Fast Side-Channel Key-Recovery Attack
against Elephant Dumbo

Louis Vialar
EPFL, Kudelski Security Research Team
louis@louisvialar.me

Abstract. In this paper, we present an efficient side-channel key recovery
attack against Dumbo, the 160-bit variant of NIST lightweight cryptography
contest candidate Elephant. We use Correlation Power Analysis to attack the
first round of the Spongent permutation during the absorption of the first block
of associated data. The full attack runs in about a minute on a common laptop
and only requires around 30 power traces to recover the entire secret key on an
ARM Cortex-M4 microcontroller clocked at 7.4MHz. This is, to the best of our
knoweledge, the first attack of this type presented against Elephant.

1 Introduction

Lightweight Cryptography (LWC) is an area of cryptography that studies and develops
cryptographic primitives for resource-constrained devices, such as smart sensors, smart
cards or RFID tags. These devices need to communicate in a secure fashion, and therefore
need to use cryptographic protocols, however traditional protocols intended for desktop
and mobile processors consume too much power and require too much memory for an
embedded system.

In 2017, National Institute of Standards and Technology (NIST) published a report [1]
on the state of the field, in particular regarding already-existing NIST cryptographic
standards, which was followed in 2018 by a Call for Algorithms [2] for lightweight symmetric
authenticated ciphers and hash functions, initiating the NIST Lightweight Cryptography
project (NIST LWC), a standardization process for what will become the equivalent(s) of
AES-GCM [?, ?] and SHA-3 [3] for resource-constrained devices. While the main objective
for the submissions is to be efficient both in terms of timing, throughput and power
consumption, resistance to side-channel analysis (SCA) is also an evaluation criterion.
Indeed, if a smart device using a symmetric cipher is compromised (or if the user is the
adversary, as with smart cards [4]), the secret key should remain inaccessible.

The symmetric authenticated cipher Elephant [5] is a finalist to this NIST standardization
project. Elephant is based on Spongent [6], a lightweight hash function, and has a variant
that is based on Keccak [7], the family of hash functions that led to SHA-3.

In this paper, we introduce a side-channel attack based on Correlation Power Analysis
(CPA) [8] against the 160-bit variant of Elephant, based on Spongent and dubbed “Dumbo”.

The rest of this paper is structured as follows: in the first section, we present the relevant
state of the art. In the second section, we introduce the Dumbo cipher and its underlying
permutation, Spongent-7[160]. Then, in the third section, we introduce our side-channel
attack on Dumbo. Finally, in the fourth section, we present experimental results of our
attack on an ARM Cortex-M4 microcontroller.

1.1 Notations used in this paper

In the rest of this paper, we define {0,1}" the set of n-bit bitstrings for some n € N

and {0,1}* the set of bitstrings of arbitrary length. We denote the length of bitstring
X €{0,1}* as |X| and we denote with Xo, X3,...,X;_; the | = [%} blocks of size 160
bits (20 bytes) of X, where the last block is appended with 0s. We designate by bit 7 (or
it bit) the b*" rightmost bit of the B leftmost byte of bitstring X, where i = 8 - B + b.
We denote X7;) the ith bit of X, and X a:t) the substring of X that starts at bit a (inclusive)

and ends at bit b (exclusive).

The concatenation of two bitstrings A and B is denoted as A|| B, their bitwise exclusive
or is denoted as A @ B, and their bitwise and is denoted as A&B. X < i (resp. X < 1)
represent a shift (resp. rotation) of X to the left over ¢ positions. X > i and X >> i
represent the same operations to the right.

We denote with 0" the bitstring made of n zeroes, and we denote the random sampling of
a bitstring A of length n with A < {0, 1}".

