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Abstract

The last ten years have seen a tremendous growth in the interest and practicality of
secure multiparty computation (MPC) and its possible applications. Secure MPC is indeed
a very hot research topic and recent advances in the field have already been translated into
commercial products world-wide. A major pillar in this advance has been in the case of
active security with a dishonest majority, mainly due to the SPDZ-line of work protocols.
This survey gives an overview of these protocols, with a focus of the original SPDZ paper
(Damg̊ard et al. CRYPTO 2012) and its subsequent optimizations. It also covers some
alternative approaches based on oblivious transfer, oblivious linear-function evaluation, and
constant-round protocols.

1 Introduction

Secure Multiparty Computation (MPC) allows a set of parties to compute a joint function
on their inputs while maintaining privacy, meaning that the output of the computation
should not reveal anything but the output itself.

The concept of secure computation was introduced by Andrew Yao [Yao86] who presented
a two-party protocol for Boolean circuits based on the idea of garbled circuits. Yao’s protocol
is a constant-round protocol, where one party, the garbler, generates an encrypted version
of the circuit that is securely evaluated by the other party, the evaluator. After forty years
this protocol still remains the basis for many efficient MPC implementations.

After Yao’s garbled-circuit based protocol was proposed, several multiparty protocols ap-
peared both for Boolean and arithmetic circuits, including those given by Goldreich, Micali
and Wigderson (GMW) [GMW87] , Ben Or, Goldwasser and Wigderson (BGW) [BGW88],
Chaum, Crepeau and Damg̊ard (CCD) [CCD88]. All of these protocols have a number of
rounds linear in the depth of the circuit to be evaluated and consist in evaluating the circuit
gate-by-gate using a secret-sharing of the data. In 1990, Beaver, Micali and Rogaway pre-
sented the BMR protocol [BMR90] generalizing Yao’s approach to the multiparty setting.
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The BMR protocol runs in a constant number of rounds, while achieving security against
dishonest majority. Almost all known secure MPC protocols rely on techniques described in
these fundamental works.

Secure multiparty computation should guarantee a number of security properties other
than privacy, even in the presence of some adversarial entity that controls a subset of the
parties, usually referred to as corrupt parties. The most significant of these properties are:
a) correctness, meaning that each party should receive a correct output; b) independence
of the inputs, i.e. corrupt parties’ inputs should be independent of honest parties’ inputs;
c) guaranteed output delivery, namely honest parties should always be able to receive their
outputs; d) fairness, i.e. corrupt parties should receive their outputs if and only if honest
parties do. Note that fairness is a weaker requirement than guaranteed output delivery; in-
deed guaranteed output delivery implies fairness, but the opposite is not always true [CL14].

Secure multiparty computation comes in different flavors according to diverse corruption
strategies, security requirements, model of computation, communication channels, etc. How-
ever, not all the possible combinations of these properties and settings are possible. One
major distinction is between protocols that rely on the existence of a honest majority, i.e.
less than a half of the total number of parties is corrupt, and protocols that can be proven
secure even with no honest majority. In the first case it is possible to describe uncondition-
ally secure protocols, whereas to deal with a dishonest majority it is necessary to restrict to
computational security that holds under some cryptographic assumption. Note that assum-
ing a honest majority is sometimes a strong requirement, and it is pointless in the important
case of two-party computation.

Another crucial division is determined by the type of corruptions that the protocol can
support. There are three main adversary models that are usually considered: 1) semi-
honest/passive adversary, that follows the protocol specifications but tries to gain more
information than what is allowed; 2) malicious/active adversary, that can arbitrarily deviate
from the protocol in order to break the inputs’ privacy and/or the outputs’ correctness; 3)
covert adversary that may behave maliciously, but with a fixed probability to be spotted.
While actively secure protocols are always able to detect malicious corruptions (but not
necessarily the identity of corrupt parties), in covert secure protocols a cheating party might
not be detected with a certain non-negligible probability. Semi-honest protocols offer a rather
weak security guarantee, but they are much more efficient than maliciously secure protocols.
Interestingly, covert security can be thought as a compromise between the other two more
standard models, as it can offer more efficiency than active security and stronger guarantees
than semi-honest one.

Besides this efficiency issue and the need of cryptographic assumptions, Cleve in [Cle86]
showed that in the very desirable setting of active security and dishonest majority it is impos-
sible to obtain protocols for secure computation that provide fairness and guaranteed output
delivery. Consequently, many secure MPC protocols with these strong security properties
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simply abort if a cheating is observed, realizing the weaker notion of security with abort. In
particular, this means that, either the protocol succeeds and every party receives its outputs,
or the protocol aborts, and this can happen even after the adversary has learnt the output
of the computation, which could be a serious issue in some applications. One of the main
drawbacks is that these protocols are vulnerable to denial-of-service attacks where corrupt
parties can force the protocol to abort so that honest parties never learn the output of the
computation.

This motivates the study of secure computation protocols with identifiable abort (ID-
MPC) [BOS16, BOSS20, CL14, CFY17, IOZ14]. In this setting, if some malicious behaviour
is detected or the adversary abort, the honest parties will agree upon the identity of at least
one corrupt party. Even though this notion of security remains strictly weaker of fairness or
guaranteed output delivery, it is very useful in practice as it discourages corrupt parties to
behave maliciously, because upon abort at least one of them would be detected and maybe
excluded from future computations.

1.1 Actively-secure MPC with dishonest majority

The last decade has seen a huge progress in the practicality of secure computations. Al-
though it seems fairly natural to imagine efficient protocols with restricted security against
semi-honest adversaries and/or assuming an honest majority, surprisingly a major advance
has been in the dishonest majority case with active corruptions with the SPDZ line of works
[DPSZ12, DO10, BDOZ11].

