
A Security Model for Randomization-based
Protected Caches

Jordi Ribes-González1, Oriol Farràs1, Carles Hernández2,
Vatistas Kostalabros3, and Miquel Moretó3

1 Universitat Rovira i Virgili, Tarragona, Spain,
jordi.ribes,oriol.farras@urv.cat

2 Universitat Politècnica de València, València, Spain, carherlu@upv.es
3 Barcelona Supercomputing Center, Barcelona, Spain,

vatistas.kostalabros,miquel.moreto@bsc.es

Abstract. Cache side-channel attacks allow adversaries to learn sen-
sitive information about co-running processes by using only access la-
tency measures and cache contention. This vulnerability has been shown
to lead to several micro-architectural attacks. As a promising solution,
recent work proposes Randomization-based Protected Caches (RPCs).
RPCs randomize cache addresses, changing keys periodically so as to
avoid long-term leakage. Unfortunately, recent attacks have called the
security of state-of-the-art RPCs into question.
In this work, we tackle the problem of formally defining and analyz-
ing the security properties of RPCs. We first give security definitions
against access-based cache side-channel attacks that capture security
against known attacks such as Prime+Probe and Evict+Probe. Then,
using these definitions, we obtain results that allow to guarantee se-
curity by adequately choosing the rekeying period, the key generation
algorithm and the cache randomizer, thus providing security proofs for
RPCs under certain assumptions.

Keywords: Cache side-channel attacks · Timing attacks · Randomization-
based protected caches · Randomly-mapped caches · Pseudo-random
functions · Security definition

1 Introduction

In computer architecture, caches are hardware storage components designed to
mitigate the efficiency issues caused by the high latency of main memory accesses.
They act as intermediaries between the core and the main memory, and they
store accessed data so that there is no need to fetch these data from main memory
in later accesses, thus reducing the access delay.

This article is based on an earlier article [RGFH+22]: A Security Model for
Randomization-based Protected Caches. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2022(3), 1–25., © IACR 2022, https://doi.org/10.
46586/tches.v2022.i3.1-25.

https://doi.org/10.46586/tches.v2022.i3.1-25
https://doi.org/10.46586/tches.v2022.i3.1-25

2 Jordi Ribes-González et al.

The inherent low latency of cache accesses is vital for performance, and yet it
can cause security problems. The access latency leaks to cores the information of
whether or not data already resided in the cache hierarchy before the access took
place. This information has been used in a variety of micro-architectural attacks,
for example targeting cryptographic algorithms [LYG+15,IGI+16], cloud and
sandbox environments [ZJRR14,OKSK15], keystroke timing [Mon18,SLG+18],
the kernel space ASLR [GMF+16,GRB+17], or establishing covert channels as
well [GMWM16,MWS+17]. Speculative execution attacks such as the Spectre at-
tack [BSN+19,CVS+19,KHF+19], the Meltdown attack [LSG+18] and the Fore-
shadow attack [VMW+18] also exploit cache side channels.

We focus on side-channel attacks that exploit cache contention. Cache con-
tention is the property of caches by which, given their small capacity with respect
to main memory, cached addresses are bound to be evicted if enough accesses
are made. In these attacks, the attacker uses the same cache as the victim pro-
cess, but process isolation is active and the attacker does not have flushing
privileges. Among the attacks that exploit cache contention, we focus on access-
based attacks, which consist in using the memory access time of the attacker
to gather information on the activity of victim processes. In this work we do
not consider attacks that require more privileges, like timing the execution of
processes [LWML16], flushing the cache [GMWM16], or using cache collisions
with victim processes [Ber05].

The most well-known access-based attack is indisputably the Prime+Probe
attack [Per05,OST06,LYG+15,MWS+17,SWG+17]. This attack starts by tak-
ing an initial large set of addresses, and reduces it so that all addresses are
guaranteed to end up cached when sequentially accessed. This reduced set of
addresses is used to bring the cache to a known state. These addresses are
re-accessed at a later time, and the latencies are observed in order to derive
information on the access pattern of the victim process in between both ac-
cess batches. The efficiency of Prime+Probe is improved by an order of mag-
nitude in recent work [Qur19,VKM19]. Another attack covered in our work is
Evict+Probe [BM06,DXS20], which assumes that the first batch of accesses is
carried by the victim process instead of the attacker.

A solution that aims at protecting against access-based attacks is cache
randomization. Randomization-based protected caches (RPCs, see the works
in [WL07,LL14,LWML16,Qur18,THAC18,Qur19,WUG+19,DKMPHL20]) shuf-
fle cache addresses so that accesses are distributed randomly in the cache. Their
lower area and computational overhead makes them the most appealing candi-
dates to prevent contention attacks.

Generic attacks such as [BDY+20,PGGV21] showcase a weakness of RPCs:
any RPC is expected to become insecure if attackers are allowed enough ac-
cesses. This is due to the small size of cache memories. To overcome this, known
RPCs [Qur18,THAC18,Qur19] establish a rekeying period. The rekeying period
determines a number of cache accesses after which the keying material is re-
freshed and the cache is flushed. Assuming that the rekeying procedure changes

A Security Model for Randomization-based Protected Caches 3

the distribution of the address randomization unpredictably enough, this re-
stricts the number of accesses at disposal to perform an attack.

All previous research on RPCs focuses either in building solutions to thwart
known attacks, or in finding weaknesses of existing constructions. During this
period, the security of many RPCs has been defended with strong claims, only
to be called into question by later work. The present work aims at bringing tools
to stop this break-and-repair cycle.

1.1 Our contributions

As the transition from traditional to modern cryptography shows, a good way to
provide well-grounded and concrete security claims is to converge to a provable
security approach. The present work strives to define notions that character-
ize security against access-based attacks, and which can be used to assess the
security of previous RPCs.

First, we present a model for cache systems and RPCs. Our model con-
siders a single cache-level hierarchy, as we aim to protect the last-level cache,
and it takes into account the leakage of access latencies. We then provide a
definition that captures security against access-based attacks. To the best of
our knowledge, this is the first security definition for RPCs that follows the
game-based approach of cryptographic security definitions, where an adver-
sary engages in an experiment and tries to maximize its success advantage.
Our security definition applies to every RPC published up-to-date, in particular
to [WL07,LL14,LWML16,Qur18,THAC18,Qur19,WUG+19,DKMPHL20].

Due to specific constraints of RPCs, standard cryptographic security defini-
tions do not fit into this context. Namely, the size of caches is fixed and small,
and cannot grow arbitrarily according to a security parameter. Instead, we adjust
the security of the cache with the number of accesses the adversary is allowed
to make, and we do so by establishing a rekeying period. We view the rekeying
period as the security parameter of RPCs.

Our next step is to study the impact of rekeying and cache parameters on
security. To this end, given a certain probability p and assuming that the cache
randomizer behaves as a random oracle, we provide rekeying periods that guar-
antee all attacks succeed in breaking security during one epoch with advantage
at most p. This result is ported to a scenario with noise conditions, and we give
tools to extend the obtained security guarantees across various epochs. We com-
plete our security analysis by studying rekeying periods that are known to allow
efficient attacks.

Additionally, we obtain sufficient conditions for the cache randomizer to pro-
vide some security guarantees. We model cache randomizers as pseudo-random
functions, and we see that requiring a certain security from an RPC imposes
bounds on the security parameters of its underlying cache randomizer. This re-
sult allows to generalize our results to cache randomizers that are modeled as
pseudo-random functions, instead of as random oracles.

Finally, we demonstrate our results through an application case. We illustrate
the achieved results in the case of a commodity processor, for which we compute

4 Jordi Ribes-González et al.

rekeying periods that provide concrete security guarantees. Our case of study
shows that security can be extended across several epochs, providing significant
security gains and increasing the time window where security is known to be en-
forced. The scripts used to perform the provided computations have been made
available at https://doi.org/10.5281/zenodo.6397296. In addition, we eval-
uate the impact of the rekeying period on performance using a cache simulator,
showing the practicality of our work.

1.2 Related work

There exist two types of solutions to protect against access-based attacks. The
first [WL07,DJL+12,KLA+18] consists of partitioning the cache, making each
partition exclusive to only one process. Unfortunately, this isolation results in
a poor usage of resources that can defeat the purpose of large cache memories.
The second is randomization-based protected caches (RPCs), and it is the one
considered in this work.

The first RPC, RPCache [WL07], applies a permutation of set indexes that
is stored as a permutation table in memory, and changes this permutation every
time there is cache interference between two processes. This approach is better
suited for small caches, but it becomes impractical as cache size grows (e.g. for
last-level caches).

To overcome the efficiency issues of RPCache, CEASER [Qur18] takes an
encryption-based approach. In CEASER, a low-latency block cipher is used
to encrypt and decrypt all physical addresses that enter and leave the cache.
Keys are changed periodically to thwart known contention attacks. Despite
their strong security claims, later attacks were shown to reveal information
on the access pattern of the victim, either by breaking the block cipher used
in CEASER [BGS+20,PGGV21], or with improved access-based attacks such
as [Qur19,VKM19,PGGV21]. A similar solution is Time-Secure Cache [THAC18],
which additionally implements per-process domain separation.

Subsequent work [Qur19,WUG+19] attempts to further enhance the secu-
rity of RPCs by working over a non-standard type of cache memories called
skewed caches [Sez93,QBBC09,SSW14,YCJQ18]. Skewed caches split their mem-
ory into various partitions. Addresses are mapped to a different cache set in
each partition, and on a cache miss a partition is selected at random. Skewed-
CEASER [Qur19] encrypts the addresses in each partition independently and
renews the key periodically, albeit using a weak block cipher [BGS+20]. Scatter-
Cache [WUG+19] randomizes addresses in the cache, doing it independently in
each partition as well, but without key refreshing. Later work [BDY+20,PGGV21]
acknowledges that using partitions considerably strengthens security, but finds
that some key renewal is imperative, and that largely successful access-based
attacks are still possible with the parameters chosen in Skewed-CEASER and
ScatterCache.

Two previous works have examined the security properties of RPCs from a
probabilistic point of view. In [BDY+20], a statistical analysis of RPCs is per-
formed, and the obtained results are implemented in a tool that is used to evalu-

https://doi.org/10.5281/zenodo.6397296

A Security Model for Randomization-based Protected Caches 5

ate the security of state-of-the-art RPCs, deeming them insecure. In [PGGV21],
after presenting a new access-based attack, its success probability in breaking
the security of several RPCs is computed, and this is used to better understand
the influence of the RPC design parameters on security.

1.3 Overview of the article

This paper is organized as follows. Section 2 provides our models for cache
memories, cache randomizers, and RPCs used in the rest of this article. Section 3
presents our single-epoch and multi-epoch security definitions for RPCs, and our
pseudo-randomness definitions for cache randomizers and rekeying algorithms.
Section 4 studies the security of RPCs, providing sufficient conditions to achieve
provable security. We study the single-epoch and multi-epoch cases, on top of a
scenario with noise conditions. We also study rekeying periods that are known to
allow attacks that break security with enough advantage.Section 5 portraits an
application example of how one may apply the obtained results, and a simulation
that shows the impact of rekeying on the overall processor performance. The
article concludes in Section 6 with a brief summary and some research directions.

As additional material, in Appendix A we state several assumptions on cache
memories and cache randomizers that we take to define our models. Also, in
Appendix B we give some considerations that affect the threat model of our
security definition.

