
IACR Transactions on Symmetric Cryptology
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–10. DOI:XXXXXXXX

Improving Differential-Neural Distinguisher Model
For DES, Chaskey, and PRESENT

Liu Zhang1, Zilong Wang1 and Yindong Chen2

1 School of Cyber Engineering, Xidian University, Xi’an, China liuzhang@stu.xidian.edu.cn
zlwang@xidian.edu.cn

2 College of Engineering, Shantou University, Shantou, China
ydchen@stu.edu.cn

Abstract. In CRYPTO 2019, Gohr first introduced the deep learning method to
cryptanalysis for Speck32/64. A differential-neural distinguisher was obtained using
ResNet neural network. Zhang et al. used multiple parallel convolutional layers
with different kernel sizes to capture information from multiple dimensions, thus
improving the accuracy or obtaining a more round of distinguisher for Speck32/64
and Simon32/64. Inspired by Zhang’s work, we apply the network structure to other
ciphers. We not only improve the accuracy of the distinguisher, but also increase the
number of rounds of the distinguisher,that is, distinguish more rounds of ciphertext
and random number for DES, Chaskey and PRESENT.
Keywords: Differential-Neural Distinguisher · Inception Blocks · DES · Chaskey ·
PRESENT

1 Introduction
In CRYPTO 2019, Gohr proposed the idea of differential-neural cryptanalysis [Goh19].
The differential-neural distinguisher model, a trained neural network, is introduced as the
underlying distinguisher. The differential-neural distinguisher can distinguish whether
ciphertexts are encrypted by plaintexts that satisfy a specific input difference or by random
numbers. If the accuracy of the differential-neural distinguisher is greater than 0.5, it is an
effective distinguisher. In EUROCRYPT 2021, Benamira [BGPT21] indicated that Gohr’s
differential-neural distinguisher builds a good approximation of the differential distribution
table of the cipher and learns additional information.

Gohr [Goh19] showed that the residual network (ResNet) [HZRS16] (previously applied
in image recognition) could be trained to capture the non-randomness of the distribution
of values of output pairs when the input pairs of round-reduced Speck32/64 are of specific
difference. As a result, (5-8)-round (effective) differential-neural distinguishers are trained
successfully. Chen et al. [CY21] and Benamira [BGPT21] et al. almost simultaneously
the method of using multiple-ciphertext pairs instead of single-ciphertext pairs (in Gohr’s
work) as the input of the neural network, both improved the accuracy of the 6, 7-round
differential-neural distinguisher of Speck32/64. Bao et al. [BGL+21] used Dense Network
(DenseNet) [HLvdMW17], and Squeeze-and-Excitation Network (SENet) [HSS18] with
existing deep architectures to train a neural network, and obtained (7-11)-round differential-
neural distinguisher for Simon32/64. Zhang et al. [zWW22] borrowed the idea of the
Inception block of GoogLeNet [SLJ+15] to construct the new neural network architecture.
Thus, they trained the differential-neural distinguisher for (5-8)-rounds Speck32/64 and
(7-12)-rounds Simon32/64. Inspired by Zhang’s work, we have done some tentative work
to train a better differential-neural distinguisher on three reduced symmetric ciphers. The

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
mailto:liuzhang@stu.xidian.edu.cn
mailto:zlwang@xidian.edu.cn
mailto:ydchen@stu.edu.cn
http://creativecommons.org/licenses/by/4.0/


2 Improving Differential-Neural Distinguisher Model For DES, Chaskey, and PRESENT

main improvements for differential-neural distinguisher are listed as follows. Compared to
Gohr’s [Goh19] and Chen’s distinguisher [CY21], we improve the accuracy of differential-
neural distinguisher and obtain a more round differential-neural distinguisher for DES,
Chaskey, and PRESENT.1

The rest of the letter is organized as follows. Section 3 introduces the network
architecture. Section 4 exhibits the model training process and result for three reduced
symmetric ciphers. Our work is summarized in Section 5.