MPC in the correlated randomness model. A theoretically interesting and practically effective
way to obtain efficiency in secure computation is by designing protocols with a randomness
distribution phase, which is independent of the inputs to the function being computed, and
sometimes also to the function itself. During this phase, parties receive randomness that
are correlated from a pre-determined joint distribution. Using these random strings in the
actual computation, it is possible to circumvent impossibility results such as impossibility of
unconditional security in the plain model. Practically, one way to instantiate this model is
through MPC with pre-processing.

Secure MPC protocols in this model restrict all the expensive operations to a pre-
processing phase that can be both function and input independent. If this is the case we
talk of universal pre-processing and if the pre-processing is only input independent, then we
talk of dedicated pre-processing.

The randomness generated in the pre-processing stage is consumed by a lightweight non-
cryptographic online phase that performs the actual circuit evaluation. Typically, the main
goal of the pre-processing (or, offline phase) in MPC protocols is to produce randomness
that enables an efficient, both in terms of communication and computation, evaluation of
multiplication gates. In 1991, Beaver [Bea92] introduced a neat trick that permits efficient
secure evaluation of circuits by randomizing the inputs to each multiplication gate using
a pre-processed random multiplication triple. Using Beaver’s trick, online evaluation turns
out to be very efficient, involving only information-theoretic techniques, and creating triples
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becomes the main bottleneck.

From passive to active security. Even though the pre-processing model allows to per-
form most of the work in a offline phase, leading to a very efficient online computation, this
does not reduce the price to pay to have actively secure protocols compared to passively-
secure ones. A typical example is the GMW protocol which needs expensive generic zero-
knowledge (ZK) proofs to achieve active security. In 2008, Ishai, Prabhakaran and Sahai in
[IPS08], described a novel technique, also known as IPS compiler, for actively secure MPC
for Boolean circuits and constant number of parties, having asymptotic constant overhead
over passively secure protocols. The IPS compiler is based on Oblivious Transfer (OT,
see later for a proper definition of this important cryptographic primitive),and hence can
also be expressed in the correlated randomness paradigm as OT can be pre-processed as
shown by Beaver [Bea95]. In [LPO11], Lindell et al. presented a protocol based on the IPS
compiler that converts semi-honest protocols in the dishonest majority setting into covertly
secure ones. Later, Genkin et al. [GIP+14] proposed an MPC protocol for arbitrary num-
ber of parties based on Oblivious Linear Evaluation (OLE) for large fields with constant
communication overhead. This technique was extended in [GIW16] to obtain active secu-
rity for Boolean circuits. Recently, Hazay, Venkitasubramaniam and Weiss [HVW20], have
proposed a more efficient compiler from passive to active that works over arbitrary fields
and arbitrary number of parties. Almost all these works make black-box use of the under-
lying cryptographic primitives, OT, OLE, etc, and are mainly concerned with asymptotic
complexity.

Concrete efficiency. A different line of works, more focused on concrete efficiency, started
with the paper by Damg̊ard and Orlandi [DO10] in 2010. To generate triples, the pre-
processing phase utilizes an additively homomorphic encryption scheme, plus a “sacrifice”
technique and homomorphic commitments to accomplish active security. This protocol uses
commitments also during the circuit evaluation, still limiting the online phase to compu-
tational security. This issue was solved shortly after by Bendlin, Damg̊ard, Orlandi and
Zakarias [BDOZ11]. In this protocol, often called BDOZ, the homomorphic commitment
scheme is replaced by a pairwise information-theoretic Message Authentication Code (MAC).
A further optimization was introduced by Damg̊ard, Pastro, Smart and Zakarias in 2012 with
the SPDZ protocol [DPSZ12]. In SPDZ, the pairwise MAC used in BDOZ was simplified to
a “global” MAC so that each party only stores a single field element for each MAC value
instead of n− 1 (where n is the number of parties). This leads to an information-theoretic
online phase which is, roughly, only two times less efficient than the passive variant of the
protocol. A second efficiency improvement provided by SPDZ is in the pre-processing phase,
and comes from replacing the additive homomorphic encryption scheme with a somewhat
homomorphic scheme. In particular, SPDZ uses the lattice-based scheme by Brakersy, Gen-
try and Vaikuntanathan (BGV) [BGV12], making extensive use of the packing technique of
Smart and Vercauteren [SV14], which allows the manipulation of several plaintexts at once
using SIMD (Single Instruction Multiple Data) operations.
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After SPDZ, there has been a very large body of work mainly aiming to improve the SPDZ
pre-processing phase, and in particular the triples generation step. In the next sections we
will briefly describe some of these results, however we stress that what we are going to present
is far from being exhaustive, and many interesting results are not going to be covered or even
mentioned, due to space limitation. The aim of this paper is to introduce the main ideas
and high level techniques used in protocols that are closely related to SPDZ, rather than
giving a detailed and complete description of all the protocols dealing with active security
and arbitrary number of corruptions.

1.2 Instantiating the preprocessing and alternative approaches

Concurrently to SPDZ, at CRYPTO 2012, another practical secure MPC protocol was
presented by Nielsen et al. [NNOB12], usually referred to as TinyOT. It is a very efficient
two-party protocol for secure computation of Boolean circuit, hence, in some sense, it can
be considered complementary to SPDZ that on the contrary achieves better performances
over large fields and allows arbitrary number of parties. TinyOT-online phase is very similar
to SPDZ-online phase, except for the use of pair-wise MACs à la BDOZ. On the other
hand, the offline phase differs significantly as it is based on oblivious transfer. TinyOT
was later generalized to the multiparty case by Larraia et al. [LOS14], and to work on
arithmetic circuit in MASCOT [KOS16]. The most efficient versions of the offline phase of
SPDZ, TopGear [BCS19, KPR18], and MASCOT still represent the state-of-the-art of linear
secret-shared based MPC for arithmetic and binary circuits, respectively. We provide a more
detailed comparison between these two approaches in Section 5.

