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Abstract

We cryptanalyse the isogeny-based public key encryption schemes SHealS and HealS, and the key
exchange scheme HealSIDH of Fouotsa and Petit from Asiacrypt 2021.

1 Introduction

An important problem is to have an efficient and secure static-static key exchange protocol or public key
encryption (PKE) from isogenies. A static-static protocol enables participants to execute the desired prim-
itives without changing the public keys from time to time. This is possible using CSIDH [CLM+18], which
has been used to construct several isogeny-based cryptographic primitives [DG19, BKV19, MOT20, EKP20,
LGd21, LD21, BDK+21]. However due to subexponential attacks on CSIDH based on the Kuperberg al-
gorithm [Kup05, Pei20], SIDH [JD11] provides a more robust foundation. Hence, an efficient protocol with
a robust underlying assumption from isogenies is still an open problem.

The main bottleneck for SIDH-family schemes to achieve the static-static property boils down to the
adaptive GPST attack [GPST16]. The attack enables malicious Bob to extract Alice’s secret key bit by
bit from each handshake and vice versa. The known countermeasures against the attack are to embed a
zero-knowledge proof [UJ20] or to utilize the k-SIDH method [AJL17]. However, these countermeasures also
inevitably incur multiple parallel isogeny computations so that the deduced schemes are not practical. To
resolve this, Fouotsa and Petit [FP21] (Asiacrypt’21) presented a variant of SIDH with a novel key validation
mechanism by using the commutativity of the isogeny diagram [Leo20]. The scheme requires fewer isogeny
computations than SIKE [ACC+17] with the prime number doubled in length which still is far more efficient
than the other known abovementioned solutions. In [FP21], it is claimed that the work gives the static-static
key exchange and PKE solutions from isogenies which are immune to any adaptive attacks.

In this work we refute the claim by presenting an adaptive attack against the protocols presented in
[FP21]. Our attack builds on the flaw in the key validation mechanism, which is the core result [FP21] to
construct SHealS, HealS, and HealSIDH. The attack can be viewed as a simple tweak of the GPST attack
and, surprisingly, it takes the same number of oracle queries as the GPST attack against SIDH to adaptively
recover a secret key. In other words, the additional key validation mechanism not only slows down the
protocol with respect to the original SIDH scheme but also gives no advantage to the scheme in preventing
adaptive attacks.

1.1 Technical overview

The cornerstone of our attack is the flaw orginating in the proof of the main theorem for the key validation
mechanism (Theorem 2 in [FP21]). The main idea of the mechanism exploits the nontrivial commutativity
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of the SIDH diagram [Leo20] (i.e. ϕ′
AϕB = ϕ′

BϕA when Alice and Bob both behave honestly). For a given
curve E0, a natural number b and a basis {P2, Q2} for E0[4

a] from the public parameter, the key validation
mechanism checks the validity of three following relations:

e4a(Ra, Sa) = e4a(P2, Q2)
3b ,

ϕ′
A(Ra) = [e1]Rab + [f1]Sab ∈ EAB ,

ϕ′
A(Sa) = [e2]Rab + [f2]Sab ∈ EAB ,

where ϕ′
A is an isogeny from EB with kernel ⟨[2a]Ra + [α2a]Sa⟩ ⊂ EB , {Ra, Sa} and {Rab, Sab} are bases for

EB [4
a] and EAB [4

a] respectively, (Ra, Sa, Rab, Sab, EB , EAB) is the input given by Bob, and (α, e1, f1, e2, f2)
is Alice’s secret key. The first equation comes from the relations between isogenies and the Weil pairing.
The last two equations are derived from the commutativity of the SIDH diagram [Leo20].

These relations will be satisfied when Bob produces the input honestly. In the security analysis in [FP21],
to make another valid input, which is not obtained by taking negations of the curve points, is equivalent to
solve four linear equations with four unknown variables (e1, f1, e2, f2) over the ring Z/4aZ. Furthermore,

Bob’s input also has the restriction that e4a(Ra, Sa) = e4a(P2, Q2)
3b and ϕ′

A might vary with the choice of
Ra and Sa. Therefore, it is deduced that Bob, without knowing Alice’s secret, is not able to produce another
valid input, which is not obtained by taking negations of the original input. In this way, since Bob, restricted
by the mechanism, behaves honestly, the cryptosystem will be secure based on the hardness assumption.

However, for an adaptive attack, what malicious Bob wants to exploit is that Alice’s behaviour is depend-
ent on the secret. The proof in [FP21] neglects the spirit of the adaptive attack where malicious Bob can

learn the desired information adaptively. For example, write M =

(
e1 f1
e2 f2

)
∈M2×2(Z/4aZ),u = (Ra Sa)

T

and v = (Rab Sab)
T . We may therefore abuse the notation by writing ϕ′

Au = Mv. As we will show in

Sec. 3, by considering matrices P1 =

(
1 0

22a−1 1

)
and P2 = I2, the relation P1M = MP2 holds if and

only if e1 = f1 = 0 mod 2. Hence, on input (R′
a, S

′
a, R

′
ab, S

′
ab, EB , EAB) where (R′

a S′
a)

T = P1u and
(R′

ab S′
ab)

T = P2v the key validation mechanism will pass if and only if ϕ′
AP1u = MP2v if and only if

e1 = f1 = 0 mod 2. Note that because det(P1) = 1 and (2a 2a)P1 = (c c) for some c ∈ Z2a , the Weil
pairing check will also pass and the isogeny used by the mechanism is still ϕ′

A. In this way, Bob learns 1-bit
information of e1 and f1. Moreover, as we will show in Sec. 3, this is enough to recover the least significant
bit of α.

On top of that, Bob can utilize the GPST attack in a “reciprocal” sense to extract further information
further. If the least significant bit of α, denoted by α0, is 1, the secret α is invertible over the ring Z/2aZ.
By further replacing Ra with R′

a = Ra + [22a−2]Ra − [22a−2α0]Sa, the validity of the second relation in the
mechanism depends on the second least significant bit of α. However, e4a(R

′
a, Sa) will never satisfy the first

relation. To overcome this, Bob will replace Sa with [α−1
0 22a−2]Ra + [1 − 22a−2]Sa which can be used to

extract the second least significant bit of α−1, because the equality of the third equation depends on the
second least significant bit of α−1. Remark that, the isogeny used in the key validation mechanism is not
necessary the same ϕ′

A if the kernel is not ⟨[2a]Ra + [α2a]Sa⟩. In Sec. 4, we present the attack in details
including the case where α is even.

Structure of this Paper. We begin in Sec. 2 with some preliminary backgrounds on elliptic curves,
isogenies, a brief outline the fundamental scheme of [FP21], together with a few immediate properties of the
scheme. We then introduce the method of using commutativity of matrices to extract the least significant
bit of Alice’s secret in Sec. 3. Based on the least significant bit information, a tweak of the GPST attack
to recursively and adaptively recover Alice’s secret is then deduced in Sec. 4. A brief summary is made in
Sec. 5. We also provide in App. A a generalized attack against mechanism using commutativity of isogenies.
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2 Preliminaries

Notations. We begin by introducing some notations that will be used throughout the paper. Let O repres-
ent the point at infinity of an elliptic curve, N be the set of natural numbers, and Z be the set of integers.
For n ∈ N, let Zn defined to be Z/nZ and Fn be the finite field of order n. For convenience, when we write
u ∈ Zn, we consider u is a representative taken from {0, · · · , n−1} ⊂ Z. Similarly, when we write u mod n,
we consider the unique representative taken from {0, · · · , n− 1} ⊂ Z. Also, for n ∈ N, en(·, ·) represents the
Weil en-pairing.

2.1 Elliptic curves and isogenies

An elliptic curve is a rational nonsingular curve of genus one with a distinguished point at infinity denoted
by O. An elliptic curve with O forms an additive commutative group. Let p be an odd prime number and
q be a power of p. If E is an elliptic curve defined over Fq, then E(Fq), collecting Fq-rational points of E
and O, is a finite subgroup of E. Moreover, E is said to be supersingular if the endomorphism ring of E is
a maximal order in a quaternion algebra. For n ∈ N coprime with p, the n-torsion subgroup E[n], collecting
points of order dividing n, is isomorphic to Zn ⊕Zn. The Weil en-pairing en(·, ·) is bilinear, alternating and
nondegenerate.