2 Randomization-based protected caches

In this section, we present our cache and RPC models. To guide the design of
these models, we start the section by giving a primer on memory management
and address translation that follows from the material in [Sar19,VKM19].

2.1 Memory management

The architecture surrounding memory accesses in modern computer systems
roughly follows the diagram of Figure 1. It consists of the following components:

Main Memory: Themain (or primary)memory consists of separately-addressable
memory blocks, organized into disjoint frames, each of the same size 2p. Each
block is addressed by a physical address, which is a concatenation of the frame
number (representing its frame) and page offset (representing the position
of the block inside the frame).

CPU: The CPU executes processes, which in turn need access to the main
memory. However, processes may need to have exclusive access to memory
blocks for security (process isolation), and it is convenient for the memory
space to be linearly arranged. Hence, the CPU accesses the main memory
through virtual (or logical) addresses, which are sequential and are ultimately
mapped to physical addresses. Virtual addresses consist of a page number
and a page offset.

6 Jordi Ribes-González et al.

MMU/TLB: The memory management unit (MMU) maps virtual addresses to
physical addresses, according to a per-process page table. The storage and
maintenance of this table is carried out by the MMU-managed translation
lookaside buffer (TLB) and by the operating system (OS). The MMU imple-
ments process isolation, and it lets processes share data if and only if their
page tables share a frame number.

Cache: In this work, we focus on caches that reside the farthest to the core (see
Appendix B), called Last-Level Caches (LLC). Such caches take as input
physical addresses, retrieve the corresponding data from main memory if
necessary, and forward the data to the CPU. In the process, they save the
received data in its internal storage, so that future accesses avoid the high
latency of main memory.
The cache internally maps physical addresses to cache addresses to perform
the internal storage. In the typical set-associative paradigm, the internal
storage of the caches comprise 2c cache sets, each indexed by a set index.
Every cache set is divided into cache lines, each capable of holding the data
of several blocks each. All cache sets hold the same amount a of cache lines,
which is known as the associativity of the cache.

Virtual addr. Physical addr.

Physical addr.

Data

(Running

Page table
of process

PID

process

PID)

Page
num.

num.

num.

Page

Page

Frame

Frame

Frame

num.

num.

num.

...

S
e
t

1
S
e
t

2
c

·
·
·

·
·
·

·
·
·

F
r
a
m

e
1

F
r
a
m

e
i

OS

Line 1

Line a

.

.

.

Line 1

.

.

.

Line a

.

.

.

Block 1

Block 2
p

·
·
·

·
·
·

Block 1

Block 2
p

·
·
·

·
·
·

CPU

MMU Cache

Main memory
Page table maintenance

Data

Fig. 1: Components involved in the memory management of conventional
modern computer systems [And19].

2.2 Address translation

The virtual to physical address translation is carried out by the MMU. The
translation consists simply on replacing the page number portion of the address
by the possibly smaller frame number associated to it, according to the page
table of the current process.

A Security Model for Randomization-based Protected Caches 7

Page number

Frame number

Page offset

Page offset

MMU

Fig. 2: Virtual-to-physical address translation.

Cache addresses are divided into three parts: the set index, the tag, and
the offset. Physical to cache address translation is done by assigning the most
significant g bits to the tag, the next c bits to the set index, and the rest to the
offset.

When data enters the cache, the set index of its address identifies the cache
set where it is to be stored. The particular cache line where it will be stored
depends on the replacement policy inherent to the cache. Once a line is chosen,
the offset determines which position of the cache line the data will reside in.
Finally, the data block is stored alongside the tag in the line. The tag uniquely
identifies the line where the data resides inside the cache set.

In the described setting, one can find roughly two main types of caches de-
pending on the form of this translation:

Virtually indexed: In this case, the set index can be generated from the virtual
address and in parallel to the TLB lookup, see Figure 3. Processes are in full
control of the set index part of the address. Process isolation in the cache
is guaranteed by tags, since physical addresses with different frame numbers
are translated to cache addresses with different tags.

Frame number Page offset

Tag Index Offset

Frame number Page offset

Tag Index Offset

Fig. 3: Physical-to-cache address translation in virtually indexed caches.

Physically indexed: In this case, the set index is generated, at least in part, from
the physical address (i.e., the frame number), see Figure 4. When different
frame numbers give rise to the same tag, process isolation in the cache is
enforced by the page color part of the frame number.

2.3 Cache model

In this section, we describe an abstraction of caches for the purpose of defining
a notion of security against access-based attacks. Find in Appendix A the set of
assumptions on cache systems and cache randomizers that shapes our models.

8 Jordi Ribes-González et al.

Frame number Page offset

Tag Index Offset

Page color

Fig. 4: Physical-to-cache address translation in physically indexed
caches [VKM19].

The following definition establishes some notation for indexes, tags and cache
addresses. Note that we disregard the offset part of addresses, since it is irrelevant
for the considered cache timing side-channels.

Definition 1 (Set Indexes, Tags and Addresses). Let c and g be positive
integers, and let S ⊆ {0, 1}c and T ⊆ {0, 1}g be sets of fixed-length binary
strings. We call S the (set) index space, and T the tag space. Elements of S are
called (set) indexes, elements of T are called tags, and elements of S × T are
called addresses.

Our model for cache systems comprises an abstraction C of the physical cache
memory, defined as an array that stores a fixed-length cache set C[s] for every
s ∈ S. To model cache accesses, we define a function access(RP, (s, t)) that
models accesses to the tag t in the cache set C[s]. To account for the leakage of
the latency of cache operations, our model reveals on each access a latency bit h.
If there is a cache hit (t ∈ C[s]), it outputs the bit h = 0. Otherwise, if there is a
cache miss (t /∈ C[s]), it outputs the bit h = 1. In the process, this function uses
a replacement policy RP to compute a cache line ℓ = RP((s, t)), and it stores the
tag t in C[s][ℓ] (possibly causing an eviction if C[s][ℓ] was not empty).

Definition 2 (Cache System). Let S be an index space and T be a tag space.
A cache system over S, T (or simply cache system) is a tuple (C,RP, access) that
consists of:

C: An array indexed by the set S. For every s ∈ S, it stores an ordered array of
fixed length that we denote by C[s]. We refer to C as a cache, to the arrays
C[s] as cache sets, and to each of the positions of cache sets as their cache
lines. We assume that C is a global variable that can be modified both by RP
and access.

RP(x) : A possibly stateful algorithm that takes as input an address x ∈ S × T .
It outputs a cache line ℓ = RP(x). We call RP a replacement policy.

access(RP, x): A function that takes as input a replacement policy RP and an
address x = (s, t) ∈ S × T . It modifies the cache C and outputs a latency bit
h. The bit h indicates whether there has been a cache hit (t ∈ C[s], in which
case h = 0) or a cache miss (t /∈ C[s], then h = 1). This function proceeds
as follows:
1. Compute the cache line ℓ = RP(x).
2. If t ∈ C[s], output the bit 0.

A Security Model for Randomization-based Protected Caches 9

3. If t /∈ C[s], assign the tag C[s][ℓ] = t and output the bit 1.

When a slot C[s][ℓ] in the cache has not yet been accessed, we denote C[s][ℓ] =
NULL. We say that a cache set C[s] is empty if C[s][ℓ] = NULL for every cache line
ℓ. Similarly, a cache C is empty if all its cache sets C[s] are empty. A cache set
C[s] is said to be full if C[s][ℓ] ̸= NULL for every cache line ℓ.

If C[s][ℓ] = t and executing access(RP, (s, t′)) for t′ ̸= t reassigns C[s][ℓ] = t′,
we say that the access evicts the address (s, t) from the cache.

Definition 3. A cache system (C,RP, access) is

– fully associative if |C| = 1 (i.e., if it is over an index space satisfying |S| = 1),
– a-associative if, for every s ∈ S, the cache set C[s] has size a (i.e., a lines),

and
– directly mapped if it is 1-associative.

Regarding replacement policies, conventional replacement policies include
the Random (RAND) policy, the Least-Recently Used (LRU) policy, Pseudo-
LRU (PLRU), First-In-First-Out, or Most-Recently Used. As stated in other
work [BDY+20,PGGV21], two main options to consider are RAND and LRU:

RAND((s, t)): This policy selects a random cache line when there is a cache miss
and the cache set C[s] is full. It proceeds as follows:
– If t ∈ C[s] (cache hit case), output the cache line ℓ such that C[s][ℓ] = t.
– If t /∈ C[s] (cache miss case):
• If C[s] is not full, output the smallest cache line ℓ so that C[s][ℓ] =
NULL.

• If C[s] is full, output a uniformly random cache line ℓ.
LRU((s, t)): If there is a cache miss and the cache set C[s] is full, this policy

returns the cache line of C[s] that has not been accessed for the longest time.
For this, it logs every access in its internal state stLRU. It proceeds as follows:
– If t ∈ C[s] (cache hit case), let ℓ be the cache line such that C[s][ℓ] = t.

Log (s, ℓ) into stLRU, and output ℓ.
– If t /∈ C[s] (cache miss case):
• If C[s] is not full, let ℓ be the smallest cache line so that C[s][ℓ] = NULL.
Log (s, ℓ) into stLRU, and output ℓ.

• If C[s] is full, retrieve from stLRU the line ℓ of this cache set that
has not been accessed for the longest time. Log (s, ℓ) into stLRU, and
output ℓ.

One common property of these replacement policies is that cache sets that
are not full are accessed sequentially. The results of this work assume that all
replacement policies behave in this way.

From now on, when it is irrelevant or clear from context, we drop all reference
to the replacement policy RP. Particularly, we do so in the declaration of cache
systems and in calls to the access function. Unless explicitly stated, we also
assume that the set and tag spaces S, T are fixed and taken as input by all
algorithms.

10 Jordi Ribes-González et al.

2.4 Cache randomizer and RPC models

To prevent access-based attacks to cache systems, previous work considers RPCs.
Their randomization-based approach consists in restricting the access function-
ality of caches, so that all addresses pass first through a randomization function
π that computes the actual cache set to access. In other words, given a cache
system (C, access), cache accesses in RPCs are made with the function accessπ
defined as accessπ((s, t)) := access((π(s, t), t)).

As we stated in the introduction, π should be a keyed algorithm. Moreover, we
may need some pseudo-random property out of it for security (see Definition 9).
For reasons also stated above, the keying material should be periodically set up
using a rekeying function rekey, which could work as a key derivation function
that derives new keys from previously generated keying material and random-
ness. The following definition formalizes these concepts.

Definition 4 (Cache Randomizer). A cache randomizer is a tuple (rekey, π)
that consists of the following:

rekey(): A probabilistic, possibly stateful, algorithm that generates a key k. We
refer to rekey as the rekeying algorithm.

πk(x): A probabilistic algorithm that takes as input a key k and an address
x ∈ S × T , and outputs a set index πk(x) ∈ S. We refer to πk as the
randomization function.

Given a cache randomizer (rekey, π) and a key k, two addresses x, y are called
congruent if πk(x) = πk(y).

To the end of deriving results under the assumption of the existence of ideal-
case cache randomizers, we define an ideal cache randomizer as one whose ran-
domization function behaves as an independent random oracle for every key
k.

Definition 5 (Ideal Cache Randomizer).

