
Gemini: Elastic SNARKs for Diverse Environments

Jonathan Bootle
jbt@zurich.ibm.com

IBM Research

Alessandro Chiesa
alessandro.chiesa@epfl.ch

EPFL

Yuncong Hu
yuncong_hu@berkeley.edu

UC Berkeley

Michele Orrù
michele.orru@berkeley.edu

UC Berkeley

Abstract

We introduce and study elastic SNARKs, a class of succinct arguments where the prover has multiple
configurations with different time and memory tradeoffs, which can be selected depending on the execution
environment and the proved statement. The output proof is independent of the chosen configuration.

We construct an elastic SNARK for rank-1 constraint satisfiability (R1CS). In a time-efficient
configuration, the prover uses a linear number of cryptographic operations and a linear amount of memory.
In a space-efficient configuration, the prover uses a quasilinear number of cryptographic operations and a
logarithmic amount of memory. A key component of our construction is an elastic probabilistic proof.
Along the way, we also formulate a streaming framework for R1CS that we deem of independent interest.

We additionally contribute Gemini, a Rust implementation of our protocol. Our benchmarks show
that Gemini, on a single machine, supports R1CS instances with tens of billions of constraints.

Keywords: interactive oracle proofs; SNARKs; streaming algorithms

1

Contents
1 Introduction 3

1.1 Our results . 3

2 Techniques 5
2.1 Elasticity and a streaming model . 5
2.2 A modular construction of elastic SNARKs . 6
2.3 An elastic realization of the KZG polynomial commitment scheme 7
2.4 An elastic scalar-product protocol . 8
2.5 Warm-up: an elastic non-holographic PIOP for R1CS . 12
2.6 Elastic holographic PIOP for R1CS . 15
2.7 Implementation and optimizations . 19
2.8 Evaluation . 20

3 Preliminaries 23
3.1 Notation . 23
3.2 Polynomial IOPs . 23

4 Streaming model 25
4.1 Streaming algorithms . 25
4.2 Streaming R1CS . 26

5 Tensor-product protocol 27
5.1 Basic tensor-product protocol . 27
5.2 Batched tensor-product protocol . 29

6 Elastic protocols for scalar products 31
6.1 Elastic scalar-product protocol (special case) . 31
6.2 Proof of Theorem 6.2 . 32
6.3 Space efficient realization of Construction 3 . 33
6.4 Elastic scalar-product protocol (general case) . 35
6.5 Hadamard-product protocol . 36

7 A non-holographic protocol for R1CS 37
7.1 Proof of Theorem 7.1 . 38

8 Achieving holography 40
8.1 Proof of Theorem 8.1 . 40
8.2 Lookup protocol . 41
8.3 Entry product . 46

9 Polynomial commitment schemes 48
9.1 Definition . 48
9.2 An elastic polynomial commitment scheme . 49

10 Elastic argument systems 51
10.1 Preprocessing arguments with universal SRS . 52
10.2 Elastic PIOP to argument compiler . 52
10.3 Proof of Theorem 10.1 . 53

Acknowledgements 54

References 54

2

1 Introduction

Succinct non-interactive arguments of knowledge (SNARKs) allow for efficient verification of NP statements.
Recent years have seen a surge of interest in SNARKs, catalyzed by several real-world applications. While
reducing argument size and verification time were an initial focus, the cost of running the prover algorithm
has now emerged as a critical bottleneck. This is particularly important as the size of proved computations
increases, and recent applications demand proving large computations.

For example, popular scaling solutions for blockchains (roll-up architectures) require regularly producing
SNARKs attesting to the validity of large batches of transactions, which translates to proving the correctness of
billions of gates. As another example, the Filecoin network generates proofs for about 930 billion constraints
every day.1 In both cases, efficiently producing SNARKs attesting to the correctness of large computations is
critical, yet many SNARK implementations today do not scale to large computations because of the prohibitive
memory requirements of the proving algorithm. Indeed, research that focuses on the time complexity of
the prover algorithm has achieved notable theoretical and practical improvements [BCGGHJ17; BCGJM18;
XZZPS19; Set20; BCG20; Lee20; KMP20; Zha+21; BCL22; GLSTW21; RR22], but with linear space
complexity. These constructions rely on, among other things, a component that achieves linear-time proving
via dynamic programming techniques [Tha13], which demands storing in memory the proved computation.

The notion of complexity-preserving SNARKs introduced in [BC12] aims to simultaneously optimize
time and space: it requires that the prover’s time and space complexity are at most polylogarithmic factors
away from those of the proved computation. Complexity-preserving SNARKs were subsequently studied
(and improved) in a line of works [BCCT13; HR18; BHRRS20; BHRRS21]. The holy grail would be to
preserve time and space complexity up to constant factors, but known constructions are far from this goal,
and achieve improved space complexity at the expense of time complexity.

In sum, a line of works achieves excellent time complexity at the expense of space complexity, and a
different line of works achieves excellent space complexity at the expense of time complexity. It remains a
challenging open question to construct SNARKs that simultaneously do well in both parameters. In this paper
we do not answer this question, but instead introduce and achieve a notion that meaningfully relaxes this goal:
a single SNARK that can be configured to optimize for time complexity or optimize for space complexity.

1.1 Our results

(1) Elastic SNARKs. We advocate the study of SNARKs whose prover admits two different realizations:

• a time-efficient prover that receives as input instance and witness;
• a space-efficient prover with streaming access to these same inputs.

These elastic provers can choose which realization to use, and allocate resources depending on the execution
environment and the instance size. In addition, the two algorithms are compatible in such a way that during
the execution of the protocol the space-efficient prover can pause and transcribe a prover state, and then the
protocol can continue with the time-efficient prover (thereafter enjoying the benefits of the faster prover).

We build on the notion of streams in [BHRRS20] to study the above goal. We study stream composition,
and propose a definitional framework for streaming instances of Rank-1 Constraint Satisfiability (R1CS).
Within this framework we contribute an elastic SNARK for R1CS that we describe next.
(2) An elastic SNARK for R1CS. We realize the above notion by constructing an elastic (preprocessing)
SNARK for R1CS, that we name Gemini. In time-efficient mode the prover uses a linear number of

1https://research.protocol.ai/sites/snarks/

3

https://research.protocol.ai/sites/snarks/

cryptographic operations and linear space, and in space-efficient mode the prover uses a quasilinear number
of cryptographic operations and logarithmic space. When referring to time efficiency, we use the asymptotic
notation Oλ to denote cryptographic operations, so to distinguish them from (less expensive) field operations
for which we use the asymptotic notation O. Our main result is the (informally stated) theorem below.

Definition 1. The R1CS problem asks: given a finite field F, coefficient matrices A,B,C ∈ FN×N each
containing at mostM = Ω(N) non-zero entries,2 and an instance vector x over F, is there a witness vector
w such that Az ◦Bz = Cz for z := (x,w) ∈ FN? (Here, “◦” denotes the entry-wise product.)

Theorem 1 (informal). There exists an elastic SNARK forRR1CS whose prover admits two realizations:

• a time-efficient prover that runs in Oλ(M) time and O(M) space;
• a space-efficient prover that runs in Oλ(M log2M) time and O(logM) space.

Verification time is Oλ(|x|+ logM) time and proof size is O(logM).

The above SNARK is obtained via a popular paradigm that combines a polynomial IOP and a polynomial
commitment scheme in order to obtain an interactive argument, and then relies on the Fiat–Shamir paradigm
to make the protocol non-interactive. The (omitted) cryptographic assumptions in the informal statement are
inherited from those for the underlying polynomial commitment scheme, which in our case is [KZG10].

Briefly, after observing that the polynomial commitment scheme in [KZG10] can be realized elastically,
our main contribution is achieving an elastic polynomial IOP. A key component of this latter is an elastic
scalar product protocol, which runs in linear-time and linear-space or quasilinear-time and log-space. Our
scalar product argument is based on the sumcheck protocol, which, thanks to its recursive nature, facilitates
migrating from a space-efficient instance to a time-efficient one.
(3) Implementation. We implement the construction of Theorem1 inRust using the arkworks ecosystem [ark],
replicating the modularity of the IOP construction. In particular, we develop new streaming-friendly primitives
that we believe could be of independent interest for future projects realizing space-efficient cryptographic
proofs. Our implementation additionally includes a simpler SNARK that is not preprocessing (the verification
procedure reads R1CS instances without providing succinct verification). In Section 2.7, we summarize our
design choices and algorithmic optimizations for the implementation.
(4) Evaluation. Most benchmarks for time-efficient SNARKs in the literature do not consider large circuits,
due to prohibitive memory usage. Our benchmarks, discussed further in Section 2.8, show the following.

• Gemini is able to prove instances of arbitrary size. On a single machine with a memory budget of around
1 GB, we ran the prover of the preprocessing SNARK for instances of size 232 and the prover of the
non-preprocessing SNARK (where the verifier reads the R1CS instance in full) for instances of size 235.
We “stopped” at these sizes only due to time constraints.
In contrast, the largest instance size reported in the literature is in DIZK [WZCPS18], where a distributed
realization of the preprocessing SNARK (with circuit-specific setup) of [Gro16] is run for an R1CS instance
of size 231 over a cluster of 20 machines with 256 executors.

• Gemini is concretely and economically efficient. The preprocessing SNARK can prove instances of size 231

in two days and costs about 82% (about 400 USD) less than DIZK on Amazon EC2.

• Gemini provides succinct proofs and verification. For instances of size 235, the proof size is about 27 KB
and the verification time is below 30 ms.

2Note that M = Ω(N) without loss of generality because if M < N/3 then there are variables of z that do not participate in any
constraint, which can be dropped. Thus the main size measure for R1CS is the sparsity parameter M .

4

2 Techniques

We summarize the main ideas behind our results. In Section 2.1 we outline the streaming model that we use to
express space-efficient algorithms. In Section 2.2 we describe how to construct elastic SNARKs from elastic
polynomial commitment schemes and elastic probabilistic proofs. We describe an example of an elastic
polynomial commitment scheme in Section 2.3. Then, in Sections 2.4 to 2.6 we sketch our elastic probabilistic
proof. We conclude in Section 2.7 and Section 2.8 by discussing our implementation and evaluation.

2.1 Elasticity and a streaming model

The notion of elasticity refers to having multiple realizations of the same algorithm (more precisely, function)
for use in different situations. Specifically in this work:

Elasticity means that we aim for two realizations: a time-efficient realization for a setting
where time complexity is most important, possibly at the expense of space complexity; and a
space-efficient realization for a setting where space complexity (i.e., memory consumption) is
most important, possibly at the expense of time complexity.

This means that in theorem statements, and in their proofs, we will consider two realizations with different
complexities for the same function (e.g., the SNARK prover).

Time-efficient algorithms are a familiar concept. Space-efficient algorithms in this paper are streaming
algorithms: algorithms that receive their inputs in streams (small pieces at a time) so that they can use less
memory than the size of their inputs. Below we elaborate on: (i) streams; and (ii) streaming algorithms.
Streams and streaming oracles. A stream is a sequence K ∈ ΣI , where Σ is an alphabet and I is a
well-ordered countable set. Streams are accessed via oracles: ifK is a sequence, the streaming oracle S(K)
ofK takes two input commands, start and next; the oracle responds to the i-th next command with the i-th
element of K; in case earlier elements of the stream need to be read again, the start command resets the
oracle to the first element in the sequence. The oracle does not allow random access to elements ofK.
Streaming algorithms. A streaming algorithm is an algorithm that has access to its inputs via streaming
oracles and produces a stream as its output, by outputting the next element upon receiving the next command.
The complexity of a streaming algorithm is measured in terms of its time complexity, space complexity, and
the number of passes that it makes over each input stream (via the start command).

Any binary operation over an alphabet can be viewed as a streaming algorithm which takes as input two
sequencesK andK ′ over the same alphabet Σ that are indexed by the same set I . The binary operation acts
on successive pairs of elements ofK andK ′, to produce a new stream on the fly. For instance, let f ,g be two
vectors over a finite field F, and S(f), S(g) their canonical streams. (The canonical stream of a vector is the
sequence of its entries, from last to first.) For a scalar ρ ∈ F, the stream S(f + ρg) can be evaluated as a new
stream using S(f) and S(g), by responding to each next query in the following way: first query S(f) to obtain
the i-th entry fi of f ; then query S(g) to obtain the i-th entry gi of g; and finally respond with fi + ρgi.

Since a streaming algorithm produces a stream as output, multiple streaming algorithms can be composed
so that the output stream produced by one algorithm is the input stream for the next algorithm. The time and
space complexity and number of input passes of streaming algorithms behave predictably under composition.
If A is a streaming algorithm with time complexity tA, space complexity sA, and kA input passes, and B is a
streaming algorithm with time complexity tB, space complexity sB, and kB input passes, then A composed
with B has time complexity tA + kAtB, space complexity sA + sB, and kAkB input passes.

5

2.2 A modular construction of elastic SNARKs

Many succinct arguments are built in two steps. First, construct an information-theoretic probabilistic
proof in a model where the verifier has a certain type of query access to the prover’s messages. Second,
compile the probabilistic proof into an interactive succinct argument, via a cryptographic commitment
scheme that “supports” this query access.3 Finally, if non-interactivity is desired, apply the Fiat–Shamir
transformation [FS86]. This modular approach has enabled researchers to study the efficiency and security of
simpler components, which has facilitated much progress in succinct arguments.

We observe that the approach used in [CHMMVW20; BFS20] to construct SNARKs preserves elasticity:
if the ingredients to the approach are elastic then the resulting SNARK is elastic. There are two ingredients.

• Polynomial IOPs. A probabilistic proof in which the prover sends polynomial oracles to the verifier, who
accesses them via polynomial evaluation queries. This is an interactive oracle proof [BCS16; RRR16]
where query access to prover messages is changed from “point queries” to “polynomial evaluation queries”.

• Polynomial commitments. A cryptographic primitive that enables a sender to commit to a polynomial
f ∈ F[X] of bounded degree, and later prove that f(z) = v for given z, v ∈ F.

If the polynomial IOP is additionally holographic then the resulting succinct argument is a preprocessing
argument, which means that it is possible, in an offline phase, to perform a public computation that enables
sub-linear verification in a later online phase. The lemma below summarizes how elasticity is preserved. The
formal statement (and its proof) are relative to the formalism for streaming algorithms outlined in Section 2.1.

Theorem 2 (informal). Suppose that we are given the following ingredients.

• A public-coin polynomial IOP for a relationR with: (i) time-efficient prover time tP ; (ii) space-efficient
prover space sP with kP passes; (iii) O oracles; (iv) query complexity q; (v) verifier complexity tV .

• A polynomial commitment scheme with: (i) time-efficient commit (and open) time tPC.Com; (ii) space-efficient
commit (and open) space sPC.Com with kPC.Com passes; (iii) checking time tPC.Check.

Then there exists an interactive argument system for the relation R with: (i) time-efficient prover time
tP + O · tPC.Com + q · tPC.Com; (ii) space-efficient prover space sP + O · sPC.Com with q · kP · kPC.Com
passes; (iii) verifier complexity tV + q · tPC.Check. Moreover, the argument system is preprocessing if the given
polynomial IOP is holographic (with time and space properties similarly preserved by the transformation).

Informally, the argument prover commits to each polynomial oracle via the polynomial commitment
scheme, and answers polynomial evaluation queries by sending the requested evaluation along with a proof
that it is consistent with the corresponding polynomial commitment. The security and most efficiency
measures are studied in [CHMMVW20; BFS20]. Less obvious is how space complexity is affected.

A streaming implementation of the PIOP prover does not necessarily produce all of its output polynomial
streams one by one, and therefore the space complexity of the resulting argument prover is not, e.g., just
the sum sP + sPC.Com of the PIOP prover space and the PC commitment algorithm space. When two (or
more) of the PIOP prover’s message polynomials all depend on the same input stream, the prover may
avoid extra passes over the input stream by producing both of them at the same time which would require
space sP + 2sPC.Com.4 Furthermore, the commitment algorithm requires several passes over a single input

3The argument prover and argument verifier emulate the underlying probabilistic proof, with the argument prover sending
commitments to proof messages and sending answers to queries together with commitment openings to authenticate those answers.

4For example, if one polynomial consists of all of the even coefficients of another, one can produce streams of the coefficients of
both polynomials simultaneously, in half the number of passes required to compute streams of each polynomial one at a time.

6

polynomial, so that the argument prover must run the PIOP prover several times in order to complete the
commitment to each polynomial, keeping partially computed commitments to each polynomial in memory.
Such considerations lead to the space-efficient argument prover having space complexity sP +O · sPC.Com
with q · kP · kPC.Com passes. Fortunately, the PIOP constructions in this paper actually satisfy the strong
property that each polynomial can be produced independently without rerunning the entire prover algorithm,
which reduces the space complexity to sP + sPC.Com.

Remark 2.1 (types of polynomials). The above discussion is deliberately ambiguous about certain aspects:
are the polynomials univariate or multivariate? are the polynomials represented as vectors of coefficients or as
vectors of evaluations (or vectors in some other basis)? These details do not matter for Theorem 2 as long as
the two ingredients “match up”: if the PIOP outputs polynomials represented in a way that is compatible with
how the PC scheme expects inputs. Nevertheless, in this paper we focus on the case of univariate polynomials
represented as vectors of coefficients, because our construction and implementation are in this setting.

Remark 2.2 (multilinear vs. univariate). The fact that the approach in [CHMMVW20; BFS20] preserves
space efficiency in the case of multilinear polynomials represented over the boolean hypercube was used
in [BHRRS20; BHRRS21]. Theorem 2 is a straightforward observation about [CHMMVW20; BFS20] that
additionally preserves elasticity. In particular, we believe that the constructions in [BHRRS20; BHRRS21]
could be shown to have elastic realizations, by showing that the underlying multilinear PIOP and multilinear
PC schemes have elastic realizations. We choose to work with univariate polynomials, instead of multilinear
polynomials, because they have received more interest by practitioners, and thus focus our investigation on
the concrete efficiency of elastic SNARKs based on univariate polynomials. We leave the study of concrete
efficiency of elastic SNARKs based on multilinear polynomials to future work.

Remark 2.3 (elastic setup and indexer). For any succinct argument, elasticity is a desirable property as the
size of the statement to be proven increases. In this paper we focus on elasticity of the prover, which is the
main bottleneck for proving large instances. We briefly comment on elasticity for other algorithms.
• Setup. The setup algorithm samples the public parameters of the argument system. While the complexity of
the setup algorithm can be linear (or more!) in the statement size, we do not discuss setup algorithms in this
paper for two reasons: (i) known setup algorithms have straightforward realizations that are simultaneously
efficient in time and space (there is less of a tension between optimizing for time or for space as there is for
the prover); (ii) public parameters are typically sampled via “cryptographic ceremonies” that realize the
setup functionality via secure multi-party protocols [BGM17], and so it is more relevant to discuss the time
and space efficiency of the protocols that realize these ceremonies.

• Indexer. In the case of preprocessing arguments, an indexer algorithm produces the proving key and
verification key. The indexer in our construction and implementation is elastic, but we do not discuss it
since all ideas relevant for the indexer can be straightforwardly inferred from those relevant for the prover.

2.3 An elastic realization of the KZG polynomial commitment scheme

We use a univariate polynomial commitment scheme from [KZG10] to construct our SNARK (see Section 2.2).
Below we review this scheme and explain how to realize it elastically.
Review: a polynomial commitment from [KZG10]. The setup algorithm samples and outputs public
parameters for the scheme to support polynomials of degree at most D ∈ N: the description of a bilinear
group (G1,G2,GT , q, G,H, e);5 the commitment key ck := (G, τG, . . . , τDG) ∈ GD+1

1 for a random field

5Here |G1| = |G2| = |GT | = q, G generates G1, H generates G2, and e : G1 ×G2 → GT is a non-degenerate bilinear map.

7

element τ ∈ Fq; and the receiver key rk := (G,H, τH) ∈ G1 × G2
2. The commitment to a polynomial

p ∈ Fq[X] of degree d ≤ D is computed as C := 〈p, ck〉 = p(τ)G ∈ G1. Subsequently, to prove that
the committed polynomial p evaluates to v at z ∈ Fq, the committer computes the witness polynomial
w(X) := (p(X)− p(z))/(X − z), and outputs the evaluation proof π := 〈w, ck〉 = w(τ)G ∈ G1. Finally,
to verify the evaluation proof, the receiver checks that e(C − vG,H) = e(π, τH − zH).
Elastic realization. An elastic realization of the above scheme requires a time-efficient realization and
a space-efficient realization for each relevant algorithm of the scheme. Here we do not discuss the setup
algorithm, as it has a natural time-and-space-efficient realization (see Remark 2.3). We do not discuss the
verification algorithm either, because it only involves a constant number of scalar multiplications and pairings.
Our focus is thus on the commitment and opening algorithm.