2 Related work

Since the launch of the NIST standardization process, researchers have studied the imple-
mentation security of the candidates. For instance, CAESAR’s “lightweight applications”
winner and NIST finalist Ascon [9] was found to be vulnerable to two side-channel key
recovery attacks by Ramezanpour et al. in [10]: a passive attack based on deep learning,
called SCARL, and an active fault injection analysis attack. The hardware implementation
of NIST finalist GIFT [11] has also been found to be vulnerable to a SCA attack by
Hou et al. in [12], and the software implementation was also found to be vulnerable to a
side-channel assisted differential cryptanalysis attack in [13], allowing key recovery in only
36 encryptions.

Side-channel attacks are not a mere theoretical threat, and can have real world consequences.
In this respect, a SCA attack against AES-GCM was for example used by Ronen et al. in [14]
to extract the secret keys used by Philips to sign the firmware of their smart light-bulbs.
This enabled the attackers to build a worm that spreads from an infected object to another
wirelessly. More recently, an electromagnetic CPA attack was used successfully to recover
AES secret-keys in Apple’s CoreCrypto by Haas et. al in [15].

To the best of our knowledge, our attack is the first attack of this type presented against
Dumbo or any other Elephant instance.

PX)

1: c+<-0b1110101

2: fori=0,...,79 do
3 X < X @ (0"3]|c) @ rev(0'3|c)
4 X < sBoxLayer(X)

5 X + player(X)

6 ¢ < Ifsr(c)
7

8

endfor

return X

Algorithm 1. The Spongent-7[160] permutation

3 The Dumbo NIST LWC Candidate

Dumbo is one of the three variants of NIST LWC candidate Elephant [5], and is the primary
member of the submission. Elephant is a cryptographic mode of operation that uses a
pseudo-random permutation P to build a symmetric cipher. It uses a 16-bytes (128 bits)
secret key K for encryption and authentication and a 12-bytes (96 bits) nonce N. It is
authenticated, with a 64-bits authentication tag T" that authenticates both the ciphertext
C and the optional associated data A.

In Dumbo, the underlying permutation is Spongent-7[160], the 80 rounds Spongent-7
permutation of the Spongent lightweight hash function (introduced by Bogdanov et al. in [6])
with a 20-bytes (160 bits) long state. The two other variants of this cipher are Jumbo
(using Spongent-7 with 90 rounds and a 22-bytes long state, Spongent-7[176]) and Delirium
(replacing Spongent with a reduced version of the permutation used in Keccak [7], and
using a 25-bytes long state). In the next sections, we will describe the design of Dumbo.

3.1 The Spongent-7[160] Permutation

Spongent-7[160] is a permutation described by Bogdanov et al. in [6]. In the rest of the
paper, we denote as P : {0,1}!69 — {0, 1}!69 the 80-round Spongent permutation defined
in Algorithm 1, where:

e rev is a function that reverses the order of the bits in its input.

o sBoxLayer is a function that applies the {0,1}* — {0, 1}* substitution box defined in
Table 1 to all nibbles of its input. In the reference implementation, it is applied on
two nibbles at a time by using an extended {0, 1}® — {0, 1}® look-up table.

0 1 23 45 6 7 8 9 A BCUDEF
SBox(X) E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

Table 1: the Spongent S-Box

o player is a function that moves bit j from the input to bit pL(j) in the output, such
that
. 407 mod 159 if j < 159,
pL(j) = L
159 if 5 = 159.

e Ifsr represents the computation of one cycle of the 7-bit LFSR defined by the primitive
polynomial p(z) = a7 + 2% + 1. Ifsr(c) = (cpo.6) < 1)||(cpe) @ cf5))-

3.1.1 Invertibility of P

While Elephant does not require P to be invertible to encrypt plaintexts or to decrypt
ciphertexts, we leverage its invertibility in our key-recovery attack.

We notice that all functions in P can be inverted. The inverse of the exclusive or operation
is the exclusive or operation itself. The sBoxLayer is inverted by swapping the two lines in
the substitution table presented before and reordering columns accordingly. The pLayer
is inverted by building the bitstring in reverse order: instead of moving bit ¢ to position
40¢ mod 159, we move bit 40i mod 159 to position ¢ (for i < 159). Finally, the LFSR
counter is inverted by computing its formula in reverse: the bit that was removed can be
computed from the value of the other bits in the counter and of the bit that was generated
from it.

