
Efficient Compiler to Covert Security with Public Verifiability for
Honest Majority MPC

Thomas Attema1,2,3, Vincent Dunning1, Maarten Everts4,5, and Peter Langenkamp1

1 TNO, Cyber Security and Robustness, The Hague, The Netherlands
{vincent.dunning,thomas.attema,peter.langenkamp}@tno.nl

2 CWI, Cryptology Group, Amsterdam, The Netherlands
3 Leiden University, Mathematical Institute, Leiden, The Netherlands

4 University of Twente, Services & Cyber Security, Enschede, The Netherlands
maarten.everts@utwente.nl
5 Linksight, The Netherlands

Abstract. We present a novel compiler for transforming arbitrary, passively secure MPC protocols
into efficient protocols with covert security and public verifiability in the honest majority setting. Our
compiler works for protocols with any number of parties > 2 and treats the passively secure protocol
in a black-box manner.
In multi-party computation (MPC), covert security provides an attractive trade-off between the security
of actively secure protocols and the efficiency of passively secure protocols. In this security notion, honest
parties are only required to detect an active attack with some constant probability, referred to as the
deterrence rate. Extending covert security with public verifiability additionally ensures that any party,
even an external one not participating in the protocol, is able to identify the cheaters if an active attack
has been detected.
Recently, Faust et al. (EUROCRYPT 2021) and Scholl et al. (Pre-print 2021) introduced similar covert
security compilers based on computationally expensive time-lock puzzles. At the cost of requiring an
honest majority, our work avoids the use of time-lock puzzles completely. Instead, we adopt a much more
efficient publicly verifiable secret sharing scheme to achieve a similar functionality. This obviates the need
for a trusted setup and a general-purpose actively secure MPC protocol. We show that our computation
and communication costs are orders of magnitude lower while achieving the same deterrence rate.

Keywords: Multi-Party Computation · Compiler · Covert Security · Honest Majority.

1 Introduction

Multi-party computation (MPC) is a subfield of cryptography allowing a set of mutually distrusting parties to
jointly compute functions over their inputs without revealing anything but the outcome of the computation.

This way, nothing more can be deduced about the inputs of other parties than what could be deduced
from the outcome of the computation alone. Traditionally, two types of adversaries have been considered
in MPC; passive and active adversaries. Passive adversaries try to deduce as much private information as
possible but follow the protocol honestly. Active adversaries are additionally allowed to arbitrarily deviate
from the protocol, which might also compromise the correctness of the outcome. In general, passively secure
protocols are fast but might not be considered secure in many realistic scenarios unless there is a good reason
to assume that an untrusted party will not deviate from the protocol. Actively secure protocols are very
secure in this regard, but active security comes at the cost of increasing the communication and computation
complexity.

As a trade-off between the benefits of these two notions, covert security was introduced by Aumann and
Lindell in 2007 [2]. Instead of safeguarding the protocol against an active attack, the idea of this notion is
that it is sufficient to only detect the attack with a certain probability called the deterrence rate ϵ. Usually
the deterrence rate can be chosen arbitrarily, thus providing a dynamic trade-off between the efficiency and
security of passively and actively secure protocols, respectively. Goyal, Mohassel and Smith [13] presented a

maarten.everts@utwente.nl

covertly secure version of garbled-circuit based MPC protocols [4] and Damgard et al. [9] introduced a cheap
cut-and-choose approach for an efficient and covertly secure offline phase for the SPDZ protocol [11], replacing
costly zero-knowledge proofs required for active security. While this notion has led to promising results, in
2012 Asharov and Orlandi [1] observed that it might not be sufficient for practical applications. If a party
detects a cheating attempt, there is in general no way of proving that another party has acted maliciously.
Therefore they introduced the extended notion of publicly verifiable covert security. This property equips
the parties with a mechanism to generate a certificate that proves a cheating attempt to anyone, including
external parties not participating in the MPC protocol. Even though this notion looks promising for wider
use in practice, relatively little research has been done in this area. The only concrete protocols in this
security model have been presented in [1,16,15].

Another line of research is the trade-off between the number of corruptions a protocol can tolerate and
efficiency, again giving up some security by tolerating less corruptions to achieve a more efficient protocol.
A popular relaxation in literature is the assumption of an honest majority, meaning that more than half of
the parties are guaranteed to behave honestly. Concrete protocols with active security and only sublinear
overhead in the honest majority model have been presented in [14,6].

To ease the development of MPC with stronger security guarantees, compilers were introduced. Compilers
allow for a modular approach to cryptographic protocol design; they provide a generic transformation from
protocols with certain (security) properties to protocols with stronger properties. For instance, covert/active
security compilers take as input a passively secure MPC protocol and output a protocol with covert/active
security. The focus of this work will be on compiling passively secure protocols into efficient protocols with
covert security and public verifiability for any passively secure protocol with an arbitrary number of parties
n > 2.

Many MPC protocols proceed as follows. They first run an input independent pre-processing phase to set
up some correlated randomness, e.g., Beaver triples [3]. Because this phase can be executed before the secret
input values are available, it is also referred to as the offline phase. This pre-processing allows the actual
computation, the online phase, to be executed very efficiently. Since actively secure online phases nowadays
are quite efficient already, we specifically target our compiler towards the more expensive pre-processing
protocols. As was proven in [10], combining a covertly secure pre-processing protocol with public verifiability
and an actively secure online phase yields an overall protocol with covert security and public verifiability.
Therefore, our compiler could for example be used to replace the actively secure pre-processing step of the
SPDZ protocol with a covertly secure one from our compiler and combine it with the actively secure online
phase of SPDZ [11] to improve the overall efficiency.

Typically, covert security is obtained by a cut-and-choose strategy where the passively secure protocol is
simply executed multiple times after which some of these executions are “opened” to verify the behavior of
the parties. An important predicament to overcome for public verifiability is the prevention of a detection-
dependent abort. This means that an adversary should not be able to prevent the generation of a certificate
once it sees its cheating attempt is going to be detected. The first covert security compiler without public
verifiability was presented by Damg̊ard, Geisler and Nielsen in 2010 [8]. Their approach is based on the
assumption of an honest majority of participants. A covert security compiler with public verifiability, secure
against any number of corruptions, was first presented by Damg̊ard et al. in 2020 [10]. They presented
two compilers in the 2-party case; one for input-independent protocols and one for input-dependent proto-
cols. Furthermore, they sketch how to extend their approach to arbitrary numbers of parties. To prevent a
detection-dependent abort, detecting active attacks is done by letting each party independently and oblivi-
ously choose which executions it wants to verify. To guarantee for a constant number of k executions that at
least one execution remains closed, the number of executions that can be chosen by each party (and hence
the deterrence rate) decreases for increasing numbers of parties. Concretely, each party can choose at most
k−1
n executions and thus obtains ϵ = k−1

kn .

Constructions with a constant deterrence rate for any number of parties have been presented by Faust
et al. [12] and concurrently by Scholl et al. [19]. Both works follow a shared coin toss (SCT) strategy. With
this strategy, the parties together toss a coin to determine which executions will be verified by everyone
guaranteeing maximal deterrence rates regardless of the amount of parties. To prevent a detection-dependent

2

abort, both [12] and [19] use time-lock puzzles (TLP) to lock the potential evidence before the coin toss such
that the honest parties are guaranteed its availability in case the adversary aborts after seeing the outcome
of the coin toss. A TLP hides a secret message and solving the TLP reveals this message. Moreover, solving a
TLP is guaranteed to require a fixed amount of work. A TLP therefore guarantees that a message is hidden
for a fixed amount of time and that it can be revealed after this fixed amount of time.

However, the time-locks introduce strict timing assumptions which introduce subtle issues in practice
when used for this application. The entire security against a detection-dependent abort in these works relies
on the assumption that the TLP is hidden for a few synchronous communication rounds. In theory, the
synchronous communication model ensures that the parties communicate in fixed rounds through a global
clock. In practice, this is typically realized by picking a certain timeout after which all messages for a round
should have been received. With the TLP approach, if the amount of work required for solving the TLP
is picked too low, an adversary has a higher probability of solving the TLP early and perform a detection-
dependent abort. On the other hand, by picking a larger amount of work, the complexity for the honest
parties to solve the TLP becomes undesirably high. The TLPs only need to be solved in case of misbehavior,
so using an extremely complex puzzle could be acceptable to decrease the probability of the adversary solving
the TLP too early. However, since we cannot make assumptions about the power of the adversary, it is still
impossible to guarantee the security of the TLP and thus secrecy of the underlying message for a small
number of communication rounds.

Furthermore, both TLP approaches require the availability of a general-purpose, actively secure MPC
protocol to realize a trusted setup and implement an ideal functionality that constructs the TLP. This seems
counterintuitive in a setting where the goal is to increase the security of a passively secure protocol through
compilation. Furthermore, these functionalities prove to be very costly.

1.1 Contributions

In this work, we introduce a novel and efficient covert security compiler with public verifiability in the honest
majority setting.