We mention here that in [KPR18] two different protocols were presented to improve SPDZ
performances: LowGear and HighGear. The former uses an only-additive homomorphic
encryption scheme and pairwise MACs, like BDOZ, but instantiates the encryption scheme
with BGV, so to allow SIMD operations. Compared to BDOZ, LowGear does not perform
ZK proofs of correct multiplications [BDOZ11], conjecturing that BGV satisfies the linear
target malleability property described by Bitansky et al. [BCI+13]. LowGear is very efficient
especially for a small number of parties due to the inherent packing it can use. HighGear is
instead more similar to SPDZ, as it uses 1-leveled homomorphic BGV, and is more efficient
for large number of parties.

Further improvements have been recently introduced by Hao Chen et al. [CKR+20]. This
paper gives optimized ZK proofs by replacing BGV with BFV [Bra12, FV12]. By allowing
the homomorphic encryption scheme to perform one more homomorphic operation, i.e. two
instead of one, this protocol does not require the “sacrifice” technique to check triples cor-
rectness. Also, it generalizes Beaver’s trick to generate “matrix triples” and “convolution
triples”.
Both the approaches described so far, either based on homomorphic encryption or oblivi-
ous transfer, use the pre-processing phase to produce multiplication triples as secret, cor-
related randomness to perform efficient circuit evaluation. However, it is possible to use
different types of correlations, still achieving roughly the same online efficiency. For ex-
ample we can have protocols based on oblivious linear-function evaluation (OLE) [NP99]
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that can be seen as an arithmetic variant of oblivious transfer and used for arithmetic circuit
[IPS09, ADI+17]; or protocols based on truth-tables correlations [CDv88, IKM+13, DNNR17,
DKS+17, KOR+17, Cou19]. A formal description of these alternative approaches is out of
the scope of this work, however we stress that some of these protocols achieve very good per-
formances, in some applications better than protocols described in this survey. For example,
using protocols based on truth-tables it is possible to obtain a better online efficiency at the
price of a more expensive pre-processing.

Constant-round protocols. All the works mentioned above are based on a linear secret
sharing scheme (LSSS) and gate-by-gate circuit evaluation. They require many rounds of
communication (linear in the depth of the circuit), but very low bandwidth per gate. For this
reason these protocols are very efficient in LAN (Local-Area-Network) setting, but not in
WAN (Wide-Area-Network) setting. A different approach is taken by Yao (for the two-party
case) and BMR (for the multiparty case) protocols. These mainly work for Boolean circuits
(with few exceptions [AIK11, BMR16, Ben18, MW19]) and are based on the “garbled circuit”
methodology. Roughly, in a first stage the parties generate an “encrypted” version of the
circuit and inputs, and then, in a second stage, the circuit is evaluated without interactions.
The number of communication rounds of these protocols is constant, they are usually slower
that secret-sharing based protocols in LAN setting due to their higher bandwidth requirement
and faster in WAN scenarios.

In the multiparty case, recent BMR-based protocols [LPSY15, LSS16, HSS17, WRK17b]
achieve very good performances and have significantly narrowed the gap between secret-
shared based and constant-round protocols. All these works are designed in the dedicated
pre-processing model: in the input-independent phase a linear-secret sharing based protocol,
typically multiparty TinyOT-like, is used to generate the garbled circuit, and in the online
phase the parties evaluate the circuit locally except for one initial broadcast needed for the
input step.

Mixed techniques. It is clear that these two flavours of MPC are mutually complemen-
tary, i.e. evaluation of some functions is more suited to the linear secret sharing paradigm,
and for others it is more suited to the garbled circuit paradigm. For example, we would
prefer to use Boolean circuits to perform computation over the integers where the operation
is better expressed as a Boolean circuit, and arithmetic circuits where the computation to
be performed is best expressed as an arithmetic circuit.
For this reason, that is to take the best of different methodologies and, at the same time,
to mitigate their weakness, a different line of works tries to combine different secure com-
putation paradigms. We mention some of them here. In [HKS+10, KSS13] we can find a
method to convert between garbled circuits and additive homomorphic encryption in the
semi-honest setting, in [DSZ15, RWT+18] it is described a general framework, for two-party
computation, converting arithmetic sharing, Boolean sharing and garbled circuits with semi-
honest security. This framework was generalized in [MR18] to the three-party case with
active security. Recent works [RW19, AOR+19, EGK+20] show how to combine arithmetic
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multiparty computation protocols, like SPDZ and BMR with active security.

1.3 Is MPC any good in practice? [Orl11]

Secure multiparty computation has been studied since the mid 1980s and back then
the research on this field was mainly focused on feasibility results. Now, after almost 40
years, MPC is a rather mature technology that has rapidly progressed, especially in the last
decade, from a notion of theoretical interest only into a technology that is starting to being
commercialized.

In some aspects the extraordinary advance in the practicality of secure computation has
been surprising, and it can be considered to be a consequence of a combination of algorithmic,
technological and computational progress. Practically, if we consider malicious secure two
party computation, the first implementation of Pinkas et al. [PSSW09] reports roughly 1114
sec for the evaluation of AES-128, i.e. a Boolean circuit of roughly 30000 gates (6400 AND
gates and the rest XOR gates). Recent protocols [WRK17a, KOR+17] require roughly 10 ms
for the same circuit. Possibly, recent improvements, for example in OT-extension protocols,
will further improve these running times.

A number of online implementations are available, and SCALE-MAMBA [ACC+] and
MP-SPDZ [Kel20] are the ones most closely related to SPDZ. We refer to [HHNZ19], for a
more detailed discussion about these and other available frameworks. Even if we only focus
on the dishonest majority setting, we want to remark that significant advances have also
been made in the practicality of MPC protocols in different settings.