2 Differential-Neural Distinguisher Model
The differential-neural distinguisher is a supervised model which distinguishes whether
ciphertexts are encrypted by plaintexts that satisfies a specific input difference or by random
numbers. The differential-neural distinguisher model in [Goh19, CY21, BGPT21] is almost
identical except for the input format. Thus, we introduce these three models collectively.
Given m plaintext pairs {(Pi,0, Pi,1), i ∈ [0, m − 1]} and target cipher Speck32/64, the
resulting ciphertext pairs {(Ci,0, Ci,1), i ∈ [0, m − 1]} is regarded as a instance. Note that
m = 1 in [Goh19], m ∈ {2, 4, 8, 16} in [CY21], and m ∈ {1, 5, 10, 50, 100} in [CY21]. Each
instance will be attached with a label Y :

Y =
{

1, if Pi,0 ⊕ Pi,1 = ∆, i ∈ [0, m − 1]
0, if Pi,0 ⊕ Pi,1 ̸= ∆, i ∈ [0, m − 1].

If Y is 1, this instance is sampled from the target distribution and defined as a positive
example. Otherwise, this instance is sampled from a uniform distribution and defined as a
negative example. A large number of instances need to be put into neural network training.
Suppose the neural network can obtain a stable accuracy higher than 0.5 on a test set. In
that case, it can effectively distinguish whether ciphertexts are encrypted by plaintexts
that satisfy a specific input difference or by random numbers. The differential-neural
distinguisher model can be described as follows:

Pr(Y = 1 | X0, . . . , Xm−1) = F (f(X0), . . . , f(Xm−1),
φ(f(X0), . . . , f(Xm−1)))

Xi = (Ci,0, Ci,1), i ∈ [0, m − 1]
Pr(Y = 1 | X0, . . . , Xm−1) ∈ [0, 1]

where f(Xi) represents the basic features of a ciphertext pair Xi, and φ(·) is the derived
features, and F (·) is the new posterior probability estimation function.

3 Network Architecture
The differential-neural distinguisher is a posterior probability estimation function that
evaluates the quality of the distinguisher with accuracy. Training a differential-neural
distinguisher using a neural network is to capture differential information in the ciphertext
and unknown information between multiple-ciphertext pairs. The network architecture
of Gohr’s [Goh19] and Chen’s [CY21] model mainly includes an initial convolutional
layer consisting of width-1 convolutional layers and multiple residual blocks. Zhang et
al. [zWW22] modified the initial convolutional layer using the Inception block instead of
the width-1 convolutional layer, described in Figure 1.

Input Represents. The neural network receives m ciphertext pairs {(Ci,0, Ci,1) | i ∈
(0, m)} as input data. We convert a ciphertext pair into a two-dimensional matrix based

1The source codes are available in https://github.com/CryptAnalystDesigner/MutipleCipherDesCh
askeyPresent.git.

https://github.com/CryptAnalystDesigner/MutipleCipherDesChaskeyPresent.git
https://github.com/CryptAnalystDesigner/MutipleCipherDesChaskeyPresent.git


Liu Zhang et al. 3

Output

Module 2

Module 2

Module 1

Input

F (·)

f(·)

Input [m, ω, 2L
ω ]

Module 1

Conv, k1 × k1, Nf Conv, k2 × k2, Nf Conv, k3 × k3, Nf

Concatenate, 3Nf

BN

Relu

ks = ks + 2

Conv, ks × ks, 3Nf

BN

Relu

Conv, ks × ks, 3Nf

BN

Relu

⊕

Module 2

Output

GlobalAveragePooling

Dropout

Sigmod

Figure 1: The network architecture of the differential-neural distinguisher model.

on the word size of the target cipher. The input layer of the neural network consisting of
multiple-ciphertext pairs is arranged in a m × ω × 2L

ω array, where L represents the block
size of the target cipher, and ω is the size of a basic unit. If the target cipher belongs to
the Feistel structure, ω is usually 4.

Initial Convolution (Module 1). After converting the initial ciphertext data to a
specific format, the train data enters the initial convolutional layer. The input layer is
connected to the initial convolutional layer, which comprises three convolution layers with
Nf channels of different kernel sizes (k1, k2, k3), where ideas come from the Inception block
of GoogLeNet [SLJ+15]. The three convolution layers are concatenated at the channel
dimension. Batch normalization is applied to the output of concatenate layers. Finally,
rectifier nonlinearity is applied to the output of batch normalization, and the resulting
[m, ω, 3 × Nf ] matrix is passed to the Convolutional Blocks layer.