An ideal cache randomizer is a cache randomizer (rekey, π̄) such that:

1. The rekey() algorithm samples k uniformly at random from a nonempty key
space K.

2. For every sampled key k, the function π̄k is chosen uniformly at random
amongst all functions from S × T to S.

We next define the central object of study of this article.

Definition 6 (Randomization-based Protected Caches). A randomization-
based protected cache (or simply RPC) is a concatenation C = (C, access, rekey, π)
of a cache system and a cache randomizer.

A Security Model for Randomization-based Protected Caches 11

3 Security definitions

In this section, we present our security definitions for RPCs, and we state the
pseudo-randomness notions associated to cache randomizers and rekeying algo-
rithms. This work studies the security of RPCs from a standard cryptographic
viewpoint. We define a game where an attacker and a challenger interact through
an RPC, and we characterize security using the outcome of the game.

All the adversaries and distinguishers involved in our security and pseudo-
randomness definitions are considered to run in finite time and to have finite
resources. In particular, we do not consider computationally unbounded adver-
saries.

In Sections 3.1 and 3.2, we present our single-epoch and multi-epoch security
definitions for RPCs. Then, in Sections 3.3 and 3.4, we formalize the pseudo-
randomness of cache randomization functions and of rekeying algorithms, which
are the properties we need to achieve single-epoch and multi-epoch RPC security,
respectively.

3.1 Single-epoch security of RPCs

In the following, we define the single-epoch security of RPCs against single-target
access-based attacks. In these attacks, there is a distinguished target address
x = (σ, τ) ∈ S × T . The attacker is allowed to use the accessπk

function on
any address that does not have the same tag as x to modify the initially empty
cache C, obtaining the corresponding latency measures. The objective of the
attacker is to use these latencies to learn whether or not an access to x has
been carried out. Access-based attacks covered by our security definition include
Prime+Probe [OST06] and Evict+Probe [BM06].

In the considered threat model, we assume that the attacker has full knowl-
edge of x, as well as of the public parameters (S, T,RP, access, rekey, π). How-
ever, we disregard attacks that rely on additional attacker privileges such as
cache flushing, cache collisions with victim processes, or timing the execution of
victim processes [DXS20]. For a list of the assumptions that configure the threat
model of our security definition, see Appendix B.

Our security definition is stated in terms of an experiment (N1, N2)-RandA(x),
in which a stateful adversary A interacts with a challenger through an RPC. This
experiment takes as input a target address x and two positive integers N1, N2.

Initially, the cache C is empty, and a key k is instantiated through a call to
rekey. Then, A performs N1 accesses to addresses of choice, so as to prepare the
cache. The address choices are made adaptively, taking into account all previous
addresses and latency measures, which are seen by A and logged into its state
stA. Afterwards, an access to x is made with probability 1/2 according to a fair
coin b. Subsequently, N2 addresses are adaptively chosen and accessed by A. In
a final guess phase, the target address x, and the state stA that contains all
previous addresses and latencies, are used by A to make a guess b′ of the bit b.
The experiment outputs the bit b and the adversarial guess b′.

12 Jordi Ribes-González et al.

For the sake of clarity, in our security definition we denote our stateful ad-
versary by A = (A1,1, . . . ,A1,N1

,A2,1, . . . ,A2,N2
,A3), where each component

stands for a step in the described experiment. Moreover, for readability, we en-
capsulate into an algorithm called Prime the process of choosing an address,
accessing it, and logging the accessed address and latency into the state stA of
the adversary A.

The next definition states the security of an RPC C in one epoch, in terms
of the experiment Rand. It declares that C is secure when any adversary A can
not guess the value of the bit b from the interaction transcript with more than
a certain advantage.

Definition 7 ((N1, N2)-Access and N-Access Security). Let C be an RPC,
C = (C, access, rekey, π). Let N1, N2 be positive integers, and let x = (σ, τ) ∈ S×T
denote a target address. Let A = (A1,1, . . . ,A1,N1

,A2,1, . . . ,A2,N2
,A3) denote a

probabilistic stateful adversary, where every Ai,j outputs in S× (T \{τ}). Define
the experiment (N1, N2)-RandA(x) as follows:

(N1, N2)-RandA(x) :

for s ∈ S : C[s]← (NULL)j

k ← rekey()

for 1 ≤ i ≤ N1 :

PrimeA1,i
(x, k)

b
$← {0, 1}

if b = 1 : 1← access(x)

for 1 ≤ i ≤ N2 :

PrimeA2,i(x, k)

b′ ← A3 (x)

output (b, b′)

PrimeAj,i
(x, k) :

xj,i ← Aj,i(x)

hj,i ← accessπk
(xj,i)

stA ← xj,i, hj,i

We say the RPC C is (N1, N2)-access secure with advantage at most p if,
for every target address x and for every probabilistic stateful adversary A, the
output (b, b′) of (N1, N2)-RandA(x) satisfies

AdvRPC
C,A (N1, N2) := 2 · |Pr [b′ = b]− 1/2| ≤ p,

where the probability is taken over the randomness of the adversary and the
randomness used in the RPC C and the experiment.

We say that C is N -access secure with advantage at most p if it is (i,N − i)-
access secure with advantage at most p for all i = 0, . . . , N .

In this definition, an adversary has advantage at most p if and only if it
distinguishes whether the challenge access to x has been carried out or not (that
is, the value of the bit b) with probability at most p. Hence, having advantage 0
is equivalent to being oblivious to the value of b, and having advantage 1 implies
guessing b (or its complementary) almost perfectly.

A Security Model for Randomization-based Protected Caches 13

Note that, even if we consider that access to the cache is exclusively done
through a cache randomization function πk, we omit this mechanism in the ac-
cess to the target address during the game. This differs from previous versions
of the current paper [RGFH+22]. Said change does not affect the security prop-
erties captured, and it reduces the number of calls to πk, which is useful for
Proposition 2.

We remark that there is an abuse of notation in the step 1← access(x) of the
security game, and that it is not an assignment. It means that x is accessed and,
since its tag is not stored in the cache by construction, the latency is always 1.

3.2 Multi-epoch security of RPCs

In practice, an RPC should mask cache accesses for at least as long as critical
or attacker processes can be executed, hence possibly during various epochs.
However, as pointed out in previous work [BDY+20], leakage through access-
based attacks can carry across epochs, as information about the underlying cache
randomizer is revealed even if the key changes. This information could become
useful for attackers across different epochs. This calls for a multi-epoch security
definition, and for defining security properties of cache randomizers that could
help enforce security across epochs.

We next extend Definition 7 to characterize the security of RPCs across
R > 0 epochs.

Definition 8 (R-Epoch Security). Let C = (C, access, rekey, π) be an RPC.
Let R be a positive integer, let (N1,i)

R
i=1, (N2,i)

R
i=1 be sequences positive integers,

and let xi = (σi, τi) ∈ S × T denote target addresses for i = 1, . . . , R. Let
A = (A1, . . . ,AR,A′)Ri=1 be a probabilistic stateful adversary, where

Ai = (Ai,1,1, . . . ,Ai,1,N1,i ,Ai,2,1, . . . ,Ai,2,N2,i),

and where every Ai,j,k outputs in S × (T \ {τ1, . . . , τR}).
Define the experiment (R, (N1,i)i, (N2,i)i)-RandA(x1, . . . , xR) as follows:

(R, (N1,i)i, (N2,i)i)-RandA(x1, . . . , xR) :

b
$← {0, 1}

for 1 ≤ i ≤ R :

(N1,i, N2,i)-Rand
b
Ai

(xi)

b′ ← A′ (x1, . . . , xR)

output (b, b′)

where RandbAi
(xi) denotes an experiment similar to the RandAi

(xi) experiment
in Definition 7, except for the fact that the challenge bit b is fixed in advance
and that there is no adversarial guess phase or output.

14 Jordi Ribes-González et al.

We say the RPC C is R-Epoch ((N1,i)i, (N2,i)i)-Access Secure with advan-
tage at most p if, for all target addresses and for every probabilistic stateful adver-
sary A, the output (b, b′) of the experiment (R, (N1,i)i, (N2,i)i)-RandA(x1, . . . , xR)
satisfies

AdvME−RPC
C,A (R, (N1,i)i, (N2,i)i)) := 2

∣∣∣∣Pr [b′ = b]− 1

2

∣∣∣∣ ≤ p,

where the probability is taken over the randomness of the adversary and the
randomness used in the RPC C and the experiment.

We say C is R-Epoch N -Access Secure with advantage at most p if it
is R-Epoch ((Ni)i, (N − Ni)i)-Access Secure with advantage at most p for all
N1, . . . , Nn ∈ {0, . . . , N}.

Note that, in the previous definition, a different target address can be used in
each epoch. This change generalizes the setting considered in previous versions
of the present paper [RGFH+22], and it does not affect the rest of the exposition.

3.3 Pseudo-randomness of the randomization function

As for the impact of the cache randomizer on security as characterized in Defi-
nitions 7 and 8, we can consider the following cases, depending on the nature of
πk : S × T → S:

Unkeyed and deterministic: In this case, the attacker knows the cache set
π(s, t) every address (s, t) is assigned to. For instance, if RP = LRU and
if the cache is a-associative, a successful attacker can consider a different
addresses (s, t) ̸= x with different tags and π(s, t) = π(x), and access them
sequentially before and after the challenge. The bit b equals one when, in
the second accesses, some latency bit takes the value 1. Hence, security is
broken in at most 2a adversarial accesses.

Keyed and deterministic, without rekeying: In a keyed version, the cache
randomizer makes the previous task more difficult by hiding the congruence
relation between addresses. However, given enough accesses, an adversary
can use latencies to unveil this relation, and build various sets of at most
a congruent addresses. By building enough such sets and accessing them
before and after the challenge, it is possible to detect an access to x with high
advantage. This claim is backed up by existing research [BDY+20,PGGV21],
where such attacks are instantiated.

Keyed and deterministic, with rekeying: Setting a new key periodically is
seen by previous work [BDY+20,PGGV21] as the most effective way of en-
forcing the security of RPCs, despite the impact on efficiency. However,
knowing which rekeying periods are able to effectively hamper attacks is
not trivial, and leakage across epochs must be taken into account too. We
address these questions in Section 4.

A Security Model for Randomization-based Protected Caches 15

A fourth option is keyed and probabilistic cache randomization, which has
been realized in [Qur19,WUG+19] through the use of skewed caches [Sez93,SSW14].
While our security definition for RPCs applies to such cache randomization
methods, in this work we do not consider them.

We next define a notion of pseudo-randomness for cache randomizers. This
notion coincides with the standard definition of pseudo-random functions (PRFs)
that can be found in [BKR98,AB00].

Definition 9 ((ν, ε)-Pseudo-Random Randomization Function). We say
that a cache randomizer (rekey, π) is (ν, ε)-pseudo-random if every distinguisher
A, which is allowed ν oracle accesses to a given function, has advantage at most
ε in distinguishing the output of the oracle cache randomizer from random. That
is,

AdvPRF
(rekey,π),A(ν) :=

∣∣∣Prk←rekey()[A
πk() = 1]− Pr

g
$←F

[Ag() = 1]
∣∣∣ ≤ ε,

where F denotes the set of functions from S × T to S.