• Commitment algorithm. Ford ≤ D, we are given streams of the commitment key elements (G, τG, . . . , τdG)
and of the coefficients (pi)

d
i=0 of the polynomial p(X) =

∑d
i=0 piX

i to be committed. We compute the
commitment C =

∑d
i=0 piτ

iG by multiplying each coefficient-key pair (pi, τ
iG) together and adding them

to a running total. Each scalar-multiplication of pi · τ
iG is performed in linear time and constant space.

• Opening algorithm. We are given the same streams as above, and an opening location z. By rearranging
the expression for the witness polynomial w(X) = (p(X)− p(z))/(X − z), we stream the coefficients
(wi)

d−1
i=0 of w(X) via Ruffini’s rule: wi := pi+1 + wi+1z. The evaluation proof π =

∑d−1
i=0 wiτ

iG is
computed in the same way as the commitment algorithm.

We discuss optimizations on the above streaming approach in Section 2.7.2.
Note that the recurrence relation in the opening algorithm uses wj+1 to compute wj , which means that

w(X) is computed from its highest-degree coefficient to its lowest-degree coefficient. In turn, this means
that the commitment key ck and the polynomial p(X) are streamed from highest-degree to lowest-degree
coefficient. The setup and commitment algorithms are agnostic to the streaming order.

The above discussion implies the following (informal) lemma.

Lemma 2.4 (informal). The polynomial commitment scheme of [KZG10] has an elastic realization.

2.4 An elastic scalar-product protocol

A scalar-product protocol enables the prover to convince the verifier that the scalar product of two committed
vectors equals a certain target value. Many constructions of succinct arguments for NP crucially rely on
scalar-product protocols [BCCGP16; PLS19; BCG20]. The PIOP for R1CS that we construct in Sections 2.5
and 2.6 relies on a PIOP for scalar products where the prover has two realizations: (i) one that runs in
linear-time and linear-space; and (ii) one that runs in quasilinear-time and logarithmic-space.

Definition 2. A PIOP for scalar products is a PIOP where the verifier receives as input (F, N, u) and has
(polynomial evaluation) query access to f ,g ∈ FN , and checks with the help of the prover that 〈f ,g〉 = u.

Theorem 2.5 (informal). For every finite field F, there is a PIOP for scalar products over F with the following
parameters:
• soundness error O(N/|F|);
• round complexity O(logN);
• proof length O(N) and query complexity O(logN);
• a time-efficient prover that runs in time O(N) and space O(N);
• a space-efficient prover that runs in time O(N logN) and space O(logN) (with O(logN) input passes);

8

• a verifier that runs in time O(logN) and space O(logN).

Below we outline the scalar-product protocol, deferring to Section 6 security proofs and a more in-depth
discussion of the protocol. We also note that our PIOP uses two slightly different protocols: one for twisted
scalar-products 〈f ◦y,g〉 = u for a vector y of the form (1, ρ0)⊗ (1, ρ1)⊗· · ·⊗ (1, ρn−1) where n := logN
(by log we denote the ceiling of the logarithm base 2); and one for Hadamard products f ◦ g = h. These
follow from simple modifications to the scalar-product protocol.

We proceed in three steps. In Section 2.4.1 we describe how to reduce checking a scalar product to
checking tensor products of univariate polynomials. In Section 2.4.2 we describe a tensor product protocol.
In Section 2.4.3 we describe how to realize this latter protocol in an elastic way.

2.4.1 Verifying scalar products using the sumcheck protocol

Consider two vectors f , g ∈ FN with 〈f ,g〉 = u as in Definition 2. The verifier has polynomial evaluation
query access to f and g (the verifier can obtain any evaluations of the polynomials f(X) =

∑N−1
i=0 fiX

i and
g(X) =

∑N−1
i=0 giX

i). The product polynomial h(X) := f(X) · g(X−1) has 〈f ,g〉 =
∑N−1
i=0 figi as the

coefficient ofX0, because for every i, j ∈ [N] the powers ofX associated with fi and gj multiply together to
give X0 if and only if i = j. Therefore, to check the scalar-product 〈f ,g〉 = u, it suffices to check that the
coefficient of X0 in the product polynomial h(X) equals u.

However, this check must somehow be performed without the prover actually computing h(X). This is
because the fastest algorithm for computing h(X) requires O(N logN) time and O(N) space (via FFTs),
which is neither time-efficient nor space-efficient. On the other hand, the scalar product 〈f ,g〉 = u can
be checked (directly) in time O(N) and space O(1), which leaves open the possibility of a scalar-product
protocol where the prover does better than computing h(X) explicitly (and then running some protocol).

This issue is addressed in prior work, if the verifier can query the multilinear polynomials f̂(X) and ĝ(X)
associated to the vectors f ,g ∈ FN : we index the entries of f using binary vectors, and fi = fb0,...,bn−1

is
the coefficient of Xb0

0 · · ·X
bn−1
n−1 , where (b0, . . . , bn−1) is the binary decomposition of i. Prior work [Tha13;

XZZPS19; BCG20] yields the following lemma.

Lemma 2.6. Let F be a finite field and N be a positive integer; set n := logN . Let f̂(X0, . . . , Xn−1)
and ĝ(X0, . . . , Xn−1) be multilinear polynomials. The sumcheck protocol (as a reduction to claims about
polynomial evaluations) for the claim

1
2n

∑
ω∈{−1,1}n

(f̂ · ĝ)(ω) = u

has the following properties: soundness error is O(logN/|F|); round complexity is O(logN); prover time
O(N); and verifier time O(logN).

One can use the (multivariate) sumcheck protocol of [LFKN92] to reduce 〈f ,g〉 = u to two evaluation
queries f̂(ρ) and ĝ(ρ), where ρ := (ρ0, . . . , ρn−1) ∈ Fn are the random verifier challenges used in the
sumcheck protocol. Crucially, the prover algorithm in the sumcheck protocol applied to the product of two
multilinear polynomials also has a space-efficient realization which runs in time O(N logN) and space
O(logN) [CMT12], which would provide an elastic solution in this multilinear regime.

In our setting the verifier can only query the univariate polynomials f(X) and g(X) associated with
the vectors f ,g ∈ FN . Nevertheless, we follow a similar approach, by running the sumcheck protocol on
the multivariate polynomials f̂(X) and ĝ(X), producing two claimed evaluations f̂(ρ) = u and ĝ(ρ) = u′.

9

We check that these claimed evaluations are consistent with f and g using evaluations of the univariate
polynomials f(X) and g(X) in the tensor product protocol of the following section.

Remark 2.7 (unstructured fields). Many probabilistic proofs using univariate polynomials (e.g., the low-
degree test in [BBHR18]) require the size (of the multiplicative group) of the field F to be smooth, so that the
field contains high-degree roots of unity. In contrast, the scalar-product protocol in this paper (indeed, all the
PIOPs in this paper) work with univariate polynomials over any field F that is sufficiently large.

2.4.2 A tensor-product protocol

We seek a protocol for checking the multilinear evaluation f̂(ρ) = v while having access to f(X) (and
possibly other polynomials sent by the prover) via univariate polynomial evaluations. Observe that f̂(X) and
f(X) have the same coefficients, and moreover the polynomial f̂(ρ0, X1, . . . , XlogN−1) (partially evaluating
f̂(X) by setting X0 equal to ρ0) has the same coefficients as the polynomial f ′(X) := fe(X) + ρ0 · fo(X).
Here, fe(X) and fo(X) are the odd and even parts defined by f(X) = fe(X

2) +Xfo(X
2).

This suggests a protocol where the prover sends f ′(X) to the verifier. If the verifier can check that f ′(X)
was correctly computed from f(X), then checking consistency between f(X) and an evaluation of f̂(X0, . . . ,
XlogN−1) is reduced to checking consistency between f ′(X) and an evaluation of f̂(ρ0, X1, . . . , XlogN−1).
Repeating this reduction with every value ρj , the prover and verifier arrive at a claim about constant-degree
polynomials, which the prover can send to the verifier and the verifier directly checks.

To check that f ′(X) is consistent with f(X), the verifier samples a random challenge point β ∈ F×

(where F× denotes the multiplicative group of F), and makes polynomial evaluation queries in order to check
the following equations:

f ′(β2) = fe(β) + ρ0 · fo(β) = f(β) + f(−β)
2 + ρ0 ·

f(β)− f(−β)
2β . (1)

This is reminiscent of a reduction in [BBHR18] used to construct a low-degree test for univariate polynomials.
By the Schwartz–Zippel lemma, the check passes with small probability unless f ′(X) was computed correctly.
Noting that f̂(ρ) = 〈f ,⊗n−1

j=0 (1, ρj)〉, this procedure gives a (univariate) polynomial IOP for this relation.

Definition 3. The tensor-product relationRTC is the set of tuples

(i,x,w) = (⊥, (F, N, ρ0, . . . , ρn−1, u), f)

where n = logN , f ∈ FN , u ∈ F, and 〈f ,⊗j(1, ρj)〉 = u.

We provide details of the tensor-product protocol in Section 5. In fact, the tensor check will be useful not
only as part of our scalar-product protocol, but also more generally as part of simple checks that take place as
part of our R1CS protocols (as described in Sections 2.5 and 2.6).

2.4.3 Elastic realization of the prover algorithm

Most complexity measures claimed in Theorem 2.5 follow straightforwardly from the sumcheck protocol
described in Lemma 2.6. We are left to describe an elastic realization of the prover algorithm for the
tensor-product protocol.

The prover’s task is to compute the polynomials f (j) for each round j ∈ [n]. Given f (j−1), which has
degree O(N/2j), the prover can compute f (j) in O(N/2j) operations via Equation 1. Summing up the

10

f (0)

f (1)

f (2)

...

f
(0)
0

f
(1)
0

f
(0)
0 f

(0)
1

f
(1)
0

f
(0)
0 f

(0)
1 f

(0)
2 f

(0)
0 f

(0)
1 f

(0)
2 f

(0)
3

f
(1)
0 f

(1)
1

f
(2)
0

. . .

f
(0)
0 f

(0)
1 f

(0)
2 f

(0)
3 f

(0)
4 f

(0)
5 f

(0)
6

f
(1)
0 f

(1)
1 f

(1)
2

f
(2)
0

. . .

Figure 1: A streaming algorithm for computing the coefficients of f (j) from f (0) := f . Nodes in blue denote the
coefficients that are stored in memory at any moment.

prover costs for j ∈ [n] gives O(N) operations. Hence a linear-time prover realization for the tensor-product
protocol is straightforward. Next, we give a space-efficient prover realization that uses logarithmic space.
Logarithmic space. We want the prover to run in logarithmic space, given streaming access to f and g.
This is different from the time-efficient case, as the prover cannot store f (j−1) to help it compute f (j), as this
requires linear space (for small j). Instead, the prover computes each f (j) from scratch using streams of f .

First we explain how the prover can produce a stream of f (j) efficiently, given streaming access to f ,
in a similar way to streaming evaluations of multivariate polynomials and low-degree extensions [CMT12;
BHRRS20; BHRRS21]. Our contribution is to show that f (j) can be evaluated in O(N) time and O(logN)
space, saving a logarithmic factor over prior work. Then, we explain how to perform the consistency checks.

• Streaming f (j). Let f =
∑N−1
i=0 fiX

i. We can compute f ′ =
∑N/2−1
i=0 (f2i + ρf2i+1)Xi from a stream of

coefficients of f by reading each pair of coefficients f2i, f2i+1 from the stream, and computing the next
coefficient as f ′i := f2i + ρf2i+1 of f ′. This uses a constant amount of space: store f2i and f2i+1, and
delete them right after computing f ′i . Each coefficient of f ′ costs two arithmetic operations to compute.

The prover can produce the stream S(f (j)) for f (j) by applying the same idea recursively as follows.
Initialize a stack Stack consisting of pairs (j, x) ∈ [logN] × F, and a list of challenges ρ0, . . . , ρj . To
generate S(f (j)), the prover proceeds as follows.

– If the top element in the stack is of the form (j, y) for some y ∈ F, pop it and return y.
– If the top two elements in the stack are of the form (k′, x′) and (k, x) with k = k′ (and k < j), then pop
them and push (k+1, x+ ρk x

′), where x+ ρk x
′ is equal to f (j)

k+1 (recall that the values are streamed
from last to first index);

– Otherwise, query the stream S(f) for the next element x ∈ F and add (0, x) to the stack.

The stack Stack must be initialized with some zero-entries if N 6= 2n (for instance, where N is odd) for
correctness, but we avoid discussing this case here for simplicity. A visual representation of this process is
displayed in Figure 1. This procedure produces a stream of f (j) from a stream of f in O(N) and using
logN memory space (since the stack Stack holds at most logN elements at any time).

• Space-efficient tensor check. The verifier must perform consistency checks to make sure that each polynomial
f (j) was correctly computed from f (j−1), and similarly for g(j). This check requires the computation
of f (0), . . . , f (n−1). We compute them in parallel with a minor modification to the algorithm illustrated
in Figure 1. Instead of returning only when the top of the stack has a particular index, we always output the
top element in the stack. We thus construct a streaming algorithm S(f (0), . . . , f (n−1)) that returns elements

11

of the form (j, x) ∈ [n]× F where x is the next coefficient of the polynomial f (j). With the above stream,
it is possible to produce all streams S(f (j)) and evaluations f (j)(β2), f (j)(+β), f (j)(−β), for each j ∈ [n]
with a single pass over S(f). In particular computing each evaluation requires storing a single F-element;
therefore, the total consistency check uses n = logN memory andN time. This allows to check Equation 1,
substituting f ′ = f (j), f = f (j−1) for j ∈ [n].

Based on the costs of maintaining the stacks for f and g, and computing the coefficients of q(j)

incrementally, it follows that each round takes time O(N) and space O(logN). Therefore, summing over the
O(logN) rounds, the protocol requires time O(N logN) and space O(logN).

Remark 2.8. Based on the tensor product protocol in Section 2.4.2, one can construct a linear-time univariate
sumcheck protocol with proof length O(N) and query complexity O(logN), which we believe could be
of independent interest for future research. There are other univariate sumcheck protocols in the literature,
however these protocols cannot be used in our setting.

− The univariate sumcheck protocol in [BCRSVW19] is a 1-message PIOP with proof length O(N) and
query complexity O(1). That protocol does not seem useful here, because the prover requires O(N logN)
time and O(N) space due to the use of FFTs. In contrast, our protocol achieves elasticity, at the cost of
logarithmic round complexity and logarithmic query complexity.

− Drake [Dra20] sketches a Hadamard product protocol based on univariate polynomials that does not
use FFTs. That protocol, also inspired by the low-degree test in [BBHR18], may conceivably lead to a
univariate sumcheck protocol that is elastic. No details (or implementations) of the protocol are available.

2.5 Warm-up: an elastic non-holographic PIOP for R1CS

We describe an elastic PIOP for R1CS (Definition 1) based on the elastic scalar-product protocol in Section 2.4.
While not sublinear here, the verifier can be made elastic via similar techniques to the elastic prover. We build
on this construction later in Section 2.6, and construct a holographic PIOP with logarithmic verifier time.

Theorem 2.9 (informal). For every finite field F, there is a PIOP for RR1CS over F with the following
parameters:
• soundness error O(N/|F|);
• round complexity O(logN);
• proof length O(N) and query complexity O(logN);
• a time-efficient prover that runs in time O(M) and space O(M);
• a space-efficient prover that runs in time O(M log2N) and space O(logN) (with O(logN) input passes);
• a time-efficient verifier that runs in time O(M) and space O(M); and
• a space-efficient verifier that runs in time O(M logN) and space O(logN) (with O(logN) input passes).
Above, N is dimension of R1CS matrices andM the number of non-zero entries in the R1CS matrices.

The theorem holds for any finite field F, and in particular does not require any smoothness properties for F.
In order for the space-efficient realization of the prover to be well-defined, we must adopt a streaming

model for R1CS instances. Below we describe a choice that: (i) suffices for the theorem; (ii) is realistic (as we
elaborate shortly). After that we outline the PIOP for R1CS (and postpone details to Section 7).
Streaming R1CS. The R1CS problem is captured using the following indexed relation:

12

Definition 2.10. The indexed relationRR1CS is the set of all triples (i,x,w) =
(
(F, N,M,A,B,C),x,w

)
where F is a finite field, A,B,C are matrices in FN×N each having at most M non-zero entries, and
z := (x,w) is a vector in FN such that Az ◦Bz = Cz.

We define streams for each of i,x,w, with A,B,C in sparse representation.

Definition 2.11. The stream of U is a pair
(
Srmaj(U),Scmaj(U)

)
, where Srmaj(U) denotes the sequence of

elements in the support (row, column, value) ordered in in row major (that is, lexicographic order with row),
and Scmaj(U) denotes the ordering of the ordering of the same sequence in column major.

In our definition of streams for R1CS, we allow the computation trace (Az, Bz, Cz) of an R1CS instance to
be streamed as part of the witness.

Definition 2.12 (streaming R1CS). The streams associated with ((F, N,M,A,B,C),x,w) consist of:
• index streams: streams of the R1CS matrices, in row-major and column-major: (Srmaj(A),Scmaj(A)),

(Srmaj(B),Scmaj(B)), (Srmaj(C),Scmaj(C));
• instance stream: stream of the instance vector S(x);
• witness streams: stream of the witness S(w) and of the computation trace vectors S(Az),S(Bz),S(Cz).
The field description F, instance size N , and maximum numberM of non-zero entries are explicit inputs.

Including steams for the computation trace (Az, Bz, Cz) makes the PIOP for R1CS space efficient even
when matrix multiplication by A,B,C requires a large amount of memory and the computation trace cannot
be computed element by element on the fly given streaming access to x and w. On the other hand, for R1CS
instances defined by many natural computations, such as a machine computation which repeatedly applies a
transition function to a small state, the matrices A,B,C are such that their non-zero entries all lie in a thin,
central diagonal band (that is, they are banded). In this case, one can generate a stream of S(Az) using the
streams S(x), S(w), and Scmaj(A). (And similarly for B and C.)
The PIOP construction. We outline the PIOP construction underlying Theorem 2.9. The protocol adopts
standard ideas from [BCRSVW19] and an optimization from [Gab20] for concrete efficiency. In the
time-efficient realization, the prover receives (i,x,w) as input and the verifier receives (i,x) as input. In the
space-efficient realization, these inputs are provided as streams according to Definition 4.9.

In the first step of the protocol, the prover sends z to the verifier. To check that Az ◦ Bz = Cz, the
verifier replies by sending a random challenge υ ∈ F× to the prover, which the prover expands into a vector
yC := (1, υ, υ2, . . . , υN−1). Multiplying each side of the equation Az ◦ Bz = Cz on the left by yᵀC , the
prover is left to convince the verifier that

〈Az ◦ yC , Bz〉 = 〈Cz,yC〉 . (2)

The prover sends the value uC := 〈Cz,yC〉 ∈ F to the verifier. The prover will convince the verifier that
Equation 2 holds by reducing the two claims 〈Az ◦ yC , Bz〉 = uC and 〈Cz,yC〉 = uC to tensor consistency
checks on z, for which we can apply the tensor-product protocol in Section 2.4.

As a subprotocol for the first claim, the prover and verifier run a twisted scalar product protocol, as
described in Section 2.4. This generates two new claims, one about each of Az and Bz, leaving us with a
total of three claims:

〈Az,yB ◦ yC〉 = uA ,

〈Bz,yB〉 = uB ,

〈Cz,yC〉 = uC .

(3)

13

Here, yB := ⊗j(1, ρj), where ρ0, ρ1, . . . , ρn−1 ∈ F× are the random challenges sent by the verifier
during the scalar-product protocol. Setting yA := yB ◦ yC , and moving the matrices A,B,C into the right
input argument of the scalar-product relation, we have

〈z,a∗〉 = uA where a∗ := yᵀAA ,

〈z,b∗〉 = uB where b∗ := yᵀBB ,

〈z, c∗〉 = uC where c∗ := yᵀCC .

(4)

Although yB,yC ,yA all have a tensor structure, a∗,b∗, c∗ will not generally have the same structure, which
means that Equation 4 cannot be checked directly using the tensor-product protocol. Thus, the verifier sends
another random challenge η ∈ F× to the prover. Taking linear combinations of the three claims in Equation 4
using powers of η yields a single scalar-product claim

〈z, a∗ + η · b∗ + η2 · c∗〉 = uA + η · uB + η2 · uC . (5)

The prover and verifier run a second twisted scalar-product protocol for Equation 5. This produces two new
claims

〈z,y〉 = uD , (6)

〈a∗ + η · b∗ + η2 · c∗,y〉 = uE , (7)

where y is a vector with the same tensor structure as described in Section 2.4, generated using random
challenges produced by the verifier.