Convolutional Blocks (Module 2). Each convolutional block consists of two convolu-
tional layers of 3 × Nf filters. Each block applies first the convolution of kernel size ks,
then a batch normalization, and finally a rectifier layer. At the end of the convolutional
block, a skip connection is added to the output of the final rectifier layer of the block to
the input of the convolutional block and passes the result to the next block. After each
convolutional block, the kernel size increases by 2. The amount of convolutional blocks is
determined by experiment.

Prediction Head (Output). The prediction head consists of a GlobalAveragePooling
layer and an output unit using a Sigmoid activation function.

4 Model Training Process and Results
4.1 Model Training Process
Data Generation. Training and test sets were generated by using the Linux random
number generator to obtain uniformly distributed keys Ki and multiple-plaintext pairs



4 Improving Differential-Neural Distinguisher Model For DES, Chaskey, and PRESENT

{(Pi,j,0, Pi,j,1), j ∈ [0, m − 1]} with the input difference ∆ as well as a vector of binary-
valued labels Yi. During producing the training or test sets for the target cipher, the
multiple-plaintext pairs were then encrypted for r rounds if Yi = 1, while otherwise, the
second plaintext of the pairs was replaced with a freshly generated random plaintext and
then encrypted for r rounds.

Basic Training Scheme. We run the training for 20 epochs on the dataset for N and
M instances. The batch size (denoted by Bs) is set to a fixed value. Optimization was
performed against mean square error loss plus a small penalty based on L2 weights regu-
larization parameter λ using the Adam algorithm [KB15]. A cyclic learning rate schedule
was applied, setting the learning rate li for epoch i to li = α + (n−i) mod (n+1)

n .(β − α)
and n = 9. The networks obtained at the end of each epoch were stored, and the best
network by validation loss was evaluated against a test set.

Staged Train Method. When the number of encryption rounds is large, the basic train-
ing scheme described above fails, i.e., the model does not learn to approximate any helpful
function. The staged train method divides the training process of the differential-neural
distinguisher into multiple stages. In [Goh19], Gohr trained an 8-round distinguisher of
Speck32/64 by using the staged train method. For more detailed method details, refer
to [Goh19].

Model and Training Parameter. A key parameter of our differential-neural distinguisher
is the number of ciphertext pairs m, which has four options {2, 4, 8, 16}. Other parameters
related to the network architecture and the training process of our differential-neural
distinguisher are listed in Table 1.

Table 1: Related parameter for training differential-neural distinguishers

Nf = 32 ks = 3 Bs = 1000 λ = 10−5

α = 0.002 β = 0.0001 N = 107 M = 106

The baseline distinguisher, abbreviated as N Dbd, is reproduced by Chen et al. [CY21]
according to the network architecture of Gohr [Goh19]. The differential-neural distinguisher
of Chen et al., named N Dmc, is trained by using multiple-ciphertext pairs instead of
single-ciphertext pairs as the input of the neural network in [CY21]. According to the
network architecture in Section 3, we carried out two sets of experiments. The case C1
is an experiment using N/m and M/m instances as training and test sets, where each
instance includes m ciphertext pairs. The differential-neural distinguisher obtained in C1
named N DC1 . Also, the case C2 is an experiment using N and M instances as training
and test sets, where each instance includes m ciphertext pairs. The differential-neural
distinguisher obtained in C2 named N DC2 .

4.2 Experiments on DES
DES [How87] is a block cipher that is built on a 6 × 4 Sbox. Based on the analysis of
DES in [BS93], the plaintext difference adopted is α = (0x40080000, 0x04000000) and
the baseline distinguishers were built for reduced DES [Goh19]. Our differential-neural
distinguishers are obtained for DES reduced to 5 and 6-round using a basic training scheme.
The parameter (k1, k2, k3) in the initial convolutional layer are (1, 4, 6).

Training 7-round Distinguisher. We use several stages of pre-training to train a
7-round differential-neural distinguisher for DES. First, we use our 6-round distinguisher to



Liu Zhang et al. 5

recognize 4-round DES with the input difference (0x04000000, 0x40080000) (the most likely
difference to appear three rounds after the input difference (0x40080000, 0x04000000). The
training was done on N instances for twenty epochs with cyclic learning rates. Then we
trained the distinguisher so obtained to recognize 7-round DES with the input difference
(0x40080000, 0x04000000) by processing N freshly generated instances for ten epochs with
a learning rate of 10−4. Finally, the learning rate was dropped to 10−5 after processing
another N new instances.

