𝑠
)

(ck2,1,mk1,1) = HKDF (ck1,1 , 𝜎1,1 | | (ipkB)rchk
1,1)

First message: stage (1, 1), Alice is the sender, Bob, the receiver.
𝐴𝐷𝑦=1 = EpkA | |ipkA | |ipkB | |prepkB | |

ephpkB | |T0 | |Rchpk
0,1 | |T

1

𝐴𝐷1,1 = (1, 1) | |Rchpk1,1 | |𝜎1,1 𝑐1,1, SIGN𝑠𝑘𝐴 (𝑐1,1),

𝑐1,1 = AEAD.Encmk1,1 (𝑀1,1;𝐴𝐷1 | |𝐴𝐷1,1)
𝑝𝑘𝐴,SIGNikA (𝑝𝑘𝐴)−−−−−−−−−−−−−−−−−→ Verify signature on 𝑝𝑘𝐴 and 𝜎1,1

𝑚𝑠 = ipkprekBA | |EpkikBA | |Epk
prekB
A | |EpkephkBA

ck1,1 = HKDF ((Rchpk0,1)prekB | |𝑚𝑠)
(ck2,1,mk1,1) = HKDF (ck1,1, 𝜎1,1 | | (Rchpk1,1)ikB)
𝑀1,1 = AEAD.Decmk1,1 (𝑐1,1).

ℓ-th message: stage (ℓ, 1), Alice is the sender, Bob, the receiver.

rchkℓ,1
$←− Z𝑞 , set Rchpkℓ,1 = 𝑔rchk

ℓ,1

(ckℓ+1,1,mkℓ,1) = HKDF (ckℓ,1, 𝜎ℓ,1 | |ipkrchk
ℓ,1

B)
𝐴𝐷ℓ,1 = (ℓ, 1) | |{Rchpk𝑥,1}1≤𝑥≤ℓ | |𝜎ℓ,1 𝑐ℓ,1, SIGN𝑝𝑘𝐴 (𝑐ℓ,1),

𝑐ℓ,1 = AEAD.Encmkℓ,1 (𝑀ℓ,1;𝐴𝐷1 | |𝐴𝐷ℓ,1)
𝑝𝑘𝐴,SIGNikA (𝑝𝑘𝐴)−−−−−−−−−−−−−−−−−→ Verify leftover signatures

(ckℓ+1,1,mkℓ,1) = HKDF (ckℓ,1, 𝜎ℓ,1 | | (Rchpkℓ,1)ikB)
𝑀ℓ,1 = AEAD.Decmkℓ,1 (𝑐ℓ,1).

Switching speakers: Bob comes online and begins a new ratcheting chain.

t
2
, rchk1,2

$←− Z𝑞 ; T
2
= 𝑔t2 , Rchpk1,2 = 𝑔rchk

1,2

ck1,2 = HKDF (T
1

ikB | |ipkAt2)

(ck2,2,mk1,2) = HKDF (ck1,2, 𝜎1,2 | | (ipkA)rchk
1,2)

Bob’s message, stage (1, 2): Bob is the sender, Alice is the receiver.
𝐴𝐷𝑦=2 = T

2

𝑐1,2, SIGN𝑝𝑘𝐵 (𝑐1,2), 𝐴𝐷1,2 = (1, 2) | |Rchpk1,2 | |𝜎1,2

Verify signature on 𝑝𝑘𝐵 and 𝜎1,2
𝑝𝑘𝐵 ,SIGNikB (𝑝𝑘𝐵)←−−−−−−−−−−−−−−−−− 𝑐1,2 = AEAD.Encmk1,2 (𝑀1,2;𝐴𝐷2 | |𝐴𝐷1,2)

ck1,2 = HKDF ((ipkB)t1 | | (T2)
ikA)

(ck2,2,mk1,2) = HKDF (ck1,2, 𝜎1,2 | | (Rchpk1,2)ikA)
𝑀1,2 = AEAD.Decmk1,2 (𝑐1,2)

Figure 3:MARSHAL protocol execution between Alice and Bob for the first few stages. The yellow boxes indicate modifications
with respect to Signal protocol [8]. The transmitted data is also different and not in yellow for more clarity.

those keys, A generates its own ephemeral key ekA. The master

secret𝑚𝑠 is a concatenation of DH values, as computed in Signal.