An option to instantiate a PRF with concrete security parameters in practice
is given by the reduction proposed by Goldreich et al. [GGM86]. In this way, a
(ν, ε)-pseudo-random cache randomizer can be efficiently built from a (α·ν, ε/α)-
pseudo-random number generator (PRNG) with an α time factor increase, where
α = log |S×T |. The security parameters of a PRNG can be heuristically inferred
from a wide array of randomness tests, such as [BRS+10]. Pseudo-random func-
tions can also be instantiated from block ciphers [BKR98,HWKS98].

Note that the ideal cache randomizer (rekey, π̄) is trivially (ν, 0)-pseudo-
random for every ν ≥ 0.

3.4 Pseudo-randomness of the rekeying algorithm

In order to extend single-epoch security to various epochs, some property must be
required from the rekeying process. As shown in [AB00] for IND-CPA encryption,
this property can be the pseudo-randomness of key generation. As their approach
translates directly to RPCs, we adopt their definition of pseudo-randomness of
stateful generators for rekeying.

Definition 10 ((ν, ε)-Pseudo-Random Rekeying Algorithm). Let rekey be
a stateful probabilistic algorithm with no input and outputs in a set K. We say
that rekey is (ν, ε)-pseudo-random if every distinguisher A, which is allowed ν
oracle calls to a given algorithm, has advantage at most ε in distinguishing the
output of the oracle from random. That is,

AdvPRG
rekey,A(ν) :=

∣∣Pr[Arekey() = 1]− Pr[AK() = 1]
∣∣ ≤ ε,

where K returns k
$← K on each call.

We refer to [AB00] for a procedure for building pseudo-random rekeying
algorithms from pseudo-random functions.

16 Jordi Ribes-González et al.

4 Security analysis

In this section, we study the conditions so that an RPC can provide concrete
security guarantees. More precisely, given a target advantage p, we show rekeying
periods N for which an RPC is N -access secure with at most advantage p.

In a first stage, we assume the cache randomizer of the RPC in question
is ideal. In the next section, we extend the obtained results to the non-ideal
case, modelling the cache randomizer as a pseudo-random function. Then, we
study how the given results improve under the presence of noise. Finally, we take
advantage of previous research to allow the study of the multi-epoch case. We
complete our security analysis by studying which rekeying periods are known to
allow efficient attacks.

Most of the results presented in this section are formulated using the bino-
mial distribution. For ease of notation, we respectively denote by f(k;n, p) and
F (k;n, p) the probability mass function and the cumulative distribution function
of the binomial random variable with parameters n and p. That is,

f(k;n, p) :=

(
n

k

)
pk(1− p)n−k F (k;n, p) :=

k∑
i=0

f(i;n, p).

4.1 Single-epoch security of RPCs with ideal cache randomizers

The following proposition provides rekeying periods N for which an RPC with
an ideal cache randomizer is N -access secure with at most a certain advantage,
as stated in Definition 7.

Proposition 1. Let C be an RPC with an ideal cache randomizer and an arbi-
trary replacement policy. Let |S| denote the number of cache sets, and suppose
that the cache is a-associative. Let p ∈ [0, 1], and

N = max {N ′ : F (N ′ − a;N ′, 1− 1/|S|) ≤ p} .

Then, C is N -access secure with advantage at most p.

Proof. For any adversary A in the N -access security games, let E denote the
event that A accesses at least a different addresses that are congruent with the
target address x. By conditional probability

AdvRPC
C,A (N) =2 · |Pr [b′ = b]− 1/2|

=2 ·
∣∣Pr [b′ = b | E] · Pr [E] + Pr

[
b′ = b | Ē

]
· Pr

[
Ē
]
− 1/2

∣∣ .
When using arbitrary replacement policies, it holds that the first a addresses

of an initially empty cache set are inserted sequentially. Therefore, any success-
ful attack must find at least a addresses that are congruent with x; otherwise,
latency measures are independent of b. Hence Pr

[
b′ = b | Ē

]
= 1/2, and so

= 2 ·
∣∣Pr [b′ = b | E] Pr [E] + 1/2 · Pr

[
Ē
]
− 1/2

∣∣
= 2 · |(Pr [b′ = b | E]− 1/2) · Pr [E]| ≤ Pr [E] .

A Security Model for Randomization-based Protected Caches 17

Now, we see that E follows a binomial distribution, and that Pr [E] is the
probability of obtaining at least a successes in a sequence of at most N indepen-
dent experiments, where successes happen with probability 1/|S|. Hence

AdvRPC
C,A (N) ≤ F (N − a;N, 1− 1/|S|) ≤ p.

In Figure 5 we show the rekeying period given by Proposition 1 in the ideal
cache randomizer case. We arbitrarily take the advantage bound p = 0.01, and so
these rekeying periods N guarantee that no adversary breaks N -access security
with more than 1% advantage. We represent the bounds in logarithmic scale,
for the typical numbers of cache sets |S| = 25, 26, . . . , 214 and associativities
a = 1, 2, 4, 8, 16.

5 6 7 8 9 10 11 12 13 14
0

5

10

15

2020

log2 |S|

lo
g
2
N

a = 1
a = 2
a = 4
a = 8
a = 16

Fig. 5: Rekeying periods N so that C is N -access secure with advantage at most
0.01, where |S| denotes the number of cache sets and a the associativity.

4.2 Single-epoch security of RPCs with PRF cache randomizers

The next proposition states sufficient conditions on the cache randomizer (rekey, π)
so that any RPC using π isN -access secure with a certain advantage. This propo-
sition allows us to choose cache randomizers when aiming at a particular security
level.

Proposition 2. Let N, θ be positive integers, and let p, ε ∈ [0, 1]. Let (rekey, π)
be a cache randomizer, and let (rekey, π̄) be the ideal cache randomizer. Let (C, C̄)
be identical RPCs except for their cache randomizers, which are (rekey, π) and
(rekey, π̄), respectively.

Suppose that C̄ is N -access secure with advantage at most p against θ-time
adversaries, and that the randomization function π is (N, ε)-pseudo-random
against θ-time distinguishers. Then C is N -access secure with advantage at most
p+ ε against θ-time adversaries.

18 Jordi Ribes-González et al.

Proof. Build a θ-time distinguisher A in the definition of (N, ε)-pseudo-random
cache randomizer as follows. The distinguisher A receives as input a random-
ization function f and internally runs an N -access security experiment with f ,
simulating an arbitrary θ-time adversary A. If the outcome is b′ = b, then A
outputs 1, and otherwise it outputs 0. Since π is (N, ε)-pseudo-random,∣∣∣Prk←rekey()[A

πk() = 1]− Pr
f

$←F
[Af () = 1]

∣∣∣
= |Pr [b = b′ | f = πk]− Pr [b = b′ | f = π̄k]| ≤ ε

so Pr [b = b′ | f = πk] ≤ Pr [b = b′ | f = π̄k]+ε, and AdvRPC
C,A (N) ≤ AdvRPC

C̄,A (N)+
ε.

4.3 Single-epoch security of RPCs under noise conditions

The noiseless setting explored in Section 4.1 may be the most conservative, and
this assumption may make sense in contexts such as trusted execution environ-
ments [CKK+20]. In general, other system activity may introduce noise and add
confusion to access-based attacks, on top of reducing the number of available
attack accesses in an epoch.

To take into account the effect of noise on security, we can model noise as
suggested in [PGGV21]. Concretely, we ideally assume that a ratio ρ ∈ [0, 1) of
the N accesses in the security game are noise accesses, so there are ρN noise
accesses (rounded down) and (1−ρ)N adversarial accesses. We also assume that
noise adds maximum confusion to the system by always making cache misses.
Finally, we assume that noise accesses happen in a batch, with no adversarial
accesses in-between, and only in successive steps around the challenge.

To properly analyze this setting, we can envision a security definition similar
to Definition 7, where ρN successive calls to PrimeAj,i

that are contiguous to
the challenge are replaced by noise accesses. We call the corresponding security
definition N -access security under noise level ρ.

Following our conservative approach to security, we consider that noise makes
it impossible for the adversary to detect the challenge bit only when the target
address evicts or is evicted by noise addresses. The effects of noise could be
stronger for more restricted adversaries, as happens in [PGGV21]. For instance,
our results would greatly improve if we considered that attacks always fail when
at least one noise access is made to the cache set of the target address.

In this noise setting, we make an additional assumption on the replacement
policy. We assume that a consecutive cache misses on a cache set evict all data
from it. This is indeed the case for LRU, PLRU, FIFO, and other policies. Our
results can be easily adapted to policies like Nehalem’s MRU [AR20], where 2a
consecutive cache misses may instead be needed to evict a whole cache set.

The following proposition extends the result of Proposition 1, providing
rekeying periods N for which an RPC with an ideal cache randomizer is N -access
secure under noise level ρ with at most a certain advantage. The extension to
PRF cache randomizers follows from Proposition 2, analogously to the noiseless
case.

A Security Model for Randomization-based Protected Caches 19

Proposition 3. Let C be an RPC with an ideal cache randomizer and a replace-
ment policy of the form outlined above. Let |S| denote the number of cache sets,
and suppose that the cache is a-associative. Let p ∈ [0, 1], and

N = max

N ′ :

a−1∑
i=0

(1−ρ)N ′∑
j=a−i

f(i; ρN ′, 1/|S|) · f(j; (1− ρ)N ′, 1/|S|) ≤ p

 .

Then, C is N -access secure under noise level ρ with advantage at most p.

Proof. For any adversary A in the security game, let E denote the event that
the cache set of the target address is either accessed at least a times by noise
accesses, or otherwise simply not filled during the game. If E happens, then A
has no information on the challenge b, and so, as in the proof of Proposition 1,
Advρ-noise-RPC

C,A (N) ≤ Pr(Ē).
Now, for 0 ≤ i < ρN , let Ei be the event that, during the security game, i

of the noise accesses take place in the cache set of the target address. The result
follows by conditioning on the events Ei, noting that Pr(Ei) = f(i; ρN, 1/|S|),
and that

Pr(Ē|Ei) ≤
{∑(1−ρ)N

j=a−i f(j; (1− ρ)N, 1/|S|) if i < a

0 if i ≥ a.

4.4 Multi-epoch security of RPCs

Following an argument of Abdalla and Bellare [AB00], we can find an upper
bound for the advantage of any finite-time adversary in breaking the multi-epoch
security of an RPC. In this way, multi-epoch security is reduced to single-epoch
security and the pseudo-randomness of the rekeying algorithm. As explained
in [AB00], rekeying can have the effect of bringing significant and provable se-
curity gains, and in our case it can increase the time window where security is
known to be enforced (see Section 5).

Proposition 4 ([AB00]). Let R,N, θ be positive integers. Suppose an RPC
C is N -access secure with advantage at most AdvRPC

C (N) against θ-time ad-
versaries, and that its underlying rekeying algorithm rekey is (R,AdvPRG

rekey (R))-
pseudo-random against θ-time distinguishers. Then, C is R-epoch N -access se-
cure with advantage at most

AdvME−RPC
C (R,N) ≤ AdvPRG

rekey (R) +R ·AdvRPC
C (N)

against θ-time adversaries.

Proof. The proposition follows from the proof of Theorem 4.1 in [AB00]. We re-
produce it here for the sake of completeness, noting that it is practically identical
to the original proof in [AB00].

