
Polynomial Approximation of Inverse sqrt
Function for FHE

Samanvaya Panda

International Institute of Information Technology, Hyderabad, India
samanvaya.panda@research.iiit.ac.in

Abstract. Inverse sqrt and sqrt function have numerous applications in
linear algebra and machine learning such as vector normalisation, eigen-
value computation, dimensionality reduction, clustering, etc. This paper
presents a method to approximate and securely perform the inverse sqrt
function using CKKS homomorphic encryption scheme. Since the CKKS
homomorphic scheme allows only computation of polynomial functions,
we propose a method to approximate the inverse sqrt function polyno-
mially. In the end, we provide an implementation of our method for the
inverse sqrt function.

Keywords: Polynomial Approximation, Inverse sqrt, Homomorphic encryp-
tion, CKKS

1 Introduction

Privacy-preserving computation has been used to mitigate personal and sensi-
tive information leakage problems. There are many ways to compute functions
on data securely, keeping the data private. One such technique is homomorphic
encryption. Homomorphic encryption allows us to evaluate any function on en-
crypted data without knowing the actual data. In recent times, there have been
numerous advancements in homomorphic encryption schemes. The CKKS ho-
momorphic encryption scheme proposed recently by Cheon et al. in [3] is one
such example. It supports arithmetic on floating-point numbers which is why it
has been extensively used for different machine learning tasks [1, 5, 6].

The problem with CKKS homomorphic scheme is that it only supports poly-
nomial operations. So, we can’t implement many non-polynomial functions such
as logarithm, sqrt, sine, etc. directly. These functions need to be polynomially
approximated. There have been several methods proposed to approximate non-
polynomial functions, such as using Chebyshev’s polynomial basis [13], minimax
polynomials [12], Fourier series, etc. in [2–4, 14]. But in most FHE-based algo-
rithms using schemes similar to CKKS, the approximation of inverse functions is
skipped and such computations are performed on plaintext. Few attempts have
been made in this direction in [14] and [9]. In [14], authors suggested approxi-
mating division operation using Newton’s method and Goldschmidt’s algorithm.
They used an initial guess y0 = 21−k for all values. In [9] too, the author used

2 Samanvaya Panda

Newton’s method and Goldschmidt’s algorithm to approximate the inverse sqrt
and sqrt function simultaneously. They took inspiration from the fast inverse sqrt
algorithm [7] and tried a similar approach in a homomorphic setting. Instead of
fixing the initial guess, they used constrained linear regression to approximate
the inverse sqrt function. The line served as a good initial guess for larger values
of x. But for smaller values, it requires more iterations for convergence.

1.1 Contributions

We also draw inspiration from the fast inverse sqrt algorithm [7]. We can have
some curve approximating the 1√

x
as a good initial guess and then use Newton’s

iteration to improve upon that guess. This paper proposes a new method to find
a better initial guess for the inverse sqrt function and apply Newton’s iterations.
The advantage of using Newton’s iterations for inverse functions is that they are
polynomial and can be evaluated homomorphically. Upon observing the shape of
the inverse sqrt function, we notice that the value of the function keeps decreasing
slowly to the right of x = 1 and increases drastically to the left of x = 1. Over
a considerable interval, we can see that the shape of the function looks like the
’L’ alphabet.

This gave us the intuition to approximate the curve 1√
x

using two lines.

One of the lines approximates the curve over a large interval capturing the slow
decreasing trend of the values. The other line captures the rapid increasing trend
in the values of the curve. The intersection of the two lines is called the pivot
point. Approximation of the curve 1√

x
can be written as a convex combination

of the two lines about the pivot point using a sign function as described in [4].
In sections ahead, we will define how to find those two lines and what properties
they must satisfy. Our method provides sufficient accuracy with multiplicative
depth1 comparable to the approximation in [9] and also reduces the number
of iterations almost by half. Finally, we provide experimental results on the
homomorphic implementation of our method.