The current state of affairs is that secure MPC is able to compute relatively simple
functions very efficiently, but it fails when we try to scale to more involved computations or
involving a large number of parties. One of the main problem is communication, especially for
linear secret-sharing (LSSS) based protocols like SPDZ or TinyOT. A major progress would
consist in designing protocols that have both low bandwidth, like LSSS-based protocols, and
small number of rounds, like GC-based protocols.

Despite the extraordinary progresses in the last years, there is still a long way to go before
we can assert that secure multiparty computation is practically efficient in every scenario,
for example for huge data sets or for Internet-like settings. Research in MPC is very active,
and range from fundamental research, to implementation, to products deployments. It a
very fast-moving field and, considering recent improvements, one would expect to see more
breakthroughs in the area, with secure computation taking a leading role in most practical
privacy-preserving solutions.

1.4 This survey

The aim of this work is to give an overview of the techniques used in concretely efficient
MPC protocols with active security and dishonest majority, giving a high level description of
the main building blocks of SPDZ and providing a limited literary review of the main related
works. Other than describing the SPDZ protocol in its most recent and efficient version, we
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also provide a rough description of the alternative approaches and, maybe more importantly,
references to the relative papers.

We start with basic notation and preliminaries in Section 2. We explain how data is
authenticated via information theoretic MACs in Section 3. Assuming a trusted functionality
FPrep for the pre-processing phase, we describe the SPDZ online protocol in Section 4, and
finally, in Section 5, we show how SPDZ implements FPrep. In this section we also describe
an alternative approach to the pre-processing implementation using oblivious transfer.

Acknowledgements. I would like to thank the organizers of WAIFI 2020 for inviting me
to give a talk there. I am also grateful to Axel Mertens and Nigel Smart for helpful comments.
This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT
and by the FWO under an Odysseus project GOH9718N.

2 Preliminaries

We let κ (resp. s) denote the computational (resp. statistical) security parameter. We
say that a function µ : N → N is negligible if for every positive polynomial1 p(·), and all
sufficiently large κ, it holds that µ(κ) < 1/p(κ). We use the abbreviation PPT to denote
probabilistic polynomial-time. Let F denote a finite field, we consider protocols that allow to
evaluate circuits Cf representing functions f : Fnin → Fnout with nin inputs and nout outputs.
To ease the reading, we drop the dependence on f , when it is clear from the context.

We use lower case letters to denote finite field elements and bold lower case letters for
vectors in Fκ, for any finite field F. If x,y are vectors over F, then x ∗ y denotes the
component-wise products of the vectors. If A is a (probabilistic) algorithm then we denote
by a ← A the assignment of the output of A where the probability distribution is over the

random tape of A and we denote by by s
$← S the uniform sampling of s from a set S. We

also use the notation [d] as shorthand for the set of integers {1, . . . , d}.

Security model. Protocols described in this paper work with n parties from the set P =
{P1, . . . , Pn}, and we consider security against malicious, static adversaries, i.e. corruption
may only take place before the protocols start, corrupting up to n− 1 parties.

All the protocols described in this paper can be proved to be secure in the universal
composition (UC) framework of Canetti [Can01]. Even though we omit these proofs here and
provide the references to the relevant papers only, we will maintain some of the terminology
used in the UC framework. For example we are going to use ideal functionalities in most
of the protocols described in this survey. The reader who is not familiar with this notation
and security model, and is not interested in understanding it, can simply imagine these
functionalities as trusted entities that are called to securely perform some specific tasks.

Loosely speaking, protocols that aim to achieve security in the UC model are defined
in three steps. First, the protocol and its execution in the presence of an adversary are

1Given a set S, a positive polynomial on S is such that p(x) > 0 for every x ∈ S
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formalized, this represents the real-life model which we also call the real world . Next, an
ideal functionality for executing the task is defined; its role is to act as a trusted party
by separately receiving the input of each party, both honest and corrupt, and honestly
computing the result of the protocol internally and returning the output assigned to each
party. In this ideal process, also called ideal world , the parties do not communicate with one
another but instead solely rely on the ideal functionality to provide them with their output.
Finally, we say that the protocol in question UC-realizes the ideal functionality if running
the protocol is equivalent, or indistinguishable, from emulating the ideal functionality. When
we say that a protocol Π securely implements an ideal functionality F with computational
(resp. statistical) security parameter κ (resp. λ), our theorems guarantee that the advantage
in distinguishing the real and ideal executions is in O(2−κ) (resp. O(2−s)).

Communication model. We assume all parties are connected via authenticated commu-
nication channels, as well as secure point-to-point channels and a broadcast channel. In
practice, since we are considering security with abort, broadcast can be implemented with
point-to-point channels requiring only two rounds of communication as follows [GL05]: 1)
The party that needs to broadcast a value sends this to all parties; 2) All the receiving
parties send the value they received to all other parties. It can be proven that either all the
parties output the same value or the protocol aborts. This broadcast is also called broadcast
with abort. It requires O(n2) communication per broadcast. SPDZ [DPSZ12] (Appendix
A.3) describes how to optimize it in the case there are many broadcasts to perform, like in
MPC protocols. Roughly, in all the broadcast instances parties maintain a running hash of
all values sent and received, and these are checked later, at the end of the protocol. With
this optimization the amortized cost per broadcast value is O(n).

Secret sharing scheme. We only consider computation on values that are additively
secret shared among parties, i.e. each shared value x ∈ F is represented as

〈x〉 = (x(1), . . . , x(n)),

where each party Pi ∈ P holds a random share x(i) and x =
∑

i∈[n] x
(i). In this way, by

setting all but a single share to be a random value in F, we have that any subset of n − 1
parties cannot recover the secret value x. We give a more formal definition below.