First keys. Alice randomly generates a same-user ratchet key-

pair (rchk0,1,Rchpk0,1). She computes a DH of her ratchet key and

prepkB, and the result is fed to a key derivation function along with

𝑚𝑠 to produce a chain key ck1,1.

Signature keys. A also needs a signature key (Section 3.1). We

choose to use a second pair of signature keys, (𝑠𝑘𝑃 , 𝑝𝑘𝑃). If desired,
these keys could coincide with (ikP , ipkP)– however, this is not

compulsory. By differentiating those two pairs of keys, we allow

future implementations to be somewhat agnostic of the underly-

ing mathematical structure of the signature keys (whereas this is

impossible for identity-keys, whose structure must support, e.g.,
group exponentiations/scalar multiplications). Moreover, we limit

the load on the centralized PKI server by not including the signature

keys amongst the credentials stored for each party; instead users

can authenticate those keys at session initialisation.

3.3 Communication phase

MARSHAL ratcheting. Our protocol heals faster than Signal be-

cause both parties ratchet asymmetrically at every stage. Thus,

even at stage (1, 1), Alice needs ratcheting randomness from Bob,

which inMARSHAL comes in the form of the registered public key

T
0
(see Section 3.1). For stages (1,𝑚) with integer𝑚 ≥ 1, the party

whose turn it is to speak will generate a cross-user ratcheting value

t𝑚 and compute the corresponding public value T𝑚 . The T𝑚 value

is sent as part of the metadata of all messages with chain index𝑚,

and will be used for the ratchet at stage (1,𝑚 + 1).
Moreover at each stage (ℓ,𝑚) for ℓ,𝑚 ≥ 1, the current speaker

also generates a same-user key-pair (rchkℓ,𝑚,Rchpkℓ,𝑚) which will
be used to generate chain and message keys for stage mkℓ+1,𝑚 . To

SAC ’22, April 25–29, 2022, Virtual Event, O. Blazy et al.

account for out-of-order messages the concatenation of all the

public ratchet keys is included as metadata to each stage message.

MARSHAL auxiliary data. Each message will be sent end-to-end

encrypted, together with some additional metadata, which is meant

to tell Bob how to run the key-schedule. At each stage (ℓ,𝑚) with
ℓ,𝑚 ≥ 1, the auxiliary value will consist of two elements: AD𝑦=𝑚

and ADℓ,𝑚 . The former will include elements of the metadata that

are universal across the chain (i.e., all stages (·,𝑚)), whereas the
second includes metadata that is stage-specific.

We detail each of the classes of stages (cf. Fig. 3 and 4).

Alice’s first message. At session setup, Alice has generated its

cross-user ratchet keys (t
1
, T

1
), and computed the chain key ck1,1.

Now she generates the same-user ratchet key rchk1,1 and computes

Rchpk1,1 = 𝑔rchk
1,1

. The message and chain-keys are computed

as follows (ck2,1,mk1,1) ← HKDF (ck1,1, 𝜎1,1 | | (ipkB)rchk
1,1) where

𝜎1,1 := SIGN𝑠𝑘𝐴

(
𝑇0 | |Rchpk1,1

)
. In the following, we will denote:

𝜎𝑥,𝑦 :=


SIGN𝑠𝑘𝐴

(
T
𝑦−1 | |Rchpk

𝑥,𝑦
)
, for 𝑦 odd

SIGN𝑠𝑘𝐵

(
T
𝑦−1 | |Rchpk

𝑥,𝑦
)
, for 𝑦 even

At chains 𝑦 = 1 and 𝑦 = 2, apart from cross-user ratchet keys,

each user will need to include metadata that is universal for the

session, and which helps at session setup. The metadata for AD𝑦=1

includes public identity keys of Alice and Bob, medium-term and

ephemeral keys of Bob as recovered by Alice from server, T
0
from

the server, Alice’s ephemeral public key used in the computation

of the master secret, and two of Alice’s ratchet public keys: its first

same-user ratchet key Rchpk0,1, and its first cross-user ratchet key

t
1
. Finally, the stage-specific data contains: stage index (1, 1) and

same-user ratcheting public key Rchpk1,1. Alice computes 𝑐1,1 =

AEAD.Encmk1,1 (𝑀1,1;AD𝑦=1 | |AD1,1) and sends 𝑐1,1, a signature on

it, Alice’s public signature key 𝑝𝑘𝐴 , and a signature on it.

Alice’s (ℓ, 1) message, ℓ > 1. Having already computed t
1
, T

1
,

AD𝑦=1, ratcheting material Rchpk1,1,Rchpk2,1, . . . ,Rchpkℓ−1,1, and
the key ck𝑙,1, Alice generates new same-user ratcheting key rchkℓ,1

and computes Rchpkℓ,1 = 𝑔rchk
ℓ,1

. The key update relies on both

long-term keys, for persistent authentication, and this same-user

ratcheting key, for healing:

(ckℓ+1,1,mkℓ,1) ← HKDF (ckℓ,1, 𝜎ℓ,1 | |ipkrchk
ℓ,1

B)
The stage-specific metadata consists of the stage (ℓ, 1) and all

the ratcheting keys {Rchpk𝑥,1}1≥𝑥≥ℓ . Then Alice computes 𝑐ℓ,1 and

sends: the ciphertext, a signature on it, its signature public key, and

a signature on that.

Note that this procedure applies to all messages (ℓ,𝑚) for ℓ > 1

and𝑚 ≥ 1, in replacing the 𝑦 stage-index above, from 1 to𝑚.

Decryption (Bob side). When B comes online, he first needs to

compute the same session-setup values as Alice, including the mas-

ter secret𝑚𝑠 and the first chain key ck1,1. To do so, B queries the

server for A’s registered identity key and verifies that it is identical

to the one included in AD𝑦=1. Then, B verifies the signature on 𝑝𝑘𝐴 ,

and, if the verification returns 1, it stores that key as A’s signature
key. From now on, B will use that key to verify A’s signatures. In
particular, the verification of 𝑝𝑘𝐴 is only done for the first message

that Bob actually checks in the𝑦 = 1 chain. Once 𝑝𝑘𝐴 is validated, B

retraces Alice’s steps to compute𝑚𝑠 , the chain keys, and eventually,

the first message key. Then he uses authenticated decryption to

decrypt the first message.

Bob’s firstmessage. B generates a new cross-user ratcheting value

t
2
with corresponding public value T

2
and a same-user ratcheting

key rchk1,2 and computes Rchpk1,2 := 𝑔rchk
1,2

. Bob computes:

ck1,2 ← HKDF ((𝑇1)ikB | |ipk𝑡0A), then its first sending keys

(ck2,2,mk1,2) ← HKDF (ck1,2, 𝜎1,2 | | (ipkA)rchk
1,2).

Then analogously to Alice’s firstmessage, Bob splits themetadata

into the two auxiliary values AD𝑦=2 and AD1,2. The signed public

key 𝑝𝑘𝐵 is also appended to each of the messages in stages with

chain-index 𝑦 = 2, cf. Fig. 3.

Switching speakers. Similar computations will take place: gener-

ating cross-chain ratcheting public keys and new same-user ratch-

eting keys at every new message. The only differences with respect

to stages (1, 1) and (1, 2) respectively will be that now the parties

will no longer need to compute long-term keys or the master secret.