2 Preliminaries

2.1 CKKS Homomorphic Scheme

The CKKS(Cheon-Kim-Kim-Song) scheme [3] is a leveled homomorphic encryp-
tion scheme. Unlike other HE schemes, CKKS supports approximate arithmetic
on real and complex numbers with predefined precision. The main idea behind
the CKKS scheme is that it treats noise generated upon decryption as an error in
computation for real numbers. This makes it ideal for performing machine learn-
ing tasks where most of the calculations are approximate. The CKKS scheme
becomes an FHE(fully homomorphic encryption) scheme with the bootstrapping
technique.

1 We consider non-scalar multiplicative depth i.e ciphertext-ciphertext multiplication

Polynomial Approximation of Inverse sqrt Function for FHE 3

Let N = ϕ(M) be the degree of the M -th cyclotomic polynomial ΦM (X). If
N is chosen as a power of 2 then M = 2N and the M -th cyclotomic polynomial
ΦM (X) = XN + 1. Let R = Z[X]/ΦM (X) = Z[X]/(XN + 1) be the ring of
polynomials defined for the plaintext space. Let Rq = R/qR = Zq[X]/(XN +1)
be the residue ring defined for the ciphertext space. Let H be a subspace of CN

which is isomorphic to CN/2. Let σ : R → σ(R) ⊆ H be a canonical embedding.
Let π : H → CN/2 be a map that projects a vector from a subspace of CN to
CN/2.

The CKKS scheme provides the following operations:-

– KeyGen(N) :- Generates secret polynomial s(X), public polynomial p(X).
– Encode(z) :- Encodes a message vector z ∈ CN/2 to a message polynomial

m(X) ∈ R where m(X) = σ−1(⌊∆ · π−1(z)⌉) ∈ R.
– Decode(m(X)) :- Decodes a message polynomial m(X) ∈ R back to a

message vector z ∈ CN/2.
– Encrypt(m(X), p(X)) :- Encrypts the message polynomial m(X) ∈ R to

get ciphertext polynomial c(X) = (c0(X), c1(X)) = (m(X), 0) + p(X) =
(m(X)− a(X) · s(X) + e(X), a(X)) ∈ (Zq[X]/(XN + 1))2.

– Decrypt(c(X), s(X)) :- Decrypts the ciphertext polynomial c(X) to the
corresponding message polynomial m(X).

Apart from the above operations, it provides an evaluator function that can
perform specialised ciphertext operations. This include:-

– Add(c(X), c′(X)) :- to add 2 ciphertext polynomials.
– Multiply(c(X), c′(X)) :- to multiply 2 ciphertext polynomials.
– Rotate(c(X), i) :- to rotate the ciphertext polynomial by i positions left.

2.2 Polynomial Approximation of Sign Function

The sign function is non-polynomial and can’t be used directly in the CKKS
scheme. So, we use a polynomial approximation of the sign function instead. In
general, we approximate the sign function in the domain x ∈ [−1, 1] and the sign
of any other value can be found by scaling it inside the domain. In this paper,
we will use the approximation proposed by Cheon et al. in [4]. We approximate
the sign function as a composite polynomial f (d) where f is a polynomial with
similar shape to the sign function in the interval [−1, 1]. The properties satisfied
by f are:-

– f(−x) = −f(x) (Origin symmetry)
– f(1) = 1, f(−1) = −1 (Range of sign function)
– f ′(x) = c(1− x)n(1 + x)n for some c > 0 (Faster convergence)

Evaluating the polynomial f for different values of n we obtain :-

fn(x) =

n∑
i=0

1

4i
·
(
2i

i

)
· x(1− x2)i

4 Samanvaya Panda

Theorem 1. If d ≥ 1
log(cn)

·log(1/ϵ)+ 1
log(n+1) ·log(α−1)+O(1), then f

(d)
n (x) is

an (α, ϵ)-close polynomial to sgn(x) over [−1, 1] implies |f (d)
n (x)−sgn(x)| ≤ 2−α

where x ∈ [−1,−ϵ] ∪ [ϵ, 1].