Test Accuracy. We summarize the accuracy of 5, 6, and 7-round differential-neural
distinguisher compared to [Goh19, CY21] in Table 2. Also, we list the accuracy (Acc),
true positive rate (TPR), and true negative rate (TNR) tested on the newly generated N
instances in Table 3. From Table 2, the accuracy of our differential-neural distinguisher
was improved both C1 and C2 compared to [Goh19, CY21]. Under the two experiments
with different numbers of datasets, the difference in the accuracy is relatively small except
for r = 6 and m = 16. Also, we trained the differential-neural distinguisher for one more
round.

Table 2: Accuracy of distinguisher for DES

r N Dbd
m=2 m=4

N Dmc N DC1 N DC2 N Dmc N DC1 N DC2

5 0.6261 0.7209 0.7232 0.7246 0.8382 0.8427 0.8442
6 0.5493 0.5653 0.5764 0.5776 0.5568 0.6128 0.6270
7 - - - - - - -

r N Dbd
m=8 m=16

N Dmc N DC1 N DC2 N Dmc N DC1 N DC2

5 0.6261 0.9318 0.9469 0.9496 0.9585 0.9911 0.9941
6 0.5493 0.5507 0.6634 0.6900 0.5532 0.7073 0.7693
7 - - - - - - 0.5114

Table 3: Acc, TPR, TNR on DES using N instances

m r Acc TPR TNR m r Acc TPR TNR

2
5 0.7244 0.4749 0.9738

4
5 0.8434 0.6935 0.9931

6 0.5782 0.3415 0.815 6 0.6265 0.4679 0.7852
7 - - - 7 - - -

8
5 0.9492 0.9023 0.9962

16
5 0.9940 0.9892 0.9988

6 0.6901 0.5843 0.7959 6 0.7692 0.7352 0.8031
7 - - - 7 0.5102 0.2932 0.7271

4.3 Experiments on Chaskey
Based on the best differential path searched in [MMH+14], baseline distinguishers are built
for reduced Chaskey [Goh19]. Given the plaintext difference α = (0x8400,0x0400,0,0),
the baseline distinguisher can distinguish Chaskey up to 4 rounds. Our differential-neural
distinguishers are also built for Chaskey reduced to 3, 4 rounds using a basic training



6 Improving Differential-Neural Distinguisher Model For DES, Chaskey, and PRESENT

scheme. The parameter (k1, k2, k3) in the initial convolutional layer are (1, 5, 8).

Training 5-round Distinguisher. We use several stages of pre-training to train a 5-
round differential-neural distinguisher for Chaskey. First, we use our 3-round distinguisher
to recognize 3-round Chaskey with the input difference (0x80000000, 0x0, 0x0, 0x80000000).
The training was done on N/m instances for twenty epochs with cyclic learning rates. Then
we trained the 3-round distinguisher to recognize 4-round Chaskey with the input difference
(0x8400, 0x0400, 0, 0) by processing N/m freshly generated instances for ten epochs with a
learning rate of 10−4, then get a 4-round distinguisher. Finally, we trained the 4-round
distinguisher to recognize 5-round Chaskey with the input difference (0x8400, 0x0400, 0, 0)
by processing N/m freshly generated instances for ten epochs with a learning rate of 10−5,
then get a 5-round distinguisher.

Test Accuracy. We summarize the accuracy of 3, 4, and 5-round differential-neural
distinguisher compared to [Goh19, CY21] in Table 4. Also, we list Acc, TPR, and TNR
tested on the newly generated N/m instances in Table 5. From Table 4, the accuracy of our
differential-neural distinguisher was improved both C1 and C2 compared to [Goh19, CY21].
Also, we trained the differential-neural distinguisher for one more round.

Table 4: Accuracy of distinguisher for Chaskey

r N Dbd
m=2 m=4

N Dmc N DC1 N DC2 N Dmc N DC1 N DC2

3 0.8608 0.8958 0.9583 0.9364 0.9583 0.9918 0.9854
4 0.6161 0.6589 0.7150 0.7129 0.6981 0.8390 0.8292
5 - - - - - - -

r N Dbd
m=8 m=16

N Dmc N DC1 N DC2 N Dmc N DC1 N DC2

3 0.8608 0.9887 0.9983 0.9974 0.9986 0.9999 0.9999
4 0.6161 0.7603 0.9316 0.9319 0.7712 0.9904 0.9850
5 - - 0.5181 - - - -