Our approach is based on the covert security compilers with public verifiability presented in [10,12,19].
We adapt their constructions and use a publicly verifiable secret sharing scheme (PVSS) to replace the costly
time-lock puzzles (TLP). Compared to [10], our compilers yield much higher deterrence rates in the multi-
party setting. This is achieved by following a shared coin toss (SCT) strategy, similar to the compilers of
[12,19]. More precisely, for any number of executions of the passive protocol k, a deterrence rate of 1 − 1

k
can be achieved independent of the number of parties n. The public verifiability of the compilers of [12,19]
is based on the use of TLPs to ensure availability of potential evidence after the coin toss. In contrast, we
adopt a PVSS to distribute the evidence among all the parties. Due to the honest-majority assumption, the
PVSS can be instantiated such that the adversary corrupting less than n/2 parties cannot reconstruct this
secret evidence prematurely, while the honest parties are able to reconstruct. The prior works of [12,19] do
however provide security against a dishonest majority.

With our adaptation, we remove the need for a trusted setup and an actively secure puzzle generation.
We show that as a result, both the computation and communication complexity of our compiler decrease
by multiple orders of magnitude. Moreover, an efficient and secure TLP instantiation for the purpose of
achieving public verifiability, requires an accurate estimation of the adversary’s computational resources.
Therefore, in this application, it is inherently difficult to instantiate a TLP appropriately. For these reasons,
our approach, avoiding TLPs altogether, provides security against a more realistic adversary model.

Our compiler makes black-box use of the passively secure protocol and can therefore enhance the security
of any passively secure protocol, including future protocols. In [14] and [6], active security is obtained by
adapting a specific secret-sharing based protocol and requires a stronger security notion than plain passive
security. Therefore, these protocols are incomparable to our compiler.

3

1.2 Technical Overview

Covert Security. Covert security is obtained in a similar fashion to related constructions, where active
cheating is usually detected by some cut-and-choose mechanism. More precisely, the passively secure protocol
is executed k times after which t < k executions are opened to verify the behavior of the parties. Opening an
execution is done by revealing the randomness used by each party during an execution of the protocol. Note
that in this work we are specifically targeting input-independent protocols and hence the behavior of a party
is completely determined by the (publicly known) protocol description and the randomness used. Given the
randomness of the other parties, each party can replay the protocol execution and verify the behavior of
the other parties during the actual protocol execution. If no deviations are detected, the result of one of the
unopened executions can then be picked as the output of the protocol. However, this approach still allows
a dishonest party to decide which randomness to reveal after learning which executions are to be opened,
i.e., there is no guarantee that the revealed randomness was used during the executions. To prevent this,
the parties are required to commit to their randomness before the protocol execution. This technique was
introduced by Hong et al. [15] and is also referred to as derandomization. After the k parallel executions, the
parties perform a joint coin toss outputting an integer 1 ≤ i ≤ k indicating the protocol execution that is to
be used as output. The remaining k − 1 executions are opened and the parties verify each other’s behavior.

Public Verifiability. Public verifiability is obtained by making each party accountable for its messages by
letting them sign all the messages they send during the protocol executions. If it is later detected that a
party has sent an incorrect message, anyone can verify that this party must have sent the malicious message.
It is essential to prevent a so-called detection-dependent abort, meaning an adversary cannot prevent the
generation of a certificate once it sees it is going to be detected. To prevent this, we “lock” the randomness
used by sharing it among all parties using a PVSS before the coin toss. If an adversary aborts after the coin
toss, the parties have enough shares to reconstruct the randomness and verify behavior anyways. Here the
honest majority assumption is required to guarantee enough honest shares for reconstructing each randomness
while the adversary cannot get hold of enough shares to reconstruct the randomness used in the output
execution.

Note that we can not simply accuse a party who aborts at this stage as there is no publicly verifiable
evidence of this (such as a signature of a party on a malicious message). An external party who wishes to
verify the protocol execution can not distinguish between an actual, active attack or an accident such as
a network failure. Therefore, this straightforward approach could lead to an honest party unjustly being
punished or is deniable by an adversary who can claim that he was not at fault.

Public Verifiability from PVSS. By using a PVSS, the parties are guaranteed to be able to proof that an
active attack occurred. To this end the parties can first use the PVSS to verify all the randomness shares
distributed by each party before the coin toss. In case the verification of some share fails, anyone can verify
that the adversary attempted to cheat by distributing inconsistent shares. If the verifications succeed, the
shares are guaranteed to reconstruct to a well-defined value, namely the randomness of the distributor. The
distributor is furthermore committed to this randomness by a proof of correct distribution. This verification
can be performed without interaction with the distributor or any of the other parties. Therefore, verification
can also be done by external parties, making it publicly verifiable.

In case an adversary aborts after the coin toss, the parties can combine their shares to reconstruct the
randomness of the adversary. During this reconstruction phase, each party is required to also publish a
proof of correct decryption. This way, the honest parties can combine only correct shares to reconstruct the
value originally distributed. Furthermore, an adversary cannot ‘incriminate’ an honest party by publishing
a different share than distributed by the honest party. As an additional benefit of the PVSS strategy, the
protocol can still continue and succeed in case an otherwise honest party is not able to deliver this information
in time.

4

2 Preliminaries

Our compiler uses several building blocks. As cryptographic building blocks, the compiler uses a commit-
ment scheme (Com, Open) and a signature scheme (Gen, Sign, Verify). Throughout this work, the commit-
ment scheme is assumed to be non-interactive, but our compiler could trivially be instantiated with an
interactive commitment scheme as well. Committing to a message m with randomness r will be denoted by
(c, d)←− Com(m; r), where c is the resulting commitment and d = (m, r) the opening information. Opening a
commitment is then denoted with m′ ←− Open(c, d). For a correct opening, we get that m′ = m and m′ = ⊥
otherwise. The commitment scheme should satisfy the hiding and binding properties.

The signature scheme should be existentially unforgeable against chosen message attacks. Before the
protocol execution, all parties are expected to generate a public-private key pair (pk, sk) using Gen and
register their public key. Signing a message m using a private key sk is denoted as σ ←− Signsk(m). Verifying
a signature using the corresponding public key is denoted as accept,⊥ ←− Verifypk(m,σ).

2.1 Multi-Party Computation

The goal of Multi-Party Computation (MPC) protocols is to allow a group of n participants P = P1, . . . , Pn to
compute a shared function f over their private inputs x1, . . . , xn while keeping their inputs hidden from each
other. This group of participants can be divided in two sets: honest participants and corrupt participants.
The honest participants will strictly follow the protocol description while corrupt participants are assumed
to be under the influence of a central adversary.

In general for an MPC protocol to be considered secure, it needs to satisfy two requirements: privacy
and correctness. Privacy means that and adversary is not able to learn more than what it can deduce from
its own inputs and the output of the protocol. Particularly the adversary should not be able to gain any
additional information about the inputs of the honest parties. Correctness means that the outcome of the
protocol received by the honest parties should be correct. To reason about the security of such a protocol
in the presence of an adversary, we follow the standard real/ideal world paradigm to show that our protocol
in the real world is indistinguishable from an ideal execution of the same functionality. Informally, this
paradigm specifies an ideal Functionality F and proofs that the MPC protocol Π implements exactly this
ideal execution and is thus as secure as the ideal world.

In this work we assume that the adversary A with auxiliary input z can statically corrupt a set A ⊂ P of
the parties with |A| < n

2 . Furthermore, let Π : ({0, 1}∗)n −→ ({0, 1}∗)n be the real-world protocol computing
functionality f taking one input per party {x1, x2, . . . , xn} = x and returning one output to each party. We
define the outputs of the honest parties and A in a real-world execution of Π as REALλ[A(z),A, Π, x], where
λ is the security parameter.

In the passive security model, an ideal world adversary S is assumed to try to deduce as much information
as possible while honestly participating in the protocol. On the other hand, active adversaries may arbitrarily
deviate from the protocol in order to try to deduce more information or break the correctness of the outcome.

Covert Security The idea of covert security is to assume an adversary who is capable of performing an
active attack, but a certain probability of being caught cheating is enough to refrain him from doing so. This
probability of being caught is called the deterrence rate ϵ.

In this work, we follow the strongest definition for covert security originally defined by Aumann and
Lindell [2] called strong explicit cheat (SECF). The ideal functionality for calculating a function f in the
presence of covert adversaries according to this definition will be called Fcovert. This functionality allows
S to perform cheating like an active adversary. With a probability of ϵ, Fcovert informs all the parties of a
cheating attempt. With a probability of 1 − ϵ, a cheating attempt is successful in which case S learns the
inputs of all the parties and may decide their outputs. For readability of our protocols, we slightly alter
the original SECF definition to not require identifiable abort. Due to the honest majority assumption this
can, however, easily be obtained by adding a byzantine agreement at the end of the protocol. The formal
definition of this ideal functionality can be found in Fcovert.