Proof of theorem 1 can be found in [4]. To speedup up the convergence fur-
ther, we use a polynomial g instead of f that has a larger derivative at 0(cn). The
polynomial g would be a minimax polynomial satisfying the following properties
:-

– g(−x) = −g(x) (Origin Symmetry)
– ∃ 0 < δ < 1 s.t. x < g(x) < 1 ∀x ∈ (0, δ] and g([δ, 1]) ⊆ [1− τ, 1]

Its hard to represent g in closed form and is evaluated using algorithm 2 in [4].
In this paper, we use n = 3 to approximate the sign function. The approximate

sign function is computed as a composition f
df

3 (x) ◦ gdg

3 (x) where dg = 1
2log(cn)

·
log(1/ϵ) = 0.445 · log(1/ϵ) and df = 1

log(n+1) · log(α− 1) = 0.5 · log(α− 1). The

polynomial f3(x) and g3(x) are:-

f3(x) =
1

24
(35x− 35x3 + 21x5 − 5x7)

g3(x) =
1

210
(4589x− 16577x3 + 25614x5 − 12860x7)

2.3 Inverse sqrt approximation

In [9], the author mentioned a method to polynomially approximate 1√
x
that

could be used in FHE schemes. It first uses a line as an initial guess and then
uses Newton’s and Goldschmidt’s algorithms to improve upon their guess. Gold-
schmidt’s algorithm is used to compute

√
x alongside with 1√

x
which is required

for their application. For the initial guess, they perform a linear approximation
of 1√

x
by formulating a constrained linear regression. It is formulated as the

following minimization problem :-

min
w

1

n

n∑
i=1

(yi − wTxi)
2

subject to wTxi ≥ 0 ∀ i = {1, 2, · · ·n}
(1)

3 Approximation of 1√
x

As mentioned before, we use Newton’s method to approximate the value of
y = 1√

x
. It is because in each iteration of Newton’s method, the update equation

is polynomial in nature. Let f(x) = y−2 −x. Then the update equation for f(x)
is :- yi+1 = yi

2 (−xy2i +3). The only thing now to consider is the initial guess for
each value.

Polynomial Approximation of Inverse sqrt Function for FHE 5

3.1 A good initial guess

A good initial guess for Newton’s update equation would mean faster conver-
gence2. So, a good initial guess would be a good approximation of the 1√

x
func-

tion. Another thing to remember is that the initial guess must guarantee con-
vergence. The range of values for which yi guarantees convergence would be
yi

2 (−xy2i + 3) > 0 =⇒ 0 < yi <
√

3
x .

Any value of yi between 0 and
√

3
x will eventually converge because the term

−xy2i +3 is always greater than 0 pushing it towards the value 1√
x
. But, we wish

that our algorithm would converge in a fixed number of iterations rather than
converging eventually. So, we observe that for any x, the number of iterations

needed for the initial guess y0 ∈ [1√
x
,
√

3
x] to converge increases as we move away

from 1√
x
to

√
3
x . Same is the case for the interval [0, 1√

x
]. For a given number of

iterations, we could use binary search on both of the intervals to find the new
reduced range for the initial guess that guarantees convergence. To keep things
simple and uniform, we assume that the reduced range of initial guess for each
x would also be a function of 1√

x
and the new range would be [k1√

x
, k2√

x
] where

0 < k1 < 1 and 1 < k2 <
√
3. Using lemma 1, we show that for constants k1 and

k2, we can guarantee convergence for all values of x with a certain error.

Lemma 1. Let d be the given number of Newton’s iterations. Let the absolute
error at the point x = 1 for the initial guess y0 = k1 or y0 = k2 after d iterations
be ≤ E where 0 < k1 < 1 and 1 < k2 <

√
3. Then the absolute error at any point

x after d iterations for any initial guess in the range [k1√
x
, k2√

x
] would be Ex ≤ E√

x
.

Proof. Let us first consider the lower bound k1. At point x = 1, we have y0 = k1.
Then, y1 = k1

2 · (−k21 + 3) . Let’s say K0 = k1 and Ki = Ki−1

2 · (−K2
i−1 + 3).

After d iterations we would have |1 − Kd| ≤ E . Now for any x, y0 = k1√
x
,

y1 = y0

2 · (−xy20 + 3) = k1

2
√
x
· (−k21 + 3) = K1√

x
. So, after d iterations we get

Ex = | 1√
x
− Kd√

x
| ≤ E√

x
. Since values of k1 and k2 are evaluated for fixed E , we

can similarly argue for the upper bound k2 that it will guarantee convergence
for any x with an absolute error E√

x
.