Definition 1 (Additive secret-sharing scheme) Let F be a finite field and n ∈ N a
positive integer. We define an additive secret sharing scheme S = (Share,Recover) such that:

- Share(x, n): on input a secret x and an integer n, first it generates shares (x(1), . . . , x(n−1))
uniformly at random from F and define x(n) = x−

∑n−1
i=1 x

(i); then it outputs (x(1), . . . , x(n)),
where x(i) is the share of party Pi

- Recover(x(1), . . . , x(n)): given all the shares x(i), i ∈ [n], parties compute x =
∑n

i=1 x
(i).
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Trivially, this secret sharing scheme is linear, therefore linear operations can be performed
locally without interactions among parties, as described below.

- Addition of secret-shared values: 〈x〉+ 〈y〉 = (x(1) + y(1), . . . , x(n) + y(n)) = 〈x+ y〉

- Addition by a public value a: a+ 〈x〉 = (a+ x(1), . . . , x(n)) = 〈a+ x〉

- Multiplication by a public value a: a · 〈x〉 = (a · x(1), . . . , a · x(n)) = 〈a · x〉

Statistical distance. Let E be a finite set, Ω be a probability space and X, Y : Ω → E
be random variables. The statistical distance between X, Y is defined as:

∆(X, Y ) =
1

2

∑
x∈E

∣∣Pr
X

(X = x)− Pr
Y

(Y = x)
∣∣

We recall the following result from [AJL+12].

Lemma 1 (Smudging Lemma) Let B1 and B2 be positive integers, let e ∈ [−B1, B2]
be a fixed integer, and let E1, E2 be independent random variables uniformly distributed in
[−B1, B2]. Define the two stochastic variables X1 = E1 + e and X2 = E2. Then, it holds
that:

∆(E1, E2) < B1/B2.

This lemma allows to “smudge out” small differences between distributions adding large
noise. It will be used many times in the protocols we describe in the next sections, often
implicitly.

2.1 Threshold (L-leveled) homomorphic encryption

We briefly recall the definition of threshold (L-leveled) homomorphic encryption (THE)
[AJL+12, BGG+18] scheme. It is similar to a standard (leveled) homomorphic encryp-
tion scheme, but with different key-generation and decryption algorithms. The scheme is
parametrized by security parameters (κ, s), the number of levels L, the amount of packing
of plaintext elements which can be made into a single ciphertext N , and by a linear secret
scheme S. We instantiate S with an additive secret sharing scheme as describe before, and
hence we give a less general definition of a THE scheme. Informally, a threshold L-leveled HE
scheme supports homomorphic evaluation of any circuit C consisting of addition and mul-
tiplication gates and of multiplicative depth at most L, with the provision for distributed
(threshold) decryption.

Definition 2 An L-leveled public key homomorphic encryption scheme with message space
M = FN , is a tuple of PPT algorithms THE = (KeyGen, Enc,Eval, PartDec,DistDec), satis-
fying the following specifications:
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(pk, sk(1), . . . , sk(n))← KeyGen(1κ, 1s, n) : taking as input the security parameters κ and s,
and the number of parties n, it outputs a public key pk, and secret key additive shares
(sk(1), . . . , sk(n));

ct← Enc(m; pk) : it takes a plaintext m ∈M and public key pk, and output a ciphertext ct;

ĉt← Eval(C, ct1, . . . , ctt) : it takes as input a circuit C : Ft → F, with multiplicative depth at
most L and t ciphertexts ct1, . . . , ctt, and outputs an evaluation ciphertext ĉt;

(p(1), . . . , p(n))← PartDec(ct; sk(1), . . . , sk(n) : given a ciphertext ct and a secret key share ct(i),
it outputs a partial decryption p(i) to party Pi, for every i ∈ [n];

m̂← DistDec(p(1), . . . , p(n); pk) : it takes as input the public key and all the partial decryption
outputs, and outputs a plaintext m̂.

The scheme needs to satisfy correctness, semantic security and simulation security as de-
scribed in [BGG+18]. Here we omit the formal definitions of these properties. While the
first two are relatively standard, the latter essentially says that no information about the
key shares and plaintext should be leaked by the decryption algorithms other than what is
already implied by the result of homomorphic operations.

In SPDZ, a THE scheme is used to generate random triples in the pre-processing phase,
therefore we need a very simple THE supporting only one homomorphic operation, i.e.
L=1. Concretely, the THE scheme is instantiated with the scheme by Brakersky, Gentry
and Vaikuntanathan (BGV) [BGV12], based on the Ring Learning with Error assumption
[Reg05, LPR13], and supporting packing operations [SV14] that permits to handle many
plaintexts in a single ciphertext. We omit the description of BGV in this survey.

2.2 UC commitments

Functionality FCommit

Commit: On input (Commit,m, i, τm) from Pi, store (m, i, τm). τm is a handle for the com-
mitment. and output (i, τm) to all parties.

Open: On input (Open, i, τm) by Pi, output (m, i, τm) to all parties.

If instead (NoOpen, i, τm) is given by the adversary, and Pi is corrupt, the functionality
outputs (⊥, i, τm) to all parties.

Figure 1: Commitments functionality.

A commitment scheme allows a commiter holding a secret value m to send a commitment
c of m to a verifier, and later on to “open” this commitment to reveal m. More formally, a
commitment scheme is defined by three algorithms.
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- Setup(1κ) : given as input the security parameter, it generates the global parameters
that will be implicitly used by the other algorithms;

- (c, w) ← Commit(m) : given a message m it produces a commitment c on m and the
opening information w;

- m ← Open(c, w) : it decommits c using w and outputs either the message m or ⊥ if
the opening fails.

The scheme has to be both binding , i.e. the opening should successfully open to one value
only, and hiding which means that the commitment c should not reveal any information
about m. These two properties can be achieved in a perfect, statistical or computational
way. A UC-secure commitment must be both extractable (meaning that it is possible to
extract the value that a corrupted party commits to) and equivocable (meaning that it is
possible to generate commitments that can be opened to any value). In this survey we will
use an ideal functionality FCommit as described in Figure 1.