Because of this, we can easily compute the inverse of P by starting the counter ¢ to its
value after 80 rounds (127), then by computing successively all the inverse operations of
each round in reverse order. First, we apply the inverse LFSR on ¢, then we inverse the
pLayer, the sBoxLayer, and finally we add the counter to the state.

3.2 The Dumbo Mode of Operation

In this section, we describe on a high level the process used to encrypt and authenticate a
message in Dumbo. The decryption process is not precisely described but naturally follows
from the encryption process.

Before encryption, the associated data and message lengths are not necessarily multiples
of the block size. Therefore, the associated data and message are padded by adding a
0x01 byte, followed by as many 0x00 bytes as needed to complete the block. The empty
message (i.e. M s.t. |[M| =0) is padded in the same way.

The encryption of the i*" message block M; with nonce N is computed as follows (i < lp;):

C; = maski’(l & P(maski[’(1 @ (N|0%) @ M;

Similarly, decryption is computed using the same operation by swapping C; and M;.

The authentication tag is computed iteratively as follows:

1. The tag buffer T is initialized with the nonce concatenated with the first eight bytes
of the associated data (Ap).

2. For each remaining 20-byte block of associated data A; (0 <i < l4), the tag buffer
is updated as ‘
T+ T® maskllf @ P(mask;? @ A4,;).

Figure 1: Sketch of the Encryption and Authentication procedure in Dumbo, with the
attack point highlighted

3. For each ciphertext block Cj, the tag buffer is updated as
T+ T® maskll’(2 ® P(mask;’(2 @ C;).
4. The tag buffer is updated by computing
T + mask?&o ®PTa mask(l]éo).
5. The first eight bytes of the tag buffer T' are returned as the tag.

The entire encryption and authentication procedure is depicted in Figure 1.

We can notice that the key doesn’t appear directly in this encryption procedure: it only
appears as a parameter to the masking function maskcfgb. The mask‘}(’b function will be
described in the next sub-section.

3.2.1 The Masking Functions

The mask?(’b functions are defined for b = {0, 1,2} as follows:

o masky’ = Ifsr®(P(K||032))
o mask®' = Ifsr®(P(K]||032)) @ Ifsr®" (P(K]|0%2))
o masky? = Ifsr® 1 (P(K[|032)) & Ifsr®* 1 (P(K]|032))

Ifsr® denotes a successive applications of the LFSR pictured in Figure 2 in which each .S;
corresponds to one byte of the state, starting with the leftmost byte Sy. The state of the
LFSR is initialized to P(K]||032), also called expandedKey.

Sg | So | Sw | Su | Siz Sig | Sir | Sis

Si3 | S14 | S5

«3 <7 >17

Figure 2: The Dumbo LFSR

Sig }(7

As described in the previous subsection, mask‘}(’0 is used to process the associated data
during tag generation, maskC[L(’1 is used to encrypt plaintext blocks, and mask?f is used to
process the ciphertext blocks during tag generation.

We note that the LFSR used in the masking function is invertible, which means that
it is possible to recover mask‘;(_l’0 from mask(}éo. In other words, it is easy to recover
expandedKey from mask}go. Given mask}go, we simply shift the bytes to the right and

compute expandedKey, as follows:

expandedKey, = (mask}éﬂ2 <« 7)&(mask}5012 > T) @ mask}go19

In the next section, we demonstrate an attack that recovers mask}go using power analysis.
Using that, we can then inverse the LFSR to recover expandedKey and finally inverse P to
recover the key.

4 Our proposed attack

In this section, we describe how we use a CPA attack [8] against the first round of P during
the computation of the authentication tag to recover mask}go, and therefore K.