An isogeny is a morphism between elliptic curves preserving the point at infinity. The kernel of an isogeny
is always finite and defines the isogeny up to a power of the Frobenius map. We restrict our attention to
separable isogenies (which induce separable extensions of function fields over Fq) between supersingular
elliptic curves defined over Fq. Given a finite subgroup S of E, there exists a unique separable isogeny with
kernel S from E to the codomain denoted by E/S which can be computed via Vélu’s formulas. We refer to
[Sil09] to get more exposed to the elliptic curve theory.

2.2 Brief outline of HealSIDH Key Exchange

Both SHealS and HealS, introduced in [FP21], are PKE schemes building on the key exchange scheme
HealSIDH with a key validation mechanism. Concretely, SHealS is a PKE scheme using the padding to
encrypt the message where the padding is the hash value of the shared curve (j-invariant) obtained from
HealSIDH. HealS is a variant of SHealS by changing the parameters. In other words, our adaptive attack on
HealSIDH is applicable to both SHealS and HealS.

We briefly introduce HealSIDH with the key validation mechanism as shown in Fig. 1. The public para-
meter pp = (E0, P2, Q2, P3, Q3, p, a, b) contains a supersingular curve E0 defined over Fp2 with an unknown
endomorphism ring and (p, a, b) ∈ N3 where p is a prime of the form 22a32bf − 1 such that 2a ≈ 3b. The set
{P2, Q2}, {P3, Q3} are bases for E0[4

a] and E0[9
b] respectively and PA = [2a]P2, QA = [2a]Q2, PB = [3b]P3,

and QB = [3b]Q3. Alice and Bob sample α and β uniformly at random from Z2a and Z3b respectively. Also,
Alice and Bob compute ϕA : E0 → EA = E0/⟨PA + [α]QA⟩ and ϕB : E0 → EB = E0/⟨PB + [β]QB⟩, respect-
ively. Alice and Bob compute (ϕA(P2), ϕA(Q2), ϕA(PB), ϕA(QB)) and (ϕB(P3), ϕB(Q3), ϕB(PA), ϕB(QA))
respectively. Alice’s and Bob’s public keys are (EA, ϕA(P3), ϕA(Q3)) and (EB , ϕB(P2), ϕB(Q2)) respect-
ively. Alice computes the canonical basis {RA, SA} for EA[4

a] and represents ϕA(P2) = [e1]RA + [f1]SA and
ϕA(Q2) = [e2]RA+[f2]SA. Bob computes the canonical basis {RB , SB} for EB [9

a] and represents ϕB(P3) =
[g1]RB + [h1]SB and ϕB(Q3) = [g2]RB + [h2]SB . Alice’s and Bob’s secret keys are skA = (α, e1, f1, e2, f2)
and skB = (β, g1, h1, g2, h2) respectively.

To establish a shared secret with Alice, Bob collects Alice’s public key, denoted by (EA, Rb, Sb), and
computes ϕ′

B : EA → EAB = EA/⟨[3b]Rb + [β3b]Sb⟩ together with (ϕ′
B(RA), ϕ

′
B(SA), ϕ

′
B(Rb), ϕ

′
B(Sb)). He

sends (Rab = ϕ′
B(RA), Sab = ϕ′

B(SA)) to Alice.
Upon receiving (Rab, Sab) from Bob, Alice collects Bob’s public key (EB , Ra, Sa). She computes ϕ′

A :
EB → EBA = EB/⟨[2a]Ra + [α2a]Sa⟩ together with (ϕ′

A(RB), ϕ
′
A(SB), ϕ

′
A(Ra), ϕ

′
A(Sa)). If e4a(Ra, Sa) ̸=

e4a(P2, Q2)
3b , ϕ′

A(Ra) ̸= [e1]Rab + [f1]Sab, or ϕ′
A(Sa) ̸= [e2]Rab + [f2]Sab, then Alice aborts (the session).
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Otherwise, she sends (Rba = ϕ′
A(RB), Sba = ϕ′

A(SB)) to Bob and keeps the j-invariant jBA of EBA as the
shared secret.

Similarly, upon receiving (Rba, Sba), Bob aborts if e9b(Rb, Sb) ̸= e9b(P3, Q3)
2a , ϕ′

B(Rb) ̸= [g1]Rba+[h1]Sba,
or ϕ′

B(Sb) ̸= [g2]Rba + [h2]Sba, If not he takes the j-invariant of EAB as the shared secret.

E0, P2, Q2, PB , QB

EA, ϕA(PB), ϕA(QB)

ϕA(P2) = [e1]RA + [f1]SA

ϕA(Q2) = [e2]RA + [f2]SA

Ra = ϕB(P2), Sa = ϕB(Q2)

Rab = ϕ′
B(RA), Sab = ϕ′

B(SA)

EB , Ra, Sa

EAB , Rab, Sab

EBA, ϕ
′
A(Ra), ϕ

′
A(Sa)

e4a(Ra, Sa)
?
= e4a(P2, Q2)

3b

ϕ′
A(Ra)

?
= [e1]Rab + [f1]Sab

ϕ′
A(Sa)

?
= [e2]Rab + [f2]Sab

Honest Bob

Key Validation

ϕA

ϕB
ϕ′
B

ϕ′
A

Verify

Figure 1: The outline of HealSIDH with the key validation mechanism. The green box shows the points
honest Bob will compute. The red box is the key validation process used by Alice to verify the public key
given by Bob.

Remark 2.1. In the real protocol, instead of giveing Rab, Sab directly, Bob will give the coordinates of them
with respect to the canonical basis of EAB [4

a]. Otherwise, the secretly shared curve EAB can be recontructed
by an eavesdropper by computing its Montgomery coefficient AEAB

= (y(Rab)
2−x(Rab)

3−x(Rab))/x(Rab)
2.

For simplicity we ignore this detail and pretend Bob does send the points Rab and Sab to Alice. Hence, for
the convenience, we may assume Bob sends the entire points Rab, Sab to Alice.

We have the following two immediate results.

Proposition 2.2. If Bob honestly generates Ra = ϕB(P2), Sa = ϕB(Q2), Rab = ϕ′
B(RA) and Sab = ϕ′

B(SA),
then {Rab, Sab} is a basis of EAB [4

a] and {Ra, Sa} is a basis of EB [4
a].

Proof. Since [4a]Ra = ϕB([4
a]P2) = O and [4a]Sa = ϕB([4

a]Q2) = O, both Ra and Sa are in EB [4
a].

Due to e4a(Ra, Sa) = e4a(P2, Q2)
3b , we know e4a(Ra, Sa) is a primitive 4a-th root of unity. Similarly, since

[4a]Rab = ϕ′
B([4

a]RA) = O and [4a]Sab = ϕ′
B([4

a]SA) = O, both Rab and Sab are in EAB [4
a]. Due to

e4a(Rab, Sab) = e4a(RA, SA)
3b , we know e4a(Rab, Sab) is a primitive 4a-th root of unity. Therefore, the result

follows.

Lemma 2.3. Let e1, e2, f1, f2 be defined as above and α ∈ Z2a be Alice’s secret key i.e. ker(ϕA) = ⟨[2a]P2 +
[α2a]Q2⟩. If Alice follows the protocol specification, then e1 + αe2 = f1 + αf2 = 0 mod 2a.

Proof. Given ϕA(P2) = [e1]RA+[f1]SA and ϕA(Q2) = [e2]RA+[f2]SA, we have O = ϕA([2
a]P2+[α2a]Q2) =

[2ae1 + α2ae2]RA + [2af1 + α2af2]SA = [e1 + αe2]([2
a]Ra) + [f1 + αf2]([2

a]SA).
Note that {[2a]RA, [2

a]SA} is a basis for EA[2
a] due to {RA, SA} being a basis for EA[4

a]. Therefore,
e1 + αe2 = f1 + αf2 = 0 mod 2a.