5

Fcovert Ideal functionality for MPC with covert security

1. Inputs: Every honest party Pi sends its input xi to Fcovert. The ideal world adversary S sends inputs on behalf
of all the corrupted parties.

2. Abort Options: A corrupt party may send (abort, i) or (corrupted, i) as input to Fcovert. If (abort, i) was
received, Fcovert will respond by sending (abort) to all the honest parties and halt. In case (corrupted, i) was
received, Fcovert sends (corrupted, i) to all the honest parties and halts. If multiple parties send corrupted or
abort, Fcovert informs the honest parties of only one of these events and halt. Furthermore, (corrupted, i) is
ignored in case it receives a combination of both events.

3. Attempted cheat: S can send (cheat, i) as input of a corrupted party Pi to Fcovert. Now, Fcovert will respond
with (corrupted, i) with a probability of ϵ to all the parties, corresponding to a detected cheating attempt. With
a probability of 1 − ϵ, Fcovert responds with undetected to the adversary. In case the cheating attempt was
undetected, S gets all the inputs xi of the honest parties Pi and specifies an output yi for each of them which
Fcovert will output to Pi.

This is normally the end of the ideal execution. However, if no corrupted party sent (abort, i), (corrupted, i) or
(cheat, i), the ideal execution continues with:

4. Answer adversary: The ideal functionality computes (y1, . . . , yn) = f(x1, . . . , xn) and sends it to S.
5. Answer honest parties: S can now decide to either continue or (abort, i) for a corrupted Pi. In case the

adversary continues, the ideal functionality returns yi to each honest Pi. In the case of (abort, i), the ideal
functionality relays this to all honest parties.

6. Output: Honest parties always output the message they receive from Fcovert where the corrupted parties output
nothing. The adversary outputs an arbitrary function of the initial inputs of the corrupted parties and the outputs
received from Fcovert.

The joint distribution of the outputs of the honest parties and the ideal-world adversary S (with auxiliary

input z) is denoted as IDEALϵλ[S(z),A,Fcovert, x̄]. Covert security can now be defined as follows, where
c≡

denotes computationally indistinguishable:

Definition 1 (Covert security with deterrence rate ϵ). A protocol Π securely computes Fcovert with
deterrence rate ϵ if for every real-world adversary A, we can find an ideal-world adversary S such that for
all security parameters λ ∈ N:

{IDEALϵλ[S(z),A,Fcovert, x]}x,k∈{0,1}∗
c≡ {REALλ[A(c),A, Π, x]}x,k∈{0,1}∗ .

Public Verifiability As an extension to covert security, the notion of publicly verifiable covert security
(PVC) was proposed by Asharov and Orlandi in 2012 [1]. This form of security provides the parties with a
mechanism to generate a publicly verifiable certificate in case cheating is detected. This certificate proves to
anyone that a certain party attempted to cheat during the protocol.

We use the approach of [15] where a Judge algorithm is added to a real-world protocol Π. If, in the
execution of Π, cheating is detected, the protocol outputs a certificate cert. The Judge algorithm verifies
this certificate and outputs the public key (the “identity”) of the cheater if it is valid. The vector of public keys
is defined as p̄k = (pk1, . . . , pkn), corresponding to the Pis. Furthermore, we have extracted the verification
procedure of the protocol to a separate Blame algorithm. Blame takes the view of a party Pi, returns a
certificate cert and outputs corruptedj in case party Pj is found to be cheating. Formally, we define covert
security with public verifiability as:

Definition 2 (Covert security with deterrence rate ϵ and public verifiability). A protocol (Π, Blame, Judge)
securely computes Fcovert with a deterrence rate of ϵ and public verifiability if the following three conditions
hold:

6

– Covert security: Π is secure against a covert adversary according to Definition 1 for covert security
with deterrence rate ϵ. Additionally, Π might now output cert in case cheating is detected.

– Public Verifiability: If an honest party Pi detects cheating by another party Pj and outputs cert in
an execution of Π, then Judge(p̄k,F , cert) = pkj except with negligible probability.

– Defamation-Freeness: If party Pi is honest and executes Π in the presence of an adversary A, then
the probability that A creates cert∗ such that Judge(p̄k,F , cert∗) = pki is negligible.

2.2 Publicly Verifiable Secret Sharing

Verifiable secret sharing (VSS) [7] is an extension of regular secret-sharing that provides additional security
against active attacks. VSS protects honest parties against malicious participants by equipping the secret
sharing scheme with mechanisms to (i) verify that they received consistent shares from an untrusted dealer
and (ii) verify that they received the correct shares from the other parties during reconstruction. With publicly
verifiable secret sharing (PVSS) [21,18], properties (i) and (ii) can be verified by anyone, also parties outside
the secret sharing protocol, without any interaction. In general, a PVSS can be instantiated from any secret
sharing scheme with an arbitrary access structure A. For this work, a threshold access structure such as
realized with Shamir’s secret sharing scheme [20] is sufficient. In this work, we require the PVSS to satisfy
the definition first presented by Schoenmakers [18], which adds an additional proof of correct decryption:

Definition 3 (PVSS Scheme). A PVSS scheme with a set of players P and access structure A ⊆ P
consists of the following three algorithms:

– (Ei(si)i∈P , dproof)←− Distribute(s): The distribution algorithm takes as input a secret s and publishes
a set of encrypted shares Ei(si)i∈P and some public distribution proof dproof.

– true or ⊥ ←− Verify(dproof, Ei(si)): The verification algorithm takes as input a distribution proof and
an encrypted share Ei(si) and outputs true if Ei(si) encrypts a valid share si of s according to dproof.

– s′ ←− Reconstruct({rproofi, si}i∈A): The reconstruction algorithm takes a set of decrypted shares
si, i ∈ A and corresponding decryption proofs of some subset A ⊆ P and outputs the reconstructed value
s′. In case A ∈ A, we call A a qualified subset and as a result, s′ = s if the verifications of the encrypted
shares succeeded according to the proofs.

Here, it is assumed that we already have a registered public key of all the participants. Instead of
generating and distributing the secrets directly, a dealer publishes encrypted shares Ej(sj) with the known
public keys of each party Pj . Furthermore, the dealer publishes a string dproof which shows that each Ej

encrypts a consistent share sj . This proof also commits the dealer to the value of the secret s and guarantees
that no one can wrongly claim to have received a wrong share since anyone can verify this. In this work we
will abuse notation and let Verify(dproof, Ei(si)P∈P) denote the verification of all shares destined for the
parties in P of the same secret s. Now, true is interpreted as all verifications succeeding while ⊥ means at
least one verification failed. If the reconstruction succeeds, we are guaranteed that this is the original secret
s. During the reconstruction phase, the parties decrypt and publish their shares sj from Ej(sj) along with
a string rproofj which shows that they performed the decryption correctly. Using these, the other parties
can now exclude the shares of participants who failed to decrypt correctly. If enough decryptions (t+1) pass
the verification, the parties can reconstruct the original secret successfully.

We require the PVSS to satisfy the correctness, soundness and privacy security guarantees.

Definition 4 (Correctness). If a dealer honestly follows the Distribute algorithm to publish the en-
crypted shares Ei(si)i∈P and a public proof dproof, then the outcome Verify(dproof, Ei(si)) is guaranteed
to be true. Furthermore, if during reconstruction a party Pi honestly decrypts Ei(si), publishes its share si
and honestly generates the proof rproofi, then another honest party receiving the decrypted share si and
rproofi accepts this share. Finally, a qualified subset A ⊆ P is guaranteed to reconstruct the original secret
s if the dealer and the parties in A honestly follow the Distribute and Reconstruct protocols.

7

Definition 5 (Soundness). If Verify(dproof, Ei(si)) == true, then for all qualified subsets A1,A2 ⊂ P,
the following holds:

Reconstruct({rproofi, si}i∈A1
) == Reconstruct({rproofi, si}i∈A2

).

Furthermore, if a malicious party submits a fake share during reconstruction, verification of this share fails
with an overwhelming probability.

Definition 6 (Privacy). An adversary corrupting a set of participants A such that |A| < t should not be
able to learn anything about the secret s from the shares si with i ∈ A.

3 Building Blocks

In this section, we will introduce the basic building blocks of our PVC compiler. The PVC compiler uses a
public bulletin board and a public coin tossing functionality. Furthermore, our compiler slightly modifies the
passively secure protocol execution.

Public Bulletin Board. For public communication required by the PVSS, we model an ideal functionality
Fbb, which represents a public bulletin board.

Fbb Ideal bulletin board functionality

– Consider a number of parties P1, P2, . . . , Pn.
– If Fbb receives a message (send,m, i) from Pi, it sends (m, i) to each party Pi for 1 ≤ i ≤ n.

The public bulletin board functionality guarantees that the honest parties agree on all the messages that
have been sent. In practice, this functionality could be realized using the echo broadcast protocol of [17].

Fcoin Ideal coin-tossing functionality

– Consider a number of parties P1, P2, . . . , Pn

– If Fcoin receives a message (flip) from Pi, it stores (flip, Pi) in memory if it is not stored in memory yet.
– Once Fcoin has stored all the messages (flip, Pi) for i ∈ [n], Fcoin picks a random value r ∈R {0, 1}λ and sends

(flip, r) to all the parties.