We recall that during the computation of the tag, the first block of associated data (after
the first eight bytes) A; is absorbed by computing mask}%o O P(A® mask}éo). We notice
that the permutation P receives a 20-byte block of user-controlled data (A;), which is
bitwise XORed with the secret we want to recover (mask}éo). Our target for this attack is
the first round of this particular invocation of the permutation P.

If we combine the exclusive or operation and the beginning of the first round, we can
construct a model that, given the i*" byte of mask}go and of Ay, outputs the value of the
ith byte of the state after the sBoxLayer in the first round of P. We denote this model as
Model(a, k, i), where i € 0...19 is the position of the byte, a is the i*® byte of A; and k is
the i*® byte of mask}go. This model is described in Algorithm 2.

What is interesting with this model is that if we have an oracle that can retrieve the value
of the i*" byte of the state at this point in a real invocation of the cipher with a known
associated data byte a, we can easily find k£ by running the model with all possible values
for k € {0,1}® and stopping when it gives the correct output. Doing this again for all
values of ¢ recovers the entire mask}go in at most 2% - 20 attempts.

In our case, this oracle does not exist, but we can use CPA with this model to approach
it. The idea behind CPA is to capture power traces of the target device encrypting with
multiple known arbitrary values of a, then to compute the model with all possible values
for k and all values we used for a to see which k predicts best the power consumption

Model(a, k, i)
S—adk
// First operation of the first round: add c to the first and last bytes
if i =0 then
S« S@0x75 |/ obiiio101
elseif { = 19 then
S« S @0xae / 0b1110101 in reverse order
endif
// Second operation of the first round: sBoxLayer
S < SBox(S)

return S

© 00 N O O W N =

—_
[e=]

Algorithm 2. Model(a, k, i)

observed on the device. This works because the power consumption of a cryptographic
device depends on the data that is being processed on that device. We will now describe
the process in more detail.

4.1 Recovery of mask}’

To perform a CPA attack on a cryptographic device, we need a general idea of the relation
between the data processed by the device and its power consumption. In our case, we
assume that the power consumption is proportional to the Hamming weight (the number
of bits set to 1) of the data read from or written to memory.

The recovery of mask};o by CPA works as follows:

1. We generate an arbitrary number n of nonce and associated data pairs (N;, A;) with
j€0...n—1, Nj +${0,1}!'? and A; +5{0,1}*®. Only the last 20 bits of A4; really
need to be random, but for simplicity we generate all these values randomly.

2. We encrypt each of these pairs on the attacked device and record its power consump-
tion, which we denote as T} ; a vector of m power samples. All 7T} have the same
length and are synchronized on the same operation (they are aligned).

3. Using this data, we can now run the CPA on a computer. We describe the procedure
to recover the i'" byte of mask}go. We denote a; the i*® byte of 4; (a; = (A;);).

1.

For each candidate value k € {0,1}® and for each j, we compute the Hamming
weight of the model prediction as (Hy); = HammingWeight(Model(a;, k, 7))

. Then, we group each position in the power traces t € 0...m — 1 as vectors

Pr=((To)ts - - (Th—1)t)

For each k and each ¢, we compute the Pearson Correlation Coefficient 8]
between samples Hy and P; as

cov(Hy, P;)

Pkt =
OH, " 0P,

For each candidate k, we find the maximal correlation coefficient pj, = max;(pg +)

. We sort candidates by decreasing p;,. The most likely value for the i" byte of

kL0 -
mask,; is argmaxy,(pr)-

In general terms, this means that for each timestamp we compute the correlation between
the power consumption samples at that timestamp and the predictions of our model given
a candidate for the key byte k. If the candidate is the correct value of (mask}%o)i, we
expect that all the predictions of the model will be correct and correspond to a value
that is processed during computation in the cryptographic device, which leads to a high
correlation coefficient. On the other hand, while incorrect keys will sometimes give the same
Hamming weight as the correct key (by the pigeonhole principle), computing the model
with an incorrect key will most of the time return a value for which the Hamming weight
is uncorrelated to the observed power consumption, which leads to a lower correlation
coefficient. By doing this on all possible values for (maskko)i and taking the highest
correlation coefficient, we recover the correct value.