Corollary 1. The mean absolute error over all x in the interval [a, b] after d
iterations would be Ē = 2E√

a+
√
b

Corollary 2. If we consider the two intervals x ∈ [a, 1] ∪ [1, b], where a, b are
constants and a < 1 < b then the mean absolute error over all x after d iterations
would be Ē ′ = Ē1 + Ē2 = E

1+
√
a
+ E

1+
√
b
.

The corollaries 1 and 2 can be easily verified using Mean value theorem i.e.∫ b

a
f(x)dx = f(c)(b− a). The value of k1 and k2 is found using the algorithm 1

at x = 1 for a fixed number of Newton’s iterations d and absolute error E .
2 By convergence we mean that the difference between the actual and predicted value
is bounded by some predefined error

6 Samanvaya Panda

Algorithm 1 Finding constants for initial guess range of 1√
x

Input: d, E : No.of iterations and error.
Output: k1, k2: Upper and lower bound

of initial guess.
1: l← 2δ − 1, r ← 1
2: while r − l ≥ δ do
3: mid← (r + l)/2
4: val← mid
5: for i = 1 to d do
6: val← val

2
(−val2 + 3)

7: end for
8: diff ← |val − 1|
9: if diff ≤ E then
10: r ← mid
11: else
12: l← mid+ δ
13: end if
14: end while

15: k1 ← l
16: l← 0, r ← 2

√
3− 1

17: while r − l ≥ δ do
18: mid← (r + l)/2
19: val← mid
20: for i = 1 to d do
21: val← val

2
(−val2 + 3)

22: end for
23: diff ← |val − 1|
24: if diff ≤ E then
25: l← mid
26: else
27: r ← mid− δ
28: end if
29: end while
30: k2 ← l
31: return k1, k2

3.2 2-line approximation

Now that we have the range for initial guess, we need to find an approximation
of 1√

x
that lies within this initial guess for all values of x. As mentioned earlier,

we approximate the function 1√
x
using two intersecting lines(L1, L2) by limiting

the domain of x to [a, b]. The intersection point of the lines is called the pivot
point(denoted as P). Let L2 approximate 1√

x
on larger values of x i.e x ∈ [P, b]

and L1 approximate 1√
x
on the smaller values of x i.e x ∈ [a, P]. The overall

approximation of 1√
x
can be written as convex combination in terms of L1 and

L2 as:-

h(x) = (1− β(x)) · L1(x) + β(x) · L2(x) (2)

where β(x) = comp(P
b−a ,

x
b−a) and comp(x, y) = 1+sgn(x−y)

2 . We can evaluate
the sign function polynomially as mentioned in [4]. So far, we have mentioned
how to compute the approximate value of 1√

x
using L1 and L2. Now we are going

to discuss how to find these lines. Remember that approximate value of 1√
x
for

all x must be in the range [k1√
x
, k2√

x
] to guarantee convergence. To ensure this,

the maximum value for any point x on the line cannot exceed k2√
x
. That means

both the lines are tangent to the curve k2√
x
. Similarly, the minimum value at any

point x on the line cannot go below k1√
x
. This implies that the extreme points of

both the lines must either lie on the curve k1√
x
or above it.

Polynomial Approximation of Inverse sqrt Function for FHE 7

Let x1, x2 be the points were lines L1, L2 are tangent to the curve k2√
x
respec-

tively. The slope of any tangent to the curve k2√
x
at point γ is − 1

2k2 · γ
−3/2. So,

the equation of L1 and L2 will be:-

L1 : y = −1

2
k2x

−3/2
1 x+

3

2

k2√
x1

(3)

L2 : y = −1

2
k2x

−3/2
2 x+

3

2

k2√
x2

(4)

The last step in figuring out the lines L1, L2 are the points x1, x2 respectively.
They are the points where the lines L1 and L2 touch the curve k2√

x
. We consider

that these lines must pass through the extreme points of the domain of x i.e
L2 must pass through the point x = b and L1 must pass through x = a on the
curve k1√

x
. Each of the lines L1, L2 also intersect the curve k1√

x
at points different

than x = a and x = b respectively. Let the line L2 pass through a point x on
the curve k1√

x
. Then the equation of L2 becomes:-

k1√
x
= −1

2
k2x

−3/2
2 x+

3

2

k2√
x2

=⇒ k22x
3 − 6k22x

2x2 + 9k22xx
2
2 − 4k21x

3
2 = 0 (5)

Solving the equation 5 with x = b, we would obtain the point x2 and ultimately
L2. Similarly, we can evaluate x1 at x = a and get L1.