Finally, the prover and the verifier engage in a tensor-product protocol to check Equation 6. The verifier
can check Equation 7 directly, since a∗,b∗, c∗ can be computed directly from the R1CS matrices A,B,C,
along with the random challenges used throughout the R1CS protocol.
Time-efficient prover. The prover runs in linear time if the prover algorithms for the underlying scalar-
product and tensor-product subprotocols are realized in linear time. Note that the cost of computing a∗,b∗, c∗

is linear in the number of non-zero entries in A,B,C. As a result, the verifier also runs in linear time.
Space-efficient prover. The scalar-product and tensor-product subprotocols used in the construction have a
space-efficient prover that runs in timeO(N logN) and spaceO(logN), givenO(logN) passes over streams
of the subprotocol inputs. Therefore, to give a space-efficient protocol for the entire R1CS protocol, it suffices
to explain how to produce a stream for each subprotocol input.

The first twisted scalar-product protocol for 〈Az◦yC , Bz〉 = uC requires streaming access toAz, Bz,yC .
The prover has streaming access to Az and Bz as part of the streams of the R1CS instance, so we explain
how to generate a stream for the vector yC = ⊗j(1, υ

2j

) ∈ FN . This stream can be generated in O(N) field
operations. Let υj := υ2j

for j ∈ [0, . . . , n− 1]. The i-th entry of yC is
∏
j υ

bj

j , where (b0, . . . , bn−1) is the
binary representation of i. Consider how the binary representation of i changes when we subtract 1 from
i. If b0 = 1 then it simply changes to 0. If i ends with binary digits (b0, . . . , bk−1, bk) = (0, . . . , 0, 1) then
these digits change to (1, . . . , 1, 0). This means that we can get from the i-th entry of yC to the (i− 1)-th
by multiplying by either υ−1

0 or υ−1
k υk−1 · · · υ0 for some k ∈ [n]. To generate the stream of yC , the prover

computes υj := υ2j

for j ∈ [0, . . . , n − 1] via repeated squaring, which uses O(logN) operations and
O(logN) space. Then, the prover can generate each element of yC in O(N) operations by multiplying by
the correct quotient.

The second scalar product protocol for Equation 5 requires streaming access to z, a∗ = yᵀAA, b
∗ = yᵀBB

and c∗ = yᵀCC. The prover has access to S(z) by concatenating the witness stream S(w) to the instance

14

stream S(x). To generate the stream of a∗ := yᵀAA, the prover computes the i-th element of a∗ by multiplying
each element of yA by each element of the i-th column of a∗, and adding the result to a running total. The
stream Scmaj(A) from the R1CS instance gives access to the non-zero entries of A, column by column. For
yA, instead of generating the entire stream of yA for each i, which would cost O(N2) field operations in total,
the prover generates elements of yA on the fly, at a cost O(logN) operations per element. Since A hasM
non-zero entries, the stream of a∗ costs O(M logN) operations to compute. The scalar product protocol
requires O(logN) passes over the stream, and the prover runs in O(M log2N) time.

Combining this with the space-efficient realizations of the scalar-product and tensor-product subprotocols,
which require O(logN) passes over their inputs, we obtain a space-efficient prover algorithm which runs in
O(M log2N) time and O(logN) space.

2.6 Elastic holographic PIOP for R1CS

The verifier complexity in the non-holographic PIOP for R1CS described in Section 2.5 is linear in the size of
the R1CS instance. To run a scalar-product protocol to check Equation 5, the verifier must compute a∗,b∗, c∗

via expensive matrix-vector multiplications involving all of the non-zero entries of the matrices A,B,C.
Below we describe how to construct a holographic PIOP for R1CS, in which the verifier’s direct access to

A,B,C is replaced by query access. In this PIOP, the prover can either run in linear-time and linear-space or
quasilinear-time and log-space, while the verifier runs in logarithmic time (and thus logarithmic space).

Theorem 3 (informal). For every finite field F, there exists an holographic PIOP forRR1CS over F with the
following parameters:
• soundness error O(M/|F|);
• round complexity O(logM);
• proof length O(M) and query complexity O(logM);
• an indexer that runs in time O(M) and space O(M);
• a time-efficient prover that runs in time O(M) and space O(M);
• a space-efficient prover that runs in time O(M log2M) and space O(logM) with O(logM) input passes.
• a verifier that runs in time O(|x|+ logM) (and thus space O(|x|+ logM)).
Here,M is the number of non-zero entries in the R1CS matrices.

High-level overview. Our protocol follows the strategy in [BCG20]. The main difference between the
holographic PIOP here and the non-holographic PIOP in Section 2.5 is that the prover and verifier use an
alternative strategy to check Equation 4. The verifier does not compute a∗ (respectively, b∗, c∗) to check that
〈z,a∗〉 = uA (same for B,C, cf. Equation 4). Instead, the prover sends additional oracle messages to the
verifier, which correspond to partial computations of the scalar product; the verifier checks these via multiple
auxiliary subprotocols. The key subprotocols are a look-up protocol and an entry-product protocol.

Our main contribution is a space-efficient realization of these subprotocols, which leads to a space-efficient
holographic R1CS protocol. The main challenge is to show that it is possible to generate the prover’s extra
messages in a space-efficient manner from R1CS streams (Definition 4.9). This places particular restrictions
on the design of a space-efficient look-up protocol, which we explain how to deal with in Section 2.6.1. We
explain how to construct a space-efficient entry-product protocol in Section 2.6.2.
Achieving holography. For a matrix U ∈ {A,B,C}, consider the vectors rowU , colU , valU ∈ FM such
that, for every i ∈ [M], valU,i ∈ F is the (rowU,i, colU,i)-entry of U , ordered column-major. We assume
that the matrices A,B,C have the same support, which means that row := rowA = rowB = rowC and

15

col := colA = colB = colC . This can be achieved by suitably padding valA, valB, valC with zeroes, and
increases the length of row, col, val by at most a factor of 3.

The prover constructs the following vectors and sends them to the verifier as oracle messages:

r∗A := yA|row , r∗B := yB|row , r∗C := yC |row , z? := z|col , (8)

where r∗A is the vector whose i-th element is the rowi-th element of a∗, and similarly for r∗B, r
∗
C , z

?. That is,
yA|row := (yA,i)i∈row. One proceeds similarly for r∗B, r

∗
C . Using Equation 8, Equation 3 can be reformulated

as:
〈r∗A ◦ valA, z?〉 = uA ,

〈r∗B ◦ valB, z?〉 = uB ,

〈r∗C ◦ valC , z?〉 = uC .

(9)

Then, the verifier must check the three claims of Equation 9, and that r∗A, r
∗
B, r

∗
C , z

? were correctly computed.
The prover and verifier run a twisted scalar-product protocol for the three claims. To check that r∗A, r

∗
B , r

∗
C

and z? were correctly computed, the prover and verifier run a look-up protocol, which we describe in more
detail in Section 2.6.1.
Elastic realization. The twisted scalar-product protocol and look-up protocol are elastic protocols with both
time and space-efficient prover realization, and a succinct verifier. Our holographic PIOP for R1CS inherits a
time-efficient prover and succinct verifier from these subprotocols. However, to give a space-efficient prover
realization, we must show that the prover can produce streams of r∗A, r

∗
B , r

∗
C , using input R1CS streams and

the verifier challenges. The R1CS streams Scmaj(A), Scmaj(B) and Scmaj(C) of the matrices A,B and C
produce elements of the form (i, j, e) ∈ [N]× [N]×F. Streaming only the first element of the triple produces
the stream Scmaj.row(A) = Scmaj.row(B) = Scmaj.row(C) of the vector row (we recall that we assumed the
support of A,B,C to be the same, and that row is ordered column-major).

Similarly, the second element of the triple induces a stream Scmaj.col(A) of the vector col, which is also
equal to Scmaj.col(B) and Scmaj.col(C), again since the support is the same. Additionally, Scmaj.col(A) is
non-increasing: the column indices, in the dense representation of the matrix, are sorted in decreasing order
when streamed column-major. As a result, the entries of z? can be produced one by one in O(1) space from
streams S(z) and Scmaj(A): examine each entry of Scmaj.col(A), advance forwards z if the column changed,
and output that same entry as long as the next element of Scmaj.col(A) stays unchanged.

The streams Scmaj.val(A) (respectively, Scmaj.val(B) and Scmaj.val(C)) are defined by projecting onto the
third element of the streams Scmaj(A) (respectively, Scmaj(B) and Scmaj(C)), and produce the streams for
the vectors valA, valB , and valC in column-major order.

For r∗A, r
∗
B and r∗C , recall that yB = ⊗j(1, ρj), yC = ⊗j(1, υ

2j

), and yA = yB ◦ yC = ⊗j(1, ρjυ
2j

).
Thus, any entry of r∗B or r∗C (and hence r∗A) can be computed in O(logN) operations from υ ∈ F× and
ρ0, . . . , ρn−1 ∈ F×.

2.6.1 Lookup protocol

Lookup protocols enable the prover to convince the verifier that all of the entries in a vector g∗ ∈ FM appear
as entries of another vector g ∈ FN according to the data stored in the address vector addr ∈ [N]M , i.e.:

{(g∗i , addri)}i∈[M] ⊆ {(gj , j)}j∈[N] .

16

We denote this condition by “(g∗, addr) ⊆ (g, [N])”. In order to verify that r∗U and z? were correctly
computed, the verifier must check four lookup relations:

(r∗A, row) ⊆ (yA, [N]) ,

(r∗B, row) ⊆ (yB, [N]) ,

(r∗C , row) ⊆ (yC , [N]) ,

(z?, col) ⊆ (z, [N]) .

(10)

Note that yA = yB ◦ yC , and r∗A, r∗B , r∗C come from looking up the entries of yA, yB and yC at the
indices specified by row. Therefore, instead of checking that (r∗A, row) ⊆ (yA, [N]), it suffices to check the
Hadamard product relation yA = yB ◦ yC . This can be done using an extension of the twisted scalar product
protocol. This leaves four look-up relations to check.
Polynomial identities for look-up relations. To verify look-up relations, we use the polynomial identity
from [GW20] and construct a PIOP to verify it via an approach similar to [BCG20].

We reduce the lookup conditions
(
r∗U , row

)
⊆
(
yU , [N]

)
and

(
z?, col

)
⊆
(
z, [N]

)
to simpler inclusion

conditions such as f∗ ⊆ f , where each entry in the vector f∗ equals some entry in the vector f . To do so,
for each matrix U ∈ {A,B,C}, we algebraically hash the pairs (z?, col), (z, [N]), (r∗U , row), (yU , [N]) into
vectors z? + η · col (and similarly for the other pairs) in parallel, by taking a random linear combination of
each pair using the same random challenge η ∈ F× from the verifier. Let sort(g, f) denote the function that
sorts the entries of g ‖ f according to order of appearance in f .

Lemma 2.13 ([GW20, Claim 3.1]). Let f∗ ∈ FM and f ∈ FN . Then f∗ ⊆ f if and only if there exists a
witness w ∈ FM+N such that the equation below in F[Y, Z] is satisfied:

M+N−1∏
j=0

(
Y (1 + Z) + wj+1 + wj · Z

)
= (1 + Z)M

M−1∏
j=0

(Y + fj)
N−1∏
j=0

(
Y (1 + Z) + fj+1 + fj · Z

)
(11)

where indices are taken (respectively) moduloM +N , N . If f∗ ⊆ f then w := sort(f∗, f) is a valid witness.

The strategy in the look-up protocol is for the prover to compute w and prove that Equation 11 is satisfied,
for every look-up relation that needs to be checked. The prover computes w and sends it to the verifier.
Then, the verifier sends random challenges υ, ζ ∈ F× to the prover, who computes each of the three product
expressions in Equation 11, evaluated at υ and ζ:

e0 =
M+N−1∏
i=0

(
υ(1 + ζ) + wi+1 mod M+N + wi · ζ

)
,

e1 =
M−1∏
i=0

(υ + f∗i),

e2 =
N−1∏
i=0

(
υ(1 + ζ) + fi+1 mod N + fi · ζ

)
.

(12)

The prover then sends the three product values e0, e1, e2 to the verifier. The verifier checks that Equation 11
holds at υ and ζ by checking that e0 = (1 + ζ)Me1e2, and uses three entry-product subprotocols, which we
describe in Section 2.6.2, to check that e0, e1, e2 were correctly computed from f∗, f , and w.

17

This approach requires polynomial query access to f∗�, the cyclic right-shift of f∗, since the inputs to the
entry product protocols depend on f∗�. The look-up protocol in [BCG20] uses a shift subprotocol to check this
condition. By contrast, we avoid this additional step by considering instead the lookup protocol over vectors
with a leading zero coefficient. Queries on the right-shift f∗� can be related to queries on f∗ with a single
evaluation query, since the leading coefficient is known in advance. We explain this optimization in Section 8.
Elastic realization. As shown in prior work [BCG20], if the underlying entry product protocols have a
linear-time prover realization and succinct verifier, then the same is true for the look-up protocol. We focus
on explaining a space-efficient prover realization of the look-up protocol. Assuming that the entry-product
protocol has a suitable space-efficient realization, it suffices to explain how to realize streaming access to
look-up protocol vectors f∗, f ,w using previously derived streams.

First we consider (z?, col) and (z, [N]). Each pair is algebraically hashed into vectors f∗ and f . One
can produce the streams S(f∗) and S(f) from the streams S(z?),Scmaj.col(A),S(z),S([N]), by applying the
same algebraic hash function to pairs of entries on-the-fly. The same applies to input pairs (r∗U , row) and
(yU , [N]).

Next we explain how to generate a stream of w = sort(f∗, f) using small space. This is more challenging
because storing the entire vectors f∗ and f and sorting them requires space O(M +N). In the case of inputs
(z?, col) and (z, [N]), as col is a non-decreasing sequence, it turns out that Scmaj.col(A) is already sorted into
a suitable order, and it suffices to merge the streams of f∗ and f together to produce a stream for w. The
same is not true for row, which is not necessarily ordered. However, the vector row in non-decreasing form
is already available from the inputs: it can be constructed from Srmaj(A), the sparse representation of the
matrix in row-major order. To apply the same idea to input pairs r∗U and row, we build Srmaj.row(A), which is
non-decreasing, and use it to produce the stream of the sorted vector for the lookup protocol. We describe our
look-up protocol in more detail in Section 8.2.1.
On alternative proof techniques for look-up relations. Prior work such as [Set20] checks look-up relations
using an offline memory-checking [BEGKN91; CDDGS03] abstraction in which the prover shows that g∗

was correctly constructed entry by entry from g using read and write operations. This leads to an alternative
polynomial identity replacing Equation 25, which uses a list of timestamps recording when a particular
element of g∗ is read from g. In this case though, it is unclear how to generate the timestamps required by
this method without storing linear memory. While in [GW20] the polynomial relation is independent from
the ordering of the matrix (row-major or column-major), the memory-checking approach requires random
access to the vector row in order to access the last visited timestamps, which cannot be done in small space.

2.6.2 Entry product protocol

Let f = (f0, . . . , fN−1) ∈ FN such that e = f0 · · · fN−1. We describe an entry-product protocol, building
on [BCG20, Sec. 6.4], that reduces an entry product statement

∏
i fi = e to a single scalar-product relation,

using polynomial evaluation query access to f .
Compared with the prior work, our work exploits the structure of univariate polynomials to simplify the

scheme and remove the need for cyclic-shift tests [BCG20, Sec. 6.3]. We propose additional optimizations in
Section 2.7 which improve the concrete efficiency of our protocol.
High-level overview. Let f be as above, with fN−1 = 1.6 Let ψ ∈ F× and let y′ = (1, ψ, . . . , ψN−1). Let

6This restriction is merely didactical. Given any f ∈ FN , representing the coefficients of a degree N − 1 polynomial, it is easy to
simulate polynomial-evaluation query access to (f , 1) using the polynomial f(X) + X

N+1. For any evaluation query in x ∈ F,
forward evaluation queries to f and add x

N+1 before returning. This costs O(log N) F-ops.

18

g be the vector of partial products of the entries of f , that is:

g := (
∏
i≥0 fi,

∏
i≥1 fi, . . . , fN−2fN−1, fN−1) (13)

Then, observe that:

〈g ◦ y′, f�〉 =
N−1∑
i=1

gifi−1ψ
i + g0fN−1

=
N−1∑
i=1

gi−1ψ
i + e+ gN−1ψ

N − gN−1ψ
N

= ψg(ψ) + e− ψN .

(14)

In the entry product protocol, the prover sends the oracle g to the verifier, and the verifier replies with the
random challenge ψ ∈ F×, and makes a polynomial evaluation query g(ψ) = v. Then, both parties engage in
a twisted scalar product protocol to verify Equation 14. Polynomial evaluation queries f�(x) for x ∈ F made
as part of the twisted scalar-product protocol can be computed using evaluation queries f(x). To do this, note
that f�(x) = xf(x)− xN + 1 since fN−1 = 1; thus the verifier can compute f�(x) from f(x) in O(logN)
operations. We give a formal description of the entry product protocol in Section 8.3.
Elastic realization. As with other subprotocols, the entry-product protocol inherits a linear-time prover
realization and succinct verifier from the underlying twisted scalar-product protocol.

To give a space-efficient realization, it suffices to show that g can be generated element-by-element given
access to the stream S(f): the partial products of elements of f can be produced by streaming each successive
element of S(f) and multiplying it into a running product. Note that the partial products in g are computed
from the last entry to the first, starting with fN−1. This is because streams of polynomials move from the
highest-order coefficient to the lowest to be compatible with space-efficient commitment algorithms, as
explained in Section 2.3.

2.7 Implementation and optimizations

We implemented the elastic SNARKs from Sections 2.5 and 2.6 by leveraging and extending arkworks [ark],
a Rust ecosystem for developing and programming with zk-SNARKs. Our implementation is called
ark-gemini, and is open-sourced as part of arkworks. The code structure follows the modular design of our
construction, which involves combining an elastic polynomial commitment scheme and an elastic PIOP. We
deem each of the components of our implementation (the streaming infrastructure, the commitment scheme,
and the subprotocols for sumcheck, tensor check, entry product, and lookup) to be of independent interest for
future work on space-efficient SNARKs. Below, we provide an overview of the streaming infrastructure and
the algorithmic optimizations that we adopted in the implementation.

2.7.1 Streaming infrastructure

We extend the arkworks framework with support for streams in order to express space-efficient protocols.
A stream is a wrapper over iter::Iterator, the Rust interface for iterators. Streams can be restarted
and iterated over multiple times. We use Rust’s borrow abstractions to produce streams that avoid copying
elements whenever possible: a stream either returns a field element, or a reference to a field element. In other
words, we have a zero-copy interface where data structures do not require to be copied from memory, unless
really needed. In practice, input streams can be instantiated with arrays (e.g., memory-mapped files) or a

19

concurrent data stream downloaded from the web, but could be potentially extended to new inputs. Streams
can be composed.

Baum, Malozemoff, Rosen, and Scholl [BMRS21] also study streaming provers, and provide a Rust
implementation relying on asynchronous programming features of Rust. Rust’s asynchronous streams are
also iterators, and thus our approach can be seen as a generalization of their framework.

2.7.2 Optimizations

We leverage several algorithmic optimizations that improve the concrete performance of our scheme.
Elastic provers. Our elastic SNARK allows switching from the space-efficient implementation to the
time-efficient implementation with specified memory threshold. For example, in the scalar product, if
the prover has enough memory, then it can transcribe the intermediate prover state and proceed with the
time-efficient implementation of the prover function. This allows for a more fine-grained control of the space
complexity of the prover, and to benefit from the speed-up of the time-efficient prover for the last few rounds
of the protocol. Since the prover’s messages are the same in both modes, this switch does not affect the end
result.
Batch tensor-product protocols. As discussed in Section 2.4.2, we use a tensor product protocol to check
the multivariate evaluation claims resulting from the sumcheck protocol. In our holographic PIOP, we batch
multiple tensor product claims in parallel using the same randomness. Moreover, the polynomials in each
round can be batched into a single polynomial commitment per round of the tensor product protocol.
Batch [KZG10] for multiple points and polynomials. Boneh et al. [BDFG20] proposed an optimization
of [KZG10] to batch evaluation proofs for a set of evaluation points over different polynomials, exploiting the
structure of univariate polynomials. We adapt and implement these optimizations to our elastic polynomial
commitment scheme. In particular, while our tensor product protocol requires the verifier to query different
polynomials at different evaluation points, evaluation proofs are batched into a single group element. This
makes the concrete size of the evaluation proof smaller than for multi-linear approaches such as [ZGKPP17;
ZGKPP18], which require a logarithmic-size evaluation proof. We elaborate on this in Section 9.
Offline memory-checking. As discussed in Section 2.6.1, the offline memory-checking protocol is not
compatible with space efficiency, because the computation of timestamps (in general) requires random-
access over the sparse representation of the R1CS matrices A,B,C. Nevertheless, we observe that in the
particular implementation of our protocol, the offline memory checking can be used to prove the lookup for(
z?U , colU

)
⊆
(
z, [N]

)
. We view the offline memory-checking as an optimization because it is concretely

more efficient than the plookup protocol. That is because the sender in the plookup protocol must send
additional commitments to the verifier; whereas, the commitments in the offline memory-checking can be
precomputed by the indexer. We elaborate on this in Section 8.2.2.