By running the CPA for each byte i of mask}go, we get a sorted list of potential values that we
call K;. We denote (Ki)o the value with the highest correlation and (Ki)255 the value with
the lowest correlation. We can derive a potential value for mask}%o K = (Koo ... [(K19)o
and use this value to recover a potential value for expandedKey by inverting the LFSR, as
described in Section 3.2.1. Then, we can inverse P to recover a potential key.

4.2 Verification of key candidates

To verify that this key candidate is correct, we recall that expandedKey = P(K|032). This
means that when we compute P~!(expandedKey), we expect to recover K||032, and we
can verify that expandedKey is correct by making sure the four last bytes of the result
we obtained are indeed 0x00. Since P is pseudo-random, the likelihood of an incorrect
expandedKey being inverted to a byte-array ending with four 0x00 bytes is 2732, which we
consider low enough for this attack. If the attacker wants extra confidence, it is possible to
verify the obtained key by obtaining a known (plaintext, nonce, ciphertext) triple on the
attacked device, then trying to re-encrypt the plaintext with the obtained key and making
sure it gives the same ciphertext.

Because CPA is a statistical method, it can be imprecise, and sometimes the potential
mask}go we recover is incorrect, because the correct value for byte i is (K;); and not (K;)o.
To account for this, we suggest a form of exhaustive search among potential keys. To make
this analysis fast, we get rid of unlikely candidates and only keep (IAQ)O to (_[%Z)g for all
1. The number of candidates kept is arbitrarily chosen and may vary depending on the
attacked device, but it is important to keep this number small. Then, we proceed to the
exhaustive search by making a guess on the number of errors. First, we try to find the key
by assuming only one byte of mask}go is wrong (i.e. 35 € 0...19 s.t. (mask}go)j # (Kj)o
and (mask}go)i = (K;)oVi # j). We ignore what j is, so we iterate on all possible values
of j, and for each we try alternative values (K;); to (K;)3, until we find the correct key.
If no correct key is found this way, we proceed in the same way but this time supposing
thats there are two incorrect bytes, then three incorrect bytes. We could go on further,
but we stop at three to keep the runtime in acceptable bounds, since the runtime of the

exhaustive search with e errors is 4¢ - (260) checks.

5 Experimental results

In this section, we present the experimental results of our Python implementation on this
attack on a ChipWhisperer [16] board.

5.1 Our Setup and Methodology

We confirmed that our attack works by implementing it on the ChipWhisperer [16]
framework, using the LASCAR [17] toolbox for the optimized CPA computation. We
chose this framework because it combines a target processor and an Analog to Digital
Converter (ADC) on the same circuit board, making the attack easy to carry out and
demonstrate. Another advantage of using this framework is that it makes the attack simple
to reproduce by anyone, as the board used to demonstrate it is widely available. We
also published the source code of our attack on GitHub to facilitate the reproduction in
the kudelskisecurity /nist-lwc-power-analysis repository.

The ChipWhisperer board we used is the ChipWhisperer Lite ARM kit, containing a
CW303 32-bit STM32F303RCT6 ARM Cortex-M4 microcontroller as the attacked device
and a CW1173 ChipWhisperer-Lite capture board. The microcontroller clock is set at 7.4
MHz, and the sampling frequency is set to 29.6 MHz. The ADC has a 10-bit resolution
and a 24k sample buffer.

The implementation we attacked is the reference implementation provided by the cipher
authors as part of their submission to the NIST LWC, written in C. It was compiled with
the ChipWhisperer toolchain, with an -03 optimization parameter. The compilation script
and instructions are provided with the attack source code. While this implementation is an
ideal case for our attack, other unpublished attacks on NIST LWC candidates show us that
optimized versions written in assembly can usually still be attacked by using more traces.
We are therefore confident that our attack would still work on alternative implementations
as long as no power analysis countermeasures are implemented.