Modeling. Throughout this paper, we consider adaptive attacks against HealSIDH. Bob, as a malicious
adversary, is given access to an oracle OskA → 0/1 taking as input (Ra, Sa, Rab, Sab, EB , EAB) with the
relations specified as above. For simplicity, we denote the oracle by O and omit curves EB , EAB from the
input when they are clear from the context. The oracle returns 1 if and only if the following three equations
hold:
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e4a(Ra, Sa) = e4a(P2, Q2)
3b , (1)

ϕ′
A(Ra) = [e1]Rab + [f1]Sab, (2)

ϕ′
A(Sa) = [e2]Rab + [f2]Sab, (3)

where ϕ′
A is an isogeny from EB with kernel ⟨[2a]Ra + [α2a]Sa⟩ ∈ EB .

When Bob follows the protocol specification, the three equations hold naturally. The goal of malicious
Bob in our attack is to recover Alice’s core secret α by adaptively manipulating his input.

The flaw of the claim in [FP21] comes from the main theorem (Theorem 2.) for the key validation

mechanism. Theorem 2. of [FP21] states that if on input (R̃a, S̃a, R̃ab, S̃ab) the oracle returns 1, then there

are only 16 forms of (R̃a, S̃a, R̃ab, S̃ab) as follows:

(R̃a, S̃a, R̃ab, S̃ab) = ([±1]ϕB(P2), [±1]ϕB(Q2), [±1]ϕ′
B(RA), [±1]ϕ′

B(SA)),

where ϕB , ϕ
′
B are the isogenies computed by Bob following the protocol specification. We will immediately

show this is not true in the next section.

3 Parity Recovering

In this section, we consider the least significant bits of e1, e2, f1, f2 and α. We can recover the least significant
bit of α with one oracle query by relying the relations given by Lem. 2.3.

Say Bob computes ϕB , ϕ
′
B honestly. The attack presented in this section and the next section relies on

following facts:

• {P2, Q2}, is a basis for E0[4
a].

• {Rab, Sab} = {ϕ′
B(RA), ϕ

′
B(SA)} is a basis of EAB [4

a] (Prop. 2.2).

• {Ra, Sa} = {ϕB(P2), ϕB(Q2)} is a basis of EB [4
a] (Prop. 2.2).

• e1 + αe2 = f1 + αf2 = 0 mod 2a (Lem. 2.3).

The high-level idea in this section is simple. Assume Alice and Bob follows the protocol specification.

Write M =

(
e1 f1
e2 f2

)
∈ M2×2(Z4a),u = (Ra Sa)

T and v = (Rab Sab)
T . Recall that ϕ′

A(Ra) = [e1]Rab +

[f1]Sab, ϕ
′
A(Sa) = [e2]Rab + [f2]Sab where Ra, Sa, Rab, Sab are honestly generated by Bob. We may abuse

the notation by writing ϕ′
Au = Mv based on Eqs. (2) and (3). The idea is to find a pair of particular square

matrices P1,P2 ∈ M2×2(Z4a) where P1 is of determinant 1 such that the commutativity of P1M = MP2

is conditioned on the information (parity for instance) to be extracted from M. Let (R′
a S′

a)
T = P1u

and (R′
ab S′

ab)
T = P2v. On input (R′

a, S
′
a, R

′
ab, S

′
ab) the oracle returns 1 if M satisfies the commutativity

condition P1M = MP2, because P1ϕ
′
Au = ϕ′

AP1u = P1Mv = MP2v holds. Remark that the determinant
1 of P1 ensures the new pair (R′

a S′
a) will satisfy the Weil pairing verification Eq. (1). Futhermore, we

require (2a α2a)P1 = (c c) for some c ∈ Z2a so that the isogeny used by the oracle is still the one with the
kernel ⟨[2a]Ra + [α2a]Sa⟩.

Though there are 24 combinations of the least significant bits of e1, e2, f1, f2. The following lemma shows
that when Alice generates them honestly, there are only six patterns.

Lemma 3.1. If Alice produces ϕA(P2) and ϕA(Q2) honestly, then there are only 6 possible patterns of
parities of e1, e2, f1, f2:
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1. f2 = 1 mod 2 and e2 = e1 = f1 = 0 mod 2,

2. e2 = 1 mod 2 and e1 = f1 = f2 = 0 mod 2,

3. e2 = f2 = 1 mod 2 and e1 = f1 = 0 mod 2,

4. f1 = f2 = 1 mod 2 and e1 = e2 = 0 mod 2,

5. e1 = e2 = 1 mod 2 and f1 = f2 = 0 mod 2,

6. e1 = e2 = f1 = f2 = 1 mod 2.

Proof. Recall e4a(ϕA(P2), ϕA(Q2)) = e4a(P2, Q2)
2a = e4a(RA, SA)

e1f2−e2f1 . Since both {P2, Q2} and {RA, SA}
are bases for E0[4

a], EA[4
a] respectively, both e4a(P2, Q2) and e4a(RA, SA) are primitive 4a-th roots of unity.

Given e4a(RA, SA)
2a(e1f2−e2f1) = 1, we have e1f2 − e2f1 = 0 mod 2a.

Furthermore, e2, f2 cannot be both even. Recall ϕ(Q2) = e2RA + f2SA. Suppose for the purpose of
contradiction that both e2 and f2 are even. Then, [22a−1]ϕA(Q2) = O, which implies ker(ϕA) = ⟨P2+[α]Q2⟩
contains [22a−1]Q2. That is, [k]P2 + [kα]Q2 = [22a−1]Q2 for some k ∈ Z2a , so k = 0. This contradicts the
fact that {P2, Q2} is a basis for E0[4

a]. The result follows.

We order the six cases according to the lemma above. The following lemmata indicate that we can divide
the overall cases into two partitions: {Case 1, Case 2, Case 3} and {Case 4, Case 5, Case 6} with 1
oracle query.

Lemma 3.2. Assume Bob honestly generates Ra, Sa, Rab, Sab, EB , EAB. On input (R̃a, S̃a, Rab, Sab), where

R̃a = Ra and S̃a = [22a−1]Ra + Sa the oracle returns 1 only for Cases 1 to 3.

Proof. Firstly, the isogeny ϕ′
A computed by the oracle is the same one used by Alice in the honest execution.

This is because both kernels are the same:

⟨[2a]Ra + [α2a]Sa⟩ = ⟨[2a]R̃a + [α2a]S̃a⟩.

Therefore, sinceRa, Sa, Rab, Sab are honestly generated, we may assume e4a(Ra, Sa) = e4a(P2, Q2)
3b , ϕ′

A(Ra) =
[e1]Rab + [f1]Sab, and ϕ′

A(Sa) = [e2]Rab + [f2]Sab.

For Eq. (1), since e4a(Ra, Sa) = e4a(P2, Q2)
3b , we have

e4a(R̃a, S̃a) = e4a(Ra, Sa) = e4a(P2, Q2)
3b .

Given ϕ′
A(Ra) = [e1]Rab + [f1]Sab, ϕ

′
A(Sa) = [e2]Rab + [f2]Sab and Rab, Sab ∈ EAB [2

a], we have

ϕ′
A(R̃a)− [e1]Rab − [f1]Sab = O,

ϕ′
A(S̃a)− [e2]Rab − [f2]Sab = [22a−1e1]Rab + [22a−1f1]Sab.

Recall that {Rab, Sab} is a basis. Therefore, the oracle returns 1 if and only if [22a−1e1]Rab+[22a−1f1]Sab =
O or, equivalently, e1 = f1 = 0 mod 2. The result follows.

Lemma 3.3. Assume Bob honestly generates Ra, Sa, Rab, Sab, EB , EAB. On input (R̃a, S̃a, Rab, Sab), where

R̃a = [1 + 22a−1]Ra − [22a−1]Sa and S̃a = [22a−1]Ra + [1 − 22a−1]Sa the oracle returns 1 only for Cases 4
to 6.

Proof. Firstly, the isogeny ϕ′
A computed by the oracle is the same one used by Alice in the honest execution.