2.8 Evaluation

We run extensive benchmarks for Gemini (both preprocessing and non-preprocessing SNARKs), over an
Amazon AWS EC2 c5.9xlarge instance, with 36 cores. We use the Rust library rayon for multi-threading,
and use parallelism for multi-scalar multiplications and for the batched sumcheck in the preprocessing SNARK
(multiple sumcheck instances are run in parallel). We select BLS12-381 as the underlying pairing-friendly
elliptic curve, but note that we do not rely on the smoothness of this curve’s prime field (see Remark 2.7).

We benchmark instance sizesN from 218 to 235 (withM = N). These sizes are much larger than what is
commonly reported in the literature, and showcase the behavior of our SNARK over very large instances.

20

Proving space. Gemini supports proving instances of arbitrary sizes. Figure 2 shows that memory usage
remains constant as instance size increases: it is below 1GB memory for the non-preprocessing SNARK, and
slightly more than 1GB for the preprocessing SNARK. Two main parameters affect memory usage.

• Thememory budget allocated for multi-scalar multiplication (MSM). Algorithms forMSM (e.g., Pippenger’s
algorithm) achieve improved time efficiency at the expense of large space usage (linear in the number of
scalar multiplications), which precludes an elastic implementation. In practice, to maintain space efficiency,
it is useful to allocate a constant-size buffer, and apply the MSM algorithm over chunks of the inputs,
accumulating the final result. We set the buffer to be of size 220.

• The sumcheck round threshold, after which the elastic prover transcribes the sumcheck intermediate state
and proceeds with the time-efficient algorithm. We set the threshold to 22: the last 22 rounds of the
sumcheck protocol are performed with the time-efficient prover.

The memory usage is obtained reading the value of resident data and stack memory at regular intervals of 10
seconds on /proc/[pid]/statm.

The overall memory consumption appears constant, suggesting that the above parameters dominate the
logarithmic factor in space complexity. The difference in memory consumption between the two SNARKs is
explained by the batch sumcheck (used solely in the preprocessing SNARK), where multiple instances are
transcribed in memory at the same time.

Our benchmarks stop at 235 for the non-preprocessing SNARK and the 232 for the preprocessing one,
but the upper limit in our benchmarks is arbitrary: as long as it is possible to generate the input streams for
the time prover, then prover can terminate while keeping memory usage small. Prior work on preprocessing
SNARKs for R1CS provide benchmarks for sizes up to 220. When running benchmarks ourselves to compare
our work with previous literature such as Marlin7, we were unable to proceed beyond size 224 due to out of
memory crashes. This is due to the kernel’s OOM (Out Of Memory) Killer process that intervenes forbidding
new allocations and terminating the prover before the end of its execution.8
Proving time. The elastic prover switches to the time-efficient mode if the intermediate state fits within
the memory budget. In particular, when the instance size is small enough, the elastic prover runs in the
time-efficient mode only. The most time expensive operations in the protocol are the cryptographic operations,
namely the multi-scalar multiplications. For this reason, in Figure 2, where we show the running times for for
different values ofN , withM = N , it is possible to observe a graph that evolves almost linearly. The squared
logarithmic factor does not influence noticeably the overall runtime (as far as we were able to measure within
the window of instance sizes of our benchmarks).
Proving cost in dollars. The preprocessing SNARK prover spends about 7.6 × 10−5 seconds per gate.
Using the AWS estimator (on-demand hourly cost 1.836 USD obtained from https://calculator.aws),
we conclude that the cost for the preprocessing SNARK is about 2.30× 10−5 USD per gate. In particular,
the estimated cost for instance size 231 is 89 USD. In contrast, for this instance size, DIZK [WZCPS18]
incurs a much higher cost at around 500 USD; this is because DIZK runs the prover on 20 more powerful
and expensive machines (r3.8xlarge EC2 instances with on-demand hourly cost 2.656 USD) for about 10
hours. In the case of non-preprocessing SNARK, the cost is lower and around 40 USD for the size 235.
Proof size and verification time. We measure the proof size and verification time for the preprocessing
SNARK. The verifier can cheaply verify proofs for large instances since it does not read the instance (instead,

7cf. https://github.com/arkworks-rs/marlin.
8Weobserve that the programwill still crash ifwe instruct the kernel to allow formemory over commitment. Seevm.overcommit=2

at https://www.kernel.org/doc/Documentation/vm/overcommit-accounting.

21

https://calculator.aws
https://github.com/arkworks-rs/marlin
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

21

24

27

210

213

216

Instance size (N)

Ti
m
e
(s
)

with preprocessing
without preprocessing

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
225

226

227

228

229

230

Instance size (N)

M
em

or
y
(B

)

with preprocessing
without preprocessing

Figure 2: Running time (above) and memory usage (below) for the elastic prover in the preprocessing protocol
(blue) and the non-preprocessing protocol (red), for different R1CS sizes withN = M . The black squares indicate
the size for which the time-efficient prover triggers an out-of-memory crash (it uses too much memory).

it uses a short verification key derived from the instance). For instance sizes ranging from 212 to 235, the
proof size is about 13− 27 KB and the verification time is about 16− 30 ms.

22

3 Preliminaries

3.1 Notation

For integers a, b with a < b integers, let [a, b] denote the set {a, . . . , b− 1}; [b] will be used as a shorthand
for [0, b]. Let log : N→ Z denote the base-2 logarithm function, rounded up to the nearest integer. Let F be
a field; and let F× denote its invertible elements. For a vector a over F of lengthN , let ai denote its i-th entry.
Let a ◦ b denote the Hadamard product of vectors a and b; a · b their dot product and a ⊗ b their tensor
product. We view vectors both as an element of FN as well as a polynomial in F[X] of degree at most N .
Given a vector a ∈ FN and an indexing vector idx ∈ [N]M , let a|idx ∈ FM be the vector whose i-th element
is aidxi

. We will occasionally explicitly refer to the polynomial associated with a vector a ∈ FN using the
notation a(X) ∈ F[X].

Algorithms are written in calligraphic math font. We use standard big O notation for asymptotic operations
over field elements. We use negl(λ) as a shorthand for negl(λ) = λ−ω(1). We use Oλ to describe big O
notation in which λ is considered a constant. This will be useful when describing the cost of cryptographic
operations, which depend on a security parameter λ.

We use S(a) to denote the stream of a. This is defined in Page 5 for vectors and matrices, and
in Definition 4.9 for R1CS instances.

Definition 3.1. Let v ∈ FN . We denote with v� ∈ FN the right rotation, i.e v� := (vN , v1, . . . , vN−1).

Definition 3.2 (multilinear polynomials). Let f ∈ FN , with N = 2n. Write f̂(X0, . . . , Xn−1) for the
multilinear polynomial whose coefficients are the entries of f , ordered so that fi0...in−1

is the coefficient of
X
i0
0 · · ·X

in−1
n−1 .

Definition 3.3 (odd and even parts). Let f(X) ∈ F[X]. Let fe(X), fo(X) ∈ F[X] be the even and odd parts
of f(X) i.e. the unique polynomials such that f(X) = fe(X

2) +Xfo(X
2).

3.2 Polynomial IOPs

A polynomial IOP [CHMMVW20; BFS20] over a field family F for an indexed relationR is specified by a
tuple

IOP = (k, o, d, I,P,V)

where k, o, d : {0, 1}∗ → N are polynomial-time computable functions and I,P,V are three algorithms
known as the indexer, prover, and verifier. The parameter k specifies the number of interaction rounds, o
specifies the number of polynomials in each round, and d specifies degree bounds on these polynomials.

In the offline phase (“0-th round”), the indexer I receives as input a field F ∈ F and an index i for
R, and outputs o(0) polynomials p(0)

0 , . . . ,p(0)
o(0)−1 ∈ F[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, o(0))

respectively. Note that the offline phase does not depend on any particular instance or witness, and merely
considers the task of encoding the given index i.

In the online phase, given an instance x and witness w such that (i,x,w) ∈ R, the prover P receives
(F, i,x,w) and the verifier V receives (F,x) and oracle access to the polynomials output by I(F, i). The
prover P and the verifier V interact over k = k(|i|) rounds.

For j ∈ [k], in the j-th round of interaction, the verifier V sends a message ρj ∈ F× to the prover P;
then the prover P replies with o(i) oracle polynomials p(j)

0 , . . . ,p(j)
o(j)−1 ∈ F[X]. The verifier may query

any of the polynomials it has received any number of times. A query consists of a location z ∈ F for an

23

oracle p(j)
i , and its corresponding answer is p(j)

i (z) ∈ F. After the interaction, the verifier accepts or rejects.
The function d determines which provers to consider for the completeness and soundness properties of the
proof system. In more detail, we say that a (possibly malicious) prover P̃ is admissible for IOP if, on every
interaction with the verifier V , it holds that for every round j ∈ [k] and oracle index i ∈ [o(j)] we have
deg(p(j)

i) ≤ d(|i|, j, i). The honest prover P is required to be admissible under this definition.

Remark 3.4 (non-oracle messages). We also allow the prover in an IOP to arbitrary messages that the verifier
will simply read in full (without making any queries), at any point in the interaction, as in a typical interactive
proof. We refer to such messages as non-oracle messages, to differentiate them from the oracle messages to
which the verifier has query access. These non-oracle messages can typically be viewed as degenerate cases
of oracle messages, and we use them in protocol descriptions for ease of exposition.

We say that IOP has perfect completeness and soundness error ε if the following holds.

• Completeness. For every field F ∈ F and index-instance-witness tuple (i,x,w) ∈ R, the probability that
P(F, i,x,w) convinces VI(F,i)(F,x) to accept in the interactive oracle protocol is 1.

• Soundness. For every field F ∈ F , index-instance pair (i,x) /∈ L(R), and admissible prover P̃ , the
probability that P̃ convinces VI(F,i)(F,x) to accept in the interactive oracle protocol is at most ε.

The proof length l is the sum of all degree bounds in the offline and online phases, l(|i|) :=∑k(|i|)−1
j=0

∑o(i)−1
i=0 d(|i|, j, i).

The query complexity q is the total number of queries made by the verifier to the polynomials. This
includes queries to the polynomials output by the indexer and those sent by the prover.

All PIOPs that we construct achieve the stronger property of knowledge soundness (against admissible
provers). We define both of these properties below.
Knowledge soundness. We say that IOP has knowledge error ε if there exists a probabilistic polynomial-time
extractor E for which the following holds. For every field F ∈ F , index i, instance x, and admissible prover
P̃ , the probability that EP̃(F, i,x, 1l(|i|)) outputs w such that (i,x,w) ∈ R is at least the probability that P̃
convinces VI(F,i)(F,x) to accept minus ε. Here the notation EP̃ means that the extractor E has black-box
access to each of the next-message functions that define the interactive algorithm P̃ . (In particular, the
extractor E can “rewind” the prover P̃ .) Note that since E receives the proof length l(|i|) in unary, E has
enough time to receive, and perform efficient computations on, polynomials output by P̃ .
Additional properties. All of our PIOP protocols will satisfy the following additional properties:

– Public coins: IOP is public-coin if each verifier message to the prover is a uniformly random string of some
prescribed length (or an empty string). Hence the verifier’s randomness is its messages ρ0, . . . , ρk−1 ∈ F×

and possibly additional randomness ρk ∈ F× used after the interaction. All verifier queries can be
postponed, without loss of generality, to a query phase that occurs after the interactive phase with the
prover.

– Non-adaptive queries: IOP is non-adaptive if all of the verifier’s query locations are solely determined by
the verifier’s randomness and inputs (the field F and the instance x).

Polynomial IOPs of proximity. An polynomial IOP of proximity is similar to a PIOP, with the difference that
the verifier V has query access to the candidate witness w (we assume that w can be parsed as a polynomial
or polynomials) as well as (I(F, i),p(0)

0 , . . . ,p(k−1)
o(k)−1). Completeness and soundness properties of PIOPPs

are defined similarly to those of PIOPs, except that V has query access to the polynomials in the witness w.

24

4 Streaming model

We provide a formal model of streams and streaming algorithms.

Definition 4.1. A stream is a sequenceK ∈ ΣI , where Σ is a finite alphabet, and I is a well-ordered set.

Definition 4.2 (streaming oracle). LetK be a stream over the alphabet Σ and index I . The streaming oracle
S(K) ofK behaves as follows:

• On inputs start and a session number L ∈ N, the oracle creates or resets a counter iL ∈ I ∪ {⊥} which is
initially set to the first element of I .

• On inputs next and a session number L ∈ N, if iL ∈ I , then the oracle returns kiL ∈ U , and updates iL to
the next element of I (or to ⊥ if iL is equal to the last element of I). If iL = ⊥ then the oracle returns ⊥.

Remark 4.3. The use of session numbers L allows the same stream to be accessed in different positions by
multiple algorithms simultaneously. However, to avoid an unrealistic streaming model in which algorithms
have arbitrary random access to streamed data, in this work, no stream will be accessed through more than a
logarithmic number of sessions simultaneously.

If v is an array whose elements have a clear ordering in context, then we simply say that A has streaming
oracle access to v. We now introduce the streaming algorithm, which has access to streaming oracles in a
specific order and produce an output stream.

4.1 Streaming algorithms

Definition 4.4 (streaming algorithm). We say thatA is a streaming algorithm over Σ ifA receives no inputs,
but has access to various streaming oracles S(K1), . . . ,S(Kl) over some alphabet Σ through start and next
commands. In addition, A produces output upon receiving the command next, which takes one element of Σ
as input. We write O = A(S(K1), . . . ,S(Kl)) to show that O is the entire output stream of A.

It is possible to compose streaming algorithms so that one stream algorithm has streaming access to the
output of another stream algorithm.

Definition 4.5 (composing streaming algorithms). Let A and B be streaming algorithms. Suppose that B
takes inputs S(K1), . . . ,S(Kl). We write A(B) when A interacts with B as follows:

• when A sends a start command to B, the execution of B is reset, and A also sends start commands to each
of S(K1), . . . ,S(Kl);

• A forwards any start or next command from B to the correct streaming oracle, and returns the output to B;

• on input next, the execution of B yields the next outputs and returns it to A.

Lemma 4.6. If A is a streaming algorithm with time complexity tA, space complexity sA, and kA input
passes, and B is a streaming algorithm with time complexity tB, space complexity sB, and kB input passes,
then A composed with B has time complexity tA + kAtB, space complexity sA + sB, and kAkB input passes.

25

4.2 Streaming R1CS

We introduce the streaming R1CS model. We begin by recalling the indexed R1CS relation.

Definition 4.7. The indexed relationRR1CS is the set of all triples (i,x,w) =
(
(F, N,M,A,B,C),x,w

)
where F is a finite field, A,B,C are matrices in FN×N each having at most M non-zero entries, and
z := (x,w) is a vector in FN such that Az ◦Bz = Cz.

We define a streaming R1CS instance in the terms of the sparse representation of the R1CS matrices A,B
and C.

Definition 4.8. The stream of U is a pair
(
Srmaj(U),Scmaj(U)

)
, where Srmaj(U) denotes the sequence of

elements in the support (row, column, value) ordered in in row major (that is, lexicographic order with row),
and Scmaj(U) denotes the ordering of the ordering of the same sequence in column major.

Definition 4.9 (streaming R1CS). The streams associated with ((F, N,M,A,B,C),x,w) consist of:
• index streams: streams of the R1CS matrices, in row-major and column-major: (Srmaj(A),Scmaj(A)),

(Srmaj(B),Scmaj(B)), (Srmaj(C),Scmaj(C));
• instance stream: stream of the instance vector S(x);
• witness streams: stream of the witness S(w) and of the computation trace vectors S(Az),S(Bz),S(Cz).
The field description F, instance size N , and maximum numberM of non-zero entries are explicit inputs.

The streaming R1CS relation naturally captures other models of computation, such as R1CS automata.

Definition 4.10 (R1CS automata). Let F be a finite field, T ∈ N be a computation time, and k ∈ N a
computation width. We consider execution traces f ∈ (Fk)T . Each state f [t] ∈ Fk represents the state of the
computation at time t ∈ [T].

An R1CS automaton is specified by matrices A,B,C ∈ Fk×2k that define constraints between different
time steps, and a set of boundary constraints B ⊆ [T]× [k]× F.

An execution trace f is accepted by the automaton if:

• f satisfies the R1CS time constraints i.e. ∀t ∈ [T], it holds that Af [t, t+ 1] ◦Bf [t, t+ 1] = Af [t, t+ 1];

• f satisfies the R1CS boundary conditions i.e. ∀(t, j, α) ∈ B it holds that f [t]j = α.

Theorem 4.11 (automata to streaming R1CS). Let (F, k, T,A,B,C,B) be an R1CS automata instance. Then
there is an R1CS instance which verifies the same computation as (F, k, T,A,B,C,B), and whose streams,
for the streaming R1CS model, can be produced in time O(k2 log k) and space O(k2).

Further, the witness streams can be produced from f in O(k2) operations per element of Fk, and using
space O(k2).

26

5 Tensor-product protocol

We introduce a tensor-product checking protocol which is used in our constructions. Then we show how
to batch multiple tensor-product checks, which leads to better performance than running the basic protocol
multiple times.

5.1 Basic tensor-product protocol

The tensor-product protocol checks the following relation.

Definition 5.1. The tensor-product relationRTC is the set of tuples

(i,x,w) = (⊥, (F, N, ρ0, . . . , ρn−1, u), f)

where n = logN , f ∈ FN , u ∈ F, and 〈f ,⊗j(1, ρj)〉 = u.

Theorem 5.2. For every finite field F and positive integer N , there is a PIOP for the indexed relationRTC
that supports instances over F, with:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(N) F-ops
O(N) memory

O(N logN) F-ops
O(logN) memory
O(1) passes

O(logN) F-ops O
(
N
|F|

)
O(logN) O(logN) O(logN)

We prove Theorem 5.2 with the following construction.

Construction 1. We construct a PIOP for the indexed relationRTC. The prover P takes as input an index
i = ⊥, instance x = (F, N, ρ0, . . . , ρn−1, u), and witness w = f ; the verifier V takes as input the index i
and the instance x.

• Write f (0)(X) = f(X).

• For j ∈ [n], the prover P computes

f (j)(X) := f (j−1)
e (X) + ρj−1 · f

(j−1)
e (X) .

where f (j)(X) = f (j−1)
e (X2) +Xf (j)(X2)o. The prover sends the oracle messages f (1), . . . , f (n−1) to the

verifier.

• The verifier V samples a challenge β ← F× uniformly at random and makes the following evaluation
queries for j ∈ [n]:

e(j) := f (j)(β), ē(j) := f (j)(−β), ê(j) := f (j+1)(β2), (15)

Skip ê(n) and artificially set ê(n) := u.

• check that, for all j ∈ [n]:

ê(j) = e(j) + ē(j)

2 + ρj ·
e(j) − ē(j)

2β , (16)

27

Lemma 5.3. Construction 1 has perfect completeness.
Proof. Suppose that 〈f ,⊗j(1, ρj)〉 = u. We argue that the verifier’s consistency checks of Equation 16 are
satisfied. Firstly, indexing f ∈ FN by i0, . . . , in−1 ∈ {0, 1}, one can prove by induction on j that:

f (j)(X) =
∑

i0,...,in−1∈{0,1}
f (i0,...,in−1)2ρ

i0
0 · · · ρ

ij−1
j−1X

ij+2ij+1+···+2n−1−j
in−1

for j ∈ [n]. This shows that f (n)(β) = f (n)(−β) = u. By definition of f (j−1)
e and f (j−1)

o (Definition 3.3),
we have f (j−1)(X) = f (j−1)

e (X2) + X · f (j−1)
o (X2) and f (j)(X) := f (j−1)

o (X) + ρj−1 · f
(j−1)
e (X). Thus

f (j−1)(X) + f (j−1)(−X) = 2f (j−1)
e (X2) and f (j−1)(X)− f (j−1)(−X) = 2Xf (j−1)

o (X2). Evaluation at β
and taking linear combinations of the last two equations shows that the consistency checks are satisfied.

