
Attacks Against White-Box ECDSA and
Discussion of Countermeasures

A Report on the WhibOx Contest 2021

Sven Bauer1 , Hermann Drexler1, Max Gebhardt2, Dominik Klein2 ,
Friederike Laus2 and Johannes Mittmann2

1 Giesecke+Devrient Mobile Security GmbH, Munich, Germany
firstname.lastname@gi-de.com

2 Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn, Germany
firstname.lastname@bsi.bund.de

Abstract. This paper deals with white-box implementations of the Elliptic Curve
Digital Signature Algorithm (ECDSA): First, we consider attack paths to break such
implementations. In particular, we provide a systematic overview of various fault
attacks, to which ECDSA white-box implementations are especially susceptible. Then,
we propose different mathematical countermeasures, mainly based on masking/blinding
of sensitive variables, in order to prevent or at least make such attacks more difficult.
We also briefly mention some typical implementational countermeasures and their
challenges in the ECDSA white-box scenario. Our work has been initiated by the
CHES challenge WhibOx Contest 2021, which consisted of designing and breaking
white-box ECDSA implementations, so called challenges. We illustrate our results
and findings by means of the submitted challenges and provide a comprehensive
overview which challenge could be solved in which way. Furthermore, we analyze
selected challenges in more details.
Keywords: White-box cryptography · Deterministic ECDSA · Computation analysis
· Fault analysis · Countermeasures · CHES Challenge · WhibOx Contest 2021

1 Introduction
In a nutshell, white-box cryptography is about finding software implementations of
cryptographic algorithms that embed a secret key in such a way that it is impossible
to extract this secret key from the software. There have been a number of approaches
to capturing this notion formally, see, for example, [DLPR14, ABABM20]. White-box
cryptography is nowadays an active area of research with various practical applications
such as digital rights management, software licensing, mobile payment systems, mobile
contract signing or authentication tokens without the need for special secure hardware
that are used for instance in the context of cryptocurrencies and blockchain technologies.
There are several vendors offering white-box cryptography libraries with support for a
range of cryptographic algorithms.

Starting with the seminal work [CEJO02, CEJvO03], numerous white-box designs of
symmetric algorithms, in particular DES and AES, have been proposed – and subsequently
been broken: The rough idea behind the constructions in [CEJO02, CEJvO03] is to
implement a cipher as a network of precomputed and randomly encoded lookup tables,
such that an adversary is confused by seemingly useless intermediate values in the memory.
However, the underlying techniques were soon broken [JBF02, BGEC04], which motivated
further approaches [LN05, BCD06, XL09, Kar10]. But also these proposals were eventually

https://orcid.org/0000-0003-1882-6110
https://orcid.org/0000-0001-8174-7445
https://orcid.org/0000-0003-3709-0292
https://orcid.org/0000-0002-9307-1494
firstname.lastname@gi-de.com
firstname.lastname@bsi.bund.de

2 Attacks Against White-Box ECDSA and Discussion of Countermeasures

shown to be vulnerable as well [GMQ07, WMGP07, MWP10, MRP12, DMRP13, LRM+13,
LR13], and the design of secure white-box implementations remains a cat-and-mouse game.
Besides practical designs, only few attempts to a formalization of white-box cryptography
were proposed so far. The authors of [SWP09] showed how security notions from black-box
models [BGI+01] can be adapted to the white-box setting, while [DLPR14] formalized the
basic unbreakability property and introduced several other notions such as one-wayness,
incompressibility and traceability for symmetric ciphers.

At the same time, white-box implementations found different practical applications and
thereby raised increasing industrial interest. To summarize the academic and industrial
experiences in this field, the ECRYPT CSA project organized a WhibOx workshop [Cry16]
in 2016. At this occasion, the idea arose to organize a contest on white-box cryptography
to give a playground for “researchers and practitioners to confront their (secretly designed)
white-box implementations to state-of-the-art attackers”. As a consequence, one year later
the so-called WhibOx Contest was launched by ECRYPT CSA as the CHES 2017 capture
the flag challenge [CSA17], and given the success of the first edition, a second edition
organized by CryptoExperts and Cybercrypt followed as the CHES 2019 capture the flag
challenge [CC19].

The competitions have not missed their target, so that for getting an overview of
current state-of-the-art white-box implementations of symmetric ciphers, one might have
a look at the papers that the winners of the previous editions published subsequent to
the WhibOx Contests: In [BU18], the authors of the winning submission of the WhibOx
Contest 2017 present their considerations regarding the effectiveness of different masking
schemes, while in [GPRW19] and [GRW20], the successful breakers of the WhibOx Contest
2019 summarize common white-box countermeasures and explain their approach to break
the winning implementations.

While numerous academic works address symmetric white-box cryptography, there
are up to now only few publications targeting asymmetric cryptographic mechanisms
in a white-box setting: In [FHW+19] and [ZHH+20], the authors propose a white-box
implementation of Shamir’s identity-based signature scheme and of the identity-based
signature scheme in the IEEE P1363 standard, respectively. More generally, [Bar20b,
Bar20a] proposes a white-box design for an asymmetric lattice based scheme by combining
techniques used in AES white-box designs (lookup tables) with different homomorphic
encodings and additional countermeasures. The recent paper [ZBJ20] considers a white-box
implementation of ECDSA. However, the authors of [ZBJ20] assume, among other things,
that a trusted third party and a cloud server are available, which are strong assumptions
that do most likely not meet reality. [DGH21] gives an overview of some of the challenges
when attempting to defend an ECDSA implementation against a white-box attacker and
suggests some countermeasures. The authors of [GG22] present a concrete white-box
implementation of the Hidden Field Equation (HFE) signature algorithm for a specific
set of internal polynomials. Furthermore, they formulate more precise definitions of the
concepts unbreakability and incompressibility

To stimulate the research in the field of asymmetric white-box cryptography, a third
edition of the WhibOx Contest took place prior to the (virtual) CHES conference in
September 2021. As the previous editions, it consisted of a capture the flag challenge
with two parts: The first part (“designer”) was to design a white-box implementation
computing an ECDSA signature, where the underlying elliptic curve was the NIST P-256
curve [KG13]. The signature algorithm should be deterministic with a freely chosen nonce
derivation mechanism. In the second part (“attacker”), the participants were invited to
break the submitted implementations by extracting their hard-coded signing key. In total,
there were 83 registered users, 97 submitted challenges and 898 successful breaks.1

1Sven Bauer and Hermann Drexler won as team bananaramadama the attacker challenge; Max Gebhardt,
Dominik Klein, Friederike Laus and Johannes Mittmann won together with further colleagues Tobias

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 3

Challenges had to be submitted as C source code and had to comply with several
competition rules, among them several requirements on execution time, the code size
and the RAM usage of the compiled executable. No external dependencies were allowed
except for usage of the GNU Multiple Precision Arithmetic Library (GMP).2 The exact
rules of the competition can be found on the WhibOx Contest 2021 website.3 The fact
that attackers had C source code of the implementation is of course a major difference
to attacking a real-world application, where, for example, the code for ECDSA would be
compiled into a larger application. However, the organizers of the competition apparently
wanted to focus on the mathematical aspect of white-box cryptography and avoid the
challenges becoming exercises in reversing binaries.

Based on the previously mentioned criteria, the authors of a challenge earned strawberries
according to a performance score that depended on the execution time, the code size
and the RAM usage of the executable. Challenges that were either faster, smaller or less
memory-consuming got a higher performance score. The amount of strawberries increased
quadratically with time as long as the challenge remained unbroken, and it symmetrically
decreased back to zero after the first break. The designers of the challenge were awarded
with the number of strawberries reached at the time the challenge was broken.

Attackers could gain bananas for the successful break of a challenge; they obtained the
number of bananas corresponding to the number of strawberries the challenge had at the
time the attacker broke it. In particular, the attacker that first broke a challenge got the
highest number of bananas for this challenge, while no bananas were awarded once the
strawberry score of a challenge had dropped to zero some time after it was first broken.

The designer of the challenge with the highest strawberry score won the design part of
the challenge and similarly, the attacker with the highest banana score won the attack part.
Note that in both categories, strawberries respective bananas of different challenges were
not accumulated, but their maximum was taken, so it was not advantageous so submit or
break as many challenges as possible.

These special rules had a number of consequences:

• New challenges were not published at a fixed time each day, but as soon as possible
after they passed the server test checking the fulfillment of the performance constraints.
Thus, depending on the time zone they live in, some attackers might have had a
significant advantage for solving a challenge compared to others, and similarly, some
designer simply might have had luck since they posted their challenge (possibly on
purpose) at a time when presumably they assumed most of the attackers to sleep
(considering e.g. the typical distribution of the CHES participants across the world).
These time differences are even more significant since no challenge survived longer
than 33 hours, so that a difference of several hours could possibly have made a large
difference in the final ranking.

• Since bananas were not accumulated across different challenges, it was not honored
if an attacker tried to break as many challenges as possible, thereby showing power
and flexibility. For the same reason, the number of total breaks of a challenge is not
necessarily a measure of its strength, although it probably gives a first hint.

• An attacker might have held back a successful attack before submitting it (either
until the challenge had reached a certain number of strawberries or in general as long
as possible) in order to gain more bananas. This of course comes along with the risk
that someone else submits a solution, in which case however one could directly submit

Damm, Aron Gohr, Dennis Kügler and Vivien Thiel as team auguste the second prize in both categories.
After the end of the contest, the two teams got in touch with each other, which resulted in this paper.

2https://gmplib.org/
3https://whibox.io/contests/2021/rules

https://gmplib.org/
https://whibox.io/contests/2021/rules

4 Attacks Against White-Box ECDSA and Discussion of Countermeasures

afterwards and by doing so get the same number of bananas (time was measured
only with a resolution up to minutes).

• Overall, the computational constraints, in particular the time constraint, seemed
to favor the attackers, as they made strong computational countermeasures and
obfuscation strategies rather impossible. Furthermore, the system that validated
whether the constraints are fulfilled, seemed to behave non-deterministically, potentially
depending on the server load.

All in all, these aspects make an objective assessment of the strength of the submitted
challenges as well as of the power of an attacker based on the strawberry score, respectively
the banana score, quite difficult, although a rough distinction between challenges that were
rather easy to break (many breaks within a short period after the publication) and harder
challenges (longer survival and potentially fewer breaks) can be made. It is therefore one
of the main intentions of this paper to provide a comprehensive analysis of the given task –
a white-box implementation of ECDSA – and to apply this analysis in a second step to the
submitted implementations. To this aim, we first present a systematic overview of possible
computation and fault attacks, to which ECDSA is particularly susceptible. Then, in a
second step, we propose some countermeasures and obfuscation techniques that aim at
preventing the presented attacks. Finally, we provide a detailed evaluation which of the
submissions can be attacked by which kind of attack and analyze selected challenges in
more details.

The recent publication [BBD+22] also analyzes the results of the WhibOx Contest
2021. We describe additional attacks and show how to break some challenges with simpler
methods than the ones presented in [BBD+22]. To the best of our knowledge, our work is
also the first to name at least one successful automated attack for each challenge in the
WhibOx Contest 2021 (see Table 2). Interestingly, [BBD+22, Table 5] gives the secret
keys for challenges #305 and #346 but does not state an attack vector.

The outline of the remaining paper is as follows: First, we introduce in Section 2
preliminaries on ECDSA on the curve P-256 and on signature equations. In Section 3 we
analyze which kind of information can be revealed from ECDSA by means of black-box
and computation analysis, before different types of fault attacks, to which deterministic
signature schemes such as dECDSA are particularly susceptible, are considered in Section 4.
Next, we give in Section 5 an overview of which challenges were vulnerable to which attacks
and provide an in-depth analysis of selected challenges. In Section 6, three classes of
countermeasures are discussed, before finally conclusions and an outline of future work are
drawn in Section 7.