This is because both kernels are the same:

⟨[2a]Ra + [α2a]Sa⟩ = ⟨[2a]R̃a + [α2a]S̃a⟩.
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Therefore, sinceRa, Sa, Rab, Sab are honestly generated, we may assume e4a(Ra, Sa) = e4a(P2, Q2)
3b , ϕ′

A(Ra) =
[e1]Rab + [f1]Sab, and ϕ′

A(Sa) = [e2]Rab + [f2]Sab.

For Eq. (1), since e4a(Ra, Sa) = e4a(P2, Q2)
3b , we have

e4a(R̃a, S̃a)

= e4a([1 + 2a−1]Ra − [2a−1]Sa, [2
a−1]Ra + [1− 2a−1]Sa)

= e4a(Ra, Sa)
1−22a−2+22a−2

= e4a(P2, Q2)
3b .

Given ϕ′
A(Ra) = [e1]Rab + [f1]Sab, ϕ

′
A(Sa) = [e2]Rab + [f2]Sab and Rab, Sab ∈ EAB [2

a], we have

ϕ′
A(R̃a)− [e1]Rab − [f1]Sab = [22a−1]([e1]Rab + [f1]Sab + [e2]Rab + [f2]Sab),

ϕ′
A(S̃a)− [e2]Rab − [f2]Sab = [22a−1]([e1]Rab + [f1]Sab + [e2]Rab + [f2]Sab).

Recall that {Rab, Sab} is a basis of EAB [2
a]. Therefore, the oracle returns 1 if and only if e1 = e2 mod 2

and f1 = f2 mod 2. The result follows.

The cases {Case 1, Case 2, Case 3} occur if and only if the least significant bit of α is 0 by Lem. 3.1.
In fact, by choosing particular matrices P1 and P2, one can precisely recover all parities of e1, e2, f1 and f2.
However, by Lem. 3.1, we do not bother to find them all since the information given in Lem. 3.2 already
is sufficient to recover the least significant bit of α. In the next section, we will present a variant of GPST
attack. We start with the least significant bit of α to recover each higher bit with one oracle query for each.

4 Recover the Secret

In this section, we present a variant of the GPST attack to recover the secret α based on the knowledge
extracted from the previous section. The high-level idea is to use the GPST attack in a “reciprocal” manner.
Recall that Bob has two following equations when he generates the points (Ra, Sa, Rab, Sab) honestly:

ϕ′
A(Ra) = [e1]Rab + [f1]Sab,

ϕ′
A(Sa) = [e2]Rab + [f2]Sab,

where ker(ϕ′
A) = ⟨[2a]Ra + [2aα]Sa⟩.

To extract the second least significant bit of −α, denoted by α1, based on the least bit α0, we consider
ϕ′
A(Ra+[22a−2]Ra−[22a−2α0]Sa) = [e1]Rab+[f1]Sab+([22a−2e1−22a−2α0e2]Rab+[22a−2f1−22a−2α0f2]Sab)

where the purpose of [22a−2α0]Sa is to eliminate the lower bit. Note that ([22a−2e1 − 22a−2α0e2]Rab +
[22a−2f1− 22a−2α0f2]Sab) = ([α12

2a−1][e2]Rab + [α12
2a−1][f2]Sab) because e1 +αe2 = f1 +αf2 = 0 mod 2a

and {Ra, Sa} is a basis for EB [4
a] (Lem. 2.3 and Prop. 2.2). By Lem. 3.1, since e2 and f2 cannot be both

even, at least one of [22a−1e2]Rab and [22a−1f2]Sab is of order 2. It follows that the equation

ϕ′
A(Ra + [22a−2]Ra − [22a−2α0]Sa) = [e1]Rab + [f1]Sab

holds if and only if α1 = 0.

Unfortunately, querying the oralce on input (Ra+[22a−2]Ra−[22a−2α0]Sa, Sa, Rab, Sab) will always return
0 so that Bob cannot obtain any useful information. This is because e4a(Ra + [22a−2]Ra − [22a−2α0]Sa, Sa)

never equals e4a(P2, Q2)
3b . In other words, if Bob does so, he will always get ⊥ from Alice. To resolve

this, we use the idea of “reciprocal”. Assume α is invertible modulo 2a. Bob will craft a point replacing
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Sa for recovering α−1 mod 2a at the same time. Concretely, Bob computes α̂ = α−1
0 mod 4. For the same

reasoning as above, the equation

ϕ′
A(α̂[2

2a−2]Ra + [1− 22a−2]Sa) = [e2]Rab + [f2]Sab

holds if and only if α−1 = α̂ mod 4 if and only if α1 = 0.
Moreover, e4a(Ra + [22a−2]Ra − [22a−2α0]Sa, α̂[2

2a−2]Ra + [1 − 22a−2]Sa) = e4a(Ra, Sa). Therefore, by
sending (Ra+[22a−2]Ra− [22a−2α0]Sa, α̂[2

2a−2]Ra+[1−22a−2]Sa, Rab, Sab) to Alice, Bob can know whether
α1 = 0. However, α is not necessarily to be odd. We have to use unbalanced powers of 2 on each query and
introduce the concept of quasi-inverse elements.

Remark 4.1. On input (Ra+[22a−2]Ra−[22a−2α0]Sa, α̂[2
2a−2]Ra+[1−22a−2]Sa, Rab, Sab), honest Alice will

use the same isogeny ϕ′
A because ⟨[2a](Ra+[22a−2]Ra− [22a−2α0]Sa)+ [α2a](α̂[22a−2]Ra+[1− 22a−2]Sa)⟩ =

⟨[2a]Ra + [α2a]Sa⟩. The same kernel will therefore derive the same isogeny ϕ′
A.

4.1 Quasi-Inverse Element

Definition 4.2. Let p be a prime and a ∈ N. For an element u ∈ Z, a pa-quasi-inverse element of u is a
non-zero element v ∈ Zpa such that uv = p′ mod pa where p′ is the maximal power of p dividing u.

When a = 1, every element obviously has a p-quasi-inverse element by taking either its inverse over Zp

or 1. Unlike the inverse over a ring, a quasi-inverse is not necessarily unique. For instance, 1, 9, 17 and 25
are 25-quasi-inverse elements of 4 over Z32. Also, if u = 0, any non-zero element can be its quasi-inverse.

A non-zero element being not a unit of Zpa can still have a pa-quasi-inverse element. However, a non-zero
element v in Zpa being a pa-quasi-inverse element for a non-zero integer in Zpa implies v is a unit of Zpa .

Proposition 4.3. Let p be a prime and a ∈ N. For u ∈ Z, a non-zero element over Zpa , any pa-quasi-inverse
element of u is a unit of Zpa .

Proof. Write u = u′pj where u′, j ∈ Z and u′ is not divisible by p and j < a. Say there exists v ∈ Zpa

such that uv = pj mod pa. Since u is a non-zero element over Zpa , we know a > j so that (u/pj)v = 1
mod pj−a. It follows that v is not divided by p, so v is a unit of Zpa .

In fact, for any u ∈ Zpa where pj | u and pj+1 ∤ u for some non-negative integer j, one can always find
a pa-quasi-inverse by taking v = (u/pj)−1 ∈ Zpa−j and naturally lifting v to Zpa Therefore, we may let
QuasiInv(u, p, i) be an efficient algorithm outputting a pi-quasi-inverse element of u and restrict it to output
1 when pi | u.

Remark 4.4. Looking ahead, in our attack, we need to compute 2i+1-quasi-inverse elements for either αl

or αl + 2i in the i-th iteration, where αl = α mod 2i has been extracted in the previous iterations. In a
more general case where the prime 2 is replaced by q ∈ N, the attack enumerates qi+1-quasi-inverse elements
for αl + tqi for every t ∈ {0, · · · , q − 1}, which corresponds to guess whether the next digit is t or not. See
App. A for more details.

4.2 Attack on HealS and SHealS

The algorithm in Fig. 2 together with Thm. 4.6 provides an iterative approach for recovering α. It requires
one oracle query to recover each bit of α in each iteration. We need the following lemma to prove the main
theorem.