Lemma 5.4. Construction 1 has soundness error N−1
|F×|

.

Proof. Suppose that 〈f ,⊗j(1, ρj)〉 6= u. Fix a malicious prover, which determines certain next-message
functions f̃ (1)(X), . . . , f̃ (n−1)(X), e(0) and ē(0). Set f̃ (n) = e(n) = ē(n) = u, noting that f̃ (j) has degree at
most N/2j .

Since 〈f ,⊗j(1, ρj)〉 6= u we must have f (j)(X) 6= f (j−1)
e (X) + ρj−1 · f

(j−1)
o (X), for some j ∈ [n]. Let

j∗ be the largest value of j for which this happens. This implies that:

p(X) := f (j∗)(X2)− f (j∗−1)(X) + f (j∗−1)(−X)
2 − ρj∗−1

f (j−1)(X)− f (j∗−1)(−X)
2β

is a non-zero polynomial of degree at most 2n−(j∗−1) − 1. Setting X = Y 2j
∗−1

, and evaluating at Y = β,
the probability that p evaluates to 0 is at most 2n−1

|F×|
. This implies that the verifier check in Equation 16 is

satisfied with probability at most N−1
|F×|

.

Lemma 5.5. The prover for Construction 1 can be implemented in O(N) operations in F, and space
complexity O(N).

Proof. The prover requires O(N/2j) space to store f (j)(X), and N/2j operations to compute f (j+1)(X)
from f (j)(X). Summing up the prover’s time complexity at each step gives O(N) operations.

Lemma 5.6. The prover for Construction 1 can be implemented in O(N logN) operations in F, and space
complexity O(logN) with O(1) passes over f .

Evaluation queries also evaluated simultaneously by the prover after compilation, but we don’t see this at
our current level of abstraction

Proof. Figure 3 gives an algorithm Sfold(S(f), j, ρ0, . . . , ρj−1) for producing streams of S(f (0)), . . . ,S(f (j))
simultaneously. The indices k of items (k, x) in Stack form an ascending sequence with k ≤ j. Whenever
two items (k, x) and (k, x′) are next to each other at the beginning of the sequence, they are merged using
O(1) field operations. The algorithm never adds an item with k = j to the stack, so the stack never contains
more than j ≤ logN elements. To produce an item with k = j requires passing through and merging together
exactly 2j elements of the stream of f , and uses 2j operations. Producing all N/2j elements of S(f (j)) costs
N/2j · 2j = N operations.

To produce the streams S(f (0)), . . . ,S(f (n)) requires a single pass over S(f) and uses O(N) operations.

28

Stream Sfold(S(f), (ρ0, . . . , ρ`−1))

if Stack.Len() < 2 :
Item := (0,S(f).next())

else :
(k, x) := Stack.Pop()
(k′, x′) := Stack.Pop()
if k 6= k′ :

Stack.Push((k′, x′))
Stack.Push((k, x))
Item := (0,S(f).next())

else :
Item := (k + 1, x′ + ρkx)

if Item0 < ` :
Stack.Push(Item)

yield Item

Stream Sj-th fold(f ,ρ) = S(f (j))

while (k, x) := Sfold(f ,ρ).next() :
if k = j : return x

else : continue

Figure 3: On the left-hand side, the stream for generating the coefficients of all all folded polynomials f (0), . . . , f (n),
as a pair composed of the current round number, and the next coefficient. On the right, the stream for generating
coefficients of the vector f (j), given S(f) and ρ = (ρ0, . . . , ρn−1) with n ≥ j.

5.2 Batched tensor-product protocol

We present a protocol for checkingm instances ofRTC at the same time. The new protocol gives a query
complexity which depends additively onm instead of multiplicatively.

Definition 5.7. The batched tensor-product relationRBTC is the set of tuples

(i,x,w) =
(
⊥, (F, N, ρ0, . . . , ρn−1, {ui}

m−1
i=0), (f0, . . . , fm−1)

)
where N = 2n, f0, . . . , fm−1 ∈ FN , u0, . . . , um−1 ∈ F, and 〈fi,⊗j(1, ρj)〉 = ui for each i ∈ [m].

Theorem 5.8. For every finite field F and positive integer N , there is a holographic PIOP for the indexed
relationRBTC that supports instances over F, with:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(mN) F-ops
O(mN) memory

O(N(logN +m)) F-ops
O(logN) memory
O(logN) passes

O(m+ logN) F-ops O
(
m+N
|F|

)
O(logN) O(m+ logN) O(m+ logN)

Construction 2. We construct a PIOP for the indexed relationRBTC. The prover P takes as input an index
i = ⊥, instance x = (F, N, ρ0, . . . , ρn−1, {ui}

m−1
i=0), and witness w = (f0, . . . , fm−1); the verifier V takes

as input the index i and the instance x.

29

• The verifier samples random challenge ζ ∈ F×.

• The prover P computes the polynomial f(X) =
∑m−1
i=0 ζifi(X) and sends it to the verifier.

• The prover and verifier run the tensor-product check with (i,x,w) =
(
⊥, (F, N, ρ0, . . . , ρn−1,

∑
i uiζ

i), f
)

and randomness β0 to check that 〈f ,⊗j(1, ρj)〉 =
∑
i uiζ

i.

• The verifier samples randomness β and makes an oracle query to learn f(β). For i = 0, . . . ,m− 1, the
verifier makes oracle queries to learn fi(β). The verifier checks whether f(β) =

∑m−1
i=0 fi(β)ζi.

Remark 5.9. Since the simple tensor-product check requires an evaluation of f at a random point, Construc-
tion 2 can be optimized so that Construction 1 uses the same randomness β as Construction 2, which saves
one evaluation query.

Lemma 5.10. Construction 2 has perfect completeness.

Proof. Suppose that 〈fi,⊗j(1, ρj)〉 = ui for each i. By definition, f =
∑m−1
i=0 ζifi. Querying each polynomial

in this expression at β, it is clear that the verifier’s check is satisfied.
Next, since 〈fi,⊗j(1, ρj)〉 = ui for each i, taking a linear combination of these expressions using powers

of ζ, it is clear that 〈f ,⊗j(1, ρj)〉 =
∑
i uiζ

i, so the basic tensor-product protocol accepts.

Lemma 5.11. Construction 2 has soundness error m+N−2
|F×|

.

Proof. Suppose that there is some i for which 〈fi,⊗j(1, ρj)〉 6= ui. Fix a malicious prover, which
determines next-message function f̃(X). Let f(X) =

∑m−1
i=0 ζifi(X). By the Schwartz–Zippel lemma,

〈f ,⊗j(1, ρj)〉 6=
∑m−1
i=0 ζiui, except with probability at most (m− 1)/|F×| over the random choice of ζ. If

f̃(X) = f(X), then by the soundness of the basic tensor-product protocol, the verifier accepts with probability
at most (N − 1)/|F×|. If f̃(X) 6= f(X), then by the Schwartz–Zippel lemma, f(β) 6=

∑m−1
i=0 ζifi(β), except

with probability at most (N − 1)/|F×| over the random choice of β.

Lemma 5.12. Construction 2 can be implemented inO(N(logN+m)) operations inF, and space complexity
O(m+ logN) with O(logN) passes over each fi for i ∈ [m].

Proof. By Lemma 5.6, the basic tensor-product check requiresO(logN) passes over S(f) and usesO(logN)
memory. Since f(X) =

∑m−1
i=0 ζifi(X), the stream S(f) can be computed by a streaming algorithm that uses

O(mN) operations, O(1) space (never storing more than a single coefficient of one fi polynomial and the
partial computation of a coefficient of f), and a single pass over each of itsm inputs. Composing the two
streaming algorithms and using Lemma 4.6 gives the result.

30

6 Elastic protocols for scalar products

We describe elastic PIOP protocols which reduce checking twisted scalar product relations to consistency
checks of the type described in Section 5.

Definition 6.1. The twisted scalar product relationRTSP is the set of tuples

(i,x,w) = (⊥, (F, N, u), (f ,y,g))

where f ,y,g ∈ FN , u ∈ F, and 〈f ◦ y,g〉 = u.

Standard scalar products are the special case where every entry of y is equal to 1.
We give two elastic PIOPs for RTSP. The first, in Section 6.1, is a protocol for the special case where

y := ⊗n−1
j=0 (1, υj) for public υ0, . . . , υn−1.

Theorem 6.2. For every finite field F, every N ∈ N with n = logN , there is a holographic PIOP for the
indexed relationRTSP with y := ⊗n−1

j=0 (1, υj) for public υ0, . . . , υn−1 ∈ F, with:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(N) F-ops
O(N) memory

O(N logN) F-ops
O(logN) memory
O(logN) passes

O(logN) F-ops O
(
N
|F|

)
O(logN) O(logN) O(logN)

The second protocol, in Section 6.4, reduces the general case to the special case. Finally, in Section 6.5, we
give a PIOP for Hadamard products of vectors, which also follows from the special case of twisted scalar
products.

Definition 6.3. The Hadamard product relation RHP is the set of tuples (i,x,w) = (⊥, (F, N), (f ,g,h))
where f ,g,h ∈ FN and f ◦ g = h.

Theorem 6.4. For every finite field F and positive integer N , there is a holographic PIOP for the indexed
relationRHP that supports instances over F, with:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(N) F-ops
O(N) memory

O(N logN) F-ops
O(logN) memory
O(logN) passes

O(logN) F-ops O
(
N
|F|

)
O(logN) O(logN) O(logN)

6.1 Elastic scalar-product protocol (special case)

Construction 3. We construct a PIOP for the indexed relationRTSP. The prover P takes as input an index
i = ⊥, instance x = (F, υ0, υ1, . . . , υn−1, u), and witnessw = (f ,g); the verifier V takes as input the index
i and the instance x.

Interactive phase. LetH := {−1, 1}. The prover and verifier run a multivariate sumcheck protocol on
the multivariate polynomials f̂ , ĝ associated with f ,g ∈ FN to show that

1
2n

∑
ω∈Hn

(f̂ ◦ y · ĝ)(ω) = u . (17)

31

The verifier V for the multivariate sumcheck protocol outputs a claim that
(
f̂ ◦ y · ĝ

)
(ρ0, . . . , ρn−1) = u,

where ρ0, . . . , ρn−1 is the verifier randomness used in the sumcheck protocol.
The prover sends claimed evaluations uA, uB ∈ F to the verifier, corresponding to the claims that

f̂ ◦ y(ρ0, . . . , ρn−1) = uA. and ĝ(ρ0, . . . , ρn−1) = uB . The verifier checks whether uA · uB = uC .
Rewriting the first evaluation claim, the output of the interactive phase consists of the two claims:

f̂(υ0ρ0, . . . , υn−1ρn−1) = uA , ĝ(ρ0, . . . , ρn−1) = uB . (18)

Query phase. The prover and the verifier run the univariatePIOP for tensor products fromConstruction 1
to check that the two claims from Equation 18 are true:

• one execution with x = (F, N, υ0ρ0, . . . , υn−1ρn−1, uA) and w = f ; and

• one execution with x = (F, N, ρ0, . . . , ρn−1, uB) and w = g.

Remark 6.5. The message complexity of the sumcheck protocol can be reduced from 3 logN to 2 logN field
elements. In each round of the sumcheck protocol, the prover sends the coefficients of the polynomial q(j), and
the verifier checks whether q(j)(1) + q(j)(−1) = 2 · q(j−1)(ρj−1). Since q(j)(X) = qj,0 + qj,1X + qj,2X

2

is quadratic, q(j)(1) + q(j)(−1) = 2qj,0 + 2qj,2, and the verification checks amount to checking whether
2qj,0 + 2qj,2 = q(j−1)(ρj−1). Thus, instead of having the prover send qj,1 in each round, and asking the
verifier to perform the aforementioned checks, the verifier can simply use q(j−1)(ρj−1) (which is known from
the previous round, or equal to u when j = 0) as the definition of the value of qj,1.

Remark 6.6. Construction 3 is a univariate PIOP and uses Construction 1 to reduce claims about multivariate
polynomial evaluations, which can be rewritten as tensor products, to claims about univariate polynomial
evaluations. However, one can convert Construction 3 into a multivariate PIOP by concluding the protocol
using a multivariate evaluation query rather than invoking Construction 1. This means that one can compile
our PIOPs into succinct arguments using either multivariate or univariate polynomial commitment schemes.

6.2 Proof of Theorem 6.2

We prove completeness in Lemma 6.9. We prove soundness in Lemma 6.10. We analyse the complexity of
the time-efficient prover and the verifier in Lemma 6.11. We analyse the complexity of the space-efficient
prover in Lemma 6.12.

In our analysis, we rely on results from prior work, stated in two lemmas. The first relates polynomial
coefficients to sums of evaluations.

Lemma 6.7 ([BCG20, Lemma 5.7]). Let H be a multiplicative subgroup of a finite field F and let
p(X0, . . . , Xn−1) ∈ F[X0, . . . , Xn−1]. If we denote by pi0,...,in−1

∈ F the coefficient ofXi0
0 · · ·X

in−1
n−1 in the

polynomial p(X0, . . . , Xn−1), then

∑
ω∈Hn

p(ω) =

 ∑
i≡0 mod |H|

pi

 · |H|n . (19)

The second describes the properties of sumcheck protocol for products of multilinear polynomials, as
studied in [Tha13; XZZPS19; BCG20].

32

Lemma 6.8. For every finite field F and every N ∈ N with n = logN , the sumcheck protocol for

1
2n

∑
ω∈Hn

(f̂ · ĝ)(ω) = u . (20)

forH = {−1, 1} and the multilinear polynomials f̂(X0, . . . , Xn−1) and ĝ(X0, . . . , Xn−1) associated with
f ,g ∈ FN has the following properties: soundness error is O(n/|F|) (as a reduction to claims about
polynomial evaluations); round complexity is O(n); the prover uses O(N) field operations; and the verifier
uses O(n) field operations.

Lemma 6.9. Construction 3 has perfect completeness.

Proof. Suppose that 〈f ◦ y,g〉 = u. By Lemma 6.7, 1
2n

∑
ω∈Hn(f̂ ◦ y · ĝ)(ω) =

(∑
i≡0 mod 2(f̂ ◦ y · ĝ)i

)
.

Since f̂ ◦ y and ĝ are multilinear polynomials, the contributions to the coefficients of f̂ ◦ y · ĝ with
i ≡ 0 mod 2 are exactly the terms f̂ ◦ yj · ĝj where j ∈ {0, 1}n is the unique vector such that i = 2j. Hence,
1

2n

∑
ω∈Hn(f̂ ◦ y · ĝ)(ω) = 〈f ◦ y,g〉 = u.

By the completeness property of the sumcheck protocol (Lemma6.8), the claims f̂(υ0ρ0, . . . , υn−1ρn−1) =
uA and ĝ(ρ0, . . . , ρn−1) = uB are true.

By completeness of the PIOP for tensor products, Construction 1, the verifier accepts.

Lemma 6.10. Construction 3 has soundness error εSP := O(N/|F|).

Proof. Suppose that 〈f ◦ y,g〉 6= u. By the soundness of the sumcheck protocol, the probability that the
sumcheck verifier accepts and the output claims are both true is at most 2n

|F| . If the claims produced by the
sumcheck protocol are not true, then by the soundness of the tensor-product protocol (Construction 1), the
probability that the verifier for the tensor-product protocol accepts is at most N|F| . The result follows by a union
bound.

Lemma 6.11. The prover in Construction 3 has arithmetic complexity O(N). The verifier in Construction 3
has arithmetic complexity O(logN).

Proof. This follows from the arithmetic complexities of the prover and the verifier in the sumcheck protocol
given in Lemma 6.8, and those of the tensor-product protocol given in Theorem 5.2.

6.3 Space efficient realization of Construction 3

Lemma 6.12. The prover for Construction 3 can be implemented using a streaming algorithm with arithmetic
complexity O(N logN) that makes O(logN) passes over the streams S(f) and S(g).

Remark 6.13. Lemma 6.12 follows directly from [CTY11; CMT12], which proves results about streaming
provers for interactive proofs for uniform circuits. We provide a direct proof below for the special case of
twisted scalar products.

The techniques used to prove Lemma 6.12 are related to those in [BHRRS20], used for messages for
a split-and-fold protocol that was shown to be closely related to the sumcheck protocol in [BCS21]. Our
algorithm has a prover arithmetic complexity of O(N logN), which is more efficient than the O(N log2N)
algorithm given in [BHRRS20] and has a significant impact on concrete efficiency. We must also carefully
modify our protocol to account for the vector y to reason about a twisted scalar-product relation, which
requires extra thought.

33

Proof. We show how to implement the space-efficient prover for Construction 3 using streaming access to the
inputs f and g. By Lemma 5.6, the tensor product protocol can be implemented in space O(logN) using
O(1) passes. It remains to show how to compute the next-message function for the sumcheck protocol in
small space. Define partially evaluated polynomials in F[Xj , Xj+1, . . . , Xn]

f (j)(Xj , . . . , Xn−1) := f̂ ◦ y(ρ0, . . . , ρj−1, Xj , . . . , Xn−1) =
∑

ij ,...,in−1∈{0,1}
f (j)
ij ,...,in−1

X
ij
j · · ·X

in−1
n−1 ,

g(j)(Xj , . . . , Xn−1) := ĝ(ρ0, . . . , ρj−1, Xj , . . . , Xn−1) =
∑

ij ,...,in−1∈{0,1}
g(j)
ij ,...,in−1

X
ij
j · · ·X

in−1
n−1 .

In the (j + 1)-th round of the sumcheck protocol, the prover P sends the polynomial

q(j)(X) := 1
2n−(j+1)

∑
ωj+1,...,ωn−1∈H

(f̂ ◦ y · ĝ)(ρ0, . . . , ρj−1, Xj , ωj+1, . . . , ωn−1)

= 1
2n−(j+1)

∑
ωj+1,...,ωn−1∈H

(f (j) · g(j))(Xj , ωj+1, . . . , ωn−1) .

By Lemma 6.7, we see that

q(j)(X) =
∑

ij ,kj∈{0,1}

∑
ij+1∈{0,1}

· · ·
∑

in−1∈{0,1}
f (j)
ij ,ij+1,...,in−1

· g(j)
kj ,ij+1...,in−1

X
ij+kj

j .

This implies that

qj,0 =

 ∑
ij+1∈{0,1}

· · ·
∑

in−1∈{0,1}
f (j)
0,ij+1,...,in−1

· g(j)
0,ij+1...,in−1

 ,

qj,1 =

 ∑
ij∈{0,1}

· · ·
∑

in−1∈{0,1}
f (j)
ij ,ij+1,...,in−1

· g(j)
1−ij ,ij+1...,in−1

 , and

qj,2 =

 ∑
ij+1∈{0,1}

· · ·
∑

in−1∈{0,1}
f (j)
1,ij+1,...,in−1

· g(j)
1,ij+1...,in−1

 .

From these formulae, it is clear that qj,0, qj,1 and qj,2, can be computed simultaneously in O(1) memory
using streams for f (j) and g(j).

Next, we show that streams of f (j) and g(j) can be generated in O(logN) memory and O(N) operations
using a single pass over the streams of f or g. The algorithm Sfold(·) described in Figure 3 and analysed
in Lemma 5.6 generates the stream of g(j) from the stream of g for any j with the required complexity
parameters. Similarly, Sfold(·) generates f (j) from the stream of f ◦ y for any j. To complete the proof, we
explain how to generate the stream of f ◦ y using a single pass over the stream of f , and υ0 . . . , υn−1, using
O(logN) space.

The entries of f ◦ y are given by (fi0,...,in−1
υ
i0
0 · · · υ

in−1
n−1)i0,...,in−1∈{0,1}. To generate the stream of f ◦ y

in a single pass over the stream of f , begin by computing the sequence υ0, υ0υ1, . . . , υ0 · · · υn−1. Then,
compute the sequence d0 := υ0υ

−1
1 , d1 := υ0υ1υ

−1
2 , . . . , dn−1 := υ0 · · · υn−1υ

−1
n . Next, define S(n) as

follows. Let S(0) := (υ0), and define S(j+1) recursively as the concatenation S(j) || (dj) || S
(j). Now, the

34

sequence (yi0,...,in−1
)i0,...,in−1

can be computed by starting with z = υ0υ1 · · · υn−1 (which is equal to y1,...,1),
and multiplying z by each element of the palindromic sequence S(n) ∈ FN−1 in turn.