3.3 Finding pivot point

In the previous section, we presented a method to obtain the lines L1, L2 so
that they lie in the range [k1√

x
, k2√

x
]. But we aim to approximate the original

function 1√
x
using two intersecting lines in the given range. The above approach

for finding the lines doesn’t guarantee the intersection of lines L1 and L2 inside
the desired range i.e P may or may not lie above or on the curve k1√

x
. One way to

ensure that the pivot point lies within the range of convergence is to increase the
number of newton’s iterations. Increasing the iterations would adjust the values
of k1 and k2 accordingly, allowing L1 and L2 to intersect in the inside region.
Another way to ensure that is by tweaking the process of finding the lines L1, L2

a little bit. Instead of increasing the number of iterations to adjust the values of
k1 and k2, we fix the pivot point. We follow the following steps:-

– Step 1: Find x2 using equation 5 at x = b to evaluate L2.
– Step 2: Find the other point of intersection of line L2 with the curve k1√

x
by

solving for x in equation 5. Now this point becomes the pivot point P .
– Step 3: Find x1 using the pivot point. Substitute x2 = x1 and x = P in

equation 5 and solve for x1.

Note that if we follow the above steps to find lines L1 and L2, then they
will always intersect at point P . But, the line L1 no longer intersects the curve

8 Samanvaya Panda

k1√
x
at x = a but rather at x = a′ where a < a′. This is a trade-off between

accuracy and the number of iterations. With practical results, we can argue that
a sufficient level of accuracy can be achieved with a few iterations using the
above method. Another fact to consider is that we choose to fix the pivot point
as the point of intersection of the line L2 to the curve k1√

x
instead of L1. This

is because the curve k1√
x
is closer to 0 on larger values of x. If we take the pivot

point as the other point of intersection of line L1 then line L2 would intersect
the curve k1√

x
at x = b′ where b′ < b. So, for some values of x > b′, the value

of L2 would be negative. When we apply Newton’s iterations on these points,
there values would converge to − 1√

x
instead of 1√

x
.

4 Implementation details

We implemented the secure inverse sqrt approximation using the SEAL library
[11] for CKKS homomorphic scheme. The implementation can be found at [10].
For the approximate sign function, we fix the value of df = 2 which would give
us the value of α = 17. We know that the value of dg = 0.445 · log(1/ϵ) where
the value of ϵ determines the precision of values for the comp() function. For
any z1, z2 ∈ [0, 1], |z1 − z2| ≥ ϵ. The lower the value of ϵ, larger the precision,
better accuracy of the approximation and larger the multiplicative depth. For
our experiments mentioned in table 1, we fixed dg = 7 making ϵ ≈ 2 × 10−5.
The multiplicative depth for both f3 and g3 is 3. So, the multiplicative depth
required to compute the initial guess would be 3(dg + df) + 1. The maximum
multiplicative depth required in a single Newton’s iteration is 2. Hence, the
maximum multiplicative depth required to compute the inverse operation would
be 3(dg + df) + 2d + 1. While evaluating the function on encrypted data, we
observed that the output of comp() was slightly > 1 due to additive noise. So,
the points near the tangent exceeded the upper bound. To mitigate this, we
introduced a constant error i.e err = 8.5 × 10−7 that was subtracted from the
value of the comp() so that the final value remained < 1. So on encrypted data,
the convex combination of lines becomes - h(x) = (1 + err − β(x)) · L1(x) +
(β(x)− err) · L2(x).