Let Ā be an adversary in an R-epoch, N -access security game of Definition 8.
We build a distinguisher A for the pseudo-randomness experiment of rekey(),

20 Jordi Ribes-González et al.

and an adversary A in an N -access security game of Definition 7. Both these
algorithms internally simulate an R-epoch N -access security game with Ā as
the adversary, setting the challenge bits and keys in each epoch as needed. We
then bound the advantage AdvME−RPC

C,Ā (R,N) of Ā in terms of the advantage

AdvRPC
C,A (N) of A, and the advantage AdvPRG

rekey,A(R) of A.
As for the distinguisher A, it has access to R evaluations of the provided

function f , and so it takes R keys k1, . . . , kR as input. The distinguisher A
works as follows: it proceeds to generate a random bit b, and it simulates an
R-epoch, N -access security game with challenge bit b and key ki in each epoch
i, using Ā as the adversary. We denote this below by Āb,(k1,...,kR). Then, it takes
the output b′ of Ā, and outputs 1 if b = b′, and 0 otherwise.

distinguisher A(k1, . . . , kR) :

b
$← {0, 1}

b′ ← Āb,(k1,...,kR)

if b = b′ output 1, otherwise, output 0.

Note that, if the keys come from rekey(), this is exactly the originally con-
sidered R-epoch, N -access security game. Hence

|Pr[Arekey() = 1]− 1/2| = AdvME−RPC
C,Ā (R,N). (1)

The attacker A also works by internally instantiating the attacker Ā, and it
generates the parameters for each epoch as follows. First, A picks an epoch j
in {1, . . . , R} at random. For epochs i < j, it generates a key ki uniformly at
random and sets the challenge bit bi = 0. For epochs i > j it does the same,
except for taking bi = 1. In the epoch j, it lets the attacker Ā interact with the
actual game A is involved in, which has (unknown to A) challenge bit b and
key k. We denote this by Ā(b1,...,bj−1,b,bj+1,...,bR),(k1,...,kj−1,k,kj+1,...,kR). Then, A
returns the output of Ā.

adversary A() :

j
$← {1, . . . , R}

for i = 1, . . . R do :

if i < j set bi = 0

if i > j set bi = 1

if i ̸= j set ki
$← K

b′ ← Ā(b1,...,bj−1,b,bj+1,...,bR),(k1,...,kj−1,k,kj+1,...,kR)

output b′.

To analyze the success probability of A, we define the following sequence of
hybrid experiments, where j ranges from 0 to R:

A Security Model for Randomization-based Protected Caches 21

experiment HybridĀ,j :

for i = 1, . . . R do :

set ki
$← K

if i ≤ j set bi = 0

if i > j set bi = 1

b′ ← Ā(b1,...,bR),(k1,...,kR)

output b′.

Let Pj denote the probability that HybridĀ,j outputs 1. If b = 0 in the
experiment A takes part in, the probability that A returns 1 is Pj , where j is
the value chosen at random by A. Similarly, if b = 0 in the experiment A takes
part in, then the probability that A returns 1 is Pj−1. Hence

Pr[A() = 1 | b = 0] =
1

R

R∑
j=1

Pj

Pr[A() = 1 | b = 1] =
1

R

R∑
j=1

Pj−1.

We hence get that

AdvRPC
C,A (N) = |Pr[A() = b]− 1/2| =

=
1

2
|Pr[A() = 1 | b = 0]− Pr[A() = 1 | b = 1]|

=
1

2

∣∣∣∣∣∣ 1R
R∑

j=1

Pj −
1

R

R∑
j=1

Pj−1

∣∣∣∣∣∣
=

1

2R
|PR − P0|

Now notice that, by a similar algebraic manipulation 1
2 |PR−P0| is |Pr[Arand() =

1]−1/2|, where rand denotes the oracle that returns uniformly random keys. So,

R ·AdvRPC
C,A (N) = |Pr[Arand() = 1]− 1/2|. (2)

Bringing together equations 1 and 2,

AdvME−RPC
C,Ā (R,N) = |Pr[Arekey() = 1]− 1/2|

≤ AdvPRG
rekey,A(R) + |Pr[Arand() = 1]− 1/2|

= AdvPRG
rekey,A(R) +R ·AdvRPC

C,A (N).

22 Jordi Ribes-González et al.

4.5 Insecure rekeying periods

In this section, we study methods to obtain rekeying periods for which attacks
with enough advantage are known to exist. We first explore the cases where the
cache randomizer is ideal and the used replacement policy RP is either LRU or
RAND. Then, we extend these cases to PRF cache randomizers.

The RP = LRU case for ideal cache randomizers We next propose an
attack to the security game of Definition 7, for the case RP = LRU. This attack
follows the same strategy than [PGGV21]. Our attack relies on the following
fact: if a set L of exactly a addresses with different tags that are congruent to
the target address x are accessed right before and after the challenge takes place,
the second batch of accesses to L will all have latency 0 if and only if x was not
accessed. Moreover, after this process, the addresses of L will all end up being
stored in the cache set regardless of whether x was accessed or not. We next
describe our attack.

In the first N1 accesses, the adversary A1,∗ builds a set of addresses with
no auto-evictions from the ground up. We call this set of addresses an attack
set. It is expected that, when the attack set is large enough, accessing it has
a high probability of evicting the target address x = (σ, τ) from the cache. By
construction, A1,∗ ends by accessing all the addresses of the attack set. Then,
the challenge takes place. In the last N2 accesses, the adversary A2,∗ outputs the
addresses of the attack set, of which there are no more than N2 by construction.
If some of the accesses given by A2,∗ has latency 1, then A3 guesses that the
target address x was accessed (i.e. b′ = 1), and otherwise it determines that it
has not (b′ = 0). We next describe how the first N1 steps of this attack work.

To build the attack set L, the adversary initially generates s ∈ S and t ∈
T \ {τ} at random, logs the address (s, t) into an ordered array L in its state,
and outputs (s, t). Then, it starts an iterative process, with a total of ℓ loops
(counting one less for the previous access). In each step of the loop, the adversary
first generates an address (s, t) ∈ S × T \ {τ} uniformly at random, subject to
the restriction that t is not the tag of any address in the attack set, and then
it stores the address (s, t) in its state and outputs it. We call (s, t) an attack
candidate. Then, it finishes the step of the loop by sequentially returning every
address of L. If the accesses to the attack set L have all had latency 0, the attack
candidate (s, t) is logged as a new element of L, since it has not been evicted
in the previous loop. Once all loops are finished, the subsequent outputs of the
adversary are random elements of the attack set L.

Note that the described attack is only feasible when the attacker can use at
least λ different tags from the tag space T . We write our attack in Algorithm 1.

In this case, we fix the number of loops to

λ = min

{
N2,

⌊√
8N1 + 1− 1

2

⌋}
.

This choice guarantees that the attack set L obtained after the first N1 accesses
does not have more than N2 elements, and so it can all be re-accessed after the

A Security Model for Randomization-based Protected Caches 23

Algorithm 1 Our attack in the RP = LRU case (first N1 accesses).

Let i = 0
A1,i generates (s, t) ∈ S × (T \ {τ}) uniformly at random
A1,i logs the attack candidate (s, t) into L
A1,i outputs (s, t); i = i+ 1
for j = 2, . . . , λ do

A1,i generates (s, t) ∈ S × (T \ {τ}) uniformly at random, with t not in L
A1,i outputs (s, t); i = i+ 1
for a in L do

A1,i outputs a; i = i+ 1
end for
if the previous latencies of accesses to L are all 0 then

A1,i logs the latest attack candidate (s, t) into L
end if

end for
while i ≤ N1 do

A1,i outputs a random element of L; i = i+ 1
end while

challenge takes place. Also, since executing λ′ loops consumes at most λ′(λ′+1)/2
accesses, our choice of λ guarantees that λ whole loops can be executed during
the first N1 accesses.

The next proposition determines the advantage of our attack in breaking
(N1, N2)-Access Security as stated in Definition 7.

Proposition 5. Let C be an RPC with an ideal cache randomizer and replace-
ment policy LRU. Let |S| denote the number of cache sets, and suppose that the
cache is a-associative. Let p ∈ [0, 1], and let

N = min

{
N ′ : max

N1+N2=N ′

{
F

(
λ− a;λ, 1− 1

|S|

)}
≥ p

}
.

Then, the adversary A described above breaks the game of (N1, N2)-Access Se-
curity of Definition 7 with advantage at least p.

Proof. Consider arbitrary positive integers N ′, N1, N2 so that N1+N2 = N ′. For
the adversary A stated above, let E be the event that the addresses of the attack
set fill the cache set of x, i.e, that L has a addresses that are congruent with
x. Then, as in the beginning of the proof of Proposition 1, we find AdvA(C) =
2 · |(Pr[b = b′ | E]− 1/2)| · Pr[E].

If E happens, then the attack perfectly detects the challenge access. There-
fore, Pr[b = b′ | E] = 1, and so AdvA(C) = Pr[E]. Since the chosen number of
attack candidates λ does not exceed N2 and can always be accessed in N1 steps,
E is the event that the attack candidates fill the cache set of x, i.e., that at least
a of the λ attack candidates are congruent with x. Hence, A has advantage

AdvA(C) = F (λ− a;λ, 1− 1/|S|)

in the game of (N1, N2)-Access Security of Definition 7. The result follows.

24 Jordi Ribes-González et al.

In Figure 6 we show the rekeying period given by Proposition 5 in the ideal
cache randomizer case. We arbitrarily take the advantage bound p = 0.01, and
so these rekeying periods N guarantee that there exists an attack that breaks
N -access security with at least 1% advantage. We represent the bounds in log-
arithmic scale, for the typical numbers of cache sets |S| = 25, 26, . . . , 214 and
associativities a = 1, 2, 4, 8, 16.

5 6 7 8 9 10
0

5

10

15

20

25

30

log2 |S|

lo
g
2
N

a = 1
a = 2
a = 4
a = 8
a = 16

Fig. 6: Rekeying periods N so that there exists an attack on C that breaks
N -access security with advantage at least 0.01, where |S| denotes the number

of cache sets and a the associativity.

The RP = RAND case for ideal cache randomizers Our attack for the
RP = RAND case is slightly different than that of the RP = LRU case. Consider,
as in the previous attack, a set L of a addresses with different tags that fill a
cache set, and an attack candidate y. It is indeed the case that, if all addresses of
L are stored in the cache and then one accesses y and L again, the last accesses
to L all have latency 0 if and only if y did not evict any of the addresses in
the cache set. However, due to the behavior of RAND, if the access to y evicted
some address of the cache set, after the last access to L it may be the case that
y still resides in the cache set while some unknown address of L does not. This
greatly complicates the task of detecting future evictions, rendering obsolete the
method of building attack sets explained earlier.

To mitigate the problem above, after our adversary A1,∗ accesses an attack
candidate y, the addresses in L are accessed a total of m times, for some suitable
value of m ∈ {1, . . . , N1 − 2}. Each access to L has probability at least 1/a of
evicting y and, when it does, L ends up being stored in the cache. Moreover, if
y is evicted in the first m− 1 passes of L, the latencies in the m-th pass will all
be 0. If for some of the loops this does not happen, then our attack fails.

A Security Model for Randomization-based Protected Caches 25

The adversary A2,∗ behaves as in the LRU case, accessing all elements of
L. If in some loop of A1,∗ the attack failed, then A3 returns a random coin.
Otherwise, if some access issued by A2,∗ has had latency 1, then A3 guesses that
the challenge x was accessed (i.e. b′ = 1), and else it determines that it has not
(b′ = 0).