This method generates the stream of y in O(logN) space using O(N) operations, and multiplying this
stream by the stream of f gives the stream of f ◦ y with the stated time and memory complexity.

6.4 Elastic scalar-product protocol (general case)

To verifyRTSP, the prover and verifier begin by running one scalar-product subprotocol on f ◦ g and h. This
reduces the claim that 〈f ◦g,h〉 = u to claims about f ◦g and h. Then, the claim about f ◦g can be rewritten
as claim about scalar-product between f and g. Finally, the prover and verifier run a second scalar-product
subprotocol to reduce this to claims about f and g. The end result is a claim about each of f , g and h.

Construction 4. We construct a PIOP for the indexed relationRTSP. The prover P takes as input an index
i = ⊥, instance x = (F, N, u), and witness w = (f ,g,h); the verifier V takes as input the index i and the
instance x.

Interactive phase. Letting f (0)(X) := f ◦ g(X),g(0)(X) := h(X), h(0)(X) := f(X), and k(0)(X) :=
g(X) the protocol proceeds as follows.

• The prover and verifier run the interactive phase of the scalar-product protocol (Construction 3) with index
i = ⊥, instance x = (F, N, u), and witness w = (f ◦ g,h) to check that 〈f ◦ g,h〉 = u. The protocol
outputs claims that uA = 〈f ◦ g,⊗j(1, ρj)〉 and uB = 〈h,⊗j(1, ρj)〉, where ρ0, . . . , ρn−1 is the verifier
randomness used in the subprotocol.

• The prover and verifier run the interactive phase of the scalar-product protocol (Construction 3) with
index i = ⊥, instance x = (F, N, ρ0, . . . , ρn−1, uA), and witness w = (f ◦ ⊗j(1, ρj),g) to check that
〈f ◦⊗j(1, ρj),g〉 = uA. The protocol outputs claims that uC = 〈f ,⊗j(1, ρjrj)〉 and uD = 〈g,⊗j(1, rj)〉,
where r0, . . . , rn−1 is the verifier randomness used in the subprotocol.

• The output of the interactive phase consists of the three claims:

uC = 〈f ,⊗j(1, ρjrj)〉 , uD = 〈g,⊗j(1, rj)〉 , uB = 〈h,⊗j(1, ρj)〉 . (21)

Query phase. The prover and the verifier run the univariatePIOP for tensor products fromConstruction 1
to check that the three claims from Equation 21 are true:

• one execution with x = (F, N, ρ0r0, . . . , ρn−1rn−1, uC) and w = f ;

• one execution with x = (F, N, r0, . . . , rn−1, uD) and w = g; and

• one execution with x = (F, N, ρ0, . . . , ρn−1, uB) and w = h.

Lemma 6.14. Construction 4 has perfect completeness.

Sketch. Suppose that 〈f ◦g,h〉 = u. By Lemma 6.9 (completeness of Construction 3), the verifier for the first
scalar-product subprotocol will accept, and the subprotocol produces correct claims about uA and uB . Writing
uA = 〈f ◦ g,⊗j(1, ρj)〉 = 〈f ◦ ⊗j(1, ρj),g〉 and applying similar reasoning to the second scalar-product
subprotocol completes the proof.

Lemma 6.15. Construction 4 has soundness error 2εSP.

35

Proof. Suppose that 〈f ◦ g,h〉 6= u. By Lemma 6.10 (soundness of Construction 3), the probability that the
verifier for the first scalar-product subprotocol accepts and that the claims about uA and uB are true is at
most εSP. If the claim about uA is false, then by Lemma 6.10, the probability that the verifier for the second
scalar-product subprotocol accepts and that the claims about uC and uD are true is at most εSP.

Therefore, by a union bound, except with probability at most 2εSP, at least one of the claims about uB ,
uC or uD is false, or the verifier rejects.

Lemma 6.16. The prover in Construction 4 has arithmetic complexity O(N), and the verifier has arithmetic
complexity O(logN).

Sketch. By Lemma 6.11, the prover in Construction 3 has arithmetic complexity O(N) and the verifier
in Construction 3 has arithmetic complexity O(logN). Construction 4 consists of two executions of
Construction 3, so the result follows.

Lemma 6.17. Construction 4 has an implementation with a streaming prover that usesO(N logN) arithmetic
operations over F, O(logN) space, and O(logN) passes over S(f), S(g) and S(h).

Proof. This follows immediately from the space-efficient implementation of Construction 3 and its analysis
in Lemma 6.12.

6.5 Hadamard-product protocol

We describe a Hadamard product protocol.

Construction 5. We construct a PIOP for the indexed relationRHP. The prover P takes as input an index
i = ⊥, instance x = (F, N), and witness w = (f ,g,h); the verifier V takes as input the index i and the
instance x.

Interactive phase. The protocol proceeds as follows.

• The verifier V sends uniformly random challenge υ ∈ F×.

• The prover P computes u = 〈h,y〉, where y := (1, υ, . . . , υN−1), and sends the non-oracle message
u ∈ F. Note that in the space-efficient variant, the prover need not compute y from υ explicitly.

• The prover P and verifier V engage in a twisted scalar-product protocol with w := (f ,g) and x :=
(F, N, υ, u) to show that 〈f ◦ y,g〉 = u. The twisted scalar product protocol outputs claims uA =
〈f ,y ◦ ⊗j(1, ρj)〉 and uB = 〈g,⊗j(1, ρj)〉.

The output of the interactive phase consists of three claims

uA = 〈f ,y ◦ ⊗j(1, ρj)〉 , uB = 〈g,⊗j(1, ρj)〉 , u = 〈h,y〉 .

Query phase. The prover and the verifier run the univariatePIOP for tensor products fromConstruction 1
to check that the three claims from Equation 21 are true:

• one execution with x = (F, N, υ20
ρ0, . . . , υ

2n−1
ρn−1, uA) and w = f ;

• one execution with x = (F, N, ρ0, . . . , ρn−1, uB) and w = g; and

• one execution with x = (F, N, υ20
, . . . , υ2n−1

, u) and w = h.

Theorem 6.4 follows in a straightforward manner from Theorem 6.2, with soundness using the Schwartz–
Zippel lemma.

36

7 A non-holographic protocol for R1CS

We present a non-holographic protocol forRR1CS.
Theorem 7.1. For every finite field F and positive integer N , there is a PIOP for the indexed relationRR1CS
for instances with N ×N matrices withM non-zero entries, with the following complexity parameters:

time-efficient
prover

space-efficient
prover

time-efficient
verifier

space-efficient
verifier

soundness
error

round
complexity

proof
length

query
complexity

O(M) F-ops
O(M) memory

O(M log2N) F-ops
O(logN) memory
O(logN) passes

O(M) F-ops
O(M) memory

O(M logN) F-ops
O(logN) memory
O(1) passes

O
(
N
|F|

)
O(logN) O(logN) O(logN)

Note that Theorem 7.1 features an elastic verifier as well as an elastic prover.
Construction 6. We construct a PIOP for the indexed relationRR1CS. The indexer algorithm is trivial. The
prover P takes as input an index i = (F, N,M,A,B,C), instance x = x, and witness w = w; the verifier
V takes as input the index i and the instance x. The protocol proceeds as follows.

• The prover P sets z := (x,w) ∈ FN and sends the oracle message w to the verifier. The prover computes
Az, Bz, Cz ∈ FN .

• The prover P and verifier V run the interactive phase of the Hadamard-product protocol (Construction 5)
with x := (F, N) and w := (Az, Bz, Cz) to show that Az ◦ Bz = Cz. This generates claims
that uA = 〈Az,y ◦ ⊗j(1, ρj)〉, uB = 〈Bz,⊗j(1, ρj)〉 and uC = 〈Cz,y〉 for verifier randomness
ρ0, . . . , ρn−1, υ ∈ F and y := (1, υ, . . . , υN−1). Rewrite these claims as

uA = 〈z,a∗〉 , (22)
uB = 〈z,b∗〉 , (23)
uC = 〈z, c∗〉 , (24)

where a∗ := yᵀ ◦ ⊗j(1, ρj)
ᵀA, b∗ := ⊗j(1, ρj)

ᵀB and c∗ := yᵀC.

• Note that to run the holographic protocol, the prover and verifier use Construction 7 instead of what follows
from this point.
The verifier V samples random challenge η ← F× and sends η to the prover P . The challenge is used to
bundle the three claims into one:

uA + η · uB + η2 · uC = 〈z, a∗ + η · b∗ + η2 · c∗〉 .

The prover and verifier run the interactive phase of the scalar-product protocol (Construction 3) to check
this claim. This produces two claims:

– a claim
uD = 〈z,⊗j(1, ρ

′
j)〉

about z which the verifier can check using the tensor product protocol (Construction 1) with x =
(F, N, ρ′0, . . . , ρ

′
n−1, uD) and w = z;

– a claim
uE = 〈a∗ + η · b∗ + η2 · c∗, ⊗j (1, ρ′j)〉

which the verifier can check for themselves. Here, ρ′0, . . . , ρ
′
n−1 ∈ F is the verifier randomness used in

the scalar-product protocol.

37

7.1 Proof of Theorem 7.1

Completeness follows from the completeness of each subprotocol and Equations 22 to 24. The soundness
error of the protocol and query complexity follow from those of the scalar-product protocol, Hadamard
product protocol and consistency-check protocol. We analyse the complexity of the time-efficient prover
in Lemma 7.2. We analyse the complexity of the space-efficient prover in Lemma 7.3. We analyse the
complexity of the time-efficient prover in Lemma 7.4. We analyse the complexity of the space-efficient prover
in Lemma 7.5.

Lemma 7.2. The prover in Construction 6 can be implemented with arithmetic complexity O(M) and O(M)
memory.

Proof sketch. The prover P computes Az, Bz and Cz, which uses O(M) arithmetic operations and O(M)
space. The prover P uses the Hadamard-product protocol, scalar-product protocol and consistency-check
protocol as subroutines, running the protocols on vectors of length N . This uses O(N) arithmetic operations
and O(N) memory.

Lemma 7.3. The prover in Construction 6 can be implemented with arithmetic complexity O(M log2N),
O(logN) memory, and O(logN) passes over the streams S(z), S(Az), S(Bz) and S(Cz), and Scmaj(U)
for U ∈ {A,B,C}.

Proof sketch. We explain how to implement the space-efficient prover for Construction 6. Recall that
Scmaj(U) provides streaming access to the vectors rowU , colU and valU ∈ FM of row indices, column indices
and non-zero entries of U ∈ {A,B,C} in column major order.

The prover P uses the Hadamard-product protocol, scalar-product protocol and tensor-product protocol
as subroutines, running the protocols on vectors of length N . These protocols use O(N logN) arithmetic
operations, O(logN) memory and O(logN) passes over the witnesses for the protocols.

The prover has direct access to streams for the witnesses for the Hadamard-product protocol and the
consistency check. However, one of the witnesses for the scalar-product protocol is the vector a∗+η ·b∗+η2c∗

where a∗ = yᵀ ◦ ⊗j(1, ρj)
ᵀA, b∗ = ⊗j(1, ρj)

ᵀB and c∗ = yᵀC.
The prover can generate the streams of a∗, b∗ and c∗ using the algorithm in Figure 4. The prover

multiplies each of theM non-zero elements of A, B and C by O(logN) field elements (the seeds used to
generate vectors such as⊗j(1, ρj)). Since the Hadamard-product prover makesO(logN) passes over streams
of the witness (e.g. zA), the prover uses O(M log2N) arithmetic operations.

Lemma 7.4. The verifier in Construction 6 can be implemented with O(M) field operations.

Proof. The verifier V uses the scalar-product protocol and consistency-check protocol as subroutines. The
dominant cost for the verifier is the computation of the claim

uE = 〈a∗ + η · b∗ + η2c∗,⊗j(1, ρ
′
j)〉 = 〈

(
yᵀ ◦ ⊗j(1, ρj)

ᵀ) ·A+ η ⊗j (1, ρj)
ᵀB + η2yᵀC,⊗j(1, ρ

′
j)〉 .

This requires O(M) field operations, because it costs O(N) to calculate all entries of the vectors⊗j(1, ρj), υ
and ⊗j(1, ρ

′
j), and y ◦ ⊗j(1, ρj), O(M) entries to perform multiplications by A, B and C and then O(N) to

evaluate the scalar product. Note that V can evaluate z(X) at any point γ with O(|x|) operations by querying
w at γ and computing the expression x(X) +X |x|w(X) by using x.

Lemma 7.5. The verifier in Construction 6 can be implemented with arithmetic complexity O(M logN),
O(logN) memory, and O(1) passes over the streams Scmaj(U) for U ∈ {A,B,C}.

38

Stream S(u∗) = Smat-prod(ρ, U)

Initialize:
j′ := N

(i, j, a) := Scmaj(U).next()
Next element:

Item = 0; Decrement j′

// Accumulate the inner product until end of line is reached

while (j′ = j) :
// Let bk be the k-th bit of i, for k ∈ [n]

// t = yi could be computed more efficiently in specific R1CS instances

t :=
∏
k ρ

bk

k

Item := Item + t · a
(i, j, a) := Scmaj(U).next()

yield Item

Stream S(y) = Stensor(ρ)

Initialize:
j := N

// Let bk be the k-th bit of N

t :=
∏
k ρ

bk

k

carry :=
[
ρ−1
i

∏
k<i ρk

]
i∈[n]

Next element:
Decrement j
// k is the position of the borrow

k := least bit set of j
t := t · carryk
yield t

Figure 4: Streams S(a∗), S(b∗), S(c∗), and S(y).

Proof sketch. As in Lemma 7.4, the main cost for the verifier in this protocol is the cost of checking the claim

uE = 〈a∗ + η · b∗ + η2c∗,⊗j(1, ρ
′
j)〉

= 〈
(
yᵀ ◦ ⊗j(1, ρj)

ᵀ) ·A,⊗j(1, ρ′j)〉+ η · 〈⊗j(1, ρj)
ᵀB,⊗j(1, ρ

′
j)〉+ η2 · 〈yᵀC,⊗j(1, ρ

′
j)〉 .

The verifier can compute the value on the right hand side as follows. Consider the term 〈⊗j(1, ρj)
ᵀB,⊗j(1, ρ

′
j)〉 =∑

k∈[M][⊗j(1, ρj)
ᵀ]rowB,k

· valB,k · [⊗j(1, ρ′j)]colB,k
. To compute this term, the verifier sets a running total z

to be equal to 0, and for each k ∈ [M], streams the k-th element of rowB , colB and valB to get values i, j
and v. The verifier computes the binary decomposition of i and j and uses them to compute the i-th and
j-th entries of ⊗j(1, ρj)

ᵀ and ⊗j(1, ρ
′
j)
ᵀ, by performing at most O(logN) multiplications. The verifier then

multiplies these values values together, multiplies by v, and adds the result to the running total z. Repeating
this process for the terms containing A and C, it is easy to see that the verifier uses O(M logN) operations
and O(logN) space.

39

8 Achieving holography

We extend the non-holographic elastic PIOP of the previous section to additionally achieve holography.

Theorem 8.1. For every finite field F and positive integersN,M , there is a holographic PIOP for the indexed
relation RR1CS for instances with N ×N matrices withM non-zero entries and public input x, with the
following complexity parameters:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(M) F-ops
O(M) memory

O(M log2N) F-ops
O(logM) memory
O(logM) passes

O(|x|+ logM) F-ops O
(
M
|F|

)
O(logM) O(logM) O(logM)

8.1 Proof of Theorem 8.1

Part of Construction 6 (the non-holographic R1CS protocol) generates the claims that

uA = 〈z,yᵀ ◦ ⊗j(1, ρj)
ᵀ ·A〉 ,

uB = 〈z,⊗j(1, ρj)
ᵀB〉 ,

uC = 〈z,yᵀC〉 ,

and then checks these claims using a scalar-product protocol. The holographic protocol checks the claims
using the alternative construction following the strategy in [BCG20]. The key subprotocols are a look-up
protocol in Section 8.2 and an entry-product protocol in Section 8.3. As discussed in Section 2, we leverages
plookup in Section 8.2.1 and offline-memory checking in Section 8.2.2 to build the look-up protocol.

Remark 8.2. In the construction, we will assume that the matrices A, B and C have the same support, which
means that row := rowA = rowB = rowC and col := colA = colB = colC . This can be achieved by padding
valA, valB and valC with zeroes as required, and increases the length of the sparse representations of A, B
and C by at most a factor of 3.

Construction 7. We construct a PIOP for the indexed relationRR1CS. The indexer algorithm takes as input
an index (F, N,M,A,B,C), outputs the oracle messages valU for U ∈ {A,B,C}, and runs the indexer
algorithm of Construction 8 on row and col.9 The prover P takes as input the index i = (F, N,M,A,B,C),
instance x = x, and witness w = w; the verifier V takes as input the instance x and has query access to the
indexer’s oracle messages. The protocol proceeds as follows.

• The protocol begins by running the first two steps of Construction 6.

• The prover P constructs the vectors

z? := z|col , r?A := (y ◦ ⊗j(1, ρj))|row ,

r?B := (⊗j(1, ρj))|row ,

r?C := y|row .

It sends z?, r?A, r
?
B , r

?
C ∈ FM as oracle messages to the verifier.

9If the lookup protocol is implemented using the memory-checking protocol, the indexer runs the indexer of Construction 9 and
Construction 8.

40

Stream S(z?) = Slu(z, U)

Initialize:
a := ⊥ // holds zi

i := N

Next message:
// Get coli
(_, c, _) := Scmaj(U).next()
// Fast-forward S(z) to i

while (i > c)
Decrement i
a := S(z).next()

// Since col is ordered, now i = c

yield a

Stream Stensor−lu(r?U) = S(ρ, U)

Next message:
// Get rowi

(r, _, _) := Scmaj(U).next()
// Let bk be the k-th bit of r

// t could be computed more efficiently in specific R1CS instances

t :=
∏
k ρ

bk

k

yield t

Figure 5: Stream of the vectors z?, r?A, r
?
B , r

?
C . Scmaj(U) produces the sparse representation triplets (row, col,

value) in column-major; we use pattern-matching with “_” to assign the value we are interested in.

• The prover P and verifier V engage in the following scalar product subprotocols in parallel using the same
verifier randomness for each subprotocol:

– one with statement x = (F,M, uA) and witness w = (r?A, valA, z?);
– one with statement x = (F,M, uB) and witness w = (r?B, valB, z?); and
– one with statement x = (F,M, uC) and witness w = (r?C , valC , z?).

• Let rB := ⊗j(1, ρj), rC := y and rA := y◦⊗j(1, ρj). The prover P and the verifier V engage (in parallel)
the following subprotocols:

– z? ⊆ z: invoke lookup with index i = col with statement x = (F,M,N) and witness w = (z?, z)
– r?A = r?B ◦ r?C: invoke Hadamard protocol protocol with statement x = (F,M) and witness w =

(r?B, r
?
C , r

?
A)

– r?B ⊆ rB: invoke lookup with index i = row with statement x = (F,M,N) and witness w = (r?B, rB)
– r?C ⊆ rC: invoke lookup with index i = row, statement x = (F,M,N) and witness w = (r?C , rB)

8.2 Lookup protocol

Definition 8.3. The lookup relation RLU is the set of tuples (i,x,w) =
(
addr, (F,M,N), (f∗, f)

)
where

f∗ ∈ FM , f ∈ FN , addr ∈ [N]M such that f∗i = faddri
.

We can transform the relations in Construction 7 into the above lookup relations. For example, for the
relation z? ⊆ z, we consider representing z? as f∗, z as f , and col as addr. It is non-trivial to construct this
protocol for this relation in the streaming model. At first glance, it would appear that random access to the
vector f is necessary, since f∗ is indexed both by i ∈ [N] and by addri. To overcome these issues, we require
the stream of the index addr to be implemented as two different streaming oracles.

41

(i) S(addr), the stream of the vector addr;

(ii) Ssort(addr), the stream of the vector addr, sorted in decreasing order.

The previous literature studying PIOPs forRLU essentially follows two different approaches: the plookup
protocol and the offline-memory checking protocol. Only the plookup protocol is compatible with our elastic
model. In the following sections, we discuss both of these two lookup protocols and their limitations.

Theorem 8.4. For every finite field F and positive integer N , there is a holographic PIOP for the indexed
relationRLU with:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(M) F-ops
O(M) memory

O(M logM) F-ops
O(logM) memory
O(logM) passes

O(logM) F-ops O
(
M
|F|

)
O(logM) O(logM) O(logM)

Remark 8.5. In the lookup protocol, the verifier needs to query the polynomial f(x) =
∑d
i=0 i · x

i at a
random point α. This can be computed in time O(log d) with f(α) = α(1−αd)

(1−α)2 − dα
d+1

1−α , by differentiating the
geometric series formula. If α = 1, we obtain the well-known formula f(1) = d(d+ 1)/2.