Coin Tossing. An ideal functionality Fcoin receives oki from each party Pi, i ∈ [n] and outputs a random
λ-bit string r to all the parties. The adversary should not be able to influence the outcome of the coin-tossing
protocol. Therefore, we require a coin-tossing protocol with security against an active adversary A.

Passively Secure Protocol. The compiler presented in this work is designed to compile an arbitrary input-
independent protocol Πpass with passive security. Furthermore, we require the parties to agree on a public
transcript that is the same in case of an honest execution, to compare to expected executions later on.
To obtain such transcripts, we assume a fixed ordering in the messages and that every party can see each
message sent during an execution of the protocol. In case Πpass is secure against n− 1 corruptions, we can
simply broadcast every message since the adversary was allowed to see each message anyways. Otherwise, we
need to keep the messages hidden by broadcasting symmetric-key encrypted messages instead, as presented

8

Πseed Seed generation procedure

This protocol works with an arbitrary number n of parties P = {P1, P2, . . . , Pn}. To generate uniformly random seeds
for every party, the parties execute the following steps:

1. Party Pi samples uniformly random a private seed seedipriv, generates (ci, di) ←− Com(seedipriv) and sends ci to
the other parties.

2. For each j ∈ [n], Pi samples a uniformly random public seed share seed
(i,j)

(pub) and sends seed
(i,j)

(pub) to all the other
parties.

3. Each party calculates the public seeds seedipub for each Pi as
⊕n

j=0 seed
(i,j)
pub .

4. If the parties have not received all the expected messages before some predefined timeout, the parties send abort

to all the other parties and output abort. Otherwise, Pi outputs (seed
i
priv, d

i, {seedjpub, c
j}}j∈[n]).

in [10]. To ease notation, we will assume Πpass to be secure against n− 1 corruptions but adding symmetric-
key encryption for an arbitrary number of corruptions could be realized in a straightforward way by simply
opening the keys in the execution opening protocol as well.

Remark 1. Note that an execution could also have been opened by letting the parties open an execution
by revealing their entire view of the protocol, which consists of their randomness, all received messages and
output. This way, we would remove the requirement of broadcasting every message and instead open all of
this after the execution. However, in this work we chose to reduce the complexity of opening and verifying
executions (possibly by outside parties) by having to open only the randomness used in the execution at the
cost of a more complex protocol execution phase.

4 PVC Compiler

In this section we will present the main compiler Πcomp for transforming an arbitrary n-party MPC protocol
Πpass with passive security and no private inputs into an n-party MPC protocol with covert security and
public verifiability. This compiler uses a commitment scheme, a signature scheme, a publicly-verifiable secret
sharing scheme (PVSS) and an actively secure coin tossing protocol. We assume that every party already
has registered a public key at the start of the protocol. Roughly speaking, Πcomp works in four separate
phases: seed generation, protocol execution, evidence creation and execution opening and verification. In the
seed generation phase, the parties set up k seeds from which they derive their randomness during the k
executions of Πpass. In the protocol execution phase, Πpass is executed k times. In the evidence creation
phase, the parties use the PVSS to secret share their seed openings to all the other parties and sign the
information so that they can be held accountable later on. Finally, in the execution opening and verification
phase, the parties toss a coin to select k−1 executions, open the randomness seeds for these k−1 executions
and verify the behavior of the other parties. If no cheating is detected, the parties output their output in the
unopened execution. Otherwise, they output the obtained certificate. Next, we will go over the four phases
and finally present the complete compiler Πcomp as well as the additonal algorithms Blame and Judge.

Seed Generation. In order to guarantee covert security for any passively secure protocol Πpass, we need to
be guaranteed that the used randomness is picked uniformly at random. To achieve this, we run an actively
secure seed generation procedure Πseed for each of the executions of Πpass. A formal description of this
procedure can be found in Πseed.

In the seed generation procedure, each party Pi picks a private seed seedipriv for itself and publicly
commits to this seed. Together all the parties generate a public seed for each party Pi by first picking a
public seed share and defining the public seed seedipub for Pi as the sum of the shares of all the parties.
During the executions of Πpass, the parties derive randomness from a seed that is the XOR of the private
and public seed, and is thus uniformly random.

Remark 2. In case Πpass satisfies perfect correctness, the adversary cannot force the protocol to fail by
picking randomness in a malicious way and thus the seed generation procedure can be ignored.

9

Protocol Execution In the protocol execution phase, the parties run the passively secure protocol k times in
parallel and obtain an output yij and transcript transij for each of the executions. In these executions, every
party sends each message to every other party and signs each message to hold them accountable.

Evidence Creation In the evidence creation phase, the parties are required to generate publicly verifiable,
encrypted shares for the opening information of all of the k randomness seeds used:

({Eh(dh)
(i,j)}h∈[n], dproof

i
j)←− PVSS.Distribute(dij).

and publicly broadcast these using Fbb. This ensures availability of all the used randomness seeds after
the coin toss for verification by the honest parties. In case the adversary aborts after seeing the coin toss, the
honest parties can reconstruct its seeds using these shares, which are guaranteed to be correct if the PVSS
verifications succeed. Furthermore, the parties sign the tuple:

evidencej = (i, j, {clj , dprooflj}l∈[n], transj)

With which they can be held accountable later on.
In the next sections, we will explain the subprotocols Πopen, Πreconstruct and Blame executed in the

execution opening and verification phase.

4.1 Execution Opening

After executing k parallel instantiations of the passively secure MPC protocol, the parties will run Πopen to
open the seeds used in k−1 of these executions. Before Πopen is executed, the parties have already published
encrypted shares of the opening information of all of their seeds. In Πopen, the parties then verify these
encrypted shares using the PVSS. If a verification fails, the parties generate a certificate and abort. If all
verifications succeed, the parties jointly toss a coin to select the executions to open. At this point, it is too
late for an adversary to abort since its seed openings have already been correctly distributed. Now, either
the parties simply open all the seeds used in these executions (the optimistic case) or engage in Πreconstruct

to reconstruct missing seeds (the pessimistic case). Note that we cannot simply indicate parties who fail to
open their seeds as malicious since we are not able to generate a publicly verifiable certificate of this as an
external judge is not able to distinguish between an active attack or an accidental abort. As an additional
benefit, the PVSS strategy gives us a form of fault-tolerance. By being able to verify the executions in case
of an abort, the protocol can still continue and succeed in case an otherwise honest party was accidentally
not able to deliver this information in time.

4.2 Seed Reconstruction

If reconstructions are required, the parties engage in an execution of Πreconstruct. This protocol starts by the
parties announcing to everyone which seeds they are missing. For every missing message received, the parties
decrypt their own share of the published share encryptions of the corresponding seed opening. This share
together with a publicly verifiable proof of correct decryption is then published on the bulletin board. Using
these proofs, these parties can then pool together t + 1 shares of which the proofs are valid to reconstruct
the correct seed opening. Due to the honest majority, we have that t < n

2 , which guarantees that the honest
parties can reconstruct missing seed openings in case an adversary refuses to distribute them. Finally the
parties output a complete set of all seed openings Di. Note that in an honest execution of the PVC protocol,
the parties already have a complete set after Πopen and thus Πreconstruct can be skipped. Using all the seeds,
the parties can now verify the behavior of all the other parties in the opened executions. This procedure has
been extracted to a separate Blame algorithm.

10

Πopen Protocol for opening a set of executions

At the start of the protocol, all the parties know the encrypted seed shares {Eh(dh)
(i,j)} of every party Pi, i ∈ [n]

in every execution j ∈ [k] for every party Ph, h ∈ [n] as well as the corresponding proofs dproofij . Furthermore,

the parties have the signatures σi
j together with corresponding evidence tuples evidencej . Finally, each party

Pi holds a set of private seed openings {di1, di2, . . . , dik}, a set of outputs {yi
1, y

i
2, . . . , y

i
k} and a set of transcripts

{transi1, transi2, . . . , transik}. To open k − 1 protocol executions, do the following:

Share verification:
1. First, the parties use the Verify algorithm of PVSS to check the validity of all the shares to generate the set:

M =
{
(l,m) ∈ ([n], [k]) : PVSS.Verify(dprooflm, Eh(dh)

(l,m)

h∈[n]) = ⊥
}
.

If any of the parties obtain M ̸= ∅, choose the tuple (l,m) ∈M with minimal l and m, calculate the certificate

certinvs =
(
pkl, evidencem, Ej(dj)

(l,m)

j∈[n], σ
l
m

)
and output corruptedl.