This ideal functionality can be implemented assuming a random oracle, by defining c =
H(m, i, r), where H is a random oracle, r ← {0, 1}κ and w = (c, r).

Using this hash-based commitment we can also efficiently implement a standard coin
flipping functionality FRand. We refer to [DKL+13] for more details.

2.3 Zero knowledge proofs

A zero-knowledge (ZK) proof [GMR89] is an interactive protocol between a prover P and
a verifier V that allows the prover to demonstrate that a statement is true without revealing
any further information about the proof beyond the fact that the statement is true.
An NP-relation R(x,w) is an efficiently decidable binary relation R(x,w) that is polynomi-
ally bounded, i.e. if R(x,w) is satisfied, then |w| ≤ poly(|w|). Any NP-relation defines a
language L = {x : ∃w,R(x,w) = 1}. Usually w is called a witness for the statement x ∈ L.

A ZK proof protocol for the NP relation R(x,w), with common input x and additional
input w for P, satisfies three properties that we can informally describe as follows:

- Completeness: if x ∈ L, and P knows a proof of this, she/he will succeed in convincing
V;

- Soundness: : if the statement is false, no prover can convince the verifier of the truth of
the statement except with probability ε, where ε is the soundness error of the protocol;

- Zero-knowledge: the interaction between P and V yields nothing beyond the fact that
the statement is true. This is equivalent to require the existence of a simulator that
can produce an honest-looking transcript for the protocol, without knowing anything
about the statement.
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Functionality FkOT

Running between a sender PS and a receiver PR, it operates as follows.

- PS inputs (x0, x1) ∈ {0, 1}k × {0, 1}k and PR inputs b.

- The functionality outputs xb to PR.

Figure 2: Functionality for one-out-of-two oblivious transfers on k-bit strings.

2.4 Oblivious transfer

Oblivious transfer is a fundamental cryptographic primitive originally introduced by Ra-
bin [Rab81] and Wiesner [Wie83]. Subsequent works by [Kil88, EGL85] showed oblivious
transfer to be a very powerful primitive. In particular, Kilian [Kil88] showed that OT is
complete for secure multi-party computation. Many MPC protocols have been constructed
based on OT, including the GMW protocol, Yao’s garbled circuits and the IPS compiler that
we have already mentioned before.

In its classical formulation, a (one-out-of-two) oblivious transfer is a two-party protocol
between a sender PS and a receiver PR: the sender inputs two messages x0, x1, a receiver
inputs a bit b, and the goal is for the receiver to learn xb and nothing more, whilst the sender
learns no information about b. In Figure 2 we describe the ideal functionality for oblivious
transfer on bit strings of length k, meaning that sender’s inputs x0, x1 are elements in {0, 1}k.
Given the inputs from PS and PR the functionality outputs the string xb corresponding to
receiver’s input b.

Oblivious transfer extension. Although oblivious transfer is a fundamental building block for
many cryptographic constructions, it used to be considered an expensive primitive. Indeed,
Impagliazzo and Rudich [IR89] showed a black-box separation result that is strong evidence
that OT is impossible without the use of expensive public-key cryptography. However,
thanks to recent, and somehow surprisingly, advances in the field, we can fairly claim that
in practice OT is no longer an expensive primitive.

Beaver in [Bea96] first showed that OT can be “extended”, i.e. starting from few OTs
one could generate a large amount of additional OTs using only cheap symmetric prim-
itives. Albeit elegant, Beaver’s protocol is highly impractical. The first efficient OT-
extension protocol was described by Ishai, Kilian, Nissim and Petrank [IKNP03] in the
passive setting. Subsequent works, secure against both passive [ALSZ13, KK13] and active
[ALSZ15, KOS15, OOS17] adversary, all follow the IKNP blueprint. These protocols are
computationally very efficient and allow to create more than 10 million of OTs in 1 sec. The
main bottleneck remains communication. A different approach, that uses LPN-based (LPN
stands for Learning Parity with Noise2) PCG (i.e. Pseudorandom Correlation Generators see
Section 5.3) for OT-extension, outperforms previous solutions in terms of communications in

2Roughly, the LPN assumption says that given a random linear code C, a noisy random codeword of C
is pseudo-random.
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low bandwidth network, but at price of high computational overhead [BCG+19a, SGRR19].
A very recent protocol by Yang et al. [YWL+20] achieves impressive performances both in
terms of communication and computation requiring only 21 nanoseconds (resp. 22 nanosec-
onds) for generating one (correlated) OT in a 50 Mbps network with passive (resp. active)
security. Correlated OT (COT) is a slightly different variant of OT, but sufficient for many
practical MPC protocols. We will define COT in Section 5.2.

3 Data representation

While an additive secret sharing scheme is sufficient to guarantee privacy and hence
security in the weak model of semi-honest security, we need extra caution in presence of an
active adversary in order to prevent corrupt parties to inject incorrect values to the protocol
that could lead to erroneous results or information leakage.

As we mentioned in the introduction, SPDZ protocols achieve active security by authen-
ticating each shared value with an information-theoretic MAC. This can be done either in
a pairwise manner [BDOZ11, NNOB12], or in a global manner [DPSZ12, LOS14]. Both
of these variants can be applied, yet implying significant practical differences in the total
amount of data each party needs to store, in the ZK proofs and in the way MACs are checked.
We describe both these variants below.