8.2.1 Plookup

This technique was previously employed in [GW20; BCG20]. It expresses the lookup as a polynomial relation
of this form:

Lemma 8.6 ([GW20, Claim 3.1]). Let f∗ ∈ FM and f ∈ FN . Then f∗ ⊆ f if and only if there exists
w ∈ FM+N such that the equation below in F[Y, Z] is satisfied:

M+N−1∏
j=0

(
Y (1 + Z) + wj+1 + wj · Z

)
= (1 + Z)M

M−1∏
j=0

(Y + fj)
N−1∏
j=0

(
Y (1 + Z) + fj+1 + fj · Z

)
(25)

where indices are taken (respectively) modulo M + N , N . If f∗ ⊆ f , then w := sort(f∗, f) satisfies
Equation 25.

In the above equation, we consider the subset relation a ⊆ d, and use a� to denote the rotation of the
vector a. Therefore, it is sufficient to test the above polynomial equality over two random points in the field.

As the above equation will prove a simpler subset statement that a ⊆ d, we will hash the values with their
indices to prove the lookup relationRLU: the verifier sends η ∈ F sampled uniformly ar random and then,
the prover defines:

a :=z? + η · col
d :=z + η · [N]

(26)

We proceed similarly for r∗U , and rU . We note that there is no need to send these oracles to the verifier: the
verifier simply needs to substitute Equation 26 and ask for an evaluation in the vectors composing it.

42

Remark 8.7. Note that the verifier does not have the oracle access to the shift vectors d� and w�. To avoid
having the prover send the shifted oracles and having the verifier check consistency between them, the prover
can add a leading zero to d and w. The plookup relation Equation 25 still holds as long as there is no zero
entry in the set, which is guaranteed by the algebraic hash. As a result, the verifier can obtain the evaluation
of the shifted oracles as follows:

d�(x) = xNd(x) w�(x) = xN+Mw(x) . (27)

Construction 8. We construct a PIOP for the indexed relationRLU. Given i = addr as input, the indexer
algorithm outputs addr as an oracle message. The prover P takes as input an index i = addr, instance
x = (F,M,N), and witness w = (f∗, f); the verifier V has query access to the index i and the witness w
and takes as input the instance x. The protocol proceeds as follows.

• The prover P constructs and sends the oracle message w to the verifier V .

• The verifier V samples random elements υ, ζ ← F× and sends them to P .

• The prover P computes:

ea :=
M−1∏
j=0

(aj + ζ)

ed :=
N−1∏
j=0

((1 + ζ)υ + d�j + ζdj)

ew :=
M+N−1∏
j=0

((1 + ζ)υ + w�j + ζwj)

and sends them to the verifier.

• The verifier V checks that (1 + υ)Meaed = ew

• The prover P and the verifier V engage (in parallel) the entry-product subprotocol with the following
statements and witnesses:

– entry product with statement x = (F,M, ea) and witness w = (a + υ);
– entry product with statement x = (F, N, ed) and witness w = ((1 + ζ)υ + d� + ζd);
– entry product with statement x = (F, N +M, ew) and witness w = ((1 + ζ)υ + w� + ζw).

In order to achieve space-efficiency, we design the algorithm in Figure 6 to realize the stream of the
vectors in Construction 8. For example, we can use Sset(Smerge(z

?
U , z)) to construct the stream of the sorted

vector w.

8.2.2 Memory checking

The offline memory-checking technique originated in [BEGKN91] and was used in prior argument systems
[SATJ18; Set20]. It can be used to prove claims of the form f∗ ⊂ f , but and unlike the plookup protocol some

43

Stream Smerge(S1,S2)

Initialize:
a := S1.next()
b := S2.next()

Next message:
if (a 6= b)
a := S1.next()

else
b := S2.next()

yield a

Stream Ssubset(S1, ζ)

Next message:
a := S1.next()
yield a+ ζ

Stream Sset(S1, υ, ζ)

Initialize:
a := 0

Next message:
b := a

a := S1.next()
if a 6= ⊥
yield υ(1 + ζ) + a+ ζ · b

else
yield υ(1 + ζ) + ζ · b

Figure 6: Stream of the vectors for the lookup protocol.

oracles can be computed by the indexer. The indexer, for the specific relationRLU, computes three oracles
from the index addr: the read timestamp read-ts, the write timestamp write-ts, and the audit timestamp
audit-ts as follows:

read-ts := (max j ∈ [M] : addrj = addri)i∈addr , (28)
write-ts := [N] , (29)
audit-ts := (max j < i : addrj = addri)i∈addr . (30)

If, at the i-th position, no such maximum exists, the element is set to zero. At the core of the memory-checking
protocol there is the following polynomial relation.

Theorem 8.8. Let f∗ ∈ FM , f ∈ FN , and addr ∈ [N]M . We have f∗i = faddri
for all i ∈ [M] if and only if

N∏
j=1

(X −HY (j, fj))·
M∏
j=1

(X −HY (addrj , f∗j ,write-tsj))

=
M∏
j=1

(X −HY (addrj , f∗j , read-tsj)) ·
N∏
j=1

(X −HY (j, fj , audit-tsj))
(31)

where HY (a, b, c) = a+ Y · b+ Y 2 · c, and read-ts, write-ts and audit-ts are vectors produced by the offline
memory-checking procedure described in [Set20].

The prior work [Set20] expresses Equation 31 in the circuit, and leverages an external proof system to
generate the proof. In contrast, we reduce the Equation 31 into four entry product arguments. The verifier
samples random challenges β, σ ∈ F×, and both parties engage in the entry product protocols forX = β and
Y = σ. As discussed in Section 2.7.2, the offline-memory checking is only compatible with the lookup claim(
z?, col

)
⊆
(
z, [N]

)
.

The timestamp oracles read-ts,write-ts, and audit-ts can be computed in linear-time by the indexer, as
shown in Fig. 7. Then if the underlying entry product protocol is linear-time, the overall offline memory-
checking protocol is also linear-time. We now consider the space-efficient realization. The biggest challenge

44

Indexer for Construction 9

read-ts := (0)i∈[N]

write-ts := (0)i∈[N]

audit-ts := (0)i∈[N]

for (i, a) ∈ [N]× addr
write-ts[i] := i

read-ts[i] := audit-ts[a]
audit-ts[a] := i

Figure 7: Linear-time algorithm for generating the timestamp vectors in Construction 9 [BEGKN91; Set20].

is to produce the streams of timestamp oracles read-ts,write-ts, and audit-ts. However, we observe that
because we organize the non-zero entries in the column-major order, the elements in the stream of colU are in
non-descending order. As a result, the streams of read-ts,write-ts, and audit-ts can be computed by a single
pass of colU .

Construction 9. We construct a holographic PIOP for the indexed relationRLU. On input addr, the indexer
produces the oracle messages read-ts, audit-ts. The prover P takes as input an index i = addr, instance
x = (F,M,N), and witness w = (f∗, f); the verifier V takes as input the index i and the instance x. The
prover P and the verifier V proceed as follows:

• The verifier V samples random elements β, σ ← F× and sends them to P .

• The prover P computes:

einit =
N∏
j=1

(β −Hσ(j, fj)),

ews =
M∏
j=1

(β −Hσ(addrj , f∗j ,write-tsj)),

ers =
M∏
j=1

(β −Hσ(addrj , f∗j , read-tsj)),

eas =
N∏
j=1

(β −Hσ(j, fj , audit-tsj)) .

and sends them to the verifier.

• The verifier V checks that einit · ews = ers · eas

• Let init,as ∈ FN and ws, rs ∈ FM denote the vectors involved in each entry product. The prover P and
the verifier V engage entry-product subprotocols with the following statements and witnesses:

– entry product with statement x = (F,M, einit) and witness w = init;

45

– entry product with statement x = (F,M, ews) and witness w = ws;
– entry product with statement x = (F,M, ers) and witness w = rs;
– entry product with statement x = (F, N, eas) and witness w = as.

An oracle query to e.g. init in a subprotocol is made by taking the appropriate linear combination of
queries to (0, . . . , N − 1), f and 0N .

8.3 Entry product

Let f be a monic polynomial whose product of coefficients is e. We design a proof system for proving that
e =

∏
i fi. More formally:

Definition 8.9. The entry product relation REP is the set of tuples (i,x,w) = (⊥, (F, N, e), f) where
f ∈ FN and

∏N−1
i=0 fi = e.

Theorem 8.10. For every finite field F and positive integer N , there is a PIOP for the indexed relationREP
with:

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

O(N) F-ops
O(N) memory

O(N logN) F-ops
O(logN) memory
O(logN) passes

O(logN) F-ops O
(
N
|F|

)
O(logN) O(logN) O(logN)

We can evaluate Equation 32 at a random point α and check it using a scalar-product protocol. This
requires one scalar-product protocol and two evaluation queries.

Construction 10. We construct a PIOP for the indexed relationREP. The prover P takes as input an index
i = ⊥, instance x = (F, N, e), and witness w = f ; the verifier V takes as input the index i and the instance
x. The prover P and the verifier V proceed as follows:

• The prover P constructs g := (
∏
i≥0 fi,

∏
i≥1 fi, . . . , fN−2fN−1, fN−1), and sends the field element

fN−1 and the oracle message g to the verifier.

• The verifier samples a random α← F× and sends it to the prover.

• The verifier queries the oracle for g to learn g(α), and the prover and verifier compute u := g(Y)Y +
fN−1(e− Y N).
The prover P and verifier V engage in a twisted scalar-product protocol (Construction 3) with index i = ⊥,
instance x = (F, N,y, u), and witness w = (g ◦ y, f�) and produces claims that A = 〈g,⊗j(1, υjρj)〉
and C = 〈f�,⊗j(1, ρj)〉. where y = (α0, . . . , αN−1) = ⊗j(1, υj) and (ρ0, . . . , ρn−1) are the verifier
randomnesses in the scalar product protocol. They check these claims using the tensor product protocol
(Construction 1).

Lemma 8.11. Let f ,g ∈ FN , with fN−1 6= 0. Let e ∈ F. Then

〈g ◦Y, f�〉 = g(Y)Y + fN−1(e− Y N) (32)

46

if and only if
g := (

∏
i≥0 fi,

∏
i≥1 fi, . . . , fN−2fN−1, fN−1) .

and
∏
i≥0 fi = e.

Proof. If f = (f0, f1, f2, . . . , fN−1), then f� = (fN−1, f0, f1, . . . , fN−2), so

〈g ◦Y, f�〉 = g0fN−1 + g1f0Y + · · ·+ gN−2fN−3Y
N−2 + gN−1fN−2Y

N−1 . (33)

We also have

g(Y)Y + fN−1(e− Y N) =
N−1∑
i=1

gi−1Y
i + fN−1e+ gN−1Y

N − fN−1Y
N . (34)

Comparing coefficients shows that the polynomials in Equation 33 and Equation 34 are equal if and only
if gi = gi+1fi for i ∈ [N − 1], with gN−1 = fN−1 and g0fN−1 = efN−1. Since fN−1 6= 0, the claim
follows.

Remark 8.12. Construction 10 requires f to be a monic polynomial, however, the polynomial f ′ in the lookup
protocol does not satisfy this condition. To solve that, the prover and the verifier run the entry product for
f(x) = f ′(x) + xn. Note that the claim of the entry product remains the same. Moreover, the verifier can
easily query the shifted oracle as follows: f�(x) = 1 + xf ′(x).

47

9 Polynomial commitment schemes

We use polynomial commitment schemes to compile our PIOPs into cryptographic arguments. We require
elastic polynomial commitment schemes to compile elastic PIOPs into elastic argument systems. We will
use the same polynomial commitment scheme as [CHMMVW20], which is a variant of the construction
in [KZG10]. Our contribution is to show that this scheme has elastic commitment and opening algorithms.

Theorem 9.1. The commitment scheme of [CHMMVW20] is elastic, with:

setup
time

time-efficient
commitment

time-efficient
opening

space-efficient
commitment

space-efficient
opening

check
time

commitment and
opening sizes

MSM(D) ops
MSM(D) ops
O(D) memory

MSM(D) ops
O(D) memory

O(D) SM ops
O(1) SM memory
O(1) passes

O(D) SM ops
O(1) SM memory
O(1) passes

O(1) SM
+ O(1) PA O(1) GE

In the above theorem, we let MSM denote multi-scalar exponentiation, SM denotes exponentiation, PA
denotes pairing, GE denotes a group element, andD denotes the maximum degree of the polynomials. In the
rest of this section, we give formal definitions for an elastic polynomial commitment scheme and show how to
construct it.

9.1 Definition

A polynomial commitment scheme over a field family F is a tuple of algorithms PC = (Setup,Com,Open,
Check) with the following syntax.

• Setup PC.Setup(1λ, D)→ (ck, rk). On input a security parameter λ (in unary), and a maximum degree
bound D ∈ N, PC.Setup samples a commitment key ck and verification key rk, which contain the
description of a finite field F ∈ F .

• Commit PC.Com(ck,p)→ C. On input ck and a univariate polynomial p of degree at most D over the
field F, PC.Com outputs commitment C to the polynomial p.

• Open PC.Open(ck,p, z) → π. On input ck, a univariate polynomial p, degree bounds D, and a query
point z ∈ F, PC.Open outputs an evaluation proof π.

• Check PC.Check(rk, C, z, v, π) ∈ {0, 1}. On input rk, the commitment C, query point z ∈ F, alleged
evaluation v, and an evaluation proof π, PC.Check outputs 1 if π attests that the polynomial p committed
in C has degree at most D and evaluates to v at z.

A polynomial commitment scheme PC must satisfy completeness and extractability.

Definition 9.2 (Completeness). For every degree bound D ∈ N and efficient adversary A,

Pr


deg(p) ≤ D

⇓
PC.Check(rk, C, z, v, π, ξ) = 1

∣∣∣∣∣∣∣∣∣∣∣

(ck, rk)← PC.Setup(1λ, D)
(p, z)← A(ck, rk)

C ← PC.Com(ck,p)
v = p(z)

π ← PC.Open(ck,p, z)

 = 1 .

48

Definition 9.3 (Extractability). For every degree bound D ∈ N and efficient adversary A there exists an
efficient extractor E such that for every round bound r ∈ N, efficient query samplerQ, and efficient adversary
B the probability below is negligibly close to 1 (as a function of λ):

Pr


PC.Check(rk, C, z, v, π) = 1

⇓

deg(p) ≤ D and v = p(z)

∣∣∣∣∣∣∣∣∣∣
(ck, rk)← PC.Setup(1λ, D)

C ← A(ck, rk)
p← E(ck, rk)
z ← Q(ck, rk)

(π, v, st)← B(ck, rkz)

 .

(The above definition captures the case where A,Q,B share the same random string to win the game.)

9.2 An elastic polynomial commitment scheme

The polynomial commitment scheme of [KZG10] consists of the following algorithms.

• Setup PC.Setup(1λ, D) → ck. First, PC.Setup samples a bilinear group (G1,G2,GT , q, G,H, e) ←
SampleGrp(1λ). Next, PC.Setup samples β ∈ F, computes βH and computes the vector

Σ = (GD, GD−1, . . . , G1, G0) :=
(
βDG βD−1G . . . βG G

)
∈ GD+1

1 .

Finally, PC.Setup outputs ck := ((G1,G2,GT , q, G,H, e),Σ) and rk := (G,H, βH).

• Commit PC.Com(ck,p) → C. The commitment algorithm PC.Com parses p(X) ∈ F[X] of degree
d ≤ D as

∑d
j=0 pjX

j and outputs C :=
∑d
j=0 pj ·Gj ∈ G1.

• Open PC.Open(ck,p, z)→ π. The opening algorithm PC.Open computes witness polynomial w(X) :=
p(X)−p(z)

X−z , parses w(X) as
∑d−1
j=0 wjX

j and outputs the evaluation proof π :=
∑d−1
j=0 wjGj ∈ G1.

• Check PC.Check(rk, C, z, v, π) ∈ {0, 1}. The check algorithm PC.Check outputs 1 if and only if
e(C − vG,H) = e(π, βH − zH).

Below we explain how to implement this scheme in small space using streaming algorithms. We only
need to consider the Com and Open algorithms, since the Check algorithm is succinct and the setup algorithm
has natural time-and-space-efficient realizations.

The stream S(Σ) of the vector Σ is simply the sequence (GD, . . . , G0). The stream S(p) associated with
the polynomial p =

∑D
j=0 pjX

j is the sequence (pd, . . . , p0). Note that it is important that S(Σ) and S(p)
are ordered from highest powers of β and X to lowest in order to support an efficient PC.Open algorithm.
Commit. On input ((G1,G2,GT , q, G,H, e),S(Σ),S(p)), PCs.Com sets C = 0 ∈ G1. Then, for
j = d, d − 1, . . . , 0, PCs.Com uses the streaming oracles to get pj = S(p).next() and Gj = S(Σ).next()
and computes C := C + pjGj . Otherwise, PCs.Com outputs C ∈ G1.

Note that PCs.Com only needs to store the value of C throughout the entire loop.
Open. On input ((G1,G2,GT , q, G,H, e),S(Σ),S(p)), evaluation point z ∈ F, opening challenge ξ ∈ F,
PCs.Open sets π = 0 ∈ G1 and wd := 0 ∈ F, and consumes the first element of the stream S(Σ) by fetching
Gd = S(Σ).next().

Then, for j = d − 1, . . . , 0, PCs.Open uses the streaming oracles to get pj+1 = S(p).next() and
Gj = S(Σ).next(), and computes wj := pj+1 + wj+1z and π := π + wjGj .

Finally, PCs.Com outputs π ∈ G1.
Note that PCs.Com only needs to store the values of π, wj+1 for the next iteration of the loop.

49

Remark 9.4. The Open and Check algorithms (as well as the completeness and extractability properties)
can be generalized as in [CHMMVW20; BDFG20] to allow batched opening and evaluation checking.
Given polynomials p0, . . . ,pm−1 and claimed evaluations v0, . . . , vm−1 at a point z, the party verifying
the commitment and openings selects a random opening challenge ξ ∈ F, and the PC.Open and PC.Check
algorithms are run on polynomial p :=

∑m−1
i=0 ξipi and claimed evaluation v :=

∑m−1
i=0 ξivi. Given points

z0, . . . , z` and claimed evaluations v0, . . . , v`, the evaluation proof defines Z(X) :=
∏
i(X − zi). Let q(X)

and r(X) be respectively quotient and reminder of the Euclidian division between p(X) and Z(X). Let
R,Z ∈ G be the group elements associated to r(X) and Z(X). The evaluation proof is π := 〈q(X), ck〉
while the evaluations are obtained as vi := r(zi). The PC.Check algorithm reconstructs r(X) from the
claimed evaluations via polynomial interpolation and checks that e(C −R,H) = e(π, Z).

We briefly describe how the PC.Open algorithm can be implemented in small space. The stream S(p)
can be computed by a streaming algorithm that uses O(m`D) operations, O(`) space (never storing more
than pi, . . . ,pi−`+1 coefficients for the partial computation of the opening), and a single pass over each of
them polynomials pi. Composing this streaming algorithm with the opening algorithm using Lemma 4.6
gives a batched opening algorithm.

The complexity of batched operations for PC is given in the following table.

time-efficient
opening

space-efficient
opening

check
time

opening
size

O(D) SM +O(m`D) F ops
O(mD +m`) memory

O(D) SM +O(m`D) F ops
O(`) SM memory
O(1) passes

O(m+ `) SM
+ O(1) PA O(1) GE

We note that, in Construction 1, ` = 3 as we demand evaluations for β,−β, β2 as displayed in Eq. 15.

50

10 Elastic argument systems

We describe a compiler that uses elastic polynomial commitment schemes and elastic PIOPs to construct
elastic cryptographic arguments.

Theorem 10.1. Consider the following.

• A holographic PIOP over a field family F , for an indexed relationR, with:

indexer
time

time-efficient
prover

space-efficient
prover

verifier
time

soundness
error

round
complexity

message
complexity

query
complexity

communication
complexity

tI

tP time
sP memory

t′P time
s′P memory
kP passes

tV time ε k l q cc

– a public-coin verifier and non-adaptive queries; and
– message schedule specified by o and d with output stream ordering {(a, b, c) : a ∈ [k], b ∈ [o(a)], c ∈

d(|i|, a, b)} ordered first in ascending order by round number a, then ascending order by oracle number
b, then descending order by polynomial coefficient c.