To validate our number of power traces, we ran our attack 200 times with a number of
power traces set between 25 and 40. We did not test any lower value because of the very
high failure rate. Each power traces contains precisely 24’000 voltage samples, which we
only capture after the 974’000th sample. This attack point was selected by visual inspection
of complete power traces to find the targeted S-Box operation. We carried the attack on
a common laptop with an Intel Core i7-8565U CPU with four cores and a 1.8GHz base
frequency. Since the laptop was running other processes, the exact time of the attacks is
imprecise, but the goal of the benchmark was to give a general idea of the runtime. To
limit the effects of multitasking on the results, we alternated the number of traces when
running the benchmark: instead of running the attack 200 times for 25 traces, then for 26
traces, and so on, we ran the attack once for each number of traces, and then repeated
this process a total of 200 times.

5.2 Results

The success rate (that is the number of successful key recoveries over the number of
attempted key recoveries) was evaluated without any kind of exhaustive search step: we
only evaluated the success rate of the CPA itself. The results are displayed in Figure 3.

https://github.com/kudelskisecurity/nist-lwc-power-analysis

100 A

=
o
L

90

o
©
L

é

o]

- :
| ;
-bbbodadasipinns

T T T T T T T T ———
26 28 30 32 34 36 38 40 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
number of powertraces number of powertraces

OQIDOBHID

OO am CIpm
© GEDC QDD

e
@
L

801

Q® O @DOCHED
o oD@ O®
¢ @ EOOD @
0 0 @ @D@D
CO O QDD @I

O O QD Ao

:I—KD 0000 O® O COWONMDO

o
~
L

707

60

success rate
o
o
00 a0
:l—c @ oD

=4
n
I

attack runtime (s)

50 4

o
IS
L

—+— 0 errors

1 errors 40
—¥— 2 errors
—— 3errors

:l—mooo 00 00 00 @OWOOC
—{ —@ooo ©®
H[+—@o coo

—bp®@ o0 0000 coOm@mam ©

:I—«cooo@

=4
w
L

HT —woom® o 0
HCH— @ @ @
H }—iwaoom @ mpam
H J—omom ® ow o oo

=}
[N]
L

Figure 3: Success rate by maximal number Figure 4: Runtime of an entire attack at-
of errors tempt

We can see that the CPA already recovers the correct mask in more than 90% of the
cases when using more than 35 power-traces (max. 96% for 38 traces). However, it is also
interesting to see by how much the CPA misses when it finds an incorrect mask. This
is what the three other curves display: they show what the success rate would be if we
used an exhaustive search step with up to 1 (respectively 2, 3) errors. We don’t include in
these curves errors that could not be recovered by the exhaustive search, that is attack
attempts where at least one byte of the mask was not present in the top four most likely
values returned by the CPA. These occur rarely when using more than 35 traces: only one
error of the type was reported for 36 and 37 traces, and 0 for more. They are however
more frequent on a lower number of traces: 28% of attempts with 25 power traces had at
least one byte which could not be recovered by exhaustive search. Overall, we see that the
attack has an almost 100% success rate with more than 35 traces and an exhaustive search
step with up to 3 errors. We stress that this exhaustive search step is not even used in
more than 90% of the attack attempts with that number of traces.

The performance measurement was done with a rather imprecise setup (the computer was
also working on other tasks) and excluded any exhaustive search step. It only shows the
time it takes to capture the power traces and to run the analysis, measured using Python’s
process_time. The results are displayed in Figure 4. Overall, we observe that 75% of the
attacks take about 40 seconds or less, for all number of power traces. Only 10% of the
attack attempts took more than one minute, and not a single attempt took more than two
minutes.

6 Extending the attack to Jumbo

As we detailed earlier, Elephant has three members: Dumbo, Jumbo and Delirium. While
Delirium uses a different permutation and cannot be attacked with the same method,
Jumbo uses the same permutation as Dumbo with a different block size. This makes
porting our attack to Jumbo easy.