Joint coin tossing phase:
2. If all the verifications succeed, each party Pi sends (flip) to Fcoin, receives (flip, r) and calculates the joint coin

toss as coin = r mod k.
3. Now, the parties exchange the set of seeds they have used in the k− 1 executions according to the coin toss such

that each party Pi obtains:

Di = {dhj : h ∈ [n], j ∈ [k] \ coin}

Optimistic case: Each party Pi generates ϕ
i
j ←− Sign(dij) for all of its seed openings {dij}j∈[k]\coin and sends

(ϕi
j , d

i
j) to all the other parties. Each party Pi verifies the signatures and constructs Di.

Pessimistic case: If a number of parties Pj fails to publish their seed shares and/or valid signatures within
a given amount of time, the parties engage in an execution of Πreconstruct to obtain Di.

Output:

4. Finally, each party outputs (Di, coin).

Protocol Πreconstruct

At the start of the protocol, the encrypted seed openings, shares {Eh(dh)
(i,j)} of every party Pi, i ∈ [n] in every

execution j ∈ [k] meant for every party Ph, h ∈ [n] as well as the corresponding proof strings dproofij are publicly
known. The parties recover the seed openings they are missing in the following way:

Missing seeds announcement:

1. Each party Pi starts with a (non-complete) set of seed openings Di. Assume Pi did not receive the seed openings
dlm of some party Pl in some execution m. Call the set of tuples (l,m) of missing seed openings Ei.

2. For every tuple (l,m) ∈ Ei, Pi sends a message missingi(l,m) to all the other parties.

Missing seed reconstruction:

3. For every missing
j
(l,m) message received by Pi, Pi performs the following steps:

– If m == coin, skip this message.
– Otherwise, Pi decrypts its corresponding share di from Ei(di)

(l,m), computes the string rproofi(l,m) and sends

(send, (di, rproof
i
(l,m)), i) to Fbb.

4. For every tuple (l,m) ∈ Ei, Pi does the following:
– For every message received from Fbb of the form ((dj , rproof

j
(l,m)), j), Pi verifies the rproof

j
(l,m).

– Once t+1 of the received proofs are successfully verified, Pi reconstructs the seed opening dlm from the t+1
shares and adds this to Di.

Output:

5. Finally, Pi outputs the set of seed openings Di.

11

Algorithm Blame(view)

The Blame algorithm takes as input the view view of a party, which consists of:
– Public coin coin

– All the seed commitments and openings {cij , dij}i∈[n],j∈[k]\coin

– Encrypted seed shares {Eh(dh)
(i,j)}h,i∈[n],j∈[k]

– The set E of tuples of seed openings obtained via reconstruction
– PVSS proofs for distribution {dproofij}i∈[n],j∈[k] and reconstruction {rproofj(l,m)}j∈[n],(l,m)∈E

– Public keys {pkj}j∈[n], signatures {σi
j}i∈[n],j∈[k] and {ϕi

j}i∈[n],j∈[k]

– Additional information {evidencej}j∈[k]

To verify the behavior of the parties, do:

1. Open the private seeds of all the parties Pi, i ∈ [n] in each execution j ∈ [k] \ coin as seedi(j,priv) ←− Open(cij , d
i
j).

2. Construct the set S = {(l,m) ∈ ([n], [k] \ coin) : seedi(l,priv) == ⊥}. If S is not empty, pick the tuple (l,m) with
the lowest l, m and produce an invalid opening certificate:
– If (l,m) ∈ E : set

certinvo1 = (pkl, evidencem, {dj , rproofj(l,m)}j∈[n], {Ej(dj)
(l,m)}j∈[n], σ

l
m).

– Otherwise: set certinvo2 = (pkl, evidencem, dlm, ϕl
m, σl

m)
And output (l, certinvo(1/2)).

3. If all the verifications succeeded, set seedij = seedi(j,priv) ⊕ seedi(j,pub). as the randomness seed of each party Pi

in each execution j ∈ [k].
4. Re-run each execution j of Πpass for j ∈ [k] \ coin by simulating party Pi using random seed seedij to obtain

each transcript trans′j .
5. Using evidencej , construct the set S = {m : transm ̸= trans′m}. If S is not empty, pick the lowest m and find

the party Pl that sends the first message in transm which is inconsistent with the expected message from trans′m
and construct a protocol deviation certificate

certdev = (pkl, evidencem, {dim}i∈[n], σ
l
m),

and output (l, certdev). Otherwise, output (·,⊥).

4.3 Blame Algorithm

In the Blame algorithm, the behavior of the parties is verified and a certificate is generated in case cheating
was detected. This Blame algorithm takes the view of a party as input. First, the Blame algorithm verifies
the seed openings of all the parties. If the seed opening was obtained via reconstruction, an invalid opening
(1) certificate is returned. In case the seed opening was given directly by the adversary, and invalid opening
(2) certificate is generated. To ensure the parties agree on which party cheated, the one with the lowest
party- and execution id is picked. If all the seeds can be opened correctly, the Blame algorithm simulates the
executions using the randomness seeds obtained in the previous step, resulting in expected transcripts. If for
any execution the actual transcript does not match with the expected transcript, the first party deviating
from the protocol is identified and a deviation certificate is generated.

4.4 Complete Compiler

4.5 Judge Algorithm

The Judge algorithm takes a certificate and verifies it to confirm that the accused party actually cheated.
If the verification succeeds, the public key of the cheater is output and otherwise ⊥ is outputted. This
algorithm does not require any communication with the parties and can thus be run by third parties as well.
We assume the judge has access to the messages publicly stored via Fbb. The judge performs a number of
steps depending on the certificate type. If the certificate does not match any of the four templates, ⊥ is
returned. Regardless of which certificate type it receives, it first verifies the signature of the accused party
on the evidence. If this signature is invalid, we can never be sure that the information was communicated
by the accused party and thus ⊥ is returned.

12

Πcomp Full compiler

Before the protocol execution, we assume the parties have agreed on the amount of executions k, protocol description
Πpass and the public keys of all the parties {pki}i∈[n]. Furthermore, each party Pi knows its own secret key ski.
Finally, the compiler assumes a publicly verifiable secret sharing scheme PVSS is available. Now, the passively se-
cure protocol Πpass is compiled into a protocol ΠPVC with covert security and public verifiability in the following way:

Seed generation:

1. For each j ∈ [k], party Pi and all the other parties engage in an execution of Πseed to obtain:(
seed

i
(j,priv), d

i
j , {seedl(j,pub), clj}}l∈[n]

)
And Pi computes its seeds for each execution j as seedij = seedi(j,priv) ⊕ seedi(j,pub).

Protocol execution:

2. Next, all the parties engage in k executions of Πpass where Pi uses the random seed seedij and obtains an output
yi
j and transcript transij in each execution j ∈ [k].

Evidence creation:

3. For each dij , j ∈ [k], Pi generates and publishes using Fbb:({
Eh(dh)

(i,j)
}

h∈[n]
, dproofij

)
←− PVSS.Distribute(dij).

4. For each j ∈ [k], party Pi creates a signature σi
j ←− Signski(evidencej) where evidencej is defined as:

evidencej =
(
i, j, {seedl(j,pub), clj , dprooflj}l∈[n], trans

i
j

)
Pi broadcasts all the σi

j ’s and verifies the received signatures.

Execution opening & verification:

5. Next, all the parties engage in an execution of the execution opening protocol Πopen such that each Pi obtains:
(resp, coin)←− Πopen.

6. If resp == corruptedj , Pi outputs corruptedj .

7. Otherwise, Pi calculates (l, cert) = Blame(viewi).
8. If cert ̸= ⊥, Pi broadcasts cert and outputs corruptedl. Otherwise, output yi

coin.

4.6 Security

To prove that the compiler presented above satisfies Definition 2 for covert security with public verifiability,
we first state the guarantees in Theorem 1 and then prove that our compiler satisfies the requirements of
covert security (with deterrence rate ϵ), public verifiability and defamation-freeness separately.

Theorem 1. Suppose the PVSS (Distribute, Verify, Reconstruct) satisfies the privacy, correctness and
soundness properties with a threshold t < n/2. Furthermore, assume the commitment scheme (Com, Open,
Verify) is binding and hiding. Let the signature scheme (Gen , Sign, Verify) be existentially unforgeable
under chosen plaintext attacks. Finally, assume Πcoin implements Fcoin with active security. If Πpass is
passively secure, the compiler COMPPVC = (Πcomp, Πopen, Πreconstruct) with the additional algorithms Blame

and Judge is covertly secure with public verifiability against t < n
2 corruptions with deterrence rate ϵ = 1− 1

k .

Intuitively, an adversary can try to cheat in a number of ways in the resulting protocol ΠPVC. First, it can
do so by causing the seed openings of its own seeds to fail. This could be achieved by either (i) distributing

13

Algorithm Judge(cert)

We assume the judge knows the function Πpass to be computed. To check a certificate, do:

– If Verify(evidencem, σl
m) = ⊥, output ⊥.

– Else, interpret evidencem as
(
i,m, {seedl(m,pub), c

l
m, dprooflm}l∈[n], trans

i
m

)
.

Depending on the type of certificate, do:

invs:
– certinvs = (pkl, evidencem, Ej(dj)

(l,m)

j∈[n], σ
l
m).