BDOZ-style MAC: Each value x ∈ F is authenticated and additively secret shared among
parties in P in such a way that each party Pi holds a share x(i) and n − 1 pairwise
MACs

m(ij)
x = k(ji)

x + x(i) ·∆(j),

for each j 6= i. This notation implies that Pi holds x(i) and {m(ij)
x }j, and each other

party Pj holds a local key k
(ji)
x , i.e. depending on the value x(i), and a global key ∆(j)

fixed for the entire computation. The values m
(ij)
x , k

(ji)
x ,∆(j) are either elements of F,

or elements of an extension field E of F. Typically, if log2 |F| ≥ κ, then E = F. We
will use the following notation to represent this type of authenticated values:

[x]jB =
(
〈x〉, (m(1j)

x , . . . ,m(nj)
x ), (k(j1)

x , . . . , k(jn)
x ),∆j

)
,

to denote each party authenticating their share of 〈x〉 towards party Pj, and

[x]B =
(
[x]1B, . . . , [x]nB

)
,

for the global representation. It is easy to see that parties can locally perform linear
operations on authenticated data.

Addition of pairwise authenticated secret-shared values.

[x]B + [y]B =
(
[x]1B + [y]1B, . . . , [x]nB + [y]nB

)
=
(
[x+ y]1B, . . . , [x+ y]nB

)
14



= [x+ y]B,

since, for each i, it holds:

[x]iB + [y]iB =
(
〈x〉+ 〈y〉, (m(1j)

x + m(1j)
y , . . . ,m(nj)

x + m(nj)
y ), (k(j1)

x + k(j1)
y , . . . , k(jn)

x + k(jn)
y ),∆j

)
=
(
〈x+ y〉, (m(1j)

x+y, . . . ,m
(nj)
x+y), (k

(j1)
x+y, . . . , k

(jn)
x+y),∆

j
)

Addition by a public value. Given a publicly known value a ∈ F,

a+ [x]B = [a+ x]B,

where 〈a + x〉 is obtained as described in the introduction. All the MAC values and

keys remain the same, except for k
(j1)
a+x = k

(j1)
x − a ·∆(j).

Multiplication by a public value. As before, given a public a ∈ F, a · [x]B = [a · x]B,
obtained by multiplying each share, MAC and local key by a.

SPDZ-style MAC: Each value x ∈ F is additively secret shared and authenticated as
follows.

[x]S = (〈x〉, 〈mx〉, 〈∆〉),

where mx =
∑

im
(i)
x = x ·∆ and ∆ =

∑
i ∆

(i) is the MAC key, that is hence unknown
to the parties. As for [·]B, we assume mx and ∆ to be elements of F or E, such that
F ⊂ E. Again, due to the linear relation between authenticated values and MAC,
linear operations can be carried out locally.

Addition of pairwise authenticated secret-shared values. [x]S+[y]S = (〈x〉+〈y〉, 〈mx〉+
〈my〉, 〈∆〉) = (〈x+ y〉, 〈mx + my〉, 〈∆〉) = [x+ y]S.

In a similar way we can perform addition and multiplication by a public value. Note
that given a public value a, the MAC value on a is defined by each party setting
m

(i)
a = a ·∆(i), to obtain a valid authenticated share.

Conversion to [·]S. It is possible to locally convert the BDOZ representation to the SPDZ
representation [LOS14]. As we will see in Section 5, this conversion is particularly useful
in the case we want to use a two-party primitive, like oblivious transfer, to generate
authenticated values and random triples. This allows a more efficient memory usage
and exploits a less expensive, global MAC check procedure in the online evaluation.
Given a BDOZ-style authenticated value [x]B, parties already hold 〈x〉 and additive
shares of ∆, so to obtain a SPDZ-style representation, it is enough to generate shares
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m
(i)
x of mx = x · ∆. This is done without any interaction by parties combining their

pairwise MACs and keys as follows:

m(i)
x =

∑
j 6=i

(
m(ij)
x − k(ij)

x

)
+ x(i) ·∆(i).

Indeed the following relations hold:

mx =
∑
i

m(i)
x =

∑
i

x(i) ·∆(i) +
∑
i

∑
j 6=i

(
m(ij)
x − k(ij)

x

)
=
∑
i

x(i) ·∆(i) +
∑
i

∑
j 6=i

x(i) ·∆(j)

= x ·∆.

3.1 Checking MACs

During the online evaluation of the circuit, parties need to communicate or, more pre-
cisely, they need to be able to reveal secret shared values [x]. This is done by sending over
all the private shares x(i) of 〈x〉:

Open: On input (Open, x) from every party, each Pi broadcasts x(i), recovers x =
∑

i x
(i)

and stores x.

Moreover, we need to prevent corrupt parties to disclose incorrect values, therefore we need
a way to check MACs on opened values. This can be done in different ways. Note that since
it is always possible to convert from [·]B to [·]S, and the latter allows a more efficient check,
we only consider the case of SPDZ-style MAC.

An obvious way to check if a reconstructed value is correct is by revealing shares m
(i)
x and

∆(i), for each i ∈ [n], along with x(i). Clearly, we can perform this check only once because
after the MAC key ∆ is revealed all parties can forge new MACs and introduce incorrect
values, so a new MAC key should be generated (along with new pre-processed material).

To overcome this problem in original SPDZ protocol, parties wait until the end of the
computation to reveal the MACs and the MAC key. Only when the circuit evaluation is
completed, parties check the MACs on opened values, and if the check passes the final result
of the computation is opened.

However, this approach limits the use of ∆ to a single evaluation, preventing reactive
computations without generating fresh MAC keys and pre-processed randomness. The fol-
lowing two procedures, firstly described in [DKL+13], allow to check a single MAC and
a batch of MACs, respectively, on opened values without disclosing the global MAC key .
At a high level, given an opened value x̃ and authenticated value [x], the goal is to check
whether x̃ = x by checking the MAC relation mx = x̃ · ∆. To this end parties broadcast
σ(i) = m

(i)
x − x̃ ·∆(i) and then check that

∑
i σ

(i) = 0. Note that the shares m
(i)
x are uniformly

random, so sending σ(i) does not leak any private information, in particular about ∆(i).
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MAC Check. On input (CheckMAC, x̃) from all parties:

1. Each party Pi computes σ(i) = m
(i)
x − x̃ ·∆(i)

2. Pi calls the functionality FCommit on command (Commit, σ(i), i, τ (i)) to broadcast
(i, τ (i))

3. All parties call FCommit with command (Open, i, τ (i)), obtaining σ(i), for all i ∈ [n]

4. Parties check if σ(1) + · · · + σ(n) = 0. If the check passes, accept x as a correct
authenticated value, otherwise output ⊥ and abort.