Table 5: Acc, TPR, TNR on Chaskey using N/m instances

m r Acc TPR TNR m r Acc TPR TNR

2
3 0.9340 0.9094 0.9586

4
3 0.9839 0.9792 0.9886

4 0.7122 0.4420 0.9825 4 0.8286 0.6808 0.9764
5 - - - 5 - - -

8
3 0.9970 0.9957 0.9982

16
3 0.9998 0.9997 0.998

4 0.9316 0.8868 0.9764 4 0.9842 0.9768 0.9917
5 0.4998 0.0319 0.9678 5 - - -

4.4 Experiments on Present
Present [BKL+07] is a block cipher based on a 4×4 Sbox. Based on the plaintext difference
α = (0,0,0,0x9) provide in [Wan08], the baseline distinguisher were built for Present64/80
reduced up to 7 rounds [Goh19]. Our neural distinguishers are also built for Present64/80



Liu Zhang et al. 7

reduced to 6 and 7 rounds using a basic training scheme. The parameter (k1, k2, k3) in the
initial convolutional layer are (1, 2, 4).

Training 8-round Distinguisher. We use several stages of pre-training to train a 8-round
differential-neural distinguisher for PRESENT. First, we use our 7-round distinguisher
to recognize 6-round PRESENT with the input difference (0x0, 0x0, 0x0100, 0x0100) (the
most likely difference to appear two rounds after the input difference 0x9. The training was
done on N(N/m) instances for twenty epochs with cyclic learning rates. Then we trained
the distinguisher so obtained to recognize 8-round PRESENT with the input difference
0x9 by processing N(N/m) freshly generated instances for ten epochs with a learning rate
of 10−4. Finally, the learning rate was dropped to 10−5 after processing another N(N/m)
new instances.

Test Accuracy. We summarize the accuracy of 6, 7, and 8-round differential-neural
distinguisher compared to [Goh19, CY21] in Table 6. Also, we list Acc, TPR, and TNR
tested on the newly generated N instances in Table 7. From Table 6, the accuracy of our
differential-neural distinguisher was improved both C1 and C2 compared to [Goh19, CY21].
Also, we trained the differential-neural distinguisher for one more round.

Table 6: Accuracy of distinguisher for Present

r N Dbd
m=2 m=4

N Dmc N DC1 N DC2 N Dmc N DC1 N DC2

6 0.6584 0.7198 0.7354 0.7353 0.7953 0.8177 0.8218
7 0.5486 0.5503 0.5733 0.5741 0.5853 0.6049 0.6092
8 - - 0.5125 0.5136 - 0.5183 0.5202

r N Dbd
m=8 m=16

N Dmc N DC1 N DC2 N Dmc N DC1 N DC2

6 0.6584 0.8308 0.8984 0.9091 0.8259 0.9603 0.9713
7 0.5486 0.5786 0.6429 0.6584 0.5818 0.7017 0.7225
8 - - 0.5271 0.5292 - 0.5341 0.5416

Table 7: Acc, TPR, TNR on PRESENT using N instances

m r Acc TPR TNR m r Acc TPR TNR

2
6 0.7347 0.6489 0.8204

4
6 0.8219 0.7849 0.8589

7 0.5737 0.4933 0.6540 7 0.6101 0.5163 0.7038
8 0.5140 0.4308 0.5972 8 0.5202 0.4957 0.5447

8
6 0.9088 0.8946 0.9230

16
6 0.9715 0.9637 0.9793

7 0.6586 0.5996 0.7176 7 0.7220 0.7052 0.7384
8 0.5293 0.6032 0.2485 8 0.5407 0.4964 0.5851

4.5 Overfitting and Fluctuation.
Why do we train the differential-neural distinguisher with two different numbers of datasets?
In [Goh19], the training set and test set include N and M instances, which consist of
a ciphertext pair, that is, total N and M ciphertext pairs, respectively. In [CY21], the



8 Improving Differential-Neural Distinguisher Model For DES, Chaskey, and PRESENT

training set and test set include N/m and M/m instances, and each instance includes m
ciphertext pairs; that is, the total numbers of ciphertext pairs used are N and M . To ensure
a fair comparison, we used the same amount of data as [CY21] in C1. However, Using
N/m and M/m instances as training and test sets may lead to overfitting or fluctuation.
In order to overcome this problem, we also use N and M instances as training test and test
set in C2, which consists of m ciphertext pair, that is, total N × m and M × m ciphertext
pairs, respectively.