2 Preliminaries

2.1 Deterministic ECDSA on P-256

For the sake of completeness and to introduce the used notation, we briefly recall the
specification of ECDSA on the curve P-256 (see [KG13]). It is defined over a finite field
Fp with characteristic

p = 2256 − 2224 + 2192 + 296 − 1
= FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF FFFFFFFF16 .

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 5

The elliptic curve P-256 is defined by its Weierstrass form y2 = x3 + ax + b with the
parameters

a = p− 3
= FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF FFFFFFFF FFFFFFFC16 ,

b = 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6 3BCE3C3E 27D2604B16 .

The base point G with coordinates

Gx = 6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0 F4A13945 D898C29616 ,

Gy = 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE CBB64068 37BF51F516

generates a cyclic subgroup of prime order

q = FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2 FC63255116 .

An ECDSA key pair consists of a private key d ∈ F∗q and the public key P = d G. The
ECDSA specification [KG13] uses a random ephemeral key in the signature generation
process, so even signing the same message twice with the same key will, with overwhelming
probability, give two different signatures.

The white box model was given by the rules of the competition: An implementation of
ECDSA in plain C had to be provided that takes a hash as input and generates a valid
ECDSA-256 signature. An attacker had full access to the C source code and was tasked to
extract the private signing key. This implies that he can change the source code at will,
compile it and execute or debug the binary. He can also read and modify arbitrary memory
locations during execution. No calls to external libraries (except GMP for accelerating
big-number arithmetic) were allowed. These rules imply that there is no external source
of entropy (except for the input). Other than this, there is no difference to a standard
ECDSA.

We model the ephemeral key derivation mechanism as a deterministic random number
generator (seed, rand), where seed : {0, 1}256 → Z and rand : Z → F∗q × Z are functions for
some finite set Z of internal states.

A deterministic version of ECDSA is standardized in RFC 6979 [Por13], where the
ephemeral key derivation mechanism uses the secret key d in addition to the message
hash h for seeding. In our model, we consider the ephemeral key derivation mechanism
itself as a secret, but it could also be a public mechanism parameterized by the secret
key d or another secret. With this model, Algorithm 1 describes a deterministic version of
ECDSA signature generation and signing the same message twice with the same key with
Algorithm 1 will give the same signature twice.

The functions os2int and int2os32 used in Algorithm 1 denote conversion functions
between octet strings in {0, 1}256 and integers in {0, . . . , 2256 − 1}. Even though we have

os2int(int2os32(0)) = os2int(int2os32(q)) (mod q) ,

for instance, we will usually identify the octet strings hos and (ros, sos) with their counterparts
h ∈ Fq and (r, s) ∈ F2

q throughout this paper, if a distinction is not relevant for the
discussion.

The signature verification process detailed in Algorithm 2 is identical for ECDSA
signatures generated with a truly random ephemeral key and for deterministic ones.
Remark 1. The interface of Algorithm 1 enables attackers to perform chosen-hash attacks.
Remark 2. Some challenges tried to use entropy input. There were two types of “illegal“
sources of non-determinism used in the WhibOx Contest 2021:

6 Attacks Against White-Box ECDSA and Discussion of Countermeasures

(a) The function time() of the C standard library was used by 29 challenges, see Table 2
in Section 5.1 under the identifier ND1. These challenges can easily be derandomized
by patching the call to time() with a constant function.

(b) Six challenges used uninitialized variables, see Table 2 in Section 5.1 under the identifier
ND2. They can be derandomized using QEMU user-mode emulation.4

Using the described derandomization methods, we may assume for the rest of the paper
that all challenges are deterministic.

Algorithm 1: White-Box dECDSA Signature Generation on P-256.

Embedded Secrets: An ephemeral key derivation mechanism (seed, rand) and a
private key d ∈ F∗q .

Input: A message hash hos ∈ {0, 1}256.
Output: The signature (ros, sos) ∈ {0, 1}256 × {0, 1}256 for hos.

S1. Set h← os2int(hos) and set z ← seed(hos).

S2. Set (k, z)← rand(z).

S3. Set r ←
(
(k G)x mod p

)
mod q.

S4. Set s← k−1(rd + h) mod q.

S5. If r = 0 or s = 0, go to step S2, otherwise return
(
int2os32(r), int2os32(s)

)
.

Algorithm 2: ECDSA Signature Verification on P-256.

Input: A message hash hos ∈ {0, 1}256, a signature (ros, sos) ∈ {0, 1}256×{0, 1}256,
and a public key Pos = (Pos,x, Pos,y) ∈ {0, 1}256 × {0, 1}256.

Output: The symbol > (true) if the signature is correct and ⊥ (false) otherwise.

V1. Set h← os2int(hos), set r ← os2int(ros), set s← os2int(sos), and
set P ←

(
os2int(Pos,x), os2int(Pos,y)

)
.

If r /∈ F∗q or s /∈ F∗q or P is not on the elliptic curve P-256, return ⊥ and stop.

V2. Set u← s−1r mod q, set v ← s−1h mod q, and set Q← u P + v G.
If Q = O, return ⊥ and stop.

V3. If r = (Qx mod p) mod q, return >, otherwise return ⊥.

4https://www.qemu.org/

https://www.qemu.org/

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 7

2.2 Signature Equations
A signature (r, s) for a message hash h gives rise to the Fq-linear signature equation

r d− s k = −h (1)

with unknown variables d and k. More generally, signatures (r1, s1), . . . , (rm, sm) for
message hashes h1, . . . , hm give rise to the Fq-linear system

r1 d− s1 k1 = − h1

...
rm d− sm km = − hm

(2)

of m equations with unknown variables d and k1, . . . , km. Since this linear system is
underdetermined, it cannot efficiently be solved for the private key d without additional
information on d or k1, . . . , km. An attacker may acquire that additional information
through black-box analysis, computation analysis or fault analysis, which we consider in
Section 3 and Section 4.

3 Black-Box and Computation Analysis
In this section we consider black-box and computation analysis. Black-box attacks just
exploit the signatures generated on chosen inputs. Black-box attacks can only be successful
against implementations with weak ephemeral key derivation mechanisms or serious
implementation errors.

Computation analysis on the other hand may exploit any information that is processed
during program execution such as memory contents, accessed memory addresses, function
calls, etc. Differential computation analysis was introduced in [BHMT16] as a software
analogue to differential power analysis of hardware implementations.

3.1 Explicit Information on Intermediate Values
An unprotected implementation of Algorithm 1 contains several sensitive intermediate
values in Fq. First of all, the private key d itself is embedded in the program. The
intermediate values rd, rd + h, k, and k−1 are equally sensitive, since, given an input
hash h with corresponding signature (r, s), the private key d can easily be computed from
any of those values either directly or via the signature equation (1). Hence, a candidate
for those sensitive variables yields a candidate d̃ for d, which can be checked by testing
whether d̃ G equals the public key P . Note that if the public key P would not be available,
the candidate public key P̃ := d̃ G could be verified against a few valid signatures using
Algorithm 2 instead.

Since k is used in the scalar multiplication k G in step S3 of Algorithm 1, its bits can
also be revealed through the sequence of elliptic curve operations or branching in the scalar
multiplication.

3.2 Implicit Information on Intermediate Values
In this section we consider implicit information on intermediate values. As explained in
Remark 2, implementations could easily be forced to use the message hash as their only
source of entropy. In this case, weaknesses in the ephemeral key derivation mechanism
(seed, rand) in Algorithm 1 can be exploited. A heuristic method to detect implementations
with this weakness is to request signatures of values h with low Hamming weight or, more
generally, with pairwise small Hamming distance.

8 Attacks Against White-Box ECDSA and Discussion of Countermeasures

Ephemeral key collisions. The most obvious weakness is a re-use of an ephemeral key
k for different message hashes h. This ephemeral key collision is easily spotted because
in this case there are two different message hashes h1, h2 with signatures (r1, s1), (r2, s2),
respectively, and r1 = r2. The equation system (2) then simplifies to

r1 d− s1 k = − h1 ,

r2 d− s2 k = − h2 ,
(3)

which can easily be solved for k and the private key d.
The reference implementation provided by the organizers of the WhibOx Contest 2021

could be broken by this attack as the example code signed the hash values 0 and 1 with the
same ephemeral key. Some further challenges could be broken exactly the same way, i.e.
an ephemeral key collision occurred for the same values h1 = 0 and h2 = 1. Presumably,
these challenges were obfuscated derivatives of the reference implementation.

In total, 33 out of the 97 challenges of the WhibOx Contest 2021 were susceptible to
ephemeral key collisions, see Table 2 in Section 5.1 under the identifiers C1 and C2. The
identifier C1 denotes challenges with a fixed ephemeral key and C2 denotes challenges with
colliding ephemeral keys for the special inputs h1 = 0 and h2 = 1.

Cross-challenge ephemeral key collisions. For some groups of challenges, the same hash
value resulted in the same ephemeral key – for different challenges. In some cases this
may have occurred because the same author published two challenges that used the
same functions seed and rand in their implementations of Algorithm 1. In this case, two
challenges can be attacked simultaneously. The equations (2) result in two systems of
equations

r1 d1 − s1 k1 = − h1 ,

r2 d1 − s2 k2 = − h2 ,

r3 d2 − s3 k1 = − h1 ,

r4 d2 − s4 k2 = − h2 ,

(4)

which can be solved together for k1, k2 and the two private keys d1, d2.
Among the challenges of the WhibOx Contest 2021, we identified six groups of challenges

with mutually colliding ephemeral keys. In total, 40 out of 97 challenges were affected by
this attack, see Table 2 in Section 5.1 under the identifiers XC1, . . . , XC6. The largest group
is labeled by XC1 and contains (amongst others) challenges derived from the reference
implementation. We also used special inputs h1 = 0 and h2 = 1, causing some groups with
non-identical ephemeral key derivation mechanisms to merge.

Ephemeral key differential collisions. Another type of weak entropy extraction produces
related ephemeral keys. Suppose for four pairwise different message hashes h1, h2, h3, h4,
the entropy extractor produces ephemeral keys k1, k2 = k1 + t, k3, k4 = k3 + t, respectively,
so that k2−k1 = k4−k3 = t. We will refer to this as an ephemeral key differential collision.
In this case, equation system (2) turns into

r1 d− s1 k1 = − h1 ,

r2 d− s2 k1 − s2 t = − h2 ,

r3 d − s3 k3 = − h3 ,

r4 d − s4 k3 − s4 t = − h4 ,

(5)

which can easily be solved for k1, k3, t and the private key d.
This situation occurs if the entropy extraction process is such that some bits of the

ephemeral key k only depend on a proper subset of the bits of the input hash value h.

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 9

More precisely, let us assume the set of input hash values splits as U × V ×W with

U = {0, 1}i, V = {0, 1}j and W = {0, 1}256−i−j

for some i > 0, j > 0 with i + j ≤ 256 and there are functions

f : U ×W → Fq, g : V ×W → Fq

such that the derivation of the ephemeral key k from the input hash value h can be written
as

k = f(hu, hw) + g(hv, hw)

with h = (hu, hv, hw) ∈ U × V ×W . If the attacker manages to find four hash values with
h1 = (hu,1, hv,1, hw), h2 = (hu,1, hv,2, hw), h3 = (hu,2, hv,1, hw), h4 = (hu,2, hv,2, hw), then
the corresponding ephemeral keys are

k1 = f(hu,1, hw) + g(hv,1, hw) , k2 = f(hu,1, hw) + g(hv,2, hw) ,

k3 = f(hu,2, hw) + g(hv,1, hw) , k4 = f(hu,2, hw) + g(hv,2, hw) .