Lemma 4.5. Let (α, e1, f1, e2, f2) denote Alice’s HealSIDH secret key as Sec. 2.2. For any i ∈ {1, . . . , a−1},
write −α = αl + 2iαi ∈ Z2i+1 where αl ∈ Z2i and αi ∈ Z2. Let α̂l be a 2i+1-quasi-inverse element of αl.
Then, each of the following two equations is true if and only if αi = 0 :

e1 − αle2 = f1 − αlf2 = 0 mod 2i+1 (4)

α̂le1 − 2je2 = α̂lf1 − 2jf2 = 0 mod 2i+1 (5)

8



Proof. By Lem. 2.3, we have e1 − αle2 = −αe2 − αle2 mod 2i+1 and f1 − αlf2 = −αf2 − αlf2 mod 2i+1.
By Lem. 3.1, not both e2 and f2 are divisible by 2. Therefore, the first equation is zero if and only if αi = 0.

Similarly, by Lem. 2.3, we have α̂le1−2je2 = α̂lαe2−2je2 = α̂(αl+αi2
i)e2−2je2 = α̂αie22

i mod 2i+1.
Also, α̂lf1 − 2jf2 = α̂αif22

i mod 2i+1. By Lem. 3.1 and Prop. 4.3, not both e2α̂ and f2α̂ are divisible by
2. Therefore, the second equation is zero if and only if αi = 0.

Algorithm: Recover(pp, skB , α0)
Input: pp public parameter of the protocol, skB the secret key of Bob,

α0 = α mod 2
Given: an oracle Oα(Ra, Sa, Rab, Sab;EB , EAB)→ 0/1 returns 1 if and only if

the following equations hold:
e4a(Ra, Sa) = e4a(P2, Q2),
ϕ′
A(Ra) = [e1]Rab + [f1]Sab,

ϕ′
A(Sa) = [e2]Rab + [f2]Sab,

where ϕ′
A is an isogeny from EB with kernel ⟨[2a]Ra + [α2a]Sa⟩ ∈ EB .

Ensure: Alice’s secret key α

1: Compute (Ra, Sa, Rab, Sab) ← (ϕB(P2), ϕB(Q2), ϕ
′
B(RA), ϕ

′
B(SA)) by following the protocol spe-

cification using skB .
2: Obtain a from pp.
3: Obtain αl ← α0.
4: i = 1
5: j =⊥ ▷ j will indicate the maximal power of 2 dividing α.
6: if αl = 1 then j ← 0

7: while i < a do
8: if αl = 0 then
9: (R̃a, S̃a)← ([1 + 22a−1]Ra, [2

2a−i−1]Ra + [1− 22a−1]Sa)

10: c← O(R̃a, S̃a, Rab, Sab)
11: c← 1− c
12: if c = 0 then j ← i ▷ Assert 2j is the maximal power of 2 dividing α.

13: else
14: α̂l ← QuasiInv(αl, 2, i+ 1) ▷ α̂l(αl) = 0 or 2j mod 2i+1

15: R̃a ← [1 + 22a−i+j−1]Ra − [αl2
2a−i+j−1]Sa

16: S̃a ← [α̂l2
2a−i−1]Ra + [1− 22a−i+j−1]Sa

17: c← O(R̃a, S̃a, Rab, Sab)

18: if c ̸= 1 then ▷ Assert i-th bit of α is 1.
19: αl ← αl + 2i

20: return −αl

Figure 2: An algorithm to recover the secret α in skA = (α, e1, f1, e2, f2).

Theorem 4.6. Assume Alice follows the protocol specification. The algorithm in Fig. 2 returns α in Alice’s
secret key.

Proof. We are going to prove the theorem by induction on i for the i-th bit of α where i < a. Write
−α = αl + 2iαi ∈ Z2i+1 for some i ∈ {1, . . . , a− 1} where αl ∈ Z2i and αi ∈ Z2 represent the bits that have
been recovered and the next bit to be recovered respectively. Since we have assumed the correctness of the
given least significant bit of α, it suffices to show that given αl the extraction of αi, the i-th bit of α, is
correct in each iteration of the while-loop of Fig. 2.
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Firstly, within each query, the isogeny ϕ′
A computed by the oracle is the same because the kernels are all

identical:

⟨[2a]Ra + [α2a]Sa⟩ = ⟨[2a]([1 + 22a−1]Ra − [t22a−i−1]Sa) + [α2a]([t′22a−i−1]Ra + [1− 22a−1]Sa)⟩
= ⟨[2a]([1 + 22a−i+j−1]Ra − [t22a−i+j−1]Sa) + [α2a]([t′22a−i−1]Ra + [1− 22a−i+j−1]Sa)⟩,

for any t, t′ ∈ Z2a where i, j ∈ Za. Therefore, since Ra, Sa, Rab, Sab are honestly generated, we may assume

e4a(Ra, Sa) = e4a(P2, Q2)
3b , ϕ′

A(Ra) = [e1]Rab + [f1]Sab, and ϕ′
A(Sa) = [e2]Rab + [f2]Sab.

Also, every input satisfies Eq. (1). Since e4a(Ra, Sa) = e4a(P2, Q2)
3b , we have for any α̂l ∈ Z2a , and

i, j ∈ Za,

e4a([1 + 22a−1]Ra − [αl2
2a−i−1]Sa, [α̂l2

2a−i−1]Ra + [1− 22a−1]Sa)

= e4a([1 + 22a−i+j−1]Ra − [αl2
2a−i+j−1]Sa, [α̂l2

2a−i−1]Ra + [1− 22a−i+j−1]Sa)

= e4a(Ra, Sa)

= e4a(P2, Q2)
3b .

To prove the correctness of the extraction of αi, we claim that Eqs. (2) and (3) are both satisfied if and
only if αi is 1 in the if-loop of αl = 0 or is 0 in the if-loop of αl ̸= 0. We therefore consider these two cases.

Case1: the if-loop of αl = 0. Being in this loop in the i-th iteration means α = 0 mod 2i. The
oracle takes (R̃a, S̃a, Rab, Sab) as input where (R̃a, S̃a) = ([1 + 22a−1]Ra, [2

2a−i−1]Ra+[1− 22a−1]Sa). Recall
ϕ′
A(Ra) = [e1]Rab + [f1]Sab, and ϕ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2), we have

ϕ′
A(R̃a)− [e1]Rab − [f1]Sab

= [(1 + 22a−1)e1]Rab + [(1 + 22a−1)f1]Sab − [e1]Rab − [f1]Sab

= [22a−1e1]Rab + [22a−1f1]Sab

= [−α22a−1e2]Rab + [−α22a−1f2]Sab

= O.

That is, Eq. (2) will always hold. Remark the third equation comes from Lem. 2.3 and the fact that i is
less than a. The fourth equation comes from the fact that α = 0 mod 2i and i ≥ 1 and {Rab, Sab} is a basis
for EAB [4

a].

Also, since αl = 0, α̂l is 1 by the specification of QuasiInv. Recall ϕ′
A(Ra) = [e1]Rab + [f1]Sab, and

ϕ′
A(Sa) = [e2]Rab + [f2]Sab. For Eq. (3), we have

ϕ′
A(S̃a)− [e2]Rab − [f2]Sab

= [22a−i−1e1 + (1− 22a−1)e2]Rab + [22a−i−1f1 + (1− 22a−1)f2]Sab − [e1]Rab − [f1]Sab

= [22a−i−1e1 − 22a−1e2]Rab + [22a−i−1f1 − 22a−1f2]Sab

= [−α22a−i−1e2 − 22a−1e2]Rab + [−α22a−i−1f2 − 22a−1f2]Sab

= [αi2
2a−1 − 22a−1][e2]Rab + [αi2

2a−1 − 22a−1][f2]Sab.

Similarly, the third equation comes from Lem. 2.3 and the fact that i is less than a. The fourth equation
comes from the fact that α = 0 mod 2i and {Rab, Sab} is a basis for EAB [4

a]. By Lem. 3.1, e2 and f2 cannot
be both even so that at least one of [22a−1e2]Rab and [22a−1f2]Sab is of order 2. Eq. (3) holds if and only if
αi is 1.

Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of αl = 0, the oracle outputs c = 1
if and only if αi = 1.
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Case2: the if-loop of αl ̸= 0. The condition is equivalent to 2j is the maxmal power of 2 dividing α. The or-
acle takes (R̃a, S̃a, Rab, Sab) as input where (R̃a, S̃a) = ([1 + 22a−i+j−1]Ra−[αl2

2a−i+j−1]Sa, [α̂l2
2a−i−1]Ra+

[1− 22a−i+j−1]Sa).
Recall ϕ′

A(Ra) = [e1]Rab + [f1]Sab, and ϕ′
A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2), we have

ϕ′
A(R̃a)− [e1]Rab − [f1]Sab

= [(22a−i+j−1)e1 − αl2
2a−i+j−1e2]Rab + [(22a−i+j−1)f1 − αl2

2a−i+j−1f2]Sab

Recall that {Rab, Sab} is a basis for EAB [4
a] ≃ Z4a×Z4a . By Lem. 4.5 (Eq. (4)), we know ϕ′

A(R̃a)− [e1]Rab−
[f1]Sab = O if and only if αi2

j = 0 mod 2.

Also, for Eq. (3), we have α̂

ϕ′
A(S̃a)− [e2]Rab − [f2]Sab

= [α̂l2
2a−i−1e1 + (−22a−i+j−1)e2]Rab + [α̂l2

2a−i−1f1 + (−22a−i+j−1)f2]Sab

Recall that {Rab, Sab} is a basis for EAB [4
a] ≃ Z4a × Z4a . By Lem. 4.5 (Eq. (5)), we know ϕ′

A(S̃a) −
[e2]Rab − [f2]Sab = O if and only if αi = 0.

Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of j ̸=⊥, the oracle outputs c = 1 if
and only if αi = 0.

Remark 4.7. It seems that in our attack, both the satisfaction of Eq. (1) and the identical kernels of ϕ′
A used

by the oracle the proof of Thm. 4.6 are derived from the fact that the kernel is of the form ⟨[2a]P2+[2aα]Q2⟩.
Hence, one may guess that relaxing the kernel to be ⟨[2i]P2 + [2iα]Q2⟩ for some i ∈ {0, · · · , a− 1} can give
a variant secure against the attack we presented. However, in the appendix, we consider a more generic
situation for HealSIDH covering the concern, and the prime 2 can be replaced by any small natural number
q. The algorithm takes 2a(q − 1) oracle queries to fully recover Alice’s secret key α ∈ Zq2a .

5 Summary

This work presents an adaptive attack on the isogeny-based key exchange and PKE schemes in [FP21], which
were claimed to have the static-static property. The attack is based on the subtle flaw in the main theorem
(Theorem 2) in [FP21] for the key validation mechanism used in each scheme, which states that Bob can
pass the key validation mechanism only if his input is correctly formed. We not only show that multiple
non-trivial solutions can pass the check but also derive a concrete and efficient adaptive attack against the
static-static proposals.

Hence, our result points out that having an efficient static-static key exchange or PKE from SIDH remains
an open problem. We look forward to future work in the community to resolve this problem.
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A A Generalized Attack

This section presents a generalized result. We consider a more generic condition where Alice uses qn torsion
subgroup for some natural numbers n, q to replace 22a. Furthermore, we do not restrict the secret kernel to
be of the form ⟨[qn/2]Pq+[α][qn/2]Qq⟩ where {Pq, Qq} is a basis of E0[q

n] and α ∈ Zqa . Instead, we permit α
to be drawn arbitrarily from Zqa and the kernel to be ⟨[qn−a](Pq+[α]Qq)⟩. When n is even and q = 2, taking
a = n/2 is the case considered in Sec. 2.2. The generalization captures any straightforward modification of
the HealSIDH cryptosystem. The final algorithm takes a(q − 1) oracle queries to fully recover Alice’s secret
key α ∈ Zqa . Therefore, as long as q is small, the HealSIDH cryptosystem and the key validation algorithm
are vulnerable to our new variant of GPST attack.

To be more specific, the public key parameter pp = (E0, Pq, Qq, Pq′ , Qq′ , p, q, q
′) where q, q′ ∈ N are

coprime, p = fqnq′n
′ − 1 is prime, qn ≈ q′n

′
, and {Pq, Qq} and {Pq′ , Qq′} are bases for E0[q

n] and

E0[q
′n′

], resp. Alice samples a secret α uniformly at random from Zqa , computes ϕA : E0 → EA =
E0/⟨[qn−a](Pq + [α]Qq)⟩ and representing ϕA(Pq) = [e1]RA + [f1]SA and ϕA(Qq) = [e2]RA + [f2]SA where
{RA, SA} is a canonical basis for EA[q

a]. Alice’s secret key is skA = (α, e1, f1, e2, f2) and public key is
(EA, ϕA(Pq′), ϕA(Qq′)).

The high-level idea of the generalized attack is similar. Different from the “reciprocal” GPST attack
presented in Sec. 4, one can view the generalized attack as the “triple” GPTS attack. Similarly, we use the
equalities of Eq. (2) and Eq. (3) to extract the information of α and a quasi-inverse of α simultaneously.
Additionally, on input (R′

a, S
′
a, R

′
ab, S

′
ab), the oracle computes the isogeny with kernel ⟨R′

a + αS′
a⟩. We will

use the equality between ⟨R′
a + αS′

a⟩ and ⟨ϕB(Pq) + αϕB(Qq)⟩ to extract α again (see Lem. A.5). We will
show three equalities hold if and only if the extraction of a digit of α is correct.

Heuristic Assumption. We assume that the oracle will return 0 with an overwhelming probability if the
input does not induce the same kernel as the honest input. Since we do not restrict the secret kernel to be
of the form ⟨[qa]Pq + [α][qa]Qq⟩, the isogeny used by the oracle might therefore vary with each query1. We
thereby require this assumption. Given the randomness of isogeny evaluation, the assumption is reasonable.
Assume a new induced isogeny used by the oracle mapping Ra and Sa uniformly at random over F2

p. Then
both equations (Eqs. (2) and (3)) are satisfied with probability around 1/p2 even if we only focus on the
x-coordinate.

We start with following three simple facts similar to Prop. 2.2 and Lems. 2.3 and 3.1.

1For instance, on input (Ra, [2a−1]Ra + Sa, Rab, Sab) as Lem. 3.2 for q = 2 and n = a, the isogeny used by the oracle is
with kernel ⟨Ra + [α]Sa + [α22a−1]Ra⟩. The kernel is the same if and only if α is divisible by 2.
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Proposition A.1. If Bob honestly generates Ra, Sa, Rab, Sab by Ra = ϕB(P2), Sa = ϕB(Q2), Rab = ϕ′
B(RA)

and Sab = ϕ′
B(SA), then {Rab, Sab} is a basis of EAB [q

n] and {Ra, Sa} is a basis of EB [q
n].

Proof. Since [qn]Ra = ϕB([q
n]P2) = O and [qn]Sa = ϕB([q

n]Q2) = O, both Ra and Sa are in EB [q
n]. Due

to eqn(Ra, Sa) = eqn(P2, Q2)
q′n

′

, we know eqn(Ra, Sa) is a primitive qn-th root of unity. Similarly, Since
[qn]Rab = ϕ′

B([q
n]RA) = O and [qn]Sab = ϕ′

B([q
n]SA) = O, both Rab and Sab are in EAB [q

n]. Due to

eqn(Rab, Sab) = eqn(RA, SA)
q′n

′

, we know eqn(Rab, Sab) is a primitive qn-th root of unity. Therefore, the
result follows.

Lemma A.2. Let e1, e2, f1, f2 defined as above and α ∈ Zqa be the secret key of Alice such that ker(ϕA) =
⟨[qn−a](Pq + [α]Qq)⟩. If Alice follows the protocol specification, then e1 + αe2 = f1 + αf2 = 0 mod qa.

Proof. Given ϕA(P2) = [e1]RA+[f1]SA and ϕA(Q2) = [e2]RA+[f2]SA, we haveO = ϕA([q
n−a](Pq+[α]Qq)) =

[qn−a][e1 + αe2]RA + [qn−a][f1 + αf2]SA = [e1 + αe2]RA + [f1 + αf2]SA. Recall that {[qn−a]RA, [q
n−a]SA}

is a basis of EA[q
a]. Therefore, e1 + αe2 = f1 + αf2 = 0 mod qa.