In addition, starting from chain-index 𝑦 ≥ 3, the public key for

signatures is no longer included in the message transmission.

Out-of-ordermessages/multiplemessages.MARSHAL handles
both out-of-order and lost messages to the same extent as Signal.

Indeed, at each stage, the receiving party gets a list of ratcheting

elements used along that chain, which will allow it to update cor-

rectly, even if some messages were lost in between. The parties will

update their state in the order they receive the messages. In other

words, say that Bob receives a message from Alice at stage (1, 1),
but then the next received message comes at stage (4, 1) (thus, Bob
is missing (2, 1) and (3, 1)). Nevertheless, Bob will use the metadata

at stage (4, 1) to ratchet, thus computing the keys for stages (2, 1)
and (3, 1) as well. If subsequently Bob receives message (2, 1) with
conflicting metadata, Bob disregards that.

In the same way, if multiple messages are received for some

stage, the receiver will rely on the metadata (and message) received

first, chronologically speaking.

SecurityAnalysis.The guaranteeswewant to prove forMARSHAL
are AKE security (including authentication), post-compromise se-

curity, and out-of-order resilience within a fully adversarially con-

trolled network. The first two properties make up a single se-

curity definition, written as a game between the adversary and

the challenger. The adversary can register malicious users, cor-

rupt users to obtain long-term secrets, reveal stage- and session-

specific ephemeral values, access (a function of) the party’s secret

key as a black box, prompt new instances of existing parties, and

send/receive messages. The adversary ultimately has to distinguish

from random a real message key generated by an honest instance

speaking with another honest instance.

The following theorem describes the security ofMARSHAL in

terms of PCS-AKE security and MLR-security. This security holds

in the random oracle model (KDF are replaced by random oracles).

Theorem 3.1. If the GDH [15] assumption holds, if the signature
scheme employed is EUF-CMA-secure, then theMARSHAL protocol is
PCS-AKE secure in the random oracle model (we model the two KDFs
as RO1,RO2). In addition,MARSHAL is MLR-secure.

MARSHAL SAC ’22, April 25–29, 2022, Virtual Event,

X3DH

ms

𝐷𝐻 (rchk0,1, prepkB)

𝐻𝐾𝐷𝐹 ck1,1

𝜎1,1 | |
𝐷𝐻 (ipkB, rchk1,1)

𝐻𝐾𝐷𝐹 ck2,1

mk1,1

𝜎2,1 | |
𝐷𝐻 (ipkB, rchk2,1)

𝐻𝐾𝐷𝐹 ck3,1

mk2,1

. . . chain 𝑦 = 1

𝐷𝐻 (T
1
, ikA) | |

𝐷𝐻 (T
2
, ikB) 𝐻𝐾𝐷𝐹 ck1,2

𝜎1,2 | |
𝐷𝐻 (ipkA, rchk1,2)

𝐻𝐾𝐷𝐹 ck2,2

mk1,2

𝜎2,2 | |
𝐷𝐻 (ipkA, rchk2,2)

𝐻𝐾𝐷𝐹 ck3,2

mk2,2

. . . chain 𝑦 = 2

𝐷𝐻 (T
2
, ikB) | |

𝐷𝐻 (T
3
, ikA) 𝐻𝐾𝐷𝐹 ck1,3

𝜎1,3 | |
𝐷𝐻 (ipkB, rchk1,3)

𝐻𝐾𝐷𝐹 ck2,3

mk1,3

𝜎2,3 | |
𝐷𝐻 (ipkB, rchk2,3)