– maximum degree bound D := maxa,b{d(|i|, a, b)};

• A polynomial commitment scheme PC over a field family F , with

setup
time

time-efficient
commitment

time-efficient
opening

space-efficient
commitment

space-efficient
opening

check
time

commitment and
opening sizes

tPC.G

tPC.Com time
sPC.Com space

tO time
sO memory

t′PC.Com time
s′PC.Com memory
kPC.Com passes

t′O time
s′O memory
po passes

tPC.Check |PC.Com|

and input ordering {pd, pd−1, . . . , p0} for all streams of input polynomials p(X) =
∑d
i=0 piX

i, for the
PC.Com and PC.Open algorithms.

Then there is a preprocessing argument forR with

generator
time

indexer
time

verifier
time

soundness
error

round
complexity

communication
complexity

tPC.G tI + o(0) · tPC.Com tV + qtPC.Check ε+ negl(λ) k + 2 cc +
∑k
i=1 o(i) · |PC.Com|+ q · |PC.Open|

and prover complexity

time-efficient
prover

space-efficient
prover

tP +
∑k−1
i=0 o(i) · tPC.Com + q(tO + te) time

sP + sPC.Com + sO memory
(kPC.Com + po)t′P +

∑k−1
i=0 o(i) · t

′
PC.Com + q · (t′O + te) time

s′P +
∑k−1
i=0 o(i) · s

′
PC.Com + q · s′O +O(q) memory

(kPC.Com + po) · kP passes

In Section 10.1 we give formal definitions for preprocessing arguments with a universal structured
reference string. In Section 10.2 we present a compiler and prove Theorem 10.1.

51

10.1 Preprocessing arguments with universal SRS

Following [CHMMVW20, Section 7], a preprocessing argument ARG with universal SRS for an indexed
relationR is a tuple of probabilistic polynomial-time algorithms (GARG, IARG,PARG,VARG) consisting of a
generator GARG, an indexer IARG, a prover PARG and a verifier VARG such that the following properties hold.

• Completeness. For all size bounds N ∈ N and efficient A,

Pr

 (i,x,w) 6∈ RN
∨

〈PARG(ipk,x,w),VARG(ivk,x)〉 = 1

∣∣∣∣∣∣∣
srs← GARG(1λ,N)
(i,x,w)← A(srs)

(ipk, ivk)← Isrs
ARG(i)

 = 1 .

• Soundness. For all size bounds N ∈ N and efficient P̃ = (P̃1, P̃2),

Pr

 (i,x) 6∈ L(RN)
∧

〈P̃2(st),VARG(ivk,x)〉 = 1

∣∣∣∣∣∣∣
srs← GARG(1λ,N)
(i,x, st)← P̃1(srs)

(ipk, ivk)← Isrs
ARG(i)

 = negl(λ) .

All of the constructions in this paper achieve the stronger property of knowledge soundness as defined
in [CHMMVW20, Section 7], using the same proof as in [CHMMVW20].

10.2 Elastic PIOP to argument compiler

We show how to compile our elastic PIOPs into an elastic argument systems elastic commitment schemes.
We follow the compiler construction analysed in [CHMMVW20, Theorem 8.1].

Construction 11. As the input PIOP has a public-coin verifier and non-adaptive queries, we assume that all
of the verifier queries in the PIOP take place at the end.
Setup. srs ← GARG(1λ,N): Let D := maxi∈[k] maxj∈[o(i)] d(|i|, i, j). The generator GARG runs
PC.Setup(1λ, D) to get output ck, which contains the description of a finite field F ∈ F .
Offline phase. In the offline phase (“0-th round”), the indexer IARG receives as input a commitment key ck,
a field F ∈ F and an index i for R. Then IARG runs the IOP indexer I, which outputs o(0) polynomials
p0,1, . . . ,p0,o(0) ∈ F[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, o(0)) respectively. For each polynomial
p0,i, the indexer IARG computes C0,i = PCs.Com(ck,p0,i,⊥).
Online phase. In the online phase, given the commitment key ck, an instance x and witness w such
that (i,x,w) ∈ R, the prover PARG receives (F, ck, i,x,w) and the verifier V receives (F,x, ck) and
the commitments produced by IARG(F, i, ck). The prover PARG and the verifier VARG interact over
k + 2 = k(|i|) + 2 rounds.

• For i ∈ [k], in the i-th round of interaction, the verifier VARG runs V and forwards its message ρi ∈ F× to
the prover PARG. The prover PARG forwards this message to P which replies with o(i) oracle polynomials
pi,1, . . . ,pi,o(i) ∈ F[X] of degrees at most d(|i|, i, 1), . . . , d(|i|, i, o(i)) respectively. For each polynomial
pi,j , the prover PARG computes the commitment Ci,j := PC.Com(ck,pi,j ,⊥) and sends Ci,j to the verifier
VARG.

• The verifier VARG runs V to obtain opening queries, each consisting of an evaluation point z ∈ F, and
a pair of indices (i, j) which specify an oracle pi,j . The verifier VARG forwards all of the queries to

52

the prover PARG. Then, for each query (z, i, j), the prover PARG computes v := pi,j(z) ∈ F, computes
π := PC.Open(ck,pi,j , z), and sends v and π to VARG. The verifier VARG forwards the evaluation point v
to V .

• The verifier VARG computes b ← PC.Check(ck, C, z, v,w) for each opening query. If b = 1 for every
execution of PC.Check, and V accepts, then VARG accepts. Otherwise, VARG rejects.

10.3 Proof of Theorem 10.1

The completeness and soundness properties, and indexer, prover and verifier efficiency for the time-efficient
argument produced by the compiler follow from the proof of [CHMMVW20, Theorem 8.1].

To prove Theorem 10.1, it remains to describe a space-efficient implementation of the prover algorithm
Construction 11.

Construction 12 (space-efficient prover). We describe a space-efficient prover algorithm for the online phase
of ARG.

For i ∈ [k], in the i-th round of interaction, PARG initializes o(i) different sessions with the space efficient
commitment algorithm PC.Com, using o(i) different sessions for the streaming oracle S(ck), and runs the
space-efficient implementation of the prover algorithm P (for the i-th round) kPC.Com times, forwarding each
coefficient of each polynomial pi,j(X) to the correct session for PC.Com.

To answer the verifier’s queries, PARG initializes q different sessions with the PC.Open algorithm, using
q different sessions for the streaming oracle S(ck). For each i ∈ [k], consider the evaluation queries
(z1, i, j1), . . . , (zt, i, jt) made during the i-th round. The prover PARG executes P , po times, to produce
po passes over the coefficients of the polynomials pi,0(X), . . . ,pi,o(i)(X). The prover PARG forwards the
coefficients produced during each pass to the correct session for the PC.Open algorithm. During the first
pass over each of the polynomials pi,jr (X), PARG computes pi,jr (zr) using Horner’s rule.

Note that input/output orderings of the P algorithm and the PC.Com and PC.Open algorithms ensure
that the polynomials produced by P are fed to PC.Com and PC.Open in the correct order.

We justify each of the complexity parameters of Construction 12 in turn.
Prover time. For each round i ∈ [k], the prover PARG runs the prover algorithm P for the i-th round a total
of kPC.Com + po times. In total, this incurs a time cost of kPC.Com + po complete executions of P .

In addition, PARG commits to
∑k−1
i=0 o(i) polynomials using PC.Com, and for q queries, evaluates a

polynomial of degree D and runs PC.Open.
This gives a total prover time of (kPC.Com + po)t′P +

sumk−1
i=0 o(i) · t

′
PC.Com + q · (t′O + te).

Prover space. For each round i ∈ [k], the prover PARG runs the prover algorithm P for the i-th round, while
running o(i) executions of PC.Com in parallel. This gives space costs of s′P + o(i)s′PC.Com.

Subsequently, PARG runs P again to answer evaluation queries, running q executions of PC.Open and
computing evaluations of at most q polynomials in parallel at any time. This gives space costs of q · s′O +O(q).
Number of passes. The prover PARG runs P a total of kPC.Com +po times in order to provide enough passes
for PC.Com and PC.Open. Each execution of P uses at most kP , giving a total of (kPC.Com + po) · kP .

53

Acknowledgements

This research was supported in part by: a donation from the Ethereum Foundation; a grant from the Sloan
Foundation.

Jonathan Bootle was partially supported by the SNSF ERC Transfer Grant CRETP2-166734 – FELICITY
and partially supported by the EU H2020 ERC Project 101002845 – PLAZA.

Yuncong Hu was supported by NSF CISE Expeditions Award CCF-1730628, NSF CAREER 1943347,
and gifts from the Sloan Foundation, Alibaba, Amazon Web Services, Ant Group, Ericsson, Facebook,
Futurewei, Google, Intel, Microsoft, Nvidia, Scotiabank, Splunk, and VMware.

References
[ark] arkworks. arkworks: an ecosystem for developing and programming with zkSNARKs. url: https:

//github.com/arkworks-rs.
[BBHR18] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. “Fast Reed–Solomon Interactive Oracle Proofs

of Proximity”. In: Proceedings of the 45th International Colloquium on Automata, Languages and
Programming. ICALP ’18. 2018, 14:1–14:17.

[BC12] N. Bitansky and A. Chiesa. “Succinct Arguments from Multi-Prover Interactive Proofs and their
Efficiency Benefits”. In: Proceedings of the 32nd Annual International Cryptology Conference.
CRYPTO ’12. 2012, pp. 255–272.

[BCCGP16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient Zero-Knowledge Arguments for
Arithmetic Circuits in the Discrete Log Setting”. In: Proceedings of the 35th Annual International
Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT ’16. 2016,
pp. 327–357.

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive Composition and Bootstrapping for
SNARKs and Proof-Carrying Data”. In: Proceedings of the 45th ACM Symposium on the Theory of
Computing. STOC ’13. 2013, pp. 111–120.

[BCG20] J. Bootle, A. Chiesa, and J. Groth. “Linear-Time Arguments with Sublinear Verification from Tensor
Codes”. In: Proceedings of the 18th Theory of Cryptography Conference. TCC ’20. 2020, pp. 19–46.

[BCGGHJ17] J. Bootle, A. Cerulli, E. Ghadafi, J. Groth, M. Hajiabadi, and S. K. Jakobsen. “Linear-Time Zero-
Knowledge Proofs for Arithmetic Circuit Satisfiability”. In: Proceedings of the 23rd International
Conference on the Theory and Applications of Cryptology and Information Security. ASIACRYPT ’17.
2017, pp. 336–365.

[BCGJM18] J. Bootle, A. Cerulli, J. Groth, S. K. Jakobsen, and M. Maller. “Arya: Nearly Linear-Time Zero-
Knowledge Proofs for Correct Program Execution”. In: Proceedings of the 24th International
Conference on the Theory and Application of Cryptology and Information Security. ASIACRYPT ’18.
2018, pp. 595–626.

[BCL22] J. Bootle, A. Chiesa, and S. Liu. “Zero-Knowledge Succinct Arguments with a Linear-Time Prover”.
In: Proceedings of the 42nd Annual International Conference on Theory and Application of
Cryptographic Techniques. EUROCRYPT ’22. 2022.

[BCRSVW19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. “Aurora: Transparent
Succinct Arguments for R1CS”. In: Proceedings of the 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques. EUROCRYPT ’19. 2019, pp. 103–128.

[BCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive Oracle Proofs”. In: Proceedings of the 14th
Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

54

https://github.com/arkworks-rs
https://github.com/arkworks-rs

[BCS21] J. Bootle, A. Chiesa, and K. Sotiraki. “SumcheckArguments and Their Applications”. In:Proceedings
of the 41st Annual International Cryptology Conference. CRYPTO ’15. 2021, pp. 742–773.

[BDFG20] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. Efficient polynomial commitment schemes for multiple
points and polynomials. Cryptology ePrint Archive, Report 2020/081. 2020.

[BEGKN91] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. “Checking the correctness of memories”.
In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science. FOCS ’91.
1991, pp. 90–99.

[BFS20] B.Bünz, B. Fisch, andA. Szepieniec. “Transparent SNARKs fromDARKCompilers”. In:Proceedings
of the 39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’20. 2020, pp. 677–706.

[BGM17] S. Bowe, A. Gabizon, and I. Miers. Scalable Multi-party Computation for zk-SNARK Parameters in
the Random Beacon Model. Cryptology ePrint Archive, Report 2017/1050. 2017.

[BHRRS20] A. R. Block, J. Holmgren, A. Rosen, R. D. Rothblum, and P. Soni. “Public-Coin Zero-Knowledge
Arguments with (almost) Minimal Time and Space Overheads”. In: Proceedings of the 18th Theory
of Cryptography Conference. TCC ’20. 2020, pp. 168–197.

[BHRRS21] A. R. Block, J. Holmgren, A. Rosen, R. D. Rothblum, and P. Soni. “Time- and Space-Efficient
Arguments from Groups of Unknown Order”. In: Proceedings of the 41st Annual International
Cryptology Conference. CRYPTO ’21. 2021, pp. 123–152.

[BMRS21] C. Baum, A. J. Malozemoff, M. B. Rosen, and P. Scholl. “Mac’n’Cheese: Zero-Knowledge Proofs
for Boolean and Arithmetic Circuits with Nested Disjunctions”. In: Proceedings of the 41st Annual
International Cryptology Conference. CRYPTO ’21. 2021, pp. 92–122.

[CDDGS03] D. Clarke, S. Devadas, M. v. Dĳk, B. Gassend, and G. E. Suh. “Incremental multiset hash functions
and their application to memory integrity checking”. In: International conference on the theory and
application of cryptology and information security. Springer. 2003, pp. 188–207.

[CHMMVW20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. “Marlin: Preprocessing zkSNARKs
with Universal and Updatable SRS”. In: Proceedings of the 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 738–768.

[CMT12] G. Cormode, M. Mitzenmacher, and J. Thaler. “Practical Verified Computation with Streaming
Interactive Proofs”. In: Proceedings of the 4th Symposium on Innovations in Theoretical Computer
Science. ITCS ’12. 2012, pp. 90–112.

[CTY11] G. Cormode, J. Thaler, and K. Yi. “Verifying computations with streaming interactive proofs”. In:
Proceedings of the VLDB Endowment 5.1 (2011), pp. 25–36.

[Dra20] J. Drake. PLONK without FFTs. 2020. url: https : / / www . youtube . com / watch ? v =
ffXgxvlCBvo.

[FS86] A. Fiat and A. Shamir. “How to prove yourself: practical solutions to identification and signature
problems”. In: Proceedings of the 6th Annual International Cryptology Conference. CRYPTO ’86.
1986, pp. 186–194.

[Gab20] A. Gabizon. Lineval Protocol. Available at https://hackmd.io/aWXth2dASPaGVrXiGg1Cmg?
view. 2020.

[GLSTW21] A. Golovnev, J. Lee, S. T. V. Setty, J. Thaler, and R. S. Wahby. Brakedown: Linear-time and
post-quantum SNARKs for R1CS. Cryptology ePrint Archive, Report 2021/1043. 2021.

[Gro16] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: Proceedings of the
35th Annual International Conference on Theory and Applications of Cryptographic Techniques.
EUROCRYPT ’16. 2016, pp. 305–326.

[GW20] A. Gabizon and Z. J. Williamson. plookup: A simplified polynomial protocol for lookup tables.
Cryptology ePrint Archive, Report 2020/315. 2020.

55

https://www.youtube.com/watch?v=ffXgxvlCBvo
https://www.youtube.com/watch?v=ffXgxvlCBvo
https://hackmd.io/aWXth2dASPaGVrXiGg1Cmg?view
https://hackmd.io/aWXth2dASPaGVrXiGg1Cmg?view

[HR18] J. Holmgren and R. Rothblum. “Delegating Computations with (Almost) Minimal Time and Space
Overhead”. In: Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer
Science. FOCS ’18. 2018, pp. 124–135.

[KMP20] A. Kothapalli, E. Masserova, and B. Parno. A Direct Construction for Asymptotically Optimal
zkSNARKs. Cryptology ePrint Archive, Report 2020/1318. 2020.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. “Constant-Size Commitments to Polynomials and Their
Applications”. In: Proceedings of the 16th International Conference on the Theory and Application
of Cryptology and Information Security. ASIACRYPT ’10. 2010, pp. 177–194.

[Lee20] J. Lee. Dory: Efficient, Transparent arguments for Generalised Inner Products and Polynomial
Commitments. Cryptology ePrint Archive, Report 2020/1274. 2020.

[LFKN92] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. “Algebraic Methods for Interactive Proof Systems”.
In: Journal of the ACM 39.4 (1992), pp. 859–868.

[PLS19] R. d. Pino, V. Lyubashevsky, and G. Seiler. “Short Discrete Log Proofs for FHE and Ring-LWE
Ciphertexts”. In: Proceedings of the 22nd International Conference on Practice and Theory of
Public-Key Cryptography. PKC ’19. 2019, pp. 344–373.

[RR22] N. Ron-Zewi and R. D. Rothblum. “Proving as Fast as Computing: Succinct Arguments with Constant
Prover Overhead”. In: Proceedings of the 54th Annual ACM Symposium on Theory of Computing.
STOC ’22. 2022.

[RRR16] O. Reingold, R. Rothblum, and G. Rothblum. “Constant-Round Interactive Proofs for Delegating
Computation”. In: Proceedings of the 48th ACM Symposium on the Theory of Computing. STOC ’16.
2016, pp. 49–62.

[SATJ18] S. T. V. Setty, S. Angel, G. Trinabh, and L. Jonathan. “Proving the correct execution of concurrent
services in zero-knowledge”. In: Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation. OSDI ’18. 2018, pp. 339–356.

[Set20] S. T. V. Setty. “Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup”. In: 40th
Annual International Cryptology Conference. CRYPTO ’20. 2020, pp. 704–737.

[Tha13] J. Thaler. “Time-Optimal Interactive Proofs for Circuit Evaluation”. In: Proceedings of the 33rd
Annual International Cryptology Conference. CRYPTO ’13. 2013, pp. 71–89.

[WZCPS18] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica. “DIZK: A Distributed Zero Knowledge
Proof System”. In: Proceedings of the 27th USENIX Security Symposium. USENIX Security ’18.
2018, pp. 675–692.

[XZZPS19] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. “Libra: Succinct Zero-Knowledge Proofs
with Optimal Prover Computation”. In: Proceedings of the 39th Annual International Cryptology
Conference. CRYPTO ’19. 2019, pp. 733–764.

[ZGKPP17] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vSQL: Verifying Arbitrary
SQL Queries over Dynamic Outsourced Databases”. In: Proceedings of the 38th IEEE Symposium
on Security and Privacy. S&P ’17. 2017, pp. 863–880.

[ZGKPP18] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vRAM: Faster Verifiable
RAM with Program-Independent Preprocessing”. In: Proceedings of the 39th IEEE Symposium on
Security and Privacy. S&P ’18. 2018, pp. 908–925.

[Zha+21] J. Zhang et al. “Doubly Efficient Interactive Proofs for General Arithmetic Circuits with Linear
Prover Time”. In: Proceedings of the 28th ACM Conference on Computer and Communications
Security. CCS ’21. 2021, pp. 159–177.

56

	Abstract
	Contents
	1 Introduction
	1.1 Our results

	2 Techniques
	2.1 Elasticity and a streaming model
	2.2 A modular construction of elastic SNARKs
	2.3 An elastic realization of the KZG polynomial commitment scheme
	2.4 An elastic scalar-product protocol
	2.5 Warm-up: an elastic non-holographic PIOP for R1CS
	2.6 Elastic holographic PIOP for R1CS
	2.7 Implementation and optimizations
	2.8 Evaluation

	3 Preliminaries
	3.1 Notation
	3.2 Polynomial IOPs

	4 Streaming model
	4.1 Streaming algorithms
	4.2 Streaming R1CS

	5 Tensor-product protocol
	5.1 Basic tensor-product protocol
	5.2 Batched tensor-product protocol

	6 Elastic protocols for scalar products
	6.1 Elastic scalar-product protocol (special case)
	6.2 Proof of Theorem 6.2
	6.3 Space efficient realization of Construction 3
	6.4 Elastic scalar-product protocol (general case)
	6.5 Hadamard-product protocol

	7 A non-holographic protocol for R1CS
	7.1 Proof of Theorem 7.1

	8 Achieving holography
	8.1 Proof of Theorem 8.1
	8.2 Lookup protocol
	8.3 Entry product

	9 Polynomial commitment schemes
	9.1 Definition
	9.2 An elastic polynomial commitment scheme

	10 Elastic argument systems
	10.1 Preprocessing arguments with universal SRS
	10.2 Elastic PIOP to argument compiler
	10.3 Proof of Theorem 10.1

	Acknowledgements
	References