Now, the attacker can use (5) with t = g(hv,2, hw)− g(hv,1, hw). To test for and exploit
this type of weakness, the attacker signs a fixed hash value h1, the 256 hash values with
exactly one bit in h1 flipped and another 32,640 hash values with bit-flips in exactly two
distinct bit positions in h1. The attacker then groups the hash values and their signatures
into quadruples consisting of the hash value h1, a hash value with a single bit-flip at
position u (this is h2), a hash value with a single bit-flip at position v, v 6= u, and a hash
value with bit-flips in positions u and v (these are h3 and h4). Afterwards, the attacker
solves equation (5) for each of these quadruples and tests whether the resulting private
key candidate d corresponds to the given public key. The attack is successful if u is a bit
index in U and v is a bit index in V . Observe that this attack only works if the attacker
can choose the hash value that is to be signed, rather than choosing the message before it
is hashed.

Using this attack we could solve 49 out of the 97 challenges of the WhibOx Contest
2021, see Table 2 in Section 5.1 under the identifier DC. Note that this includes the
33 challenges susceptible to plain ephemeral key collisions C1 and C2 (in this case, we
have t = 0).

Implicit information from computation analysis. Next, we consider the general situation,
where the attacker obtains coefficients ci,1, . . . , ci,n ∈ Fq such that the ephemeral key ki

for input hash hi is given by

ki = ci,1 `1 + · · ·+ ci,n `n , (6)

where `1, . . . , `n ∈ Fq are values unknown to the attacker. The coefficients ci,j could be
obtained by some hypothesis about the implementation as in the previous attacks in this
section or by computation analysis. Substituting (6) into (2), we obtain the linear system

r1 d− s1c1,1 `1 − · · · − s1c1,n `n = − h1 ,

...
rm d− smcm,1 `1 − · · · − smcm,n `n = − hm ,

(7)

which in general can be solved for d, `1, . . . , `n if m ≥ n + 1.
In Section 5.2.1 and Section 5.2.2 we provide concrete examples of this attack type

using information from source-code and computation analysis, solving six challenges of the
WhibOx Contest 2021.

10 Attacks Against White-Box ECDSA and Discussion of Countermeasures

3.3 Partial Information on Intermediate Values
It is well known that knowledge of a few most or least significant bits of the ephemeral
keys of several ECDSA signatures is sufficient to recover the private key. This can be
accomplished by solving an instance of the Hidden Number Problem [BV96] using lattice
basis reduction [HGS01], [NS03]. In the case of curve P-256, also middle bits can be
efficiently exploited [vdPSY15]. Finally, implicit partial information on ephemeral keys
may be used as well, see [FGR12]. We also refer to the survey [DH20] of methods for
key recovery from various kinds of partial information. These techniques, however, were
not necessary to break the challenges of the WhibOx Contest 2021 (see Section 5), but
successfully applied by a competing team [BBD+22].

Note that partial information on the intermediate values rd mod q and rd + h mod q
can be utilized in the same way as partial information on k, but partial information
on k−1 mod q seems to be more difficult to exploit.

4 Fault Analysis
Deterministic signature schemes such as dECDSA are highly susceptible to fault attacks
(see, e.g., [BP16], [ABF+18], [PSS+18], [RP17], [SB18], [CSC+22]). Consequently, fault
attacks can be mounted against unprotected white-box implementations of dECDSA with
minimal reverse-engineering efforts.

4.1 White-Box Fault Model
White-box implementations can be altered by attackers at will. Therefore, we extend the
term “fault“ to include any kind of modification of a white-box implementation. We refer to
the outputs of a modified dECDSA implementation as faulty signatures. Faulty signatures
can provide information on the secrets embedded in the dECDSA implementation.

In contrast to conventional fault attack settings (e.g. laser fault attacks against hardware
implementations), faults can easily be induced in white-box implementations in a controlled
and deterministic manner. A modified dECDSA implementation yields a deterministic
function that maps given or chosen hash values to faulty signatures.

We consider the following fault model: We assume that an intermediate value v ∈ Fq

computed or stored by Algorithm 1, such as k, k−1, r, d, rd, h, or rd + h, is replaced by
a faulty value e (value fault) or by v + e (differential fault), where e := f(hos) for some
function f : {0, 1}256 → Fq.

In Section 4.2, we revisit a simple fault attack that works for almost any function f
(uncontrolled faults) and requires only one correct/faulty signature pair. Since f is arbitrary,
value faults and differential faults are equivalent in this case. In Section 4.3 and Section 4.4,
we consider fault attacks with value faults and differential faults, respectively, that exploit
collisions of f . Collisions of f can, for instance, easily be found if the image F := f({0, 1}256)
is small. Unlike some previously proposed attacks that require the set F to be known
(controlled faults) or the fault value e to be recovered by computation analysis, our attack
variants are based on collisions of fault values and work without knowledge of f .

As before, we denote the secret key of the white-box implementation by d ∈ F∗q . For a
hash value hi ∈ Fq, we denote the corresponding ephemeral key by ki ∈ F∗q and the correct
signature, computed by the original implementation on input hi, by (rc,i, sc,i) ∈ F∗q × F∗q .
The faulty signature, computed by the modified implementation on input hi, will be
denoted by (rf,i, sf,i) ∈ Fq × Fq, and the corresponding fault value by ei ∈ Fq.

4.2 Simple Fault Attack
Let f : {0, 1}256 → Fq be an arbitrary function.

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 11

Uncontrolled fault in r (faulty r returned). We assume that an uncontrolled fault is
induced in r such that the faulty value of r is returned as part of the faulty signature. In
our fault model, step S3 of Algorithm 1 is replaced by

S3’. Set r ← f(hos).

In particular, we assume that the ephemeral key k computed in step S2 remains unchanged.
This fault attack could by realized by inducing a fault in the elliptic-curve part of the
signature generation algorithm, for instance, by changing the prime p (if used explicitly)
or the reduction modulo p, the curve coefficients a, b (if used explicitly), the base point G,
the point operations, or the scalar multiplication algorithm. This shows that the attack
surface for this fault attack is quite large.

The signature equations (1) of the correct and faulty signature for hi give rise to the
Fq-linear system

rc,i d− sc,i ki = −hi ,

rf,i d− sf,i ki = −hi ,
(8)

which can be solved for d, ki.
This simple fault attack, using only one correct/faulty signature pair, is possible because

the attacker obtains the fault value as first part of the faulty signature and knows that
this value is related to the second part of the signature via the signature equation. In the
following two sections we consider fault attacks in which the fault values are not revealed
to the attacker.

4.3 Collision Fault Attacks
Let f : {0, 1}256 → Fq be a function. We assume that collisions of f can easily be found,
e.g. that collisions occur with high probability for random inputs or that collisions occur
for special inputs such as bit strings of low Hamming weight. This is for instance the case
if the image F := f({0, 1}256) is small or, in particular, if F = {e} is a singleton. The
function f , however, can be unknown.

Value fault in k or k−1. First, we assume that a value fault e = f(hos) is induced in k
or k−1. A value fault in k can happen before or after the computation of r. We model the
first case by replacing step S2 of Algorithm 1 by

S2’. Set (k, z)← rand(z) and set k ← f(hos).

This fault attack could be realized by fixing the input or output of seed in step S1 such
that k becomes constant, but h remains unchanged when used in step S4.

A value fault in k after the computation of r can be modeled by replacing step S4 of
Algorithm 1 by

S4’. Set s← f(hos)−1(rd + h) mod q.

Similarly, a value fault in k−1 can be modeled by replacing step S4 by

S4’. Set s← f(hos)(rd + h) mod q.

These fault attacks could be realized by skipping the multiplication by k−1 in step S4
(special case e = 1).

For a value fault in k, the signature equation (1) of the faulty signature for hi yields
the Fq-linear equation

rf,i d− sf,i ei = −hi (9)

with unknowns d, ei. If we find two inputs hi 6= hj with ei = ej , we can solve the combined
linear system for (d, ei) = (d, ej). We call this a (value) fault collision.

12 Attacks Against White-Box ECDSA and Discussion of Countermeasures

Note that this fault attack does not even require the correct signature. However, since
we have rc,i 6= rf,i if the fault happens before the computation of r and rc,i = rf,i otherwise,
we can use the correct signature to narrow down the fault location.

Similarly, for a value fault in k−1 we obtain the linear equation

rf,i d− sf,i e−1
i = −hi (10)

with unknowns d, e−1
i . If we find two inputs hi 6= hj with ei = ej , we can solve the

combined linear system for (d, e−1
i) = (d, e−1

j).
Note that a combined system of (9) is solvable if and only if the combined system

of (10) is solvable (ei and ej are replaced by e−1
i and e−1

j).
Furthermore, faulty signatures (rf,i, sf,i) with a fault in k before the computation of r

are valid ECDSA signatures, albeit not the ones intended by the implementation. In
particular, those faults in k cannot be detected by trial signature verification.

Value fault in r (correct r returned) or rd. Next, we assume that a value fault e = f(hos)
is induced in r such that the correct value of r is returned as part of the faulty signature
or in rd. We model the first case by replacing step S4 of Algorithm 1 by

S4’. Set s← k−1(f(hos)d + h
)

mod q.

This fault attack could be realized by skipping the multiplication by r in step S4 (special
case e = 1).

A value fault in rd can be modeled by replacing step S4 of Algorithm 1 by

S4’. Set s← k−1(f(hos) + h
)

mod q.

This fault attack could be realized by skipping the addition of rd in step S4 (special
case e = 0).

For a value fault in r, the signature equations (1) of the correct and faulty signature
for hi yield the Fq-linear system

rc,i d− sc,i ki = −hi ,

− sf,i ki + eid = −hi

(11)

with unknowns d, ki, eid. If we find two inputs hi 6= hj with ei = ej , we can solve the
combined linear system for (d, ki, kj , eid) = (d, ki, kj , ejd).

Similarly, for a value fault in rd we obtain the linear system

rc,i d− sc,i ki = −hi ,

− sf,i ki + ei = −hi

(12)

with unknowns d, ki, ei. If we find two inputs hi 6= hj with ei = ej , we can solve the
combined linear system for (d, ki, kj , ei) = (d, ki, kj , ej).

Note that a combined system of (11) is solvable if and only if the combined system
of (12) is solvable (eid and ejd are replaced by ei and ej).

Value fault in d. Now, we assume that a value fault e = f(hos) is induced in d. In our
fault model, step S4 of Algorithm 1 is replaced by

S4’. Set s← k−1(rf(hos) + h) mod q.

This fault attack could be realized by skipping the multiplication by d in step S4 (special
case e = 1).

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 13

The signature equations (1) of the correct and faulty signature for hi yield the Fq-linear
system

rc,i d− sc,i ki = −hi ,

− sf,i ki + rf,i ei = −hi

(13)

with unknowns d, ki, ei. If we find two inputs hi 6= hj with ei = ej , we can solve the
combined linear system for (d, ki, kj , ei) = (d, ki, kj , ej).

Value fault in h. Here we assume that a value fault e = f(hos) is induced in h. In our
fault model, either step S1 of Algorithm 1 is replaced by

S1’. Set h← f(hos) and set z ← seed(hos).

or step S4 is replaced by

S4’. Set s← k−1(rd + f(hos)) mod q.

In particular, we assume that the input of seed in step S1 remains unchanged. This fault
attack could be realized by skipping the addition of h in step S4 (special case e = 0).

The signature equations (1) of the correct and faulty signature for hi yield the Fq-linear
system

rc,i d− sc,i ki = −hi ,

rf,i d− sf,i ki + ei = 0
(14)

with unknowns d, ki, ei. If we find two inputs hi 6= hj with ei = ej , we can solve the
combined linear system for (d, ki, kj , ei) = (d, ki, kj , ej).

Value fault in rd + h. Finally, we assume that a value fault e = f(hos) is induced
in rd + h. In our fault model, step S4 of Algorithm 1 is replaced by

S4’. Set s← k−1f(hos) mod q.