𝐻𝐾𝐷𝐹 ck3,3

mk2,3

. . . chain 𝑦 = 3

Figure 4: MARSHAL key schedule diagram, where 𝜎𝑥,𝑦 = SIGN𝑠𝑘𝐴

(
T
𝑦−1 | |Rchpk

𝑥,𝑦
)
for 𝑦 odd and 𝜎𝑥,𝑦 = SIGN𝑠𝑘𝐵

(
T
𝑦−1 | |Rchpk

𝑥,𝑦
)

for 𝑦 even. The yellow boxes indicate modifications with respect to Signal protocol [8].
We prove the security of our protocol with respect to a security

model which is derived from the identity-based setup of [5], rather

than the one used by Cohn-Gordon et al. for their original analysis
of Signal. This is chiefly because in [8], Cohn-Gordon et al. bypass
a feature of the protocol which we consider essential: sending

metadata as AD attached to AEAD. Instead [8] assumes that the

metadata is sent unauthenticated. We prefer not to modify the

protocol, and use the less composable security notion proposed

(for the same reasons as we described here) by Blazy et al.. The
proof of this theorem is not technically complex, but includes a lot

of special cases (as in [8]). This is a direct consequence of having

excluded only trivial attacks from the winning conditions (given

in [1]). However, this was done in order to provide a more direct and

honest comparison to the Signal protocol; indeed, with our winning

conditions, Signal fails to attain security, whereasMARSHAL can

be proved secure. The full proof is given in [1].

Sketch. The first game-hops ensure that there are no collisions

between DH key values that are generated honestly, then the chal-

lenger must guess the target instance and stage that will be input to

the oTest oracle. Note that we do not rely on the security of AEAD.

At this point, the proof moves “backwards", from the point where

the test took place. What makes the proof tedious is that we have

allowed the adversary a lot of power in the winning conditions;

thus, it is harder to rule out any specific queries a priori. We replace

the true message key at stage 𝑠∗ with a random (consistent) one,

and must show that this is not detectable by the adversary.

One key observation is that the only hijacking attempts (on the

partnering instance) that we worry about for active adversaries

must occur before the test stage. However, the adversary will not

be able to impose its own key (nor compute the message key on

a receiving stage) unless it is able to either forge a signature on

behalf of the hijacked party (if 𝑠∗ is a sending stage for the hijacked
party) or learn a value (Rchpk∗)ik where the identity key belongs

to the hijacked party. Our winning conditions forbid the adversary

from learning the long-term key involved, if the adversary forges

the signature or submits an input including (Rchpk∗)ik to RO2, we
construct reductions to EUF-CMA security and to GDH.

Note that without these two vital ingredients, even if A has

successfully hijacked and controlled the target instance’s partner

so far, it cannot compute the message key by itself. We proceed to

rule out other means for the adversary to distinguish the key from

random. Since we have modelled both KDFs as a random oracle,

our next step is to rule out an adversary learning the input that the

honest party use to compute mk𝑠
∗
. We ruled out combinations of

queries that A could make that would give it the values directly.

We bound the probability that the adversary has managed to input

the correct value (Rchpk∗)ik to RO2 without endangering it, by a

reduction to GDH. Then we move on to the input chain key and

continue working through the particular cases. □

4 IMPLEMENTATION
We give a proof-of-concept implementation ofMARSHAL in Java,

available on github [2]. The implementation covers registration and

messaging (but not out-of-order message decryption).

4.1 Implementation details
Our implementation relies on the Java implementation of Signal,

available at https://github.com/signalapp/libsignal-protocol-java.

We used low-level libsignal functionalities but had to re-implement

its more abstract layers, to fit with MARSHAL. The libsignal li-

brary uses interfaces in order to store and recover keys and session

state data; it allows us to abstract the central server and simulate

exchanges between two parties within the same process.

Cryptographic details. Our implementation uses similar elliptic

curve material. For signatures we used XEd25519 on Curve25519.

We use similar authenticated encryption algorithms relying on AES

with 128-bit keys. However, while Signal uses CBC mode and an

hmac256-MAC, we prefer to use AES-GCM with a 12-byte IV and a

16-byte tag.

4.2 Implementation results
All the results indicated in this section are the mean result over

1000 executions of each given test. See Figure 5 for the results.

https://github.com/signalapp/libsignal-protocol-java

SAC ’22, April 25–29, 2022, Virtual Event, O. Blazy et al.