Lemma A.3. If Alice produces ϕA(Pq) and ϕA(Qq) honestly, then f1 and f2 cannot be both divisible by q.

Proof. Suppose for the purpose of contradiction that both e2 and f2 are divisible by q. Then, [qn−1]ϕA(Qq) =
O, which implies ker(ϕA) = ⟨[qn−a](Pq + [α]Qq)⟩ contains [qn−1]Qq. That is, [kqn−a]Pq + [kqn−aα]Qq =
[q2a−1]Qq for some k ∈ Zqa , so k = 0. This contradicts the fact that {Pq, Qq} is a basis for E0[q

n]. The
result follows.

The algorithm in Fig. 3 together with Thm. A.4 provides an iterative approach for recovering α. It
requires q − 1 oracle queries to recover each digit of α in each iteration.

Theorem A.4. Assume Alice follows the protocol specification. The algorithm in Fig. 3 returns α in Alice’s
secret key.

Proof. We are going to prove the theorem by induction on i for the i-th digit of α where i < a. Write
−α = αl + qiαi mod qi+1 for some i ∈ {0, . . . , a− 1} where αl ∈ Zqi and αi ∈ Zq represent the digits that
have been recovered and the next digit to be recovered respectively.

First of all, we will show that within each query in each loop with respect to i, the isogeny ϕ′
A computed

by the oracle is of the kernel ⟨Ra + αSa⟩ if t = αi.

Lemma A.5. (Kernel analysis.) For each query made in Fig. 3 in each loop with respect to i, the kernel
used by the oracle internally is identical to ⟨[qn−a](Pq + [α]Qq)⟩ if t = αi.

Proof. Case1: the if-loop of i = 0. For the queries in the if-loop of i = 0, if t = αi, we have

⟨[qn−a](([1 + qn−1]Ra − [tqn−1]Sa) + [α]([α̂tlq
n−1]Ra + [1− qn−1]Sa))⟩

= ⟨[qn−a](Pq + [α]Qq)⟩

Remark that here αi = α0 and the quasi-inverse α̂tl = t−1 mod q for t ̸= 0. Therefore, 1 +αα̂tl = 0 mod q
and −α0 − α = 0 mod q, and the second equation follows.

Case2: the if-loop of αl = 0. For the queries in the while-loop of αl = 0, we have

⟨[qn−a](([1 + qn−1]Ra) + [α]([α̂tlq
n−i−1]Ra + [1− qn−1]Sa))⟩

= ⟨[qn−a](Pq + [α]Qq)⟩

Remark that being in the if-loop of αl = 0 implies i ≥ 1 and qi | α. Hence, in this case the kernel computed
by the oracle is always ⟨[qn−a](Pq + [α]Qq)⟩.
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Algorithm: Recover(pp, skB)
Input: pp public parameter of the protocol, skB the secret key of Bob,
Given: an oracle Oα(Ra, Sa, Rab, Sab;EB , EAB)→ 0/1 returns 1 if and only if

the following equations hold:
eqn(Ra, Sa) = eqn(Pq, Qq),
ϕ′
A(Ra) = [e1]Rab + [f1]Sab,

ϕ′
A(Sa) = [e2]Rab + [f2]Sab,

where ϕ′
A is an isogeny from EB with kernel ⟨[qn−a](Pq + [α]Qq)⟩ ∈ EB .

Ensure: Alice’s secret key α

1: Obtain (Ra, Sa, Rab, Sab)← (ϕB(Pq), ϕB(Qq), ϕ
′
B(RA), ϕ

′
B(SA)) by following the protocol specific-

ation using skB .
2: Obtain a from pp.
3: i = 0
4: j =⊥
5: αl = 0
6: while i < a do
7: c = 0
8: t = q
9: for t ∈ {0, · · · , q − 1} do

10: α̂tl ← QuasiInv(αl + tqi, q, n)

11: if i = 0 then ▷ Extract α0.
12: while c = 0 or t > 0 do
13: t −= 1
14: R̃a, S̃a ← [1 + qn−1]Ra − [tqn−1]Sa, [α̂tlq

n−1]Ra + [1− qn−1]Sa

15: c← O(R̃a, S̃a, Rab, Sab)

16: αl ← t
17: i += 1
18: if t ̸= 0 then j ← i ▷ Assert q is the maximal power of q dividing α.

19: Continue
20: if αl = 0 then ▷ Assert α̂tlt = 1 or 0 mod q.
21: while c = 0 or t > 0 do
22: t −= 1
23: R̃a, S̃a ← [1 + qn−1]Ra, [α̂tlq

n−i−1]Ra + [1− qn−1]Sa

24: c← O(R̃a, S̃a, Rab, Sab)

25: αl ← αl + tqi ▷ Assert i-th digit of −α is t.
26: if t ̸= 0 then j ← i ▷ Assert qj is the maximal power of q dividing α.

27: else ▷ Assert α̂tl(αl + tqi) = qj mod qn.
28: while c = 0 or t > 0 do
29: t −= 1
30: R̃a ← [1 + qn−i+j−1]Ra − [(αl + tqi)qn−i+j−1]Sa

31: S̃a ← [α̂tlq
n−i−1]Ra + [1− qn−i+j−1]Sa

32: c← O(R̃a, S̃a, Rab, Sab)

33: αl ← αl + tqi ▷ Assert i-th digit of −α is t.

34: i += 1

35: return −αl mod qa

Figure 3: A general algorithm to recover the secret α.
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Case3: the if-loop of αl ̸= 0. For the queries in the while-loop of αl ̸= 0, if t = αi, we have

⟨[qn−a](([1 + qn−i+j−1]Ra − [(αl + tqi)qn−i+j−1]Sa) + [α]([α̂tlq
n−i−1]Ra + [1− qn−i+j−1]Sa))⟩

= ⟨[qn−a](Pq + [α]Qq)⟩

Remark that we have α̂tl(αl + tqi) = qj mod qn and −α = αl + qiαi mod qi+1 where i > j. Therefore,
when t = αi, we have qj + αα̂tl = 0 mod qi+1 and (αl + tqi) + α = 0 mod qi+1. The second equation
follows.

Similarly, we analyze the satisfaction of Eq. (1) (the Weil pairing check) for the oracle input. The
following lemma shows that all oracle inputs will satisfy Eq. (1).

Lemma A.6. (Eq. (1) analysis.) Each query made in Fig. 3 in each loop satisfies Eq. (1).

Proof. Recall that we have eqa(Ra, Sa) = eqa(P2, Q2)
q′b2.

Case1: the if-loop of i = 0. For the queries in the if-loop of i = 0, we always have

eqa([1 + qn−1]Ra − [tqn−1]Sa, [α̂tlq
n−1]Ra + [1− qn−1]Sa)

= eqa(Ra, Sa)

= eqa(Pq, Qq)
q′b .

Case2: the if-loop of j =⊥. For the queries in the while-loop of j =⊥, we always have

eqa([1 + qn−1]Ra, [α̂tlq
n−i−1]Ra + [1− qn−1]Sa)

= eqa(Ra, Sa)

= eqa(Pq, Qq)
q′b .

Case3: the if-loop of j ̸=⊥. For the queries in the while-loop of j ̸=⊥, we always have

eq2a([1 + qn−i+j−1]Ra − [(αl + tqi)qn−i+j−1]Sa, [α̂tlq
n−i−1]Ra + [1− qn−i+j−1]Sa)

= eqa(Ra, Sa)
1−q2n−2i+2j−2+α̂tl(αl+tqi)q2n−2i+j−2

= eqa(Ra, Sa)

= eqa(Pq, Qq)
q′b .

Note that since α̂tl(αl + tqi) = qj mod qn, we have 1− q2n−2i+2j−2 + α̂tl(αl + tqi)q2n−2i+j−2 = 1 mod qn.
Therefore, all oracle queries made in Fig. 3 satisfy Eq. (1).