This fault attack could be realized by skipping the multiplication by rd + h in step S4
(special case e = 1).

The signature equations (1) of the correct and faulty signature for hi yield the Fq-linear
system

rc,i d− sc,i ki = −hi ,

− sf,i ki + ei = 0
(15)

with unknowns d, ki, ei. If we find two inputs hi 6= hj with ei = ej , we can solve the
combined linear system for (d, ki, kj , ei) = (d, ki, kj , ej).

4.4 Differential Collision Fault Attacks
Let f : {0, 1}256 → F∗q be a function. As in Section 4.3, we assume that collisions of f can
easily be found, but the function f can be unknown.

Differential fault in k. First, we assume that a differential fault e = f(hos) is induced
in k. In our fault model, either step S2 of Algorithm 1 is replaced by

S2’. Set (k, z)← rand(z) and set k ← k + f(hos).

or S4 is replaced by

S4’. Set s← (k + f(hos))−1(rd + h) mod q.

14 Attacks Against White-Box ECDSA and Discussion of Countermeasures

The signature equations (1) of the correct and faulty signature for hi yield the Fq-linear
system

rc,i d− sc,i ki = −hi ,

rf,i d− sf,i ki − sf,i ei = −hi

(16)

with unknowns d, ki, ei. If we find two inputs hi 6= hj with ei = ej , we can solve the
combined linear system for (d, ki, kj , ei) = (d, ki, kj , ej). We call this a differential fault
collision.

Note that we have rc,i 6= rf,i if the fault happens before the computation of r, and rc,i =
rf,i otherwise.

Differential fault in k−1. Next, we assume that a differential fault e = f(hos) is induced
in k−1. In our fault model, step S4 of Algorithm 1 is replaced by

S4’. Set s← (k−1 + f(hos))(rd + h) mod q.

The correct and faulty signature for hi satisfy the equations sc,i = k−1
i (rc,i d + hi)

and sf,i = (k−1
i + ei)(rf,i d + hi). Since rc,i = rf,i, we get sc,i − sf,i = −ei(rc,i d + hi).

Rearranging yields the Fq-linear equation

rc,i d + (sc,i − sf,i) e−1
i = −hi (17)

with unknowns d, e−1
i . If we find two inputs hi 6= hj with ei = ej , we can solve the

combined linear system for (d, e−1
i) = (d, e−1

j).

Differential fault in r (correct r returned). Now, we assume that a differential fault e =
f(hos) is induced in r such that the correct value of r is returned as part of the faulty
signature. In our fault model, step S4 of Algorithm 1 is replaced by

S4’. Set s← k−1((r + f(hos))d + h) mod q.

The signature equations (1) of the correct and faulty signature for hi yield the Fq-linear
system

rc,i d− sc,i ki = −hi ,

rf,i d− sf,i ki + eid = −hi

(18)

with unknowns d, ki, eid. If we find two inputs hi 6= hj with ei = ej , we can solve the
combined linear system for (d, ki, kj , eid) = (d, ki, kj , ejd).

Differential fault in d. Here we assume that a differential fault e = f(hos) is induced
in d. In our fault model, step S4 of Algorithm 1 is replaced by

S4’. Set s← k−1(r(d + f(hos)) + h) mod q.

The signature equations (1) of the correct and faulty signature for hi yield the Fq-linear
system

rc,i d− sc,i ki = −hi ,

rf,i d− sf,i ki + rf,i ei = −hi

(19)

with unknowns d, ki, ei. If we find two inputs hi 6= hj with ei = ej , we can solve the
combined linear system for (d, ki, kj , ei) = (d, ki, kj , ej).

Note that a combined system of (13) is solvable if and only if the combined system
of (19) is solvable (ei and ej are replaced by ei + d and ej + d).

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 15

Differential fault in rd, h, or rd + h. Finally, we assume that a differential fault e =
f(hos) is induced in rd, h, or rd + h. In our fault model, step S4 of Algorithm 1 is replaced
by

S4’. Set s← k−1(rd + h + f(hos)) mod q.

For a differential fault in h, we could also replace step S1 by

S1’. Set h← os2int(hos) + f(hos) and set z ← seed(hos),

where we assume that the input of seed in step S1 is unchanged.
The signature equations (1) of the correct and faulty signature for hi yield the Fq-linear

system
rc,i d− sc,i ki = −hi ,

rf,i d− sf,i ki + ei = −hi

(20)

with unknowns d, ki, ei. If we find two inputs hi 6= hj with ei = ej , we can solve the
combined linear system for (d, ki, kj , ei) = (d, ki, kj , ej).

Note that a combined system of (18) is solvable if and only if the combined system
of (20) is solvable (eid and ejd are replaced by ei and ej).

4.5 Comparison with Previous Work
Several differential fault attacks on deterministic ECDSA and EdDSA were introduced
in [ABF+18], which form the foundation of our approach. In particular, attacks with
uncontrolled faults in the base point and the scalar multiplication are presented there,
which can be subsumed by an uncontrolled fault in r (with faulty r returned). They also
consider uncontrolled faults that lead to a constant but unknown ephemeral key, which
is a value fault collision in k in our notation. Finally, they present controlled faults with
fault values from a small and known set as well as faults induced by operation skipping
during the computation of s.

In this paper, we extend the fault attacks presented in [ABF+18]. We systematically
consider value fault collisions and differential fault collisions at every step of Algorithm 1,
which leads to additional attacks that do not require knowledge on the set of fault values.
Operation skipping attacks are subsumed as special cases of value fault collisions in our
framework (at the cost of generating an extra correct/faulty signature pair).

In [CSC+22], lattice-based fault attacks on deterministic ECDSA and EdDSA are
investigated. There, the authors consider a fixed hash value and induce several random
faults, which result in a number of faulty signatures for the given hash value. Based on
these faulty signatures, the problem of recovering the private key is then reduced to solving
an instance of the Hidden Number Problem (see Section 3.3).

By contrast, in this paper we investigate scenarios, where we consider deterministic faults
for two distinct hash values hi 6= hj and for different steps of the signature computation,
and we exploit these faults by using simple linear algebra.

5 Attacking Challenges of the WhibOx Contest 2021
5.1 Automated Attacks
The black-box and fault attacks presented in Section 3 and Section 4 can be automated.
First, potential entropy input can be removed from the challenges as described in Remark 2.
The black-box attacks presented in Section 3.2 do not require side-channel information
and can readily be automated.

To automate fault attacks, we compile each program and compute signatures for a
small number of fixed hash values. Next, we iterate through the program and subsequently

16 Attacks Against White-Box ECDSA and Discussion of Countermeasures

replace each assembly instruction with one or more NOP instructions. In addition, we
induce faults in the data segment of the binary. Note that the susceptibility of the binary
to attacks with these kinds of fault induction may depend on the compiler and the options
used to generate the binary. We generate faulty signatures for all the fixed hash values and
for any generated fault, we apply the methods described in Section 4. For the (differential)
collision fault attacks, we only test a small number of pairs of correct/faulty signatures.
Our results below demonstrate, that (differential) fault collisions are practical in the
white-box setting without costly collision search.

The black-box and fault attacks considered in our automated attacks are summarized
in Table 1 and the results of the automated attacks are shown in Table 2. As we have just
mentioned, we had to limit the size of the search space. So if an attack is not listed for
a challenge, this does not necessarily imply that the challenge is not vulnerable to this
attack.

Table 1: Description of attack and note identifiers.

Id Description Reference
C1 Ephemeral key collision (constant ephemeral key) (3)
C2 Ephemeral key collision (chosen hashes) (3)
XCi Cross-challenge ephemeral key collision (collision group i) (4)
DC Ephemeral key differential collision (chosen hashes) (5)
F Uncontrolled fault in r (faulty r returned) (8)
FC1 Value fault in r (correct r returned) or rd (11), (12)
FC2 Value/differential fault in d (13), (19)
FC3 Value fault in h (14)
FC4 Value fault in rd + h (15)
FC5 Value fault in k or k−1 (9), (10)
FDC1 Differential fault in r (correct r returned), rd, h, or rd + h (18), (20)
FDC2 Differential fault in k (16)
FDC3 Differential fault in k−1 (17)
ND1 Non-deterministic challenge (use of time()) Remark 2(a)
ND2 Non-deterministic challenge (use of uninitialized variables) Remark 2(b)

Table 2: Results of our automated attacks, see Table 1 for a description of the attack and
note identifiers.

Challenge Attacks Note

Id Name User Black-Box Fault

#3 hopeful_liskov Account C2, XC1, DC F, FC1,2,3,5
#4 vibrant_jackson Cronokirby C2, XC1, DC F, FC1,2,3,5, FDC2
#8 trusting_bhabha Cronokirby C2, XC1, DC F, FC2,3,5, FDC2
#10 sad_curran Account C2, XC1, DC F, FC1,3,5, FDC2
#11 festive_jennings Account C2, XC1, DC F, FC1,3,5, FDC2
#12 vigilant_wescoff checc C1, XC1, DC FC1,2,5, FDC1
#13 gracious_mcnulty checc C1, XC1, DC FC5
#15 cool_dubinsky checc C1, XC1, DC FC5
#16 stupefied_varahamihira checc C1, XC1, DC FC1,2,5, FDC1
#32 clever_hoover OoOoOOoOO C1, XC2, DC F, FC1,2,5, FDC1,2
#33 keen_berson bluecat DC F, FC1,3,4,5, FDC1,2
#34 determined_goldwasser Cronokirby C2, DC F, FC1,3,5, FDC2
#36 frosty_rosalind Sir Kwit — F, FC2, FDC1
#38 epic_dijkstra Sir Kwit — F, FC2, FDC1
#42 practical_franklin Sir Kwit — F, FC2, FDC1

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 17

Table 2: Results of our automated attacks, see Table 1 for a description of the attack and
note identifiers.