From Fig.2a, we can see that the difference between train accuracy and test accuracy
is relatively significant for DES. However, train and test accuracy are almost equal in
Fig.2b. Therefore, using N/m and M/m as training and test sets to train a distinguisher
will suffer from overfitting, especially when the number of rounds r and m is large. Also,
using N and M as training and test sets to train a distinguisher can avoid overfitting,
speed up the model convergence and improve the model accuracy to a certain extent. For
Present, we also found a similar phenomenon of overfitting in Fig.3. From Fig.4, there
is no overfitting for Chaskey when we use N and M instances as training and test sets
to train a distinguisher. However, the accuracy fluctuates relatively large, and the model
converges slowly.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

r = 6 and m = 16
train acc
test acc

(a) Using N/m instances

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

r = 6 and m = 16

train acc
test acc

(b) Using N instances

Figure 2: Overfitting and accuracy fluctuation for DES.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

r = 7 and m = 16
train acc
test acc

(a) Using N/m instances

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.64

0.66

0.68

0.70

0.72

Ac
cu

ra
cy

r = 7 and m = 16

train acc
test acc

(b) Using N instances

Figure 3: Overfitting and accuracy fluctuation for Present.

5 Conclusions
In this letter, we use the neural network to train differential-neural distinguisher for three
reduced symmetric ciphers. As a result, we improved the accuracy of the differential-



Liu Zhang et al. 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy
r = 4 and m = 16

train acc
test acc

(a) Using N/m instances

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Epoch

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

r = 4 and m =16

train acc
test acc

(b) Using N instances

Figure 4: Accuracy fluctuation for Chaskey

neural distinguisher and obtained more rounds of differential-neural distinguisher for DES,
Chaskey, and PRESENT.

References
[BGL+21] Zhenzhen Bao, Jian Guo, Meicheng Liu, Li Ma, and Yi Tu. Conditional

differential-neural cryptanalysis. IACR Cryptol. ePrint Arch., page 719,
2021.

[BGPT21] Adrien Benamira, David Gérault, Thomas Peyrin, and Quan Quan Tan.
A deeper look at machine learning-based cryptanalysis. volume 12696 of
Lecture Notes in Computer Science, pages 805–835. Springer, 2021.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. volume 4727 of Lecture Notes
in Computer Science, pages 450–466. Springer, 2007.

[BS93] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryp-
tion Standard. Springer, 1993.

[CY21] Yi Chen and Hongbo Yu. A new neural distinguisher model considering
derived features from multiple ciphertext pairs. IACR Cryptol. ePrint Arch.,
page 310, 2021.

[Goh19] Aron Gohr. Improving attacks on round-reduced speck32/64 using deep
learning. In CRYPTO (2), volume 11693 of Lecture Notes in Computer
Science, pages 150–179. Springer, 2019.

[HLvdMW17] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Densely connected convolutional networks. pages 2261–2269. IEEE
Computer Society, 2017.

[How87] Ralph Howard. Data encryption standard. Information age, 9(4):204–210,
1987.

[HSS18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. pages
7132–7141. Computer Vision Foundation / IEEE Computer Society, 2018.



10Improving Differential-Neural Distinguisher Model For DES, Chaskey, and PRESENT

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In CVPR, pages 770–778. IEEE Computer
Society, 2016.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In ICLR (Poster), 2015.

[MMH+14] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart
Preneel, and Ingrid Verbauwhede. Chaskey: An efficient MAC algorithm for
32-bit microcontrollers. volume 8781 of Lecture Notes in Computer Science,
pages 306–323. Springer, 2014.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. pages 1–9. IEEE Computer
Society, 2015.

[Wan08] Meiqin Wang. Differential cryptanalysis of reduced-round PRESENT.
volume 5023 of Lecture Notes in Computer Science, pages 40–49. Springer,
2008.

[zWW22] Liu zhang, Zilong Wang, and Boyang Wang. Improving differential-neural
cryptanalysis with inception blocks. IACR Cryptol. ePrint Arch., page 183,
2022.


	Introduction
	Differential-Neural Distinguisher Model
	Network Architecture
	Model Training Process and Results
	Model Training Process
	Experiments on DES
	Experiments on Chaskey
	Experiments on Present
	Overfitting and Fluctuation.

	Conclusions