Note that our attack requires N ≥ 5 and 3 ≤ N1 ≤ N −2, and that it is only
feasible when the attacker can use at least λ different tags from the tag space
T . We describe our attack in Algorithm 2.

Algorithm 2 Our attack in the RP = RAND case (first N1 accesses).

Let i = 0
A1,i generates (s, t) ∈ S × (T \ {τ}) uniformly at random
A1,i logs the attack candidate (s, t) into L
A1,i outputs (s, t); i = i+ 1
for j = 2, . . . , λ do

A1,i generates (s, t) ∈ S × (T \ {τ}) uniformly at random, with t not in L
A1,i outputs (s, t); i = i+ 1
for l = 1, . . . ,m do

for a in L do
A1,i outputs a; i = i+ 1

end for
end for
if the latencies of accesses to L in the loop l = 1 are all 0 then

A1,i logs the latest attack candidate (s, t) into L
else

if the latencies of accesses to L in the loop l = m are not all 0 then
A registers in its state that the attack fails

end if
end if

end for
while i ≤ N1 do

A1,i outputs a random element of L; i = i+ 1
end while

As in the previous case, we fix the number of loops to

λ = min

{
N2,

⌊√
8mN1 + (2−m)2 +m− 2

2m

⌋}
.

This choice guarantees that the attack set L obtained after the first N1 ac-
cesses does not have more than N2 elements, and so it can all be re-accessed
after the challenge takes place. Also, since executing λ′ loops consumes at most∑λ′−1

i=0 (im + 1) accesses, our choice of λ guarantees that λ whole loops can be
executed during the first N1 accesses.

26 Jordi Ribes-González et al.

Proposition 6. Let C be an RPC with an ideal cache randomizer and replace-
ment policy RAND. Let |S| denote the number of cache sets, and suppose that
the cache is a-associative. Let p ∈ [0, 1], and

N = min

N ′ : max
N1+N2=N′

1≤m≤N1−2

{(
1− (λ− a)

(
1− 1

a

)m−1
)
· F
(
λ− a;λ, 1− 1

|S|

)}
≥ p

 .

Then, the adversary A described above breaks the game of (N1, N2)-Access Se-
curity of Definition 7 with advantage at least p.

Proof. Let N ′, N1, N2,m be positive integers with N ′ = N1 +N2 and 1 ≤ m ≤
N1−2. For the adversary A stated above, let H denote the event that the attack
fails. If H happens, then A3 emits a uniformly random guess b′, and so

AdvA(C) :=2 · |Pr [b′ = b]− 1/2|
=2 ·

∣∣Pr [b′ = b | H] · Pr [H] + Pr
[
b′ = b | H̄

]
· Pr

[
H̄
]
− 1/2

∣∣
=2 · Pr

[
H̄
]
·
∣∣Pr [b′ = b | H̄

]
− 1/2

∣∣
Now let E denote the event that the addresses of the attack set fill the cache
set of x, i.e, that L has a addresses that are congruent with x. On one hand,
if E happens and the attack does not fail, our adversary perfectly detects the
challenge access, i.e. Pr

[
b′ = b | E ∩ H̄

]
= 1. On the other hand, if E does not

happen and the attack does not fail, our adversary outputs b′ = 0 regardless of
the value of b, so Pr

[
b′ = b | Ē ∩ H̄

]
= 1/2. Hence

= 2 · Pr
[
H̄
]
·
∣∣Pr [b′ = b | E ∩ H̄

]
· Pr

[
E|H̄

]
+ Pr

[
b′ = b | Ē ∩ H̄

]
· Pr

[
Ē|H̄

]
− 1/2

∣∣
= Pr

[
E|H̄

]
· Pr

[
H̄
]
.

Now, Pr
[
E|H̄

]
is the probability that at least a of the λ attack candidates

are congruent with x. Hence Pr
[
E|H̄

]
= F (λ− a;λ, 1− 1/|S|). To lower bound

Pr
[
H̄
]
, denote by Hj the event that our attack fails in its j-th loop. Note that

our attack can not fail during the first a loops. By the union bound

Pr[H̄] = Pr
[
∩λj=a+1H̄j

]
= 1− Pr

[
∪λj=a+1Hj

]
≥ 1−

λ∑
j=a+1

Pr [Hj] .

Our attack fails in a given loop when the attack candidate corresponding to that
loop evicts an element of the attack set from the cache, and the successive m−1
accesses to L fail to evict the attack candidate from the cache. Each access to L
has probability at most (a− 1)/a of not evicting the attack candidate from the

cache, and so in a given loop we get Pr[Hj] ≤
(
1− 1

a

)m−1
. The result follows.

Attacks in the PRF cache randomizer case This section extends the results
published in all previous versions of this article to a more general setting, where
attacks are performed to an RPC with a pseudo-random cache randomizer.

A Security Model for Randomization-based Protected Caches 27

The next proposition characterizes the potential loss in advantage of an at-
tack in an N -access security game from the ideal case to the PRF case. This loss
is upper bounded by the pseudo-randomness parameters of the cache randomizer
(rekey, π).

Proposition 7. Let N, θ be positive integers, and let p, ε ∈ [0, 1]. Let (rekey, π)
be a cache randomizer, and let (rekey, π̄) be the ideal cache randomizer. Let (C, C̄)
be identical RPCs except for their cache randomizers, which are (rekey, π) and
(rekey, π̄), respectively.

Suppose that there exists a θ-time adversary A that breaks C̄ in an N -access
security game with advantage p, and that the randomization function π is (N, ε)-
pseudo-random against θ-time distinguishers. Then, the same attacker A breaks
C in an N -access security game with advantage at least p− ε.

Proof. Build a θ-time distinguisher A in the definition of (N, ε)-pseudo-random
cache randomizer exactly as in the proof of Proposition 2. Since π is (N, ε)-
pseudo-random,∣∣∣Prk←rekey()[A

πk() = 1]− Pr
f

$←F
[Af () = 1]

∣∣∣
= |Pr [b = b′ | f = πk]− Pr [b = b′ | f = π̄k]| ≤ ε

so Pr [b = b′ | f = πk] − Pr [b = b′ | f = π̄k] ≥ −ε, and therefore AdvRPC
C,A (N) ≥

AdvRPC
C̄,A (N)− ε.

5 Experimental results

In this section, we portrait how to apply the results of this article, as well as
present a performance analysis using a cache simulator. The scripts used to
compute the rekeying periods and number of epochs from Propositions 1, 3 and 4
have been made available at https://doi.org/10.5281/zenodo.6397296.

To present an application case, we choose the L3 cache of an Intel® Core
i7-8700K (Coffee Lake) commodity processor [AR20]. This LLC is 12MB in size,
it has associativity a = 16, a total of 12 slices, and 1024 cache sets per slice. The
number of cache sets is then |S| = 12 · 1024 = 12288.

5.1 Application case

Suppose we want to use an RPC to hamper access-based attacks with advantage
larger than 1% in this LLC in the noiseless scenario. According to Proposition 1,
assuming an ideal cache randomizer, the corresponding RPC is 100532-access
secure with advantage at most 0.01. This means that a rekeying period of N =
100532 prevents single-epoch attacks with advantage larger than p = 0.01.

In the noise scenario, the rekeying period can slightly increase. In our results,
this effect is only noticeable for large noise levels ρ. For example, according to
Proposition 3 in order to guarantee that no attack has at most 1% advantage,

https://doi.org/10.5281/zenodo.6397296

28 Jordi Ribes-González et al.

our rekeying period rises from N = 100532 in the noiseless setting to N = 106963
for noise level ρ = 0.9. Or, in the case we want to guarantee no attack succeeds
with more than 10% advantage, our rekeying period rises from N = 136832 in
the noiseless setting to N = 159006 for noise level ρ = 0.9.

The ideal cache randomizer assumption can be lifted by virtue of Proposi-
tion 2. For example, if we take as cache randomizer a pseudo-random function
that is (100532, 0.04)-pseudo-random (according to Definition 9), the correspond-
ing RPC is 100532-access secure with advantage at most p = 0.05. That is, a
rekeying period of N = 100532 guarantees that any single-epoch attack has at
most 5% advantage. Similarly, this RPC is 106963-access secure under noise level
ρ = 0.9 with advantage at most p = 0.05.

To illustrate the multi-epoch case, take the number of epochs R = 10, and
assume that the used rekeying algorithm rekey is (10, 10−5)-pseudo-random. If
the employed cache randomizer is (78705, 4 · 10−3)-pseudo-random, then the
considered RPC is 78705-access secure with advantage at most 4.999 · 10−3.
By Proposition 4, the considered RPC is 10-epoch 78705-access secure with
advantage at most 10−5 + 10 · (4.999 · 10−3) = 0.05. Hence, security is extended
to R ·N = 787050 accesses.

The pseudo-randomness of the underlying rekeying algorithm can have a big
impact on security across epochs. For instance, assume instead that the used
cache randomizer is (63486, 4 · 10−4)-pseudo-random. Then, we can extend the
same security guarantees to R = 100 epochs of N = 63486 accesses long. That
is, to R ·N = 6348600 accesses.

5.2 Performance analysis

We have used Champsim, a trace-based simulator with a detailed cache model [Cha],
to evaluate the impact of the rekeying period on the CPU’s performance. We
use this simulator to model the LLC of the Intel® Core i7-8700K (Coffee Lake)
processor. Concretely, we model a cache with 1024 ·16 sets, 16 ways, and a cache
set size of 64 bytes. In our simulation we choose the PLRU replacement policy,
which is common in LLCs. In our cache setup, as in the modeled processor, the
L1 and L2 private caches have 8 ways, and 64 and 1024 cache sets, respectively.

As workload, we use traces of the SPEC2006 bechmark suite. To model ran-
domized caches, we use an xor-based parametric randomization function [THAC18],
and vary the encryption key every time we reach the number of accesses to the
LLC dictated by the rekeying period.

Figure 7 shows the instructions per cycle (IPC) of each workload for a ran-
domized cache setup, normalized to a cache system without randomization. To
measure the impact of the rekeying period, we show results for rekeying periods
ranging from just 100 acceses to 160000 accesses. As shown in Figure 7, the im-
pact of rekeying very frequently can be severe for some workloads. For instance,
for the mcf workload, performance is slowed down by 37% with a rekey period
of 100 accesses, and only by 13.9% when using a rekeying period of 160000 ac-
cesses. On the contrary, other workloads like perlbench or exchange2 have a
negligible impact in performance. Interestingly, results for fotonik3D are better

A Security Model for Randomization-based Protected Caches 29

with randomization, and benefit from the cache remapping ability to remove
pathological conflict misses.

0

20

40

60

80

100

N
o

rm
al

iz
ed

 IP
C

100 1000 3000 10000 100000 160000

Fig. 7: Instructions per Cycle (IPC), normalized to a cache system without
randomization for different rekeying periods.

In general, the impact of rekeying is not very significant when using large
rekeying periods. In average, the performance is slowed down by 4.80%, 4.00%,
1.90%, and 1, 5% for rekeying periods of 100, 1000, 100000, and 160000, respec-
tively.