Challenge Attacks Note

Id Name User Black-Box Fault

#44 agitated_ritchie Sir Kwit — F, FC2, FDC1
#45 quirky_keller OoOoOOoOO C1, XC2, DC F, FC1,2,5, FDC1,2
#50 flamboyant_engelbart Sir Kwit — F, FC2, FDC1
#54 ecstatic_brattain OoOoOOoOO C1, DC F, FC1,2,3,4,5, FDC1,2 ND1
#55 famous_stonebraker OoOoOOoOO — F, FC1,2,3,5, FDC2 ND1
#57 thirsty_fermat OoOoOOoOO — F, FC2,3,5, FDC1,2 ND1
#58 tender_goodall OoOoOOoOO XC3 F, FC2,3,5 ND1
#61 nostalgic_noether OoOoOOoOO XC3 F, FC2,3,5, FDC1 ND1
#62 objective_goldberg OoOoOOoOO — F, FC2,3,5, FDC1 ND1
#66 affectionate_johnson OoOoOOoOO XC4 F, FC2,3,5 ND1
#70 smart_blackwell OoOoOOoOO XC4 F, FC2,3,5 ND1
#71 sharp_wright OoOoOOoOO XC4 F, FC2,3,5 ND1
#72 jolly_lamport OoOoOOoOO XC4 F, FC2,3,5, FDC1 ND1
#73 heuristic_nobel OoOoOOoOO XC4 F, FC2,3,5, FDC1 ND1
#74 bright_lumiere OoOoOOoOO — F, FC2,3,5, FDC1 ND1
#76 relaxed_noyce OoOoOOoOO — F, FC1,2,3,5, FDC1 ND1
#77 optimistic_booth OoOoOOoOO — F, FC1,2,3,5, FDC1 ND1
#78 kind_kalam OoOoOOoOO — F, FC1,2,3,5, FDC1 ND1
#79 quizzical_newton OoOoOOoOO — F, FC1,2,3,5, FDC1 ND1
#80 suspicious_minsky OoOoOOoOO — F, FC1,2,3,5, FDC1 ND1
#81 confident_benz OoOoOOoOO — F, FC1,2,3,5, FDC1 ND1
#84 mystifying_galileo OoOoOOoOO — F, FC1,2,3,5, FDC1 ND1
#85 boring_knuth 01010 C1, XC2, DC F, FC1,2,5, FDC1,2
#87 eager_euler OoOoOOoOO — F, FC2,3,5, FDC1 ND1
#89 cocky_hopper OoOoOOoOO — F, FC5 ND1
#94 loving_pasteur OoOoOOoOO — F, FC5 ND1
#96 zen_bardeen OoOoOOoOO — F, FC3,5 ND1
#97 admiring_lamarr 01010 C2, XC1, DC F, FC1,3,5, FDC2
#100 hopeful_kirch Sir Kwit — F, FDC1
#101 vibrant_morse Sir Kwit — F, FDC1
#103 wizardly_allen OoOoOOoOO — F, FC5 ND1
#104 angry_meninsky OoOoOOoOO — F, FC1,5 ND1
#105 trusting_mestorf OoOoOOoOO — F, FC1,5 ND1
#107 sad_einstein OoOoOOoOO — F, FC1,5 ND1
#108 festive_bohr Sir Kwit — F, FDC1
#114 condescending_torvalds BugsBunny DC F, FC1,2,3,5, FDC2
#127 modest_colden edgarcuisantes DC F
#135 epic_borg kObEbRyAnT XC5, DC F, FC1,2,3,5, FDC2
#136 competent_heyrovsky kObEbRyAnT XC5, DC F, FC1,2,3,5, FDC2 ND1
#139 practical_cori kObEbRyAnT XC5, DC F, FC1,2,5, FDC1,2 ND1
#153 gallant_ramanujan mochilo C2, XC1, DC F, FC1,3,5, FDC2
#157 happy_carson bad_rutabaga C2, XC1, DC F, FC1,3,5, FDC2
#165 nervous_joliot bad_rutabaga C2, XC1, DC F, FC1,2,3,5, FDC1,2
#166 hungry_liskov BugsBunny — F, FC3,5
#172 dreamy_curie bad_rutabaga C2, DC F, FC1,2,3,5, FDC1,2
#174 optimistic_jennings TENET C2, XC1, DC F, FC1,3,5, FDC2
#185 amazing_aryabhata TENET C2, XC1, DC F, FC1,3,5, FDC2
#187 wonderful_roentgen TENET C2, XC1, DC F, FC1,3,5, FDC2
#192 fervent_montalcini BugsBunny XC6 F, FC1,2,3,4,5
#193 zen_clarke BugsBunny XC6 F, FC1,2,3,4,5, FDC1
#209 cool_panini mcs DC —
#212 elegant_bell BugsBunny — F, FC1,3,4,5 ND2
#226 clever_kare zerokey — F
#227 keen_ptolemy zerokey DC F
#228 determined_jones GMorseCode DC F
#231 musing_bhaskara auguste C2, XC1, DC F, FC1,3,5, FDC2
#235 nifty_lamport TENET C2, XC1, DC F, FC1,3,5, FDC2
#251 thirsty_mcclintock bad_rutabaga C2, XC1, DC F, FC1,2,3,5, FDC1,2
#253 priceless_feynman bad_rutabaga C2, DC FC5 ND2
#256 objective_swanson auguste — F, FC1

18 Attacks Against White-Box ECDSA and Discussion of Countermeasures

Table 2: Results of our automated attacks, see Table 1 for a description of the attack and
note identifiers.

Challenge Attacks Note

Id Name User Black-Box Fault

#261 hardcore_kowalevski auguste DC F, FC2,3,5, FDC1
#262 nervous_davinci auguste — F
#264 smart_morse bad_rutabaga C2, DC FC5 ND2
#267 heuristic_meninsky yww C2, XC1, DC F, FC1,3,5, FDC2
#274 suspicious_lichterman TENET C2, XC1, DC F, FC1,3,5, FDC2
#283 cocky_bartik bluecat DC F, FC5
#299 trusting_heyrovsky from0to1 C1, XC2, DC F, FC1,2,5, FDC1,2
#304 gracious_wilson bluecat DC F, FC5
#305 goofy_mayer Maidei — F, FC2
#307 stupefied_kepler BugsBunny — F, FC2,3,4,5, FDC1 ND2
#308 condescending_boyd GMorseCode DC F, FDC1
#314 upbeat_banach bluecat — F, FC1,2,3,4,5, FDC2
#320 gifted_carson from0to1 C1, XC2, DC F, FC1,2,3,4,5, FDC1,2
#321 modest_darwin from0to1 C1, XC2, DC F, FC1,2,3,4,5, FDC1,2
#323 clever_hypatia from0to1 C1, XC2, DC F, FC1,2,3,4,5, FDC1,2
#325 determined_yonath bluecat — F, FC2,3,5, FDC2
#327 frosty_albattani scnucrypto — F, FC1,2,3,4,5, FDC1
#328 musing_joliot mcs DC —
#335 agitated_curie scnucrypto — F, FC1,2,3
#336 quirky_curran BlackSea DC —
#345 ecstatic_khorana auguste DC F, FC2, FDC1
#346 famous_gary Maidei — F, FC2

All our automated fault attacks are static, i.e. we modify the program binary prior
execution. Clearly, changing both program and data during execution provides a much
larger attack surface. To give an intuitive example, suppose that statically modifying a
program binary results in an invalid output value of a particular function. Then, during
execution that function will always return the invalid output. A dynamic fault attack
that modifies the execution trace allows to inject an invalid output for only one or some
particular executions of the function.

Dynamic fault attacks on binaries, however, require significant more implementation
effort, which is why we omit them here. Nevertheless, in Section 5.2.3 we provide an
example of successfully applying additional dynamic fault attacks by manual source-
code modification. During the WhibOx Contest 2021 we also solved challenge #336
(quirky_curran), which seems not to be susceptible to our automated fault attacks,
with FDC1 using manual source-code modifications.

5.2 Closer Look at Selected Challenges
In this section we take a closer look at selected challenges of the WhibOx Contest 2021.

5.2.1 Challenges by mcs

The user mcs submitted the challenges #209 (cool_panini) and #328 (musing_joliot).
We exploited the following peculiarity of these challenges: Each program contains a table
of 1024 points P1, . . . , P1024 on P-256. Depending on the input hash h, the program
computes 64 pairwise distinct indices j1, . . . , j64 ∈ {1, . . . , 1024} and computes

r ←
(
Pj1 + · · ·+ Pj64

)
x

mod q .

Without further source code analysis, it is unclear how the corresponding ephemeral key k
is computed. However, we can write it as k = `j1 + · · ·+ `j64 , where `j ∈ Fq denotes the

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 19

unknown discrete logarithm of Pj with respect to the base point G, i.e. we have Pj = `j G
for all j = 1, . . . , 1024.

We instrumented the program such that, on input h, it outputs the indices j1, . . . , j64
in addition to the signature (r, s) for h. Using this extra information the challenges
can be broken as follows: We pick m ≥ 1025 random hashes h1, . . . , hm. For each
hash hi, we compute the corresponding signature (ri, si) and indices ji,1, . . . , ji,64 using
the instrumented program. We have the signature equation ri d− si ki = −hi, where the
unknown ephemeral key ki can be written as ki = `ji,1 + · · ·+`ji,64 . We obtain the Fq-linear
system

r1 d− s1 `j1,1 − · · · − s1 `j1,64 = − h1 ,

...
rm d− sm `jm,1 − · · · − sm `jm,64 = − hm

with m equations and unknowns d, `1, . . . , `1024, which is an instance of (7) for suitably
defined coefficients ci,j ∈ {0, 1}. Since m ≥ 1025, this linear system can generally be solved
for d, `1, . . . , `1024.

Another way to break these challenges is the ephemeral key differential collision attack
described in Section 3.2. The nonce k is the sum of 64 = 256/4 numbers `j , so looking for
differential collisions with the method of Section 3.2, one would expect to find 256−4 = 252
bit-flip positions v for every bit-flip position u. However, it turns out that for most bit-flip
positions u there are actually 254 bit-flip positions v that lead to a successful attack. A
more detailed analysis shows that the `j are not chosen randomly, but differences `j − `j′

are the same for many pairs j, j′, leading to additional differential collisions.

5.2.2 Challenges by bluecat

The user bluecat submitted (in addition to #33) the challenges #283 (cocky_bartik), #304
(gracious_wilson), #314 (upbeat_banach), and #325 (determined_yonath). These
challenges can be broken in a similar way as those in Section 5.2.1.

First, we consider the programs of the challenges #283 and #304. Each program
contains two points P1, P2 on P-256. On input h, the program computes

h′ ← h⊕m mod q ,

r ←
(
h′ P1 + P2

)
x

mod q ,

where m ∈ {0, 1}256 is a fixed and known mask value. The computation of s (and, in
particular, k) is obfuscated using a custom virtual machine, which would be more difficult
to reverse-engineer. We denote by `1, `2 ∈ Fq the unknown discrete logarithms of P1, P2
with respect to G, i.e. we have Pj = `j G for j = 1, 2. Therewith, we can write the
corresponding ephemeral key as k = h′ `1 + `2.

We pick three random hashes h1, h2, h3 and compute the corresponding signatures (ri, si)
for j = 1, 2, 3 using the program. Then, we can solve the Fq-linear system

r1 d− s1h′1 `1 − s1 `2 = −h1 ,

r2 d− s2h′2 `1 − s2 `2 = −h2 ,

r3 d− s3h′3 `1 − s3 `2 = −h3

for the unknowns d, `1, `2.
Next, we consider the programs of the challenges #314 and #325. Each program

contains three points P1, P2, P3 on P-256. On input h, the program computes

r ←
(
h2 P1 + h P2 + P3

)
x

mod q

20 Attacks Against White-Box ECDSA and Discussion of Countermeasures

using Horner’s scheme. We write Pj = `j G for j = 1, 2, 3 and the corresponding ephemeral
key can be written as k = h2 `1 + h `2 + `3.

We pick four random hashes h1, . . . , h4 and compute the corresponding signatures (ri, si)
for j = 1, . . . , 4 using the program. Then, we can solve the Fq-linear system

r1 d− s1h2
1 `1 − s1h1 `2 − s1 `3 = −h1 ,

r2 d− s2h2
2 `1 − s2h2 `2 − s2 `3 = −h2 ,

r3 d− s3h2
3 `1 − s3h3 `2 − s3 `3 = −h3 ,

r4 d− s4h2
4 `1 − s4h4 `2 − s4 `3 = −h4

for the unknowns d, `1, `2, `3.
Note that the challenges #283 and #304 are also susceptible to the black-box attack DC,

but the challenges #314 and #325 are not (see Table 2). The reason is that the ephemeral
keys of the former challenges have a “linear“ dependence on the input hash h (a mixture
of Fq- and F2-linearity due to the mask m), while the ephemeral keys of the latter challenges
have a quadratic dependence on h.

5.2.3 Challenges by Sir Kwit

The user Sir Kwit submitted the 8 challenges #36, #38, #42, #44, #50, #100, #101, and
#108. The challenge programs are obfuscated, but they contain a main loop that is easy
to understand. In the main loop, some kind of straight-line program (SLP) is executed
that uses 7 types of instructions on 32-bit words. The instructions and their operands are
decoded from a large binary array in a not-so-obvious way, but by writing the instructions
and operands to a file during program execution, it is possible to obtain a cleaned-up version
of the SLP without understanding the decoding mechanism. Due to its simple instruction
set, an interpreter for the extracted SLP can easily be written in any programming language
using just a few lines of code.