The main differences between Jumbo and Dumbo are highlighted below:

10

o The underlying permutation is Spongent-7[176] instead of Spongent-7[160]. This
means the internal state is 176-bits (22-bytes) long instead of 160-bits (20-bytes)
long. The permutation also has 10 additional rounds.

o The initial value of ¢ in Spongent-7[176] is 0b1000101 instead of 0b1110101 in
Spongent-7[160].

e The pLayer is slightly different:

) 445 mod 175 if j < 175,
pL(j) = .
175 if j = 175.

o The LFSR used to generate the masks is different. It operates on 22 bytes (instead
of 20), and So; is updated to Sp <K 1@ S3 K 7@ S19 > 7.

e The number of 0 bits appended to the key to compute the first mask is 48 instead of
32.

The attack therefore works very similarly, by updating the model to reflect the changes in
the constants and length of the state. We do not provide a detailed performance analysis
of this variant of the attack, but its source code is included with the other attack.

7 Conclusion

We presented an efficient attack on Dumbo, the 160-bit version and primary instance of the
NIST lightweight candidate Elephant, that can recover the secret key in about a minute
using only 35 power traces. We described how this attack can be extended to the 176-bit
variant of the cipher, which uses the same underlying permutation.

While we only attacked the software implementation of Dumbo, it would be interesting to
see if hardware implementations of the cipher are vulnerable to this attack, and if so, how
many traces are required to recover the secret key.

8 Acknowledgements

This work was supported by an internship at the Kudelski Security Research Team.

We would like to thank Nils Amiet, Aymeric Genét, Sylvain Pelissier, Antonio De La
Piedra, and Serge Vaudenay for their insightful feedback and suggestions.

Bibliography

1] K. A. McKay, L. Bassham, M. S. Turan, and N. Mouha, “Report on lightweight
cryptography,” National Institute of Standards; Technology, Gaithersburg, MD,
NIST IR 8114, Mar. 2017. doi: 10.6028/NIST.IR.8114.

2] I. T. L. Computer Security Division, “Request for Nominations for Lightweight
Cryptographic Algorithms | CSRC,” CSRC | NIST. Aug. 2018. Accessed: Nov. 17,
2021. [Online|. Available: https://csrc.nist.gov/News/2018/requesting-nominations-
for-lightweight-crypto-algs

11

https://doi.org/10.6028/NIST.IR.8114
https://csrc.nist.gov/News/2018/requesting-nominations-for-lightweight-crypto-algs
https://csrc.nist.gov/News/2018/requesting-nominations-for-lightweight-crypto-algs

[12]

[13]

[14]

M. J. Dworkin, “SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions,” National Institute of Standards; Technology, NIST FIPS 202, Jul. 2015.
doi: 10.6028/NIST.FIPS.202.

A. Shostack and B. Schneier, “Breaking Up Is Hard To Do: Modeling Security
Threats for Smart Cards,” 1999. Accessed: Jan. 14, 2022. [Online]. Available:
https://www.usenix.org/conference /usenix-workshop-smartcard-technology /bre
aking-hard-do-modeling-security-threats-smart

Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink, “Elephant
v2.” Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptograp
hy /documents/finalist-round /updated-spec-doc/elephant-spec-final.pdf

A. Bogdanov, M. Knezevié¢, G. Leander, D. Toz, K. Varici, and I. Verbauwhede,
“Spongent: A Lightweight Hash Function,” in Cryptographic Hardware and Embedded
Systems — CHES 2011, vol. 6917, D. Hutchison, T. Kanade, J. Kittler, J. M.
Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B.
Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, B. Preneel,
and T. Takagi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.
312-325. doi: 10.1007/978-3-642-23951-9_ 21.

G. Bertoni, M. Peeters, G. Van Assche, et al., “The keccak reference,” 2011.

E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a Leakage
Model,” in Cryptographic Hardware and Embedded Systems - CHES 2004, vol. 3156,
D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,
D. Tygar, M. Y. Vardi, G. Weikum, M. Joye, and J.-J. Quisquater, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 16-29. doi: 10.1007/978-3-540-
28632-5_ 2.