6 Conclusions and further work

In this paper, we formally define and analyze the security of randomization-
based protected caches (RPCs). We provide a security definition for RPCs, called
N -access security, that protects against access-based attacks to a single target
address in one epoch in the setting where a rekeying period N is set. Addition-
ally, we provide results that allow to calibrate the rekeying period N , the cache
randomizer, and the rekeying algorithm in order to obtain specific security guar-
antees. Hence, the present work shows that it is possible to formalize security
for RPCs, and that doing so allows for robust constructions and security claims.
The obtained results are also extended to a scenario with noise conditions, and
we give tools to quantify security across multiple epochs. Our approach improves
on previous work by precisely characterizing security, and by providing formal
proofs of the security of RPCs for chosen parameters.

We next highlight a few suggestions for further research in the line of this
article.

A first extension of this work would be to consider RPCs that work over
skewed caches. Skewed RPCs [Qur19,WUG+19] use skewed caches [SSW14,Sez93]
to introduce additional true randomness in the access function, and this is seen

30 Jordi Ribes-González et al.

to substantially improve security against known attacks [PGGV21]. Whilst our
security definition applies to skewed RPCs, our security analysis does not ac-
count for randomness in the cache system. In particular, it would be interesting
to observe how this randomness improves the rekeying period of RPCs.

Another path to take is to improve the provided bounds. Tighter lower
bounds could probably be found, especially for the RP = RAND case and the
noise scenario, by carrying a more involved probability analysis or considering
different threat models.

Variants of our security definitions could also be explored. While ourN -access
security definition is rather general and applies to all state-of-the-art RPCs,
it only concerns detecting accesses to a single target address through access-
based attacks. It is possible to study the multi-target case, adapting the security
definition so that the goal of the adversary is to detect accesses to one, some or
all target addresses. The results obtained for the single-target case could be of
use in reductions from multi-target cases. Different attacker objectives could be
considered as well, for instance learning an eviction set of a target address.

It is possible to develop a similar analysis to the one presented here for
security against other attacks that require more privileges from the attacker,
particularly in the case of timing-based attacks [LWML16]. These attacks as-
sume that the attacker can test whether an access to the target address hits or
misses before being presented the challenge. Analyzing this case would require
modifying the game in the security definition, and the derived rekeying periods
would be smaller due to the increased abilities of the adversary.

Finally, recent work as ClepsydraCache [TNF+21] or Entropy-Shield [DMR+20]
considers additional techniques on top of randomization, such as time-to-live
features or noise. One could attempt to follow the line of the present work, and
provide a formal analysis that allows to assess the impact of these auxiliary
techniques on security.

Acknowledgements

This research was supported by the European Union Regional Development Fund
within the framework of the ERDF Operational Program of Catalonia 2014-
2020 with a grant of 50% of the total cost eligible, under the DRAC project
[001-P-001723]. Jordi Ribes-González and Oriol Farràs were supported by the
ACITHEC project [PID2021-124928NB-I00], funded by MCIN/AEI /10.13039/501100011033
/ FEDER, UE. Carles Hernández is partially supported by Spanish Ministry of
Science, Innovation and Universities under “Ramón y Cajal”, fellowship No.
RYC2020-030685-I. Vatistas Kostalabros is partially supported by the Agency
for Management of University and Research Grants (AGAUR) of the Govern-
ment of Catalonia, under “Ajuts per a la contractació de personal investigador
novell”, fellowship No. 2019FI B01274. Miquel Moretó is partially supported by
the Spanish Ministry of Economy, Industry and Competitiveness under “Ramón
y Cajal”, fellowship No. RYC-2016-21104.

A Security Model for Randomization-based Protected Caches 31

References

AB00. Michel Abdalla and Mihir Bellare. Increasing the lifetime of a key: a
comparative analysis of the security of re-keying techniques. In Inter-
national Conference on the Theory and Application of Cryptology and
Information Security, pages 546–559. Springer, 2000.

And19. Ruth Anderson. CSE 351: The hardware/software interface. Lecture
notes: Virtual memory III, May 2019.

AR20. Andreas Abel and Jan Reineke. nanobench: A low-overhead tool for
running microbenchmarks on x86 systems. In 2020 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), August 2020.

BDY+20. Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian Tsai, Joel Emer,
and Mengjia Yan. Casa: End-to-end quantitative security analysis of
randomly mapped caches. In 53rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2020, Athens, Greece, Octo-
ber 17-21, 2020, pages 1110–1123. IEEE, 2020.

Ber05. Daniel J. Bernstein. Cache-timing attacks on AES, 2005.
BGS+20. Rahul Bodduna, Vinod Ganesan, Patanjali SLPSK, Kamakoti Veezhi-

nathan, and Chester Rebeiro. Brutus: Refuting the security claims of
the cache timing randomization countermeasure proposed in CEASER.
IEEE Comput. Archit. Lett., 19(1):9–12, 2020.

BKR98. Mihir Bellare, Ted Krovetz, and Phillip Rogaway. Luby-rackoff back-
wards: Increasing security by making block ciphers non-invertible. In In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, pages 266–280. Springer, 1998.

BM06. Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks
against aes. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic
Hardware and Embedded Systems - CHES 2006, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

BRS+10. Lawrence Bassham, Andrew Rukhin, Juan Soto, James Nechvatal, Miles
Smid, Stefan Leigh, M Levenson, M Vangel, Nathanael Heckert, and
D Banks. A statistical test suite for random and pseudorandom number
generators for cryptographic applications, September 2010.

BSN+19. Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus.
SMoTherSpectre: Exploiting speculative execution through port con-
tention. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 785–800. ACM Press,
November 2019.

Cha. Champsim simulator, available at https://github.com/ChampSim/

ChampSim.
CKK+20. Somnath Chakrabarti, Thomas Knauth, Dmitrii Kuvaiskii, Michael

Steiner, and Mona Vij. Chapter 8 - trusted execution environment with
intel sgx. In Xiaoqian Jiang and Haixu Tang, editors, Responsible Ge-
nomic Data Sharing, pages 161–190. Academic Press, 2020.

CVS+19. Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution at-
tacks and defenses. In Nadia Heninger and Patrick Traynor, editors,

https://github.com/ChampSim/ChampSim
https://github.com/ChampSim/ChampSim

32 Jordi Ribes-González et al.

USENIX Security 2019, pages 249–266. USENIX Association, August
2019.

DJL+12. Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael B. Abu-Ghazaleh,
and Dmitry Ponomarev. Non-monopolizable caches: Low-complexity
mitigation of cache side channel attacks. ACM Trans. Archit. Code
Optim., 8(4):35:1–35:21, 2012.

DKMPHL20. Max Doblas, Ioannis-Vatistas Kostalabros, Miquel Moreto Planas, and
Carles Hernández Luz. Enabling hardware randomization across the
cache hierarchy in Linux-Class processors. In Fourth Workshop on
Computer Architecture Research with RISC-V (CARRV 2020): Virtual
Workshop, Friday, May 29th, 2020: co-located with ISCA 2020, pages
1–7, 2020.

DMR+20. Abhijitt Dhavlle, Raj Mehta, Setareh Rafatirad, Houman Homayoun,
and Sai Manoj Pudukotai Dinakarrao. Entropy-shield: Side-channel en-
tropy maximization for timing-based side-channel attacks. In 21st Inter-
national Symposium on Quality Electronic Design, ISQED 2020, Santa
Clara, CA, USA, March 25-26, 2020, pages 161–166. IEEE, 2020.

DXS20. Shuwen Deng, Wenjie Xiong, and Jakub Szefer. A Benchmark Suite
for Evaluating Caches’ Vulnerability to Timing Attacks, page 683–697.
Association for Computing Machinery, 2020.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, aug 1986.

GMF+16. Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Ste-
fan Mangard. Prefetch side-channel attacks: Bypassing SMAP and
kernel ASLR. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016,
pages 368–379. ACM Press, October 2016.

GMWM16. Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+flush: A fast and stealthy cache attack. In Juan Caballero, Urko
Zurutuza, and Ricardo J. Rodŕıguez, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment - 13th International Conference,
DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Proceedings, volume
9721 of LNCS, pages 279–299. Springer, 2016.

GRB+17. Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the line: Practical cache attacks on the MMU.
In 24th Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017.
The Internet Society, 2017.

HWKS98. Chris Hall, David Wagner, John Kelsey, and Bruce Schneier. Building
prfs from prps. In Annual International Cryptology Conference, pages
370–389. Springer, 1998.

IGI+16. Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisen-
barth, and Berk Sunar. Cache attacks enable bulk key recovery on
the cloud. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
CHES 2016, volume 9813 of LNCS, pages 368–388. Springer, Heidel-
berg, August 2016.

KHF+19. Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 2019 IEEE Symposium on Security and
Privacy, pages 1–19. IEEE Computer Society Press, May 2019.

A Security Model for Randomization-based Protected Caches 33

KLA+18. Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe, Srinivas
Devadas, and Joel S. Emer. DAWG: A defense against cache timing
attacks in speculative execution processors. In 51st Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 2018, Fukuoka,
Japan, October 20-24, 2018, pages 974–987. IEEE Computer Society,
2018.

LL14. Fangfei Liu and Ruby B. Lee. Random fill cache architecture. In 47th
Annual IEEE/ACM International Symposium on Microarchitecture, MI-
CRO 2014, Cambridge, United Kingdom, December 13-17, 2014, pages
203–215. IEEE Computer Society, 2014.

LSG+18. Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In William Enck and Adrienne Porter Felt,
editors, USENIX Security 2018, pages 973–990. USENIX Association,
August 2018.

LWML16. Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B. Lee. Newcache: Secure
cache architecture thwarting cache side-channel attacks. IEEE Micro,
36(5):8–16, 2016.

LYG+15. Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In 2015 IEEE Sym-
posium on Security and Privacy, pages 605–622. IEEE Computer Society
Press, May 2015.

Mon18. John V. Monaco. SoK: Keylogging side channels. In 2018 IEEE Sympo-
sium on Security and Privacy, pages 211–228. IEEE Computer Society
Press, May 2018.

MWS+17. Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
Hello from the other side: SSH over robust cache covert channels in the
cloud. In NDSS 2017. The Internet Society, February / March 2017.

OKSK15. Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Ange-
los D. Keromytis. The spy in the sandbox: Practical cache attacks in
JavaScript and their implications. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel, editors, ACM CCS 2015, pages 1406–1418. ACM
Press, October 2015.

OST06. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In David Pointcheval, editor, CT-
RSA 2006, volume 3860 of LNCS, pages 1–20. Springer, Heidelberg,
February 2006.

Per05. Colin Percival. Cache missing for fun and profit, 2005.

PGGV21. Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede.
Systematic analysis of randomization-based protected cache architec-
tures. In 42th IEEE Symposium on Security and Privacy, volume 5,
2021.

QBBC09. Eduardo Quiñones, Emery D. Berger, Guillem Bernat, and Francisco J.
Cazorla. Using randomized caches in probabilistic real-time systems.
In 21st Euromicro Conference on Real-Time Systems, ECRTS 2009,
Dublin, Ireland, July 1-3, 2009, pages 129–138. IEEE Computer Society,
2009.

34 Jordi Ribes-González et al.

Qur18. Moinuddin K. Qureshi. CEASER: mitigating conflict-based cache at-
tacks via encrypted-address and remapping. In 51st Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 2018, Fukuoka,
Japan, October 20-24, 2018, pages 775–787. IEEE Computer Society,
2018.