The SLP can be described in our own notation as follows: We parse the input hash
h ∈ {0, 1}256 as a sequence h = (h7, . . . , h0) of 32-bit words hj ∈ {0, 1}32, which corresponds
to the integer

∑7
j=0 hj232j . We denote the length of the SLP by N . The SLP uses an

array MEM of N 32-bit words as memory. In each step i = 0, 1, . . . , N − 1 of the SLP, the
array element MEM[i] is updated using one of the following instructions with one or two
operands:

Instruction Operand(s) Meaning Notes
INP j MEM[i]← hj 0 ≤ j < 8
ADD j0 , j1 MEM[i]← (MEM[j0] + MEM[j1]) mod 232 0 ≤ j0, j1 < i
CAR j0 , j1 MEM[i]← (MEM[j0] + MEM[j1]) div 232 0 ≤ j0, j1 < i
MLO j0 , j1 MEM[i]← (MEM[j0] · MEM[j1]) mod 232 0 ≤ j0, j1 < i
MHI j0 , j1 MEM[i]← (MEM[j0] · MEM[j1]) div 232 0 ≤ j0, j1 < i
NOT j MEM[i]← MEM[j]⊕ 0xFFFFFFFF 0 ≤ j < i
CST c MEM[i]← c 0 ≤ c < 232

In a final step, the signature is extracted from memory as

(r, s)←
(
MEM[o0], . . . , MEM[o15]

)
∈ {0, 1}512 ,

where 0 ≤ o0, . . . , o15 < N are given output memory locations.
Note that every MEM-element is written exactly once. Therefore, at the end of the

computation, the array MEM contains the complete history of values encountered during
the computation. This type of SLP can also be considered as some kind of arithmetic
circuit (read the user name Sir Kwit out loud).

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 21

Our attempts at computation analysis were not successful against these challenges. We
just mention that the constants of the SLPs contain the words of b2512/qc, which indicates
that Barrett’s reduction is used for multiplications modulo q. To fully understand the
white-box ECDSA implementation, more reverse-engineering efforts would be required.

In addition to the automated attacks reported in Section 5.1, we mounted fault attacks
against challenge #108 (festive_bohr) using manual program modifications. First, we
appended the operation MEM[i0]← MEM[i0] + 1 to a fixed step i0 of the SLP. We tested a
subset of the N = 2, 127, 669 possible locations for i0 of challenge #108 and found that
this challenge is susceptible to the fault attacks F, FDC1, and FDC3. Observe that FDC3
is the only fault attack that was never successful in our automated attacks (see Table 2).
Inserting the operations MEM[i0]← 0 or MEM[i0]← 1 at a fixed step i0 additionally enabled
the fault attack FC2, if the special input hashes h1 = 1 and h2 = 2 were used.

5.2.4 Challenges by zerokey

It is interesting to have a closer look at the challenges #226 (clever_kare) and #227
(keen_ptolemy) by zerokey, as they are the winning challenges and the authors give a
description of the implementation and an analysis of potential weaknesses in [BBD+22].
Both challenges can be broken with an uncontrolled fault in r (see Table 2).

Concretely, for challenge #226 removing line 5053

__gmpz_mod(l___24989->f___9, (o___22)(l___24989->f___9), (o___22)(o___89));

produces an uncontrolled fault in r when signing the hash value 1, and the private key can
be recovered as described in Section 4.2.

For challenge #227 the location of a successful fault depends on the hash value that is
to be signed. When signing h = p, for example, removing line 3084

__gmpz_mod(l___24929->f___9, (o___21)(l___24929->f___9), (o___21)(o___78));

results in a faulty signature that can be exploited.
This is surprising, because according to Algorithm 4 in [BBD+22] both challenges verify

the generated signature. One possible explanation is that the fault is actually induced
in the signature verification. The loop in Algorithm 4 keeps modifying an intermediate
result until the verification passes. We conjecture that the fault leads to an incorrect
signature passing verification and being output in line 7. In our experiments, the faulty
first signature component was always off by a small multiple of p − q. We assume that
the modular reductions we skip to induce the fault is the reduction mod p at the end of
the calculation of the x-coordinate that is compared to r to verify the signature. More
precisely, if (r, s) is a valid ECDSA signature and we set r′ = r + t(p− q) for some t and
compute the corresponding s′ = k−1(h + r′d), then step V2 in the signature verification
(Algorithm 2) becomes

Q = (s′)−1r′ P + (s′)−1h G = k(h + r′d)−1r′d G + k(h + r′d)−1h G = k G .

We have that Qx = r; if the reduction Qx mod p is skipped, then we may obtain r′ in
step V3 and the verification passes.

6 Discussion of Countermeasures
In this section, we sketch some countermeasures that our designs were built upon. None of
them is sufficient to protect the implementation alone, and combining them to achieve
a sufficient level of protection is a non-trivial task as the susceptibility of our and other
designs against attacks greatly illustrates. Additionally, a countermeasure that is intended
to prevent a special kind of attack may open the door for a different attack path.

22 Attacks Against White-Box ECDSA and Discussion of Countermeasures

We focus on three classes of countermeasures: those that obfuscate intermediate values,
those that impede fault analysis, and standard program obfuscation techniques. As
mentioned, they do not thwart any possible attack, for example classical side-channel
attacks or differential computation analysis [BHMT16].

6.1 Obfuscation of Intermediate Values
As soon as an attacker identifies an intermediate value during the computation, he can
potentially directly obtain the private key or indirectly compute the private key by using
the obtained intermediate value. This can be done for example by debugging and stepping
through the program and monitoring the values of variables.

The goal is therefore to obfuscate variables such that an attacker does not identify
intermediate values. Note that this applies to all values, including those that are typically
deemed public knowledge, such as the signature value r or the base point of the group.
Changing the value of the base point for example might give rise to one of the fault attacks
that we introduced in Section 4.

Countermeasures against side-channel analysis can be used to mask values [BSI].
However, these countermeasures usually focus only on secret values, such as the private
key d or the scalar of the modular multiplication to calculate r.

Given a finite field F, another countermeasure is to represent a value x with n shares
(x1, . . . , xn) such that x = x1 + · · ·+ xn. Field operations such as addition, subtraction,
multiplication or inversion can then be simulated by equivalent operations, dubbed ISW
gadgets, on these shares. The shares are constructed in a way that breaks any statistical
dependencies w.r.t. the original value x. This approach was introduced by Ishai et
al. [ISW03] for Boolean circuits (i.e. the field F2) and later lifted to arbitrary finite fields
in [RP10]. It has been used extensively to create masking schemes for symmetric ciphers,
such as AES.

Here, we can apply ISW gadgets to obfuscate intermediate values that occur in elliptic-
curve computations over Fp in step S3, and to obfuscate computations over Fq in step S4.
The only missing step is then to switch from Fp to Fq in step S3. This step is insofar
crucial as it must be avoided that r appears as an intermediate value in memory.

Suppose that we instantiate ISW with two shares. Let x1, x2 ∈ Fp = {0, . . . , p − 1}.
Then we have(

(x1 + x2) mod p
)

mod q =
(((

x1 −
⌊

x1 + x2

p

⌋
p

)
+ x2

)
mod p

)
mod q

=
((

x1 −
⌊

x1 + x2

p

⌋
p

)
+ x2

)
mod q

=
(((

x1 −
⌊

x1 + x2

p

⌋
p

)
mod q

)
+ (x2 mod q)

)
mod q .

Therefore, we can convert a two-share (x1, x2) over Fp into a two-share over Fq by setting
y2 := x2 mod q and

y1 :=
{

(x1 − p) mod q if x2 ≥ p− x1 ,

x1 mod q otherwise .

We have
(
(x1 + x2) mod p

)
mod q = (y1 + y2) mod q.

The original ISW construction and extensions focus on proving security in the t-probing
security model. The intuition here is to allow up to t probes during the computation
and observe intermediate values without leaking information of the real processed data.
The obfuscation approach here does not hold in the t-probing security model. First, ISW
constructions typically require true randomness, which is not available in our setting –
any randomness must be implicitly derived from the input hash. Second, our conversion

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 23

construction trivially leaks information about x2, as the Boolean intermediate value that
stores the result of the comparison x2 ≥ p− x1 reveals whether x2 + x1 is greater or equal
to p. Nevertheless, it suffices to stop an attacker from directly observing intermediate
values in memory.

6.2 Countermeasures Against Fault Analysis
Extensive research has been conducted on constructing fault-proof ECC implementations.
However, they are usually motivated from the world of smartcards and embedded systems,
where the attack surface is usually much smaller. Using electromagnetic or laser fault
attacks one can assume that it is possible to induce uncontrolled faults into intermediate
values, but one can usually exclude the possibility that an attacker can either read out
values from memory, and it is usually also much more difficult to change values in a
controlled manner. Therefore, the main focus is often to avoid uncontrolled faults [RP17]
and to implement a fault-resistant scalar multiplication, as done e.g. in [FPBS16] and
[Joy20].

Redundant computation. It is not difficult to modify a program with faulty values.
However, if two related values exist, it usually requires a significant reverse engineering
effort in order to identify these two related values and to modify two corresponding values
in a controlled manner. One can thus implement the signature computation in a redundant
way, compare the results and potentially also intermediate results, and only output the
signature value if the comparisons succeeded. Constant values can be further verified using
checksums. Nevertheless, once the location of the comparison is identified, a fault attack
can again be mounted.

Infective computation. As a consequence of the above considerations it is desirable
to modify the signature computation by introducing additional pseudo-random values
to ensure that the system of equations that originates from faults becomes unsolvable.
We first illustrate this approach by adapting the infective computation countermeasure
described in [RP17] from EdDSA to dECDSA with the aim to prevent uncontrolled faults
in r with faulty r returned (see Section 4.2).

We write the private key as d = d1 +d2 and assume that the static additive shares d1, d2
are embedded in the implementation. Furthermore, the static shares will be re-randomized
as d1− v and d2 + v using a pseudo-random value v that changes for different input hashes.
We compute r twice as r′ and r′′ using different implementations and assume that faults
resulting in faulty values r′f , r′′f of these variables with r′f = r′′f 6= r cannot be induced
without changing k. The value r′ is output as first part of the signature and s is computed
using both r′ and r′′ as follows:

1. Set h← os2int(hos) and set z ← seed(hos).

2. Set (v, z)← rand(z), set d′ ← d1 − v, and set d′′ ← d2 + v.

3. Set (k, z)← rand(z).

4. Compute r′ ←
(
k G(1))

x
and r′′ ←

(
k G(2))

x
using different implementations, where

G(1), G(2) denote copies of the base point.

5. Set s← k−1(r′d′ + r′′d′′ + h).

6. Return
(
int2os32(r′), int2os32(s)

)
.

24 Attacks Against White-Box ECDSA and Discussion of Countermeasures

We have d = d1 + d2 = d′ + d′′. If no faults occur, we have r = r′ = r′′ and s =
k−1(rd1 + rd2 + h) = k−1(rd + h), hence we obtain a correct signature.

Next, we assume that an uncontrolled fault is induced in r′ (but not in k) such that
the faulty value is output as first part of the signature. In this case, r′′ is equal to the
correct r. With the notation of Section 4, we obtain the linear system

rc,1 d1 + rc,1 d2 − sc,1 k1 = −h1 ,

rf,1 d1 + rc,1 d2 − sf,1 k1 + (rc,1 − rf,1) v1 = −h1 ,

rc,2 d1 + rc,2 d2 − sc,2 k2 = −h2 ,

rf,2 d1 + rc,2 d2 − sf,2 k2 + (rc,2 − rf,2) v2 = −h2

with unknowns d1, d2, k1, k2, v1, v2. This system of equations is underdetermined due
to the additional unknowns v1, v2. With additional correct/faulty signature pairs, the
system remains underdetermined, because every new input hash hi introduces two new
unknowns ki, vi. Note that if the static shares d1, d2 are not re-randomized (i.e., if v = 0),
this linear system could be solved.