Test Signal MARSHAL

Session Setup 3.856 6.924

Message (1, 𝑦) 1.284 5.082

Message (ℓ,𝑦) 0.06 1.512

Figure 5: Average runtime for each test in ms.

Session setup. The first differences between Signal andMARSHAL
occur during registration and session setup. For the setup, Alice

and Bob need to generate two new elements: a signature key and

a Diffie-Hellman public value. While the master secret of both

sessions is similar, the first chain and message keys are generated

differently in Signal andMARSHAL. Our Session-Setup tests covers:
key-generation steps of both Alice and Bob, publishing a PreKey-

Bundle, initiating a session that uses that bundle, including the

encryption and decryption of a first message.

We notice in Table 5 that MARSHAL takes twice as long as

Signal for this test. This is partly because we also require the use

of signatures. Note that the signature scheme used is the same

as Signal; however, a faster signature scheme could significantly

improve performance. We also note that, while the relative increase

in runtime is significant, the absolute measurement is still low.

Message (1, 𝒚). This test focuses on the first message of a new

chain. The test covers the initialization of new chain randomness,

the derivation of chain- and message-keys, the encryption, and

decryption of that first message. Note that some of these operations

are partially included in the previous test’s result.

The results presented in Figure 5 indicate a much larger runtime

forMARSHAL than for Signal. This is due to the generation of one

additional Diffie-Hellman element, as well as the computation of

two signatures (which also require verification). Still, the absolute

value of the runtime remains small.

Message (ℓ,𝒚). This test compares the runtime when the same

speaker adds a new message. The test includes key-derivation,

encryption, and subsequent decryption. We notice the same trend

in terms of increase in runtime; however, the comparative increase

is much higher, because instead of Signal’s symmetric ratchet we

have asymmetric ratcheting and signature computations.

Trends in longer message chains. One of the characteristics of
MARSHAL is that in longer message chains, a higher number of

Diffie-Hellman elements are generated and used as meta-data for

each message. We thus run our third test – Message (ℓ,𝑦) a variable
number of times, and measure the total required time from the

beginning of the test, to the last decryption of the last message.

It is perhaps surprising that our time is linear: the comparative

cost associated with sending and processing multiple DH values

(rather than a single one) is very small comparative to the cost of

the asymmetric ratchet operation which we require at each stage.

5 CONCLUSION
Our main contribution is providing an alternative design to Signal,

which achieves much stronger security properties at comparatively

little cost. Unlike alternative approaches to designing ratcheted

key-exchange, which follow a modular design (typically based on

KEMs), we try to stick close to Signal’s original structure, thus

showing how to achieve better post-compromise security (PCS).

Our protocol departs from the key observation that Signal’s

comparative lack of PCS is due to the frequency of asymmetric

ratchets and lack of persistent authentication. The latter is fixed by

adding long-term keys at every new stage. The former is dealt with

by adding asymmetric ratchets at every stage. To do so, we require

a long-term key stored on the semi-trusted Signal server, and we

ensure that message-loss resilient is achieved by providing the a

list of correct ratcheting keys at every stage of a given chain.

Our protocol’s security heals after only one message, even in

the presence of a strong, active adversary, assuming that at least

one long-term credential remains secure (e.g., signature or iden-
tity keys). This data should therefore be stored separately from

ephemeral data, in a secure component.

Finally, we have implemented our protocol to evaluate the practi-

cal cost of our modifications. Our implementation does not require

fundamental changes to the basic cryptographic primitives used

in Signal. In addition, experiments show that significant benefits

to post-compromise security our protocol brings do not come at

a too-significant cost, the runtimes of our ratchets and message-

exchanges remaining under 10 ms mark in Java implementation.

REFERENCES
[1] 2021. Full version. https://drive.google.com/file/d/

1KlJmyn-5LDEzOKCY5C3erEAfaRl0X-m1/view?usp=sharing.