Qur19. Moinuddin K. Qureshi. New attacks and defense for encrypted-address
cache. In Srilatha Bobbie Manne, Hillery C. Hunter, and Erik R. Altman,
editors, Proceedings of the 46th International Symposium on Computer
Architecture, ISCA 2019, Phoenix, AZ, USA, June 22-26, 2019, pages
360–371. ACM, 2019.

RGFH+22. Jordi Ribes-González, Oriol Farràs, Carles Hernández, Vatistas Kosta-
labros, and Miquel Moretó. A security model for randomization-based
protected caches. In IACR Transactions on Cryptographic Hardware and
Embedded Systems, number 3, page 1–25, September 2022.

Sar19. John Sarraillé. Operating systems I: CS 3750. Lecture notes: Main mem-
ory. Chapter nine, June 2019.

Sez93. André Seznec. A case for two-way skewed-associative caches. In Alan Jay
Smith, editor, Proceedings of the 20th Annual International Symposium
on Computer Architecture, San Diego, CA, USA, May 1993, pages 169–
178. ACM, 1993.

SLG+18. Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clémentine
Maurice, Raphael Spreitzer, and Stefan Mangard. KeyDrown: Eliminat-
ing software-based keystroke timing side-channel attacks. In NDSS 2018.
The Internet Society, February 2018.

SSW14. Somayeh Sardashti, André Seznec, and David A. Wood. Skewed com-
pressed caches. In 47th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 2014, Cambridge, United Kingdom, De-
cember 13-17, 2014, pages 331–342. IEEE Computer Society, 2014.

SWG+17. Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware guard extension: Using SGX to conceal
cache attacks. CoRR, abs/1702.08719, 2017.

THAC18. David Trilla, Carles Hernández, Jaume Abella, and Francisco J. Cazorla.
Cache side-channel attacks and time-predictability in high-performance
critical real-time systems. In Proceedings of the 55th Annual Design
Automation Conference, DAC 2018, San Francisco, CA, USA, June 24-
29, 2018, pages 98:1–98:6. ACM, 2018.

TNF+21. Jan Philipp Thoma, Christian Niesler, Dominic A. Funke, Gregor Le-
ander, Pierre Mayr, Nils Pohl, Lucas Davi, and Tim Güneysu. Clepsy-
dracache - preventing cache attacks with time-based evictions. CoRR,
abs/2104.11469, 2021.

VKM19. Pepe Vila, Boris Köpf, and José F. Morales. Theory and practice of
finding eviction sets. In 2019 IEEE Symposium on Security and Privacy,
pages 39–54. IEEE Computer Society Press, May 2019.

VMW+18. Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,
and Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX
kingdom with transient out-of-order execution. In William Enck and
Adrienne Porter Felt, editors, USENIX Security 2018, pages 991–1008.
USENIX Association, August 2018.

A Security Model for Randomization-based Protected Caches 35

WL07. Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In Dean M. Tullsen and Brad
Calder, editors, 34th International Symposium on Computer Architec-
ture (ISCA 2007), June 9-13, 2007, San Diego, California, USA, pages
494–505. ACM, 2007.

WUG+19. Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. ScatterCache: Thwarting cache
attacks via cache set randomization. In Nadia Heninger and Patrick
Traynor, editors, USENIX Security 2019, pages 675–692. USENIX As-
sociation, August 2019.

YCJQ18. Vinson Young, Chia-Chen Chou, Aamer Jaleel, and Moinuddin K.
Qureshi. ACCORD: enabling associativity for gigascale DRAM caches
by coordinating way-install and way-prediction. In Murali Annavaram,
Timothy Mark Pinkston, and Babak Falsafi, editors, 45th ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA
2018, Los Angeles, CA, USA, June 1-6, 2018, pages 328–339. IEEE
Computer Society, 2018.

ZJRR14. Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-tenant side-channel attacks in PaaS clouds. In Gail-Joon Ahn,
Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 990–1003.
ACM Press, November 2014.

A Assumptions for our RPC model

In our models for cache systems and cache randomizers, we make a few assump-
tions to facilitate the security analysis, and leave aside superfluous features. As
per cache systems, we make the following assumptions:

Cache-only architecture: Since this work is only concerned with the interac-
tion with the cache, our model completely disregards the main memory, the
MMU and the CPU. We give notation for the cache and for cache randomiz-
ers. The constraints that other components impose on the threat model are
explained in Appendix B.

Offset dismissal: All memory blocks addressed with the same tag and set in-
dex get mapped to the same cache line, and the offset part determines where
the block does get stored in the line. Therefore, the cache state and the ob-
served latencies are unaffected by the offset. As in all previous work, we
dismiss the offset part of the address. This choice does not affect security.

Tag-only storage: The data retrieved from main memory does not contribute
to the functionality of the cache or the observed latencies. Thus, our cache
model holds at most one tag per cache line, and no data.

Cache hierarchy: As a component, the cache usually consists of several mem-
ory devices that form a leveled cache hierarchy, with lower-level caches sitting
closer to the CPU. This hierarchy is often inclusive, meaning that lower-
level caches always hold a subset of the data of higher-level caches. The
LLC is the farthest to the core, it usually has the highest latency, and it
is the only one shared among different cores. In this context, as in prior

36 Jordi Ribes-González et al.

work [Qur18,THAC18,Qur19,WUG+19] and without loss of generality, we
restrict to the protection of the LLC and see the cache as a single memory de-
vice as laid out in Section 2.1. Partition-based solutions [WL07,DJL+12,KLA+18]
could be better suited for lower-level caches.

Slicing: Many systems divide the cache sets of their LLC into disjoint slices,
and a slice is selected on every access through a hash of the tag and the
set index. Seeing this hash as part of the cache randomization process, our
model combines all slices into one that contains all cache sets.

And, as per the cache randomizer, we make the following assumptions:

Randomizer as a component: Regarding the actual placement of the ran-
domizer in the architecture, there exist two approaches. In works such as
CAESER [Qur18], addresses go through an encryption process before enter-
ing the cache. Since plain physical addresses should be used in main memory
(otherwise, changing keys would shuffle the main memory), any address out-
going from the cache is decrypted to retrieve the original physical address.
Other work, such as ScatterCache [WUG+19], applies the address random-
ization in the cache, temporarily storing the physical address so that it can
be output as is if needed. Without loss of generality, we follow the latter
approach, since it does not require defining an inverse to the randomizer
and so it allows to consider a wider range of solutions.

Set index randomization: In some of the previous work, randomization is
only applied to the set index part of the address, while others randomize
both the tag and the set index. Since we assume process isolation is enforced
with the tag (see Appendix B), randomizing the tag does not report any
advantage against contention attacks. We take the set index randomization
approach.

B Threat model

Access-based attacks on caches can have different objectives. For instance, the
attacker may be interested in knowing whether a process accesses one known or
unknown address, or a certain cache set, or in monitoring the addresses accessed
by another process. Moreover, there are several points to be taken into account
when modeling the adversary and the attack environment.

In this work, an RPC is deemed insecure when an adversary can detect
an access to a target address by observing the latency of adaptive accesses. The
attacker objectives and capabilities to be taken into account when modelling our
security definition (see Definition 7) are driven by the following considerations:

Targeted addresses: Instead of targeting a particular address [PGGV21], at-
tacks can also target arbitrary addresses [VKM19]. The former attacks aim
at building sets of addresses that, when sequentially accessed, have a high
probability of causing auto-evictions (i.e., not all of them ending up stored
in the cache). Both options are of a different nature, and we consider only
targeted attacks since they pose an arguably greater threat.

A Security Model for Randomization-based Protected Caches 37

Number of target addresses: It is possible for targeted attacks to aim at
monitoring accesses to one or to many addresses at the same time (as in
Bernstein’s attack on AES [Ber05]), and the attack could succeed if accesses
to all or just some of the accesses are detected. This depends on the process
under attack, and different security definitions may apply in different cases.
The most conservative objective is to detect accesses to any address out
of a set of target addresses. However, in this article we focus on the more
natural case of detecting one access to a single target address (σ, τ), which
makes sense for some attacks presented in the literature [PGGV21]. In the
terminology of Bourgeat et al. [BDY+20], we aim at security against single-
address transmitters. At any rate, our results may translate to other cases.

Global keying: As per keying, cache randomizers may require a single key in
the system, or they can manage a different key per process. In the first
case, the attacker may learn congruence relations between addresses that
also hold for the victim process. However, knowing congruence relations is
not necessary to perform access-based attacks such as [OST06], and does
not affect security as we define it. We restrict to the global keying case for
clarity.

Rekeying period: This period can be fixed using the clock time, the number
of accesses issued to the cache, or by other means. We consider a fixed
number of cache accesses in each epoch. Note that a smaller rekeying period
impacts the efficiency of the final solution, because all local writes have to
be flushed to main memory prior to rekeying. We also assume that flushing
completely cleans the cache; otherwise, stale data could affect the reliability
of the system. In our security definition, we make this explicit with the
assignment C[s]← (NULL)j for every s ∈ S.

Number of accesses: We adopt a flexible approach when counting the num-
ber of accesses in each epoch. We assume that N1 accesses are issued to
prepare the cache before the possible access to the target address, and that
N2 accesses are issued after it to detect if it was carried or not. This accounts
for epochs lasting at most N = N1 +N2 accesses. We also assume that N1

and N2 are known to the adversary.
Access to the actual cache: Since we study latency-based attacks, we as-

sume that the attacker can not view the cache C, nor access it by any other
means than a black-box evaluation of the accessπk

function.
Access to the cache randomizer: As other work [PGGV21], in a real attack

setting we may assume that the design of the randomization function π is
publicly available but that the actual key k is not, and that the attacker can
not evaluate πk directly due to hardware restrictions. In particular, this im-
plies that the attacker can not see which cache set is modified by the accessπk

function, or in which line, but it may be able to infer some information from
latency measures.

Process isolation in the cache: Isolation should be enforced in hardware, so
that the accesses of the attacker do not collide with accesses by victim pro-
cesses in the cache if this is not authorized. However, different addresses could
collide in the cache after randomization if the whole address is randomized.

38 Jordi Ribes-González et al.

And, in physically-indexed caches, tags could be the same for different data,
and set indexes could then coincide after randomizing. Previous work im-
plements measures to preserve process isolation in the cache even in those
cases, e.g. taking the whole frame number as the tag [THAC18].
In this article, without loss of generality, we assume that the attacker can
not generate collisions with the target address x = (σ, τ) in the cache, by
preventing it from using the tag τ . This is in line with the measures to
enforce process isolation taken in previous work, for instance by Trilla et
al. [THAC18]. Nevertheless, we assume that the attacker has full knowledge
of the target address x.

Physical indexing: As explained in Section 2.1, the set index of the address
can be part of the virtual or the physical address. In the first case, which is
typical of lower-level caches, the attacker is in direct control of the set index.
In the second case, which is more typical of higher-level caches (such as the
LLC), part of the set index depends on the address translation enforced by
the OS. As the most conservative choice, and since the attacker could have
some knowledge of the page table, we give the attacker the freedom to input
to accessπk

any address in S × T \ {τ} in order to set up an attack. In an
honest scenario, however, we note that freely accessing randomized addresses
with the same tag could easily lead to data integrity and coherency issues if
no additional measures are taken.

	A Security Model for Randomization-based Protected Caches