However, other fault attacks presented in Section 4 remain still possible. For instance,
if faults are induced such that r′ = r′′ (both correct or both faulty), the contribution of v
in step 5 will typically cancel out.

In general, additive blinding is not effective against differential faults in the additive
shares, because these faults are equivalent to differential faults in the original variables.
Therefore, we combine the approach adapted from [RP17] with multiplicative blinding.
To this end, we augment the interface of the deterministic random number generator
(seed, rand) by a procedure reseed : {0, 1}256×Z → Z that allows to update the internal state
of the generator using additional input. Just before the derivation of the (multiplicatively
blinded) ephemeral key, we will reseed the random number generator using previously
computed variables, in order to make the ephemeral key dependent on faults that might
already have occurred. The signature generation works as follows:

1. Set h ← os2int(hos), set z ← seed(hos), set (u′, z) ← rand(z), set (u′′, z) ← rand(z),
set u← u′u′′, set u′(1) ← u′(2) ← u′, set u′inv ← (u′)−1, and set u

(1)
inv ← u

(2)
inv ← u−1.

2. Set (v, z)← rand(z), set d′ ← u′′ d1 − v, and set d′′ ← u′′ d2 + v.

3. Set (h′, z)← rand(z) and set h′′ ← uh− h′.

4. For all c ∈
{

h′, h′′, d′, d′′, u′(1), u′(2), u′inv, u
(1)
inv, u

(2)
inv
}
, update z ← reseed(int2os32(c), z).

Finally, set (k′, z)← rand(z).

5. Compute r′ ← u′(1) ·
(
u

(1)
inv(k′G(1))

)
x
and r′′ ← u′(2) ·

(
k′(u(2)

inv G(2))
)

x
using different

implementations, where G(1), G(2) denote copies of the base point.

6. Set s← (k′)−1((r′d′ + h′) + (r′′d′′ + h′′)
)
.

7. Return
(
int2os32(u′inv r′), int2os32(s)

)
.

First, we show that these steps generate a valid signature: We have d′ + d′′ = u′′d1 +
u′′d2 = u′′d (step 2) and h′ + h′′ = uh (step 3). If we interpret k′ (generated in step 4)
as uk, that means the ephemeral key is defined as k := u−1k′, we get r′ = r′′ = u′r (step 5).
Therefore, we obtain r = (u′)−1 r′ and

s = (k′)−1(r′d′ + h′ + r′′d′′ + h′′) = (uk)−1(u′ru′′d + uh) = k−1(rd + h) , (21)

as required.

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 25

As before, we assume that it is infeasible to induce faults such that k′ remains unchanged,
but both

r(1) :=
(
u

(1)
inv(k′G(1))

)
x

and r(2) :=
(
k′(u(2)

inv G(2))
)

x

are altered to the same faulty value. This should be ensured by implementing two different
scalar multiplications. If no fault occurs, we have r(1) = r(2) = r.

In the following, we illustrate how the proposed algorithm prevents several fault attacks
we covered in Section 4. Observe that for an input hash hi, we always have the signature
equation rc,i d− sc,i ki = −hi of the correct signature (rc,i, sc,i) with unknowns d and ki.
The goal of an attacker is to induce faults such that the faulty signature (rf,i, sf,i) for hi

yields an additional equation making the combined linear system solvable, in particular
with respect to d. The additional equation can be utilized if it contains only the unknowns d
(or d1 and d2) and ki or an additional unknown consisting of the fault value ei (or c ei

or c e−1
i for some unknown constant c) that can be eliminated by a second correct/faulty

signature pair for hj 6= hi when a fault collision ei = ej occurs (see Section 4.3 and
Section 4.4). If, on the other hand, the additional equation depends on a monomial that
involves a blinding value that changes with every input hi, the combined linear system
will remain underdetermined and is deemed unsolvable by our analysis.

We first observe that we may disregard faults in the variables d1, d2, h, because this
would lead to a different ephemeral key being derived due to reseeding in step 4. Note,
however, that we cannot rule out faults in the variables used for reseeding to occur after
reseeding. Therefore, at least the intermediate values u′(1), u′(2), r(1), r(2), r′, r′′, k′,
(k′)−1, h′, h′′, d′, d′′, r′d′, r′′d′′, r′d′ + h′, r′′d′′ + h′′, and r′d′ + h′ + r′′d′′ + h′′ remain to
be considered as fault locations for value and differential faults. Additionally, uncontrolled
faults in the values r(1), r′, and u′(1) might potentially leak information on the fault value
via rf . Here, we limit ourselves to analyze a few typical cases:

• Uncontrolled fault in r(1), r′, or u′(1). At first we investigate whether the simple
fault attack presented in Section 4.2 is applicable in this setting. Assume that r(1) is
replaced by a fault value e in step 5. Then rf = e, hence r′ gets u′rf after the fault.
By assumption, we have rc = r(2) 6= rf . We obtain the linear equation

rf d1 + rc d2 − sf k + (rc − rf)(u′′)−1v = −h ,

which cannot be utilized due to the unknown (u′′)−1v with non-zero coefficient.
Now assume that r′ is replaced by a fault value e in step 5. Then rf = (u′)−1e,
hence r′ equals u′rf after the fault, as before.
Next, assume that u′(1) is replaced by a fault value e in step 5. Then rf = (u′)−1erc,
hence r′ gets erc = u′rf after the fault, as before.

• Value fault in r(2). Now we assume that r(2) is replaced by a fault value e 6= rc. By
assumption, we have rf = r(1) = rc. We obtain the linear equation

rc d1 + e d2 − sf k + (e− rc)(u′′)−1v = −h ,

which cannot be utilized due to the unknown (u′′)−1v. Note that this term only
vanishes if e = rc, i.e. if no fault occurs.

• Value fault in k′ or (k′)−1. Now we assume that k′ is replaced by a fault value e.
Then k = u−1e and we obtain the linear equation

rf d− sf u−1e = −h ,

which cannot be utilized due to the unknown u−1e. For a value fault in (k′)−1 the
situation is similar (e is replaced by e−1).

26 Attacks Against White-Box ECDSA and Discussion of Countermeasures

• Value fault in r′d′ + h′ + r′′d′′ + h′′. Now we assume that r′d′ + h′ + r′′d′′ + h′′

is replaced by a fault value e. We obtain the linear equation

−sf uk + e = 0 ,

which cannot be utilized due to the unknown uk.

• Differential fault in (k′)−1. Now we assume that a fault value e is added to (k′)−1.
Then sf = (k−1 + ue)(rfd + h) and as in (17) we obtain the linear equation

rc d + (sc − sf) u−1e−1 = −h ,

which cannot be utilized due to the unknown u−1e−1.

• Differential fault in r′d′, r′′d′′, h′, h′′, r′d′ + h′, r′′d′′ + h′′, or r′d′ + h′ +
r′′d′′ + h′′. Now we assume that a fault value e is added to r′d′ + h′ + r′′d′′ + h′′

or, equivalently, to one of its summands. We obtain the linear equation

rf d− sf k + u−1e = −h ,

which cannot be utilized due to the unknown u−1e.

The omitted cases admit a similar analysis. The analysis demonstrates that many fault
attacks would be possible if multiplicative blinding were not used (i.e., if u = u′ = u′′ = 1),
hence additive blinding with v alone is not an effective countermeasure against fault
attacks.

Of course, other faults attacks outside our fault model might still apply. In particular, we
didn’t consider attacks using multiple faults and attacks combining fault with computation
analysis.

6.3 Program Obfuscation
In order to hide the implementation and make it harder for an attacker to make sense of
the implemented functions, several obfuscation methods are available. They are heavily
employed in the field of malware creation and digital rights management. Examples include
flattening the control flow graph [Wan00], self-modifying code or virtualization [Rol09].
Since all these techniques affect the control flow, they can on the downside make the
generated binary more susceptible to faults. Consider for example Tigress [Col18]5, a
source-to-source virtualizer which was used by many submissions in the WhibOx Contest
2021 and the simple C-program

int x = 7;
printf("The result is: %i\n", x);

A straight-forward method of inducing faults is to replace a valid instruction by a NOP
instruction. Here, the compiled code includes only three instructions at 0x1155, 0x115c
and 0x115f that affect the output of the program. These instructions set up the constant
value 0x7 as an argument to the printf function.

1155: c7 45 fc 07 00 00 00 movl $0x7,-0x4(%rbp)
115c: 8b 45 fc mov -0x4(%rbp),%eax
115f: 89 c6 mov %eax,%esi

[...]
116d: e8 de fe ff ff callq 1050 <printf@plt>

5https://tigress.wtf/

https://tigress.wtf/

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 27

If we consider replacing each instruction with a NOP, three distinct faults with incorrect
output values can be generated. Virtualizing this function with Tigress, however, yields a
complex control structure with several possible continuations, depending on the executed
VM instruction. Inducing faults by replacing instructions with NOP then generates more
than 22 different faulty output values. We also compared a raw implementation of ECDSA
with one where we applied Tigress virtualization mechanism. Similarly the number of fault
locations where we could apply our automated attack by NOP-ing out instructions increased
significantly. Therefore we conjecture that for some challenges their usage of Tigress
increased the obfuscation of the program but at the same time made the implementation
more susceptible to fault attacks.

7 Conclusion
In this paper we provided a systematic overview of different computational and fault
attacks that are relevant for white-box implementations of ECDSA and proposed different
countermeasures to prevent and/or complicate them. We applied the attacks to evaluate the
submissions of the WhibOx Contest 2021 and our analysis showed that all challenges could
be broken, often by several attacks, indicating that asymmetric white-box cryptography is
a challenging task where much further research is needed.

There are at least two different directions for future work: On the one hand, we
intend to investigate in further countermeasures to prevent the presented attacks (and
possibly other ones as well). On the other hand, it might be interesting to generalize
further classes of attacks, e.g. from the domain of side channel analysis, to the asymmetric
ECDSA white-box setting. Indeed, in particular differential computational analysis, the
white-box analogue of differential power analysis, has proven to be powerful analysis tool
for symmetric white-box implementations, see e.g. [BHMT16, BRVW19]. It is, however,
not straightforward to generalize it to the asymmetric ECDSA case. In general, in an
asymmetric setting, the difficulty arises which part of the algorithm to target, which is not
the case for symmetric algorithms, where usually S-boxes constitute promising targets.

References
[ABABM20] Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska, and Wil Michiels.

On the Security Goals of White-Box Cryptography. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020(2):327–357, 2020.

[ABF+18] Christopher Ambrose, Joppe W. Bos, Björn Fay, Marc Joye, Manfred Lochter,
and Bruce Murray. Differential Attacks on Deterministic Signatures. In Proc.
CT-RSA, volume 10808 of LNCS, pages 339–353, 2018.

[Bar20a] Lucas Barthelemy. A First Approach To Asymmetric White-Box Cryptography
and a Study of Permutation Polynomials Modulo 2n in Obfuscation. PhD
thesis, Sorbonne Université, Paris, France, 2020.

[Bar20b] Lucas Barthelemy. Toward an Asymmetric White-Box Proposal. Cryptology
ePrint Archive, Report 2020/893, 2020. https://ia.cr/2020/893.

[BBD+22] Guillaume Barbu, Ward Beullens, Emmanuelle Dottax, Christophe Giraud,
Agathe Houzelot, Chaoyun Li, Mohammad Mahzoun, Adrián Ranea, and
Jianrui Xie. ECDSA White-Box Implementations: Attacks and Designs from
WhibOx 2021 Contest. Cryptology ePrint Archive, Report 2022/385, 2022.
https://ia.cr/2022/385.

https://ia.cr/2020/893
https://ia.cr/2022/385

28 Attacks Against White-Box ECDSA and Discussion of Countermeasures

[BCD06] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. White Box
Cryptography: Another Attempt. Cryptology ePrint Archive, Report
2006/468, 2006. https://ia.cr/2006/468.