C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schlaffer, “Ascon v1.2.” 2019.
Available: https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptograp
hy /documents/round-1/spec-doc/ascon-spec.pdf

K. Ramezanpour, A. Abdulgadir, W. Diehl, J.-P. Kaps, and P. Ampadu, “Active
and Passive Side-Channel Key Recovery Attacks on Ascon,” Available: https:
//csrc.nist.gov/CSRC/media/Events/lightweight-cryptographyworkshop-
2020/documents/papers/active-passive-recovery-attacks-asconlwc2020.pdf

S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo, “GIFT:
A Small Present,” 622, 2017. Accessed: Sep. 03, 2021. [Online]. Available:
https://eprint.iacr.org/2017/622

X. Hou, J. Breier, and S. Bhasin, “DNFA: Differential No-Fault Analysis of Bit
Permutation Based Ciphers Assisted by Side-Channel,” 1554, 2020. Accessed: Sep.
03, 2021. [Online|. Available: https://eprint.iacr.org/2020/1554

J. Breier, D. Jap, X. Hou, and S. Bhasin, “On Side Channel Vulnerabilities of Bit Per-
mutations in Cryptographic Algorithms,” IEEE Transactions on Information Foren-
sics and Security, vol. 15, pp. 1072-1085, 2020, doi: 10.1109/TIFS.2019.2932230.

E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “IoT Goes Nuclear:
Creating a ZigBee Chain Reaction,” in 2017 IEEE Symposium on Security and
Privacy (SP), May 2017, pp. 195-212. doi: 10.1109/SP.2017.14.

12

https://doi.org/10.6028/NIST.FIPS.202
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/breaking-hard-do-modeling-security-threats-smart
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/breaking-hard-do-modeling-security-threats-smart
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://doi.org/10.1007/978-3-642-23951-9_21
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptographyworkshop-2020/documents/papers/active-passive-recovery-attacks-asconlwc2020.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptographyworkshop-2020/documents/papers/active-passive-recovery-attacks-asconlwc2020.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptographyworkshop-2020/documents/papers/active-passive-recovery-attacks-asconlwc2020.pdf
https://eprint.iacr.org/2017/622
https://eprint.iacr.org/2020/1554
https://doi.org/10.1109/TIFS.2019.2932230
https://doi.org/10.1109/SP.2017.14

[15] G. Haas and A. Aysu, “Apple vs. EMA: Electromagnetic Side Channel Attacks
on Apple CoreCrypto,” 230, 2022. Accessed: Feb. 28, 2022. [Online]. Available:
https://eprint.iacr.org/2022/230

[16] C. O’Flynn and Z. Chen, “ChipWhisperer: An Open-Source Platform for Hardware
Embedded Security Research,” in Constructive Side-Channel Analysis and Secure
Design, vol. 8622, E. Prouff, Ed. Cham: Springer International Publishing, 2014,
pp. 243-260. doi: 10.1007/978-3-319-10175-0_17.

[17] “LASCAR - Ledger’s Advanced Side-Channel Analysis Repository.” Ledger-Donjon,
Dec. 2021. Accessed: Jan. 14, 2022. [Online|. Available: https://github.com/Ledge
r-Donjon /lascar

13

https://eprint.iacr.org/2022/230
https://doi.org/10.1007/978-3-319-10175-0_17
https://github.com/Ledger-Donjon/lascar
https://github.com/Ledger-Donjon/lascar

	Introduction
	Notations used in this paper

	Related work
	The Dumbo NIST LWC Candidate
	The -\pi[160] Permutation
	Invertibility of P

	The Dumbo Mode of Operation
	The Masking Functions

	Our proposed attack
	Recovery of \textsf{mask}_K^{1,0}
	Verification of key candidates

	Experimental results
	Our Setup and Methodology
	Results

	Extending the attack to Jumbo
	Conclusion
	Acknowledgements
	Bibliography