– If PVSS.Verify(dprooflm, Ej(dj)
(l,m)

j∈[n]) = ⊥, output pkl. Otherwise, output ⊥.
invo1:
– certinvo1 = (pkl, evidencem, {dj , rproofj(l,m)}j∈[n], {Ej(dj)

(l,m)}j∈[n], σ
l
m).

– If PVSS.Verify(dprooflm, Ej(dj)
(l,m)

j∈[n]) = ⊥, output ⊥.
– Verify t+1 of the rproof

j
(l,m)’s and use the corresponding dj ’s to reconstruct dlm. If no t+1 valid shares are

available, output ⊥.
– If Open(clm, dlm) ̸= ⊥, output ⊥. Otherwise, output pkl.

invo2:
– certinvo2 = (pkl, evidencem, dlm, ϕl

m, σl
m).

– If Verifypkl(d
l
m, ϕl

m) = ⊥, output ⊥.
– If Open(clm, dlm) ̸= ⊥, output ⊥. Otherwise, output pkl.

dev:
– certdev = (pkl, evidencem, {dij}i∈[n],j∈[k]\coin, σ

l
m).

– For every party Pi and execution m, open seedi(m,priv) ←− Open(cim, dim) and calculate seedim = seedi(m,priv)⊕
seedi(m,pub).

– Re-run execution m of Πpass by simulating each party Pi using random seed seedim to obtain transcript
trans′m.

– If trans′m == transm, output ⊥.
– If the first party that sends an incorrect message in trans′m is indeed Pl, output pkl. Otherwise, output ⊥.

Otherwise:
– If the certificate does not match any of the four formats, output ⊥.

inconsistent shares in step 3 of Πcomp or (ii) sending an incorrect opening in step 3 of Πopen. Cheating
strategy (i) is easily detected by the verification algorithm of the PVSS scheme, which anyone can verify.
Furthermore, the proofs of correct decryption ensure that the adversary cannot announce a wrong share and
the honest parties will always obtain the correct seed openings. Cheating strategy (ii) is noticed when any of
the seed openings fail. In this case, the adversary has already published a signature on the commitment and
on the opening which means anyone can see that the opening fails and the adversary must have sent this.

Furthermore, an adversary can attempt to cheat by deviating from the protocol description in any of the
protocol executions. Since the protocol is run without private inputs, deviating means sending a message
that is inconsistent with the protocol description and the committed randomness. If all of the seed openings
succeeded, the parties can detect this when simulating the protocol executions later on. Since everyone knows
the commitment and the opening, everyone knows the randomness that should have been used. Furthermore,
the commitments to the seeds have been signed and thus an adversary cannot deny that he has sent an
inconsistent message.

We have defined an ideal functionality for the coin flipping functionality. As can be seen in the description
of Fcoin, all the parties receive the output from the ideal functionality simultaneously. This means that we
require the real-world protocol with which this functionality is built to guarantee fairness. It has been
proven in [5] that obtaining fairness is possible in the case of an honest majority. Therefore we will assume
the existence of such a protocol Πcoin which securely implements Fcoin with fairness in the presence of an
honest majority.

The security guarantees given by our compiler have been formalized in Theorem 1.

14

Proof (Proof of Theorem 1).

Covert Security. To show that our compiler meets the definition for covert security with deterrence rate
ϵ = 1 − 1

k , we will construct a simulator S in the ideal world, talking to the trusted party Fcovert and the
real-world adversary A. After that, we will argue that the joint distribution of S and the output of Fcovert is
indistinguishable from the views of all the parties in the real-world execution of COMPPVC. This proves that
the view of the adversary in the real world can also be generated in the ideal world and thus the adversary
is not able to learn more about the outputs of the honest parties than what is allowed.

Let the adversary A corrupt all the parties in some set A with |A| < n
2 . Furthermore, let P = [n] \ A be

the set of honest parties. The Simulator S, simulating the honest parties, proceeds as follows:

0 For Pi ∈ P, S generates a random pair (ski, pki) and sends all pki to A for i ∈ P. S receives all pki for
i ∈ A from A.

1 For each Pi ∈ P, S honestly engages in the k executions of Πpass, receives seed
i
j for j ∈ [k] and obtains(

seedi(j,priv), d
i
j , {seedl(j,pub), c

l
j}}l∈[n]

)
. If any of the expected messages from the adversary are missing,

S sends abort to Fcovert and A and halts.
2 S engages in k executions of Πpass with A where for i ∈ P, S uses randomness derived from seedij =

seedi(j,priv)⊕ seedi(j,pub). Let transj be the transcript obtained by S for execution j ∈ [k]. Let yij be the
output obtained by Pi in execution j.

3 Each party Pi distributes its seed openings dij for execution j ∈ [k] as:

({Eh(dh)
(i,j)}h∈[n], dproof

i
j)←− PVSS.Distribute(dij)

. S does this honestly for Pi ∈ P while A does this for Pi ∈ A.
4 S computes signatures σi

j for each Pi ∈ P and execution j ∈ [k] as an honest party and sends these to A.
For each i ∈ A, S receives σi

j from A.
5 If any of the received signatures are invalid or S has not received the (expected) messages from some party

Pi in any of the communication rounds, S sends (abort, i) to Fcovert and A and halts.
6 For each set ({Eh(dh)

(i,j)}h∈[n], dproof
i
j) with i ∈ A, S uses PVSS.Verify to check whether the distributed

shares are valid and if not:
– Send (corrupted, i∗) to Fcovert where i∗ is the first party to distribute invalid shares.
– Compute an invalid sharing certificate like an honest party would do and send this to A.
– Output whatever A outputs and stop the simulation.

7 S checks whether A has cheated in any of the execution in step 2. Let Pl be the first party to cheat in
some execution m. Add all tuples (l,m) to a set M .

8 S decrypts all the shares {Ei(di)
(l,j)
i∈P } to reconstruct dij for each party Pi ∈ A for each execution j ∈ [k].

For each of the pairs (cij , d
i
j), if Open(c

i
j , d

i
j) = ⊥ then add (i, j) to the set M as well if it was not in there

yet.
9 With M as the set of all executions in which A cheated in some way, we distinguish three distinct cases:
|M | > 1 : In this case, cheating is guaranteed to be detected and S sets flag == detected.
|M | = 1 : In this case, S sends (cheat, l) to Fcovert and receives either detected or undetected.

– In case detected was received, set flag = detected.
– In case undetected was received, set flag = undetected.

|M | = 0 : In this case, set flag = all_honest.
10 Depending on flag, do the following:

(a) If flag == detected, repeat the following steps:
1∗. All parties send (flip) to Fcoin and receive (flip, r).
2∗. All parties calculate coin∗ = r mod k.
3∗. If |M \ coin∗| > 0, set coin = coin∗ and continue. Otherwise, rewind A to before step 1∗ and

try again.
(b) If flag == undetected, repeat the following steps:

15

1∗∗. All parties send (flip) to Fcoin and receive (flip, r).
2∗∗. All parties calculate coin∗ = r mod k.
3∗∗. If coin∗ ∈M , set coin = coin∗ and continue. Otherwise, rewind A to before step 1∗∗ and try

again.
(c) If flag == all_honest, all parties send (flip) to Fcoin, receive (flip, r) and calculate coin = r

mod k.
11 For each execution j ∈ [k] \ coin, S computes ϕi

j ←− Sign(dij) for each Pi ∈ P and sends (ϕi
j , d

i
j) to A. S

receives (ϕi
j , d

i
j) for Pi ∈ A from A.

– For every valid pair (ϕl
m, dlm) received, if Open(clm, dlm) ̸= ⊥ and (l,m) is in M only because it was

detected in step 8, remove (l,m) from M . If now M = ∅, set flag = all_honest.
– For every invalid pair (ϕl

m, dlm) received for some honest party Pi ∈ P, it sends missingi(l,m) to A.
If S receives a message missingi(l,m) from A and m ̸= coin, S sends decryptions of all the shares

{Ei(di)
(l,m)
i∈P } and the corresponding proofs to A.

12 Finally depending on flag, S does the following:
(a) If flag == detected:

– Send (corrupted, l) to Fcovert.
– Compute a certificate like an honest party would do and send this to A.
– Output whatever A outputs and stop the simulation.

(b) If flag == undetected: Send yicoin as the output of each Pi to Fcovert, outputs whatever A outputs
and stop the simulation.

(c) If flag == all_honest: S receives outputs (y1, y2, . . . yn) from Fcovert for each party Pi, i ∈ [n].
Now, S rewinds A back to before step 2 and executes Step 13 until it terminates.

13 S picks a random coin∗ ∈ [k] and engages in k honest executions of Πpass with A. For each Pi, i ∈ P and
each j ∈ [k]\coin∗, S uses randomness derived from seedij . For execution coin∗, S uses different random-

ness, namely randomness consistent with randomness seeds {seedicoin∗}i∈A and outputs (y1, y2, . . . , yn).
S executes the other steps of the simulator as before, with the exception that in Step 10(c), S keeps
rewinding A until the received coin == coin∗. Furthermore, if A aborts or misbehaves, S rewinds A
back to the start of this step. Finally, S outputs whatever A outputs and terminates.