[BGEC04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a
White Box AES Implementation. In Proc. 11th SAC, volume 3357 of LNCS,
pages 227–240, 2004.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (Im)possibility of Obfuscating Programs.
In Proc. 21st CRYPTO, volume 2139 of LNCS, pages 1–18, 2001.

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen.
Differential Computation Analysis: Hiding Your White-Box Designs is Not
Enough. In Proc. 18th CHES, volume 9813 of LNCS, pages 215–236, 2016.

[BP16] Alessandro Barenghi and Gerardo Pelosi. A Note on Fault Attacks Against
Deterministic Signature Schemes. In Proc. 11th IWSEC, volume 9836 of
LNCS, pages 182–192, 2016.

[BRVW19] Andrey Bogdanov, Matthieu Rivain, Philip S. Vejre, and Junwei Wang.
Higher-Order DCA against Standard Side-Channel Countermeasures. In
Proc. 10th COSADE, volume 11421 of LNCS, pages 118–141, 2019.

[BSI] BSI. Minimum Requirements for Evaluating Side-Channel Attack
Resistance of Elliptic Curve Implementations. https://www.bsi.bund.de/
SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/
AIS_46_ECCGuide_e_pdf.pdf.

[BU18] Alex Biryukov and Aleksei Udovenko. Attacks and Countermeasures for
White-box Designs. In Proc. 24th ASIACRYPT, volume 11273 of LNCS,
pages 373–402, 2018.

[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of Computing the
Most Significant Bits of Secret Keys in Diffie-Hellman and Related Schemes.
In Proc. 16th CRYPTO, volume 1109 of LNCS, pages 129–142, 1996.

[CC19] CryptoExperts and Cybercrypt. CHES Capture the Flag Challenge – The
WhibOx Contest – Edition 2, 2019. https://whibox.io/contests/2019/.

[CEJO02] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C Van Oorschot.
White-Box Cryptography and an AES Implementation. In Proc. 9th SAC,
volume 2595 of LNCS, pages 250–270, 2002.

[CEJvO03] Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. van Oorschot. A
white-box des implementation for drm applications. In Proc. ACM CCS-9
DRM Workshop, volume 2696 of LNCS, pages 1–15, 2003.

[Col18] Christian Collberg. Tigress: A Source-to-Source-ish Obfuscation Tool. Proc.
8th Workshop on Software Security, Protection, and Reverse Engineering,
2018.

[Cry16] CryptoExperts. White-box cryptography and obfuscation, 2016. https:
//www.cryptoexperts.com/whibox2016/.

[CSA17] ECRYPT CSA. CHES Capture the Flag Challenge – The WhibOx Contest,
2017. https://whibox.io/contests/2017/.

https://ia.cr/2006/468
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_ECCGuide_e_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_ECCGuide_e_pdf.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_46_ECCGuide_e_pdf.pdf
https://whibox.io/contests/2019/
https://www.cryptoexperts.com/whibox2016/
https://www.cryptoexperts.com/whibox2016/
https://whibox.io/contests/2017/

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 29

[CSC+22] Weiqiong Cao, Hongsong Shi, Hua Chen, Jiazhe Chen, Limin Fan, and
Wenling Wu. Lattice-Based Fault Attacks on Deterministic Signature Schemes
of ECDSA and EdDSA. In Proc. CT-RSA, volume 13161 of LNCS, page 169,
2022.

[DGH21] Emmanuelle Dottax, Christophe Giraud, and Agathe Houzelot. White-Box
ECDSA: Challenges and Existing Solutions. In Proc. 12th COSADE, volume
12910 of LNCS, pages 184–201, 2021.

[DH20] Gabrielle De Micheli and Nadia Heninger. Recovering cryptographic keys
from partial information, by example. Cryptology ePrint Archive, Report
2020/1506, 2020. https://ia.cr/2020/1506.

[DLPR14] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain.
White-Box Security Notions for Symmetric Encryption Schemes. In Proc.
20th SAC, volume 8282 of LNCS, pages 247–264, 2014.

[DMRP13] Yoni De Mulder, Peter Roelse, and Bart Preneel. Revisiting the BGE Attack
on a White-Box AES Implementation. Cryptology ePrint Archive, Report
2013/450, 2013. https://ia.cr/2013/450.

[FGR12] Jean-Charles Faugere, Christopher Goyet, and Guénaël Renault. Attacking
(EC)DSA Given Only an Implicit Hint. In Proc. 19th SAC, volume 7707 of
LNCS, pages 252–274, 2012.

[FHW+19] Qi Feng, Debiao He, Huaqun Wang, Neeraj Kumar, and Kim-
Kwang Raymond Choo. White-box implementation of Shamir’s identity-based
signature scheme. IEEE Systems Journal, 14(2):1820–1829, 2019.

[FPBS16] Apostolos P Fournaris, Louiza Papachristodoulou, Lejla Batina, and Nicolas
Sklavos. Residue Number System as a side channel and fault injection attack
countermeasure in elliptic curve cryptography. In Proc. 11th DTIS, pages
1–4, 2016.

[GG22] Pierre Galissant and Louis Goubin. Resisting Key-Extraction and Code-
Compression: a Secure Implementation of the HFE Signature Scheme in
the White-Box Model. Cryptology ePrint Archive, Report 2022/138, 2022.
https://ia.cr/2022/138.

[GMQ07] Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. Cryptanalysis
of White Box DES Implementations. In Proc. 14th SAC, volume 4876 of
LNCS, pages 278–295, 2007.

[GPRW19] Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang. How
to reveal the secrets of an obscure white-box implementation. Journal of
Cryptographic Engineering, 10:1–18, 2019.

[GRW20] Louis Goubin, Matthieu Rivain, and Junwei Wang. Defeating State-of-the-
Art White-Box Countermeasures with Advanced Gray-Box Attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(3):454–
482, 2020.

[HGS01] Nick A Howgrave-Graham and Nigel P. Smart. Lattice Attacks on Digital
Signature Schemes. Designs, Codes and Cryptography, 23(3):283–290, 2001.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In Proc. 23rd CRYPTO, volume 2729 of
LNCS, pages 463–481, 2003.

https://ia.cr/2020/1506
https://ia.cr/2013/450
https://ia.cr/2022/138

30 Attacks Against White-Box ECDSA and Discussion of Countermeasures

[JBF02] Matthias Jacob, Dan Boneh, and Edward Felten. Attacking an Obfuscated
Cipher by Injecting Faults. In Proc. ACM CCS-9 DRM Workshop, volume
2696 of LNCS, pages 16–31, 2002.

[Joy20] Marc Joye. Protecting ECC Against Fault Attacks: The Ring Extension
Method Revisited. Journal of Mathematical Cryptology, 14(1):254–267, 2020.

[Kar10] Mohamed Karroumi. Protecting White-Box AES with Dual Ciphers. In Proc.
13th ICISC, volume 6829 of LNCS, pages 278–291, 2010.

[KG13] Cameron F. Kerry and Patrick D. Gallagher. FIPS PUB 186-4 Digital
Signature Standard (DSS), 2013.

[LN05] Hamilton E Link and William D Neumann. Clarifying Obfuscation:
Improving the Security of White-Box DES. In Proc. ITCC, volume 1, pages
679–684, 2005.

[LR13] Tancrède Lepoint and Matthieu Rivain. Another Nail in the Coffin of White-
Box AES Implementations. Cryptology ePrint Archive, Report 2013/455,
2013. https://ia.cr/2013/455.

[LRM+13] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and Bart
Preneel. Two Attacks on a White-Box AES Implementation. In Proc. 20th
SAC, volume 8282 of LNCS, pages 265–285, 2013.

[MRP12] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the Xiao
- Lai White-Box AES Implementation. In Proc. 19th SAC, volume 7707 of
LNCS, pages 34–49, 2012.

[MWP10] Yoni De Mulder, Brecht Wyseur, and Bart Preneel. Cryptanalysis of a
Perturbated White-Box AES Implementation. In Proc. 11th INDOCRYPT,
volume 6498 of LNCS, pages 292–310, 2010.

[NS03] Phong Q Nguyen and Igor E Shparlinski. The Insecurity of the Elliptic Curve
Digital Signature Algorithm with Partially Known Nonces. Designs, Codes
and Cryptography, 30(2):201–217, 2003.

[Por13] Thomas Pornin. Deterministic Usage of the Digital Signature Algorithm
(DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979,
2013.

[PSS+18] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter,
and Paul Rösler. Attacking Deterministic Signature Schemes Using Fault
Attacks. In Proc. IEEE EuroS&P, pages 338–352, 2018.

[Rol09] Rolf Rolles. Unpacking Virtualization Obfuscators. In Proc. 3rd USENIX
Workshop on Offensive Technologies (WOOT), 2009.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order
Masking of AES. In Proc. 12th CHES, volume 6225 of LNCS, pages 413–427,
2010.

[RP17] Yolan Romailler and Sylvain Pelissier. Practical Fault Attack against the
Ed25519 and EdDSA Signature Schemes. In Proc. FDTC, pages 17–24, 2017.

[SB18] Niels Samwel and Lejla Batina. Practical Fault Injection on Deterministic
Signatures: The Case of EdDSA. In Proc. 10th AFRICACRYPT, volume
10831 of LNCS, pages 306–321, 2018.

https://ia.cr/2013/455

S. Bauer, H. Drexler, M. Gebhardt, D. Klein, F. Laus, and J. Mittmann 31

[SWP09] Amitabh Saxena, Brecht Wyseur, and Bart Preneel. Towards Security Notions
for White-Box Cryptography. In Proc. 12th ISC, volume 5735 of LNCS,
pages 49–58, 2009.

[vdPSY15] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a Little Bit More.
In Kaisa Nyberg, editor, Proc. CT-RSA, volume 9048 of LNCS, pages 3–21,
2015.

[Wan00] Chenxi Wang. A Security Architecture for Survivability Mechanisms. PhD
thesis, University of Virginia, Charlottesville, USA, 2000.

[WMGP07] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis
of White-Box DES Implementations with Arbitrary External Encodings. In
Proc. 14th SAC, volume 4876 of LNCS, pages 264–277, 2007.

[XL09] Yaying Xiao and Xuejia Lai. A Secure Implementation of White-Box AES.
In Proc. 2nd CSA, pages 1–6, 2009.

[ZBJ20] Jie Zhou, Jian Bai, and Meng Shan Jiang. White-Box Implementation of
ECDSA Based on the Cloud Plus Side Mode. Secur. Commun. Networks,
2020:8881116:1–8881116:10, 2020.

[ZHH+20] Yudi Zhang, Debiao He, Xinyi Huang, Ding Wang, Kim-Kwang Raymond
Choo, and Jing Wang. White-Box Implementation of the Identity-Based
Signature Scheme in the IEEE P1363 Standard for Public Key Cryptography.
IEICE Transactions on Information and Systems, 103(2):188–195, 2020.

	Introduction
	Preliminaries
	Deterministic ECDSA on P-256
	Signature Equations

	Black-Box and Computation Analysis
	Explicit Information on Intermediate Values
	Implicit Information on Intermediate Values
	Partial Information on Intermediate Values

	Fault Analysis
	White-Box Fault Model
	Simple Fault Attack
	Collision Fault Attacks
	Differential Collision Fault Attacks
	Comparison with Previous Work

	Attacking Challenges of the WhibOx Contest 2021
	Automated Attacks
	Closer Look at Selected Challenges

	Discussion of Countermeasures
	Obfuscation of Intermediate Values
	Countermeasures Against Fault Analysis
	Program Obfuscation

	Conclusion