To obtain the parameters of pivot-tangent method, we first fix the interval
[a, b] and then fix the values of number of iterations d and absolute error E .
The smaller the value of E the smaller the interval for initial guess [k1√

x
, k2√

x
]

would be. To increase the initial guess interval, we have to increase the number
of iterations d. So, smaller E requires larger number of iterations d. We should
keep this in mind while fixing d and E . Also, notice that equation 5 is a cubic
equation. So, while solving for x2, we consider the largest root as x2. Similarly
while computing x1, we consider the smallest root as x1. For the pivot point P ,
we consider the root closest to 1 as P . The combined method for the polynomial
approximation of 1√

x
using pivot-tangent method is given in the algorithm 2.

Polynomial Approximation of Inverse sqrt Function for FHE 9

Algorithm 2 Finding approximate value of 1√
x

Input: [a, b], E , d, dg, df , x, err.
Output: yd: Approximate value of 1√

x
.

1: Find k1, k2 using Algorithm 1.
2: Find x2, P, x1 using pivot-tangent

method.

3: Compute β(P, x) and y0 = h(x).
4: Compute d Newton’s iterations to ob-

tain yd.
5: return yd

5 Results and Comparison

Table 1 summarizes the value of various parameters computed using the pivot-
tangent method with [a, b] = [10−4, 103] and E = 0.007. The points are equally
divided in two intervals i.e. [10−4, 1] and [1, 103]. Using corollary 2, we get the
theoretical upper bound on error = 0.007

1+10−2 + 0.007
1+

√
1000

= 0.00714. We observe

that the mean absolute error obtained after the experiments for fixed parameters
is lower than theoretical upper bound. Figure 1 shows different components of
the pivot tangent method.

d k1 k2 x1 x2 P Mean Abs. Error
(without encryption)

Mean Abs. Error
(with encryption)

Depth

7 0.128 1.6645 0.3111 343.6645 0.9053 0.00265 0.0055 42

8 0.0855 1.6876 0.1322 340.035 0.3887 0.00083 0.00112 44

9 0.0702 1.6958 0.0876 338.781 0.2587 0.000091 0.0001 46

Table 1: Values of different parameters for given no.of Newton’s iterations

Now, to compare our method with the technique of finding 1√
x
mentioned

in [9], we conducted some experiments by fixing the interval for x ∈ [a, b]. For
the method in [9], we take d1, d2 as the number of Newton’s and Goldschmidt’s
iterations respectively. For the method in [9], the values of (slope,intercept)

[a, b]
Iteration Depth E err Error

(d1, d2) (d, dg) 2d1 + 3d2 2d+ 3dg + 6 [9] Ours

[10−3, 750]
(12, 3) (7, 5) 33 35 7e-3 1.2e-6 8.587e-5 2.23e-4
(10, 5) (7, 5) 35 35 1e-3 1.2e-6 8.695e-5 1.01e-4
(12, 4) (8, 6) 36 40 1e-4 1.2e-6 8.571e-6 2.23e-5

[10−4, 103]
(12, 5) (7, 6) 39 38 7e-3 1.2e-6 1.421e-3 5.65e-3
(14, 4) (8, 6) 41 40 7e-3 1.2e-6 2.323e-4 2.98e-3
(15, 5) (9, 7) 45 45 1e-4 8.5e-7 5.824e-6 1.87e-5

Table 2: Comparison of our method with that of in [9].

10 Samanvaya Panda

used for the initial guess line in the intervals [10−3, 750] and [10−4, 103] are
(−0.00019703, 0.14777278) and (−1.29054537e − 04, 1.29054537e − 01) respec-
tively. From table 2, we can see that for similar multiplicative depth, method
mentioned in [9] has comparatively lower mean absolute error. Note that our
method significantly reduces(almost half) the number of iterations required for
convergence(by comparing d1 + d2 and d in table 2). The biggest bottleneck for
our method is the sign function approximation. It takes up more depth than the
Newton’s iterations i.e 2d < 3(dg + df). While the overall pivot-tangent method
reduces the number of iterations required for convergence, it wastes most of its
multiplicative depth in initially computing the sign approximation. Thus, when
we try to compare it with method in [9] in terms of similar multiplicative depth,
the method in [9] would get double the number of iterations compared to our
method and hence has slightly better results. It is also important to remem-
ber that while method in [9] has no convergence guarantees(it may diverge for
some values or converge to - 1√

x
for larger x), our method provides guaranteed

convergence with a certain error.