[2] 2021. Implementation of MARSHAL. https://github.com/anonym-123/marshal.

[3] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. 2019. The Double Ratchet: Secu-

rity Notions, Proofs, and Modularization for the Signal Protocol. In EUROCRYPT.
https://doi.org/10.1007/978-3-030-17653-2_5

[4] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors

Stepanovs. 2017. Ratcheted Encryption and Key Exchange: The Security of

Messaging. In CRYPTO. https://doi.org/10.1007/978-3-319-63697-9_21

[5] Olivier Blazy, Angèle Bossuat, Xavier Bultel, Pierre-Alain Fouque, Cristina Onete,

and Elena Pagnin. 2019. SAID: Reshaping Signal into an Identity-Based Asyn-

chronous Messaging Protocol with Authenticated Ratcheting. (2019).

[6] Nikita Borisov, Ian Goldberg, and Eric Brewer. 2004. Off-the-record Com-

munication, or, Why Not to Use PGP (WPES ’04). ACM, New York, NY, USA.

https://doi.org/10.1145/1029179.1029200

[7] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. 2019.

SEEMless: Secure End-to-End Encrypted Messaging with less</> Trust. In Pro-
ceedings of ACMCCS. ACM, 1639–1656.

[8] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-

glas Stebila. 2017. A Formal Security Analysis of the Signal Messaging Protocol.

EuroS&P (2017). https://doi.org/10.1109/EuroSP.2017.27

[9] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. 2016. On Post-

compromise Security. In CSF. https://doi.org/10.1109/CSF.2016.19

[10] F. Betül Durak and Serge Vaudenay. 2019. Bidirectional Asynchronous Ratcheted

Key Agreement with Linear Complexity. In IWSEC. https://doi.org/10.1007/

978-3-030-26834-3_20

[11] Joseph Jaeger and Igors Stepanovs. 2018. Optimal Channel Security Against

Fine-Grained State Compromise: The Safety of Messaging. In CRYPTO. Springer.
https://doi.org/10.1007/978-3-319-96884-1_2

[12] Daniel Jost, Ueli Maurer, and Marta Mularczyk. 2019. Efficient Ratcheting:

Almost-Optimal Guarantees for Secure Messaging. In EUROCRYPT. Springer.
https://doi.org/10.1007/978-3-030-17653-2_6

[13] M. Marlinspike and T. Perrin. 2016. The double ratchet algorithm. https://

whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf.

[14] Moxie Marlinspike and Trevor Perrin. 2016. The X3DH Key Agreement Protocol.

Signal (2016), 11. https://www.whispersystems.org/docs/specifications/x3dh/

[15] Tatsuaki Okamoto and David Pointcheval. 2001. The gap-problems: A new class

of problems for the security of cryptographic schemes. Lecture Notes in Computer
Science (2001).

[16] Bertram Poettering and Paul Rösler. 2018. Towards Bidirectional Ratcheted Key

Exchange. In CRYPTO, Vol. 10991. https://doi.org/10.1007/978-3-319-96884-1_1

https://drive.google.com/file/d/1KlJmyn-5LDEzOKCY5C3erEAfaRl0X-m1/view?usp=sharing
https://drive.google.com/file/d/1KlJmyn-5LDEzOKCY5C3erEAfaRl0X-m1/view?usp=sharing
https://github.com/anonym-123/marshal
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-319-63697-9_21
https://doi.org/10.1145/1029179.1029200
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://www.whispersystems.org/docs/specifications/x3dh/
https://doi.org/10.1007/978-3-319-96884-1_1

	Abstract
	1 Introduction
	2 Background
	3 The MARSHAL protocol
	3.1 Registration
	3.2 Session Setup
	3.3 Communication phase

	4 Implementation
	4.1 Implementation details
	4.2 Implementation results

	5 Conclusion
	References