We will now argument, through a series of hybrids, that the joint distribution of A and the honest
parties in this ideal world is computationally indistinguishable from a real execution of the protocol in the
Fcoin-hybrid model.

Hybrid 1 In this hybrid, we give S full access to the internal state of Fcovert in order to decide the outputs
of the honest parties. Furthermore, instead of sending (corrupted, i) to Fcovert, S now gets to send this
directly to the honest parties. From the viewpoint of the honest parties, S behaves exactly like Fcovert

and thus the two hybrids are indistinguishable.
Hybrid 2 In Step 10, we no longer use Fcoin but instead let S sample a uniformly random λ-bit string r

itself and send this to A. Indistinguishability follows from the uniformly randomness of Fcoin.
Hybrid 3 In this hybrid we combine Steps 9 and 10. Now, instead of asking Fcovert to decide whether to

set flag == detected or flag == undetected when |M | = 1, S sets the flag based on the outcome
coin = r mod k:

9 S receives (flip) from all parties samples r ∈R {0, 1}λ and sends this to A. All parties calculate
coin = r mod k. If |M coin| > 0, S sets flag = detected. Otherwise, set flag = all_honest.

Let j∗ be the single execution in which A cheated. Due to the uniform randomness of r, we get that
coin == j∗ with probability 1

k = ϵ and coin ̸= j∗ with probability 1 − 1
k and thus this hybrid is

indistinguishable from Hybrid 2.
Hybrid 4 In this hybrid, we change Step 13 to no longer let S use different randomness than what was

committed to in execution coin∗, but honestly use the committed randomness in each execution j. Due
to the hiding property of the commitment scheme, this hybrid is indistinguishable from the previous
hybrid.

16

Hybrid 5 In this hybrid, we change Step 13 to no longer rewind A to align coin and coin∗ but simply let
S (which is now in control of Fcovert) give output yicoin as output of each Pi, i ∈ [n] similar to the case
of flag == undetected:

12(b) If flag == undetected or flag == all_honest: Send yicoin as the output of the protocol to
each Pi, i ∈ P, output whatever A outputs and stop the simulation.

Indistinguishability from the previous hybrid follows from the passive security of Πpass.

In Hybrid 5, S does not need rewinding nor access to the ideal functionality Fcovert anymore and thus
this hybrid corresponds to a real-world execution.

Public Verifiability. First, we prove that COMPPVC prevents a selective abort and after that we prove that
the generated certificates will be accepted by the Judge with an overwhelming probability.

Note that an adversary is able to abort the protocol and hence the generation of a certificate before the
coin-toss, but should be unable to prevent the generation of a certificate after it has seen the outcome of the
coin-toss. To this end, observe that every party is asked to distribute the opening information for all of its
seeds in Step 3 of Πcomp and sign the data that is required to create a certificate for every execution in [k] in
Step 4. Both of these happen before the coin-toss is even performed. At this point the adversary can thus not
base its decision to cheat on the outcome of the coin toss. Cheating at this point means the adversary either
distributes incorrect shares for (some of) its seed openings or distributes an incorrect signature for (some of)
the datas. If any of these two happens, the other parties can detect it by the verifiability of the PVSS (Step
1 of Πopen and the signature scheme (Step 4 of Πcomp) before the coin toss. If a party distributes incorrect
shares, this can be seen by anyone and thus public verifiability of this cheating attempt is easily obtained.
If any of the signature verifications fail, the parties simply abort, which is accepted as explained earlier.

On the other hand, if verifications for all the shares for all of the seed openings succeeded, and valid
signatures for all of the datas have been received by all the parties, the honest parties are guaranteed to be
able to generate a certificate if they detect cheating. To see this, observe that Πcoin gives all the parties the
outcome of the coin toss at the same time. After that, the parties either obtain the correct seed openings
from all the other parties (i) directly (optimistic case) or (ii) can reconstruct the secret from the earlier
distributed shares (pessimistic case). To see why (ii) holds, we look at the properties of the PVSS. Since
the PVSS satisfies the correctness property, we are guaranteed that since the verification of the distributed
shares succeeded, any reconstructed seed will always be the one that was originally distributed, except with
negligible probability. Furthermore, this means that if a party correctly decrypts its share and publishes the
corresponding proof, any honest party will accept this share. Due to the soundness property, we are also
guaranteed that a subset of t+1 of valid shares is guaranteed be able to reconstruct the original secret. Since
we assume an honest majority, we are guaranteed that at least t+1 parties successfully decrypt and publish
a proof in Step (3) of Πreconstruct. After that, we are guaranteed that a party missing a seed opening obtains
at least t+1 valid shares and is thus able to reconstruct the original seed opening successfully. On the other
hand, the adversary is unable to reconstruct the seed openings belonging to coin since this requires at least
1 share of an honest participant. A seed opening dlm and signed data σl

m are enough to create a certificate
if party Pl, l ∈ [n] is detected to have cheated in execution m ∈ [k].

Now, it remains to show that if an honest party Pi outputs cert when it detects cheating by another
party Pj , then the Judge outputs pkj except with negligible probability. To prove this, we show it for the
four types of certificate separately:

invs If an honest party outputs an invalid sharing certificate, this is because the PVSS.Verify method
failed for some share for some seed opening of a party Pl for some execution m. Since the corresponding
proof dprooflm has been signed directly in σl

m and the PVSS is publicly verifiable, the Judge can check
the validity of the signature and whether the verification indeed fails.

invo1 If an honest party outputs an invalid opening (1) certificate, this is because for some party Pl

and some execution m, the opening information dlm received indirectly via the shares {Ej(dj)
(l,m)}j∈[n]

17

is inconsistent with the commitment clm. This clm has been signed directly in σl
m while dlm has been

obtained via the PVSS. Using the publicly verifiable dprooflm, the Judge can verify that the distribution
was done correctly and due to the signature, Pl cannot claim to have distributed a different seed. Using
the rproofj(l,m)s and the corresponding dj for j ∈ [n], the Judge can find at least t+1 valid shares, which

are guaranteed to reconstruct the originally distributed dlm. Now, the Judge can simply verify that the
opening information dlm is indeed inconsistent with clm.

invo2 If an honest party outputs an invalid opening (2) certificate, this is because for some party Pl and some
execution m, the opening information dlm received directly from Pl is inconsistent with the commitment
clm. This clm has been signed directly in σl

m while dlm has been signed in ϕl
m. The Judge can simply check

the validity of the signatures and whether clm and dlm are indeed inconsistent.
dev Finally, if an honest party outputs a deviation certificate, this means that for some execution m ∈

[k]\coin ofΠpass, the honest party has detected cheating. Let Pl be the first party to send an inconsistent

message in transj . The Judge can open all the private seed shares for this execution as seedj(m,priv) ←−
Open(cjm, djm) for j ∈ [n] and compute the seeds that should have been used by all the parties as an honest
party does. After that, the Judge can simulate the execution as well to obtain trans′m. Now, transj has
been signed directly in σl

m and dlm either directly via ϕl
m or indirectly via σl

m (optimistic or pessimistic
respectively). Therefore, if transm == trans′m and Pm is also the first party to send an inconsistent
message in trans′m, the Judge knows Pm must have cheated. Note that cheating in the input-independent
setting simply means a party used randomness that was inconsistent with its randomness seed. Since in
σl
m, party Pm signed the commitment to its own seed opening clm, there is no way for Pm to somehow

claim to have used a different randomness seed.

Defamation-freeness. Recall that in order for a protocol to have defamation-freeness, it should be impossible
for an adversary to craft a certificate that incriminates an honest party successfully (i.e., such that the Judge
accepts it), except with negligible probability. To prove that our compiler has this, we will show that if an
adversary would be able to craft such a certificate incriminating an honest party Pi, this contradicts the
security of either the commitment scheme, the PVSS or the signature scheme. We do this for the four types
of certificates separately.

invs If the Judge accepts an invalid sharing certificate this means that for some seed opening dim of an
honest party Pi in execution m ∈ [k],

PVSS.Verify(dproofim, Eh(dh)
(l,m)
h∈[n]) = ⊥

. Since Pi would only honestly publish the proof as well as the encrypted shares, this means that the
correctness of the PVSS should be broken which contradicts the security assumptions from theorem 1.

invo1 If the Judge accepts an invalid opening (1) certificate, this means that for some seed commitment c′im
sent by an honest Pi and opening d′im reconstructed via the PVSS, Open(c′im, d′im) = ⊥. Note that c′im has
been signed in σ′i

m while d′im has been obtained via the PVSS. An honest party Pi would only distribute
the correct seed opening with the PVSS and a successful reconstruction should therefore always lead to
the correct seed opening unless the soundness of the PVSS is broken. Furthermore, an honest party Pi

only signs the commitment and openings that he received from the seed generation protocol. Therefore,
either c′im and d′im must be correct or an adversary must be able to break the existential unforgeability of
the signature scheme. Both of these contradict the security assumptions from theorem 1.

invo2 If the Judge accepts an invalid opening (2) certificate, this means that for some seed commitment
c′im and opening d′im sent by an honest Pi, Open(c

′i
m, d′im) = ⊥. Note that c′im has been signed in σ′i

m while
d′im has been signed in ϕ′i

m. Now, an honest party Pi only signs the commitment and openings that he
received from the seed generation protocol. Therefore, in order for an adversary to make the opening fail,
it must be able to break the existential unforgeability of the signature scheme, contradicting the security
assumptions from theorem 1. Otherwise, c′im and d′im must be correct.

dev Finally if the Judge accepts a deviation certificate, this means that the certificate must contain a
transcript trans′m for an execution m signed by Pi in σi

m where Pi is the first to send a message that

18

Step Comp. Complexity

Distribution n2+3n+4
2

· k
Verification (n

2

2
+ 4n) · (kn− k)

Decryption 3 ·m
Reconstruction (4 · n+ n

2
) · e

Table 1: Computation complexity as number of
modular exponentiations.