For the case i = 0 of induction, we have to show the correctness of the extraction of α0, the least significant
digit of −α. We restrict our attention to the if-loop of the condition i = 0. Recall ϕ′

A(Ra) = [e1]Rab+[f1]Sab,
and ϕ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2) t ∈ Zq, we have

ϕ′
A([1 + qn−1]Ra − [tqn−1]Sa)− [e1]Rab − [f1]Sab

= [(1 + qn−1)e1 − tqn−1e2]Rab + [(1 + qn−1)f1 − tqn−1f2]Sab − [e1]Rab − [f1]Sab

= [qn−1e1 − tqn−1e2]Rab + [qn−1f1 − tqn−1f2]Sab

= [−αqn−1e2 − tqn−1e2]Rab + [−αqn−1f2 − tqn−1f2]Sab

= [α0q
n−1e2 − tqn−1e2]Rab + [α0q

n−1f2 − tqn−1f2]Sab

2Since we allow to use qa- and q′b-isogenies here, the exponent thereby is q′b here.
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That is, Eq. (2) will always hold. Remark the third equation comes from Lem. A.2. Therefore, the
condition of Eq. (2) is satisfied if and only if t = α0.

Similarly, for Eq. (3), we have

ϕ′
A([α̂tlq

n−i−1]Ra + [1− qn−1]Sa)− [e2]Rab − [f2]Sab

= [α̂tlq
n−1e1 + (1− qn−1)e2]Rab + [α̂tlq

n−1f1 + (1− qn−1)f2]Sab − [e1]Rab − [f1]Sab

= [α̂tlq
n−1e1 − qn−1e2]Rab + [α̂tlq

n−1f1 − qn−1f2]Sab

= [−αα̂tlq
n−1e2 − qn−1e2]Rab + [−αα̂tlq

n−1f2 − qn−1f2]Sab

= [α0α̂tlq
n−1 − qn−1][e2]Rab + [α0α̂tlq

n−1 − qn−1][f2]Sab.

That is, Eq. (3) will always hold. Remark the third equation comes from Lem. A.2. Therefore, the
condition of Eq. (3) is satisfied if and only if α0α̂tl = 1 mod q. Equivalently, t = α0, because tα̂tl = 1
mod q. If α0α̂tl ̸= 1 mod q for all t ∈ {1, · · · , q − 1}, then α0 = 0. Therefore, by combining conditions of
Eqs. (1) to (3), the extraction of α0 is correct.

It suffices to show that given αl the extraction of αi, the i-th digit of −α mod qa for i ≥ 1, is correct
in each iteration of the while-loop of Fig. 3. To prove the correctness of the extraction of αi, in either the
if-loop of αl = 0 or the else-loop (αl ̸= 0), we claim that Eqs. (2) and (3) are both satisfied if and only
if the output of the oracle is c = 1 for t ∈ {1, · · · , q − 1} used in the loop if and only if αi = t for some
t ∈ {1, · · · , q − 1}. We therefore consider two cases.

Case1: the if-loop of αl = 0. The condition is equivalent to αl = 0 which means −α = 0 mod qi. We
require the following to show the result.

Lemma A.7. Assume αi ̸= 0. Then, both of the following two equations are true if and only if αi = t for
some t ∈ {1, · · · , a− 1} :

qn−1e1 = qn−1f1 = 0 mod qn (6)

α̂tle1 − qie2 = α̂tlf1 − qif2 = 0 mod qi+1 (7)

Proof. By Lem. A.2, we have qn−1e1 = −αqn−1e2 mod qn. Also, qn−1f1 = −αqn−1f2 mod qn. The
execution of this loop implies α is divisible by q. Therefore, the first equation always holds.

By Lem. A.2, we have α̂tle1 − qie2 = −α̂tlαe2 − qie2 mod qi+1. Since (αl + tqi)α̂tl = qi mod qi+1, we
have −α̂tlαe2−qie2 = (αi− t)qiα̂tle2 mod qi+1. Similarly, we have α̂tlf1−qif2 = (αi− t)qiα̂tlf2 mod qi+1.
By Lem. A.3 and Prop. 4.3, e2α̂tl and f2α̂tl cannot both be divisible by q. Therefore, the second equation
is zero if and only if αi = t.

Hence, both of the following two equations are true if and only if αi = t.

Recall ϕ′
A(Ra) = [e1]Rab + [f1]Sab, and ϕ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2), we have

ϕ′
A([1 + qn−1]Ra)− [e1]Rab − [f1]Sab

= [qn−1e1]Rab + [qn−1f1]Sab

Recall that {Rab, Sab} is a basis for EAB [q
n] ≃ Zqn×Zqn . By using Lem. A.7 (Eq. (6)), this condition always

holds.

Also, for Eq. (3), we have

ϕ′
A([α̂tlq

n−i−1]Ra + [1− qn−1]Sa)− [e2]Rab − [f2]Sab

= [α̂tlq
n−i−1e1−qn−1e2]Rab + [α̂tlq

n−i−1f1−qn−1f2]Sab
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Recall that {Rab, Sab} is a basis for EAB [q
n] ≃ Zqn × Zqn . By using Lem. A.7 (Eq. (7)), this condition

holds if and only if αi = t for some t ∈ {1, · · · , a− 1}.
Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of αl = 0, the oracle outputs c = 1

for t ∈ {1, q − 1} used in the loop if and only if αi = t. Moreover, if all outputs of the oracle in the loop are
0, then αi = 0. The extraction of αi is correct in this case.

Case2: the if-loop of αl ̸= 0. The condition is equivalent to qj is the maxmal power of q dividing α.

Lemma A.8. Let notation be as above. Both of the following two equations are true if and only if αi = t :

e1 − (αl + tqi)e2 = f1 − (αl + tqi)f2 = 0 mod qi−j+1 (8)

α̂tle1 − qje2 = α̂tlf1 − qjf2 = 0 mod qi+1 (9)

Proof. By Lem. A.2, we have e1 − (αl + tqi)e2 = −αe2 − (αl + tqi)e2 = (αi − t)qie2 mod qi−j+1 and
f1 − (αl + tqi)f2 = −αf2 − (αl + tqi)f2 = (αi − t)qif2 mod qi−j+1. By Lem. A.3, not both e2 and f2 are
divisible by q. Therefore, the first equation is zero if and only if αi = t or j ≥ 1.

Similarly, by Lem. A.2, we have α̂tle1 − qje2 = −αα̂tle2 − qje2 mod qi+1. Since (αl + tqi)α̂tl = qj

mod qi+1, we have−αα̂tle2−qje2 = (αi−t)qiα̂tle2 mod qi+1. Similarly, we have α̂tlf1−qjf2 = (αi−t)qiα̂tlf2
mod qi+1. By Lem. A.3 and Prop. 4.3, not both e2α̂tl and f2α̂tl are divisible by q. Therefore, the second
equation is zero if and only if αi = t.

Hence, both of the following two equations are true if and only if αi = t.

Recall ϕ′
A(Ra) = [e1]Rab + [f1]Sab, and ϕ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2), we have

ϕ′
A([1 + qn−i+j−1]Ra − [(αl + tqi)qn−i+j−1]Sa)− [e1]Rab − [f1]Sab

= [(qn−i+j−1)e1 − (αl + tqi)qn−i+j−1e2]Rab + [(qn−i+j−1)f1 − (αl + tqi)qn−i+j−1f2]Sab

For Eq. (3), we have α̂

ϕ′
A([α̂tlq

n−i−1]Ra + [1− qn−i+j−1]Sa)− [e2]Rab − [f2]Sab

= [α̂tlq
n−i−1e1 + (−qn−i+j−1)e2]Rab + [α̂tlq

n−i−1f1 + (−qn−i+j−1)f2]Sab

Recall that {Rab, Sab} is a basis for EAB [q
n] ≃ Zqn ×Zqn . By Lem. A.8, we know both conditions (Eqs. (2)

and (3)) hold if and only if αi = t.
Therefore, by combining conditions of Eqs. (1) to (3), in the else-loop, the oracle outputs c = 1 for

t ∈ {1, · · · , q − 1} used in the loop if and only if αi = t. If all outputs of the oracle in the loop is 0, then
αi = 0. The extraction in this case is correct. Hence, the algorithm in Fig. 3 successfully extracts Alices’s
secret key.
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