Fig. 1: Inverse sqrt approximation using pivot-tangent method

6 Conclusion and Future Work

In this paper, we presented the pivot-tangent method and approximated 1√
x

function. Our approximation provides guaranteed convergence with sufficient
accuracy compared to the previous method for the same multiplicative depth.
Our method reduces the number of iterations required for convergence almost by
half. However, the biggest bottleneck for our method is the computation of the
approximate sign function. So, a new way to polynomially represent piece-wise
lines without relying on sign function would significantly reduce our method’s
multiplicative depth. It is worth mentioning that in recent times there have
been approaches such as Chimera [2] and Pegasus [8] that provide a bridge
between different FHEs. This enables us to non-polynomial functions on CKKS

Polynomial Approximation of Inverse sqrt Function for FHE 11

ciphertexts. But these transformations are very costly in terms of memory. It
would be better to have an inverse sqrt approximation in the CKKS scheme that
provides sufficient accuracy and precision over a large interval. We also plan to
extend our pivot-tangent method to approximate other inverse functions as a
generalized approach. Now that we have a good approximation method of an
inverse sqrt function, we also plan to apply this algorithm to different linear
algebraic and machine learning algorithms in the future.

References

1. Boemer, F., Costache, A., Cammarota, R., Wierzynski, C.: Ngraph-he2: A high-
throughput framework for neural network inference on encrypted data. In: Pro-
ceedings of the 7th ACM Workshop on Encrypted Computing and Applied Ho-
momorphic Cryptography. p. 45–56. WAHC’19, Association for Computing Ma-
chinery, New York, NY, USA (2019). https://doi.org/10.1145/3338469.3358944,
https://doi.org/10.1145/3338469.3358944

2. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: Combining ring-lwe-
based fully homomorphic encryption schemes. Cryptology ePrint Archive, Report
2018/758 (2018), https://eprint.iacr.org/2018/758

3. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. Cryptology ePrint Archive, Report 2016/421 (2016),
https://eprint.iacr.org/2016/421

4. Cheon, J.H., Kim, D., Kim, D.: Efficient homomorphic comparison methods
with optimal complexity. Cryptology ePrint Archive, Report 2019/1234 (2019),
https://ia.cr/2019/1234

5. Han, K., Hong, S., Cheon, J.H., Park, D.: Efficient logistic regression on
large encrypted data. Cryptology ePrint Archive, Report 2018/662 (2018),
https://eprint.iacr.org/2018/662

6. Lee, J.W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee, J.,
Yoo, D., Kim, Y.S., No, J.S.: Privacy-preserving machine learning with fully homo-
morphic encryption for deep neural network. Cryptology ePrint Archive, Report
2021/783 (2021), https://ia.cr/2021/783

7. Lomont, C.: Fast inverse square root. Tech. rep., Purdue University (2003),
http://www.matrix67.com/data/InvSqrt.pdf

8. Lu, W., Huang, Z., Hong, C., Ma, Y., Qu, H.: Pegasus: Bridging polynomial and
non-polynomial evaluations in homomorphic encryption. In: 2021 2021 IEEE Sym-
posium on Security and Privacy (SP). pp. 1057–1073. IEEE Computer Society, Los
Alamitos, CA, USA (may 2021). https://doi.org/10.1109/SP40001.2021.00043

9. Panda, S.: Principal component analysis using ckks homomorphic encryption
scheme. Cyber Security Cryptography and Machine Learning, 5th International
Symposium, CSCML 2021 (2021), https://eprint.iacr.org/2021/914

10. Panda, S.: Pivot-tangent method. https://github.com/pandasamanvaya/Pivot-
tangent (2022)

11. Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL (Sep 2021), mi-
crosoft Research, Redmond, WA.

12. TASISSA, A.: Function approximation and the remez algorithm (2019)
13. Trefethen, L.N.: Approximation Theory and Approximation Practice, Extended

Edition. SIAM (2019)
14. Çetin, G.S., Doröz, Y., Sunar, B., Martin, W.J.: Arithmetic using word-wise ho-

momorphic encryption (2016)