Step Comm. Complexity

Distribution k · (n
2
+ 2n+ 1)

Opening 2 · k
Reconstruction 2 ·m

Table 2: Communication complexity as number
of field elements communicated per party.

is inconsistent with its randomness seed seedim. However, since Pi is honest, he will follow the protocol
honestly, this means that he will behave honestly in execution m and only sign the transcript honestly.
If the signature σi

m on trans′m is valid but the transcript does blame Pi, this means that the adversary
must be able to break the existential unforgeability of the signature scheme, contradicting the security
assumptions. On the other hand, it could be that the transcript and the signature are valid, but that
somehow the adversary can convince the Judge that another randomness seed seed′im ̸= seedim should
have been used by Pi. The seed is obtained via the pair (cim, dim). Since these have also been signed in
σi
m, this again means that the adversary must be able to forge a signature. Finally, the adversary could

find another d′im such that Open(cim, d′im) is valid, but in that case the adversary has found two messages
m and m′ such that Com(m) == Com(m′), which means it must be able to break the binding property of
the commitment scheme. All of this contradicts the security assumptions from theorem 1.

5 Computation and Communication Complexity

In this section, we analyze the computation and communication complexity of our compiler. For concreteness,
we assume that the PVSS used for our compiler is the scheme presented by Schoenmakers [18], but stress
that our compiler will work with any PVSS satisfying Definition 3. As our compiler simply executes the
passively secure protocol k times while signing the messages, the computational complexity of the protocol
execution phase is roughly k times the passively secure protocol. Note that the k executions are independent
of each other and can therefore fully be executed in parallel, preserving the round complexity of the passively
secure protocol. In terms of communication, each party needs to be able to see each message sent during
the protocol execution. Therefore, the communication complexity of the compiler increases with a factor of
n− 1. Note that this is inherent to all currently known constructions for compilers in our setting [10,12,19].

The main difference in terms of complexity between our work and previous works lies in the execution
opening and verification phase, where the goal is to open k − 1 executions while preventing a detection-
dependent abort. The total number of exponentiations required to distribute the seed openings of k executions
with n parties and verify the distributed seeds of all the parties is given in Table 1. Furthermore, the number
of exponentiations required for decryption and reconstruction in case of an aborting adversary is given as
well. Here, m is the amount of missing messages in total while e is the amount of missing seeds of a single
party. The total number of group elements communicated via Fbb in the execution opening phase of our
protocol is given in Table 2. In an honest execution, every party uses the PVSS to distribute its seeds and
then simply opens its seeds. If a party refuses to do this, for m distinct seeds missing, the parties need to
publish their decrypted shares together with a proof of correct decryption.

5.1 Comparison with Prior Work

In contrast to our approach, the deterrence rate ϵ of [10] is inversely proportional to the number of parties
n. For this reason, we focus on comparing our construction with the TLP approach of Faust et al.[12].
More specifically, we focus on comparing the execution opening and verification phase. In our case, this is
realized by Πopen and possibly Πreconstruct while the work of [12] uses a maliciously secure TLP generation
functionality for this.

19

Note that their puzzle generation does not include the solving of a TLP. The puzzle generation always
has to be executed but the parties only need to solve a TLP in case of an abort. They presents an estimation
for the total number of AND gates for the circuit of this puzzle generation functionality. This circuit has
a linear complexity in the number of parties, while our seed distribution introduces a cubic computational
complexity. However, the complexity of their functionality is dependent on the length of the RSA modulus N
in the terms: 192|N |3+112|N |2+22|N |. To illustrate the effects of both complexities, we present a concrete
example. Take an honest execution of the protocol with n = 5, t = 2, k = 2 and thus ϵ = 1

2 . With a security
parameter of 128 bits, our approach costs approximately 108 bit operations while the circuit of [12] requires
in the order of 1012 AND gates to be maliciously evaluated for an RSA modulus of 2048 bits.

In terms of communication complexity, our solution is linearly dependent on the number of parties and
in the above scenario, the opening phase would require around 31 group elements to be communicated via
Fbb. Assuming Fbb is naively implemented using an echo-broadcast protocol, this would require each party
to send (n−1)2+3n+3 messages per group element. In the above example, this would mean each party has
to communicate around 8000 bytes with 64-bit messages. Instantiating [12] with the actively secure protocol
of Yang et al. [22] requires 193 bytes per party per multiplication triple. This would thus require in the order
of 1014 bytes to be communicated. Altogether, we expect our construction to outperform the earlier works
in practical scenarios.

Acknowledgements The research activities that led to this result were funded by ABN AMRO, CWI, De
Volksbank, Rabobank, TMNL, PPS-surcharge for Research and Innovation of the Dutch Ministry of Eco-
nomic Affairs and Climate Policy, TNO’s Appl.AI programme and the Vraaggestuurd Programma Cyber
Security & Resilience, part of the Dutch Top Sector High Tech Systems and Materials program.

References

1. Asharov, G., Orlandi, C.: Calling out cheaters: Covert security with public verifiability. In: ASIACRYPT 2012.
pp. 681–698 (2012)

2. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for realistic adversaries. In:
TCC 2007. pp. 137–156 (2007)

3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: CRYPTO’91. pp. 420–432 (1992)
4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM

STOC. pp. 503–513 (1990)
5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant dis-

tributed computation (extended abstract). In: 20th ACM STOC. pp. 1–10 (1988)
6. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Efficient fully secure computation via distributed zero-knowledge proofs.

In: ASIACRYPT 2020, Part III. pp. 244–276 (2020)
7. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the

presence of faults (extended abstract). In: 26th FOCS. pp. 383–395 (1985)
8. Damg̊ard, I., Geisler, M., Nielsen, J.B.: From passive to covert security at low cost. In: TCC 2010. pp. 128–145

(2010)
9. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for

dishonest majority - or: Breaking the SPDZ limits. In: ESORICS 2013. pp. 1–18 (2013)
10. Damg̊ard, I., Orlandi, C., Simkin, M.: Black-box transformations from passive to covert security with public

verifiability. In: CRYPTO 2020, Part II. pp. 647–676 (2020)
11. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomorphic en-

cryption. In: CRYPTO 2012. pp. 643–662 (2012)
12. Faust, S., Hazay, C., Kretzler, D., Schlosser, B.: Generic compiler for publicly verifiable covert multi-party com-

putation. In: EUROCRYPT 2021, Part II. pp. 782–811 (2021)
13. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation against covert adversaries.

In: EUROCRYPT 2008. pp. 289–306 (2008)
14. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest majority MPC. In: CRYPTO 2020,

Part II. pp. 618–646 (2020)
15. Hong, C., Katz, J., Kolesnikov, V., Lu, W., Wang, X.: Covert security with public verifiability: Faster, leaner,

and simpler. In: EUROCRYPT 2019, Part III. pp. 97–121 (2019)

20

16. Kolesnikov, V., Malozemoff, A.J.: Public verifiability in the covert model (almost) for free. In: ASIACRYPT 2015,
Part II. pp. 210–235 (2015)

17. Reiter, M.K.: Secure agreement protocols: Reliable and atomic group multicast in rampart. In: ACM CCS 94.
pp. 68–80 (1994)

18. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its application to electronic. In:
CRYPTO’99. pp. 148–164 (1999)

19. Scholl, P., Simkin, M., Siniscalchi, L.: Multiparty computation with covert security and public verifiability. IACR
Cryptol. ePrint Arch. p. 366 (2021)

20. Shamir, A.: How to share a secret. Communications of the Association for Computing Machinery pp. 612–613
(1979)

21. Stadler, M.: Publicly verifiable secret sharing. In: EUROCRYPT’96. pp. 190–199 (1996)
22. Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple generation and authenticated garbling.

In: ACM CCS 2020. pp. 1627–1646 (2020)

21

	Efficient Compiler to Covert Security with Public Verifiability for Honest Majority MPC