Batch MAC Check. On input (CheckMAC, x̃1, . . . x̃t) from all parties:

1. Parties use FRand to sample a random vector r← Ft

2. Each party locally computes x̃ =
∑t

j=1 rj · x̃j
3. Each party Pi computes 〈m̃〉 ←

∑t
i=1 rj · 〈mx̃j〉 and 〈σ〉 = 〈m〉 − x̃ · 〈∆〉

4. Use the (single) MAC Check procedure described above to check the MAC
relation on the value x̃, with MAC m̃ and ∆.

Remark 1 These procedures use the FCommit (Figure 1) functionality so that a corrupt party
is not able to cheat in the broadcast of its share of σ, for example using information on shares
sent by honest parties. In the same spirit, during the Batch MAC Check, the sampling
of the vector r, used to generate random linear combinations of opened values and MACs, is
performed by FRand to ensure that corrupt parties are not able to influence it in the attempt
of passing the check with incorrect shares.

We omit the security proof of the MAC Check procedure, however, the intuition is that if
corrupt parties send incorrect shares, such that the opened value is x+δ, for some adversarial
chosen δ, then to pass the check it should hold that∑

i∈[n]

σ(i) = (x+ δ) ·∆−
∑
i

m(i)
x = (x+ δ) ·∆−mx = 0.

This means that the adversary should be able to “correct” the corrupt parties’ MAC share
by the value δ ·∆, which in turns implies to guess the global key ∆. Hence the probability
of passing the check is 1/|E|, which is negligible when the field is large. As a consequence,
to carry out computation over small fields we need to take a large enough extension field
E and embed the whole computation in that field, generating a significant communication
overhead.

Another issue with this technique is that it does not work over other rings, for example
over the modular rings Z/2kZ. The reason is that these rings contain zero divisors and hence
guessing δ ·∆ mod 2k is much easier than over fields. We discuss in the next sections how
to overcome these difficulties.
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3.2 Mini MAC

In 2013, Damg̊ard and Zakarias [DZ13] introduced a new technique, called MiniMAC,
that helps to reduce the overhead in case of computation over small fields. The core idea
of MiniMAC is that of performing batch computation, for example evaluating in parallel
several instances of the same circuit over small fields, or performing single computation of a
“well-formed” circuit. More concretely, a “well formed” circuit is a circuit such that every
layer contains a large enough number of gates and its outputs are input of the next layer,
so to allow a number of parallel computation at time for each layer. This requires, most of
the time, to “pre-process” the circuit to be evaluated to obtain a circuit of the desired form,
slightly increasing the complexity of the protocol. The main difference between MiniMAC
and SPDZ is in the way values are authenticated.

MiniMAC authentication

Let C be an [N, k, d] linear error correcting code over F of length N , dimension k and
Hamming distance d. We recall that the Hamming distance of a linear code is the small-
est Hamming distance between any two different codewords, and is equal to the minimum
Hamming weight of the non-zero codewords in the code. Let Encode : Fk → FN be a sys-
tematic encoding algorithm that maps a vector x = (x1, · · · , xk) into a codeword cx ∈ C,
such that the first k entries of cx are equal to x, i.e. πk(cx) = x, where πk denotes the
projection map πk : FN → Fk, with πk(cx,1, . . . , cx,N) = (cx,1, . . . , cx,k). Given the code C,
the Shur-transform of C, denoted by C∗, is a linear [N, k∗, d∗] code defined as the span of
the set {cx ∗ cy|cx, cy ∈ C}. It can be shown that k∗ ≥ k and d∗ ≤ d. Let x ∈ Fk, we define
C∗x = {c∗ ∈ C∗|πk(c∗) = x}, i.e. the set of codewords in C∗ such that x appears in the first
k coordinates.

Remark 2 Since cx ∗ cy ∈ C∗, and πk(cx ∗ cy) = x ∗ y, because C is systematic, it holds
that:

cx ∗ cy ∈ C∗x∗y.

We are now ready to introduce the MiniMAC authentication technique. Roughly, given
vector x = (x1, . . . , xk) ∈ Fk and an error correcting code C as described above, we define
the MAC on x by first encoding x using Encode to obtain cx and then setting mx = cx ∗∆,
with ∆ ∈ FN .

MiniMAC-style MAC: Given an error correcting code C as described before, and a vector
x = (x1, . . . , xk) additively secret shared, we represent MiniMAC authentication as
follows:

[x]M =
(
〈x〉, 〈cx〉, 〈mx〉, 〈∆〉

)
,

with x =
∑

i x
(i) =

∑
i(x

(i)
1 , . . . , x

(i)
k ), mx =

∑
i m

(i)
x = cx ∗∆. We also need another

representation [·]∗M that is similar to [·]M , except that uses C∗ instead of C. This
second representation in particular is needed to multiply a [·]M -representation by a
public constant, as shown below.
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Addition of authenticated values. This is a straightforward generalization to vectors of ad-
dition of two [·]S-representations.
Addition by a public value. Given a public vector a,

a + [x]M =
(
(a + x(1),x(2), . . . ,x(n)), ca + cx,

(m(1)
x − ca ∗∆(1), . . . ,m(n)

x − ca ∗∆(n)) = [a + y]M

Multiplication by a public value. For this we need both [·]M and [·]∗M

a ∗ [x]M =
((

(Encode∗)−1(ca ∗ c(1)
x ), . . . , (Encode∗)−1(ca ∗ c(n)

x )
)

(ca ∗m(1)
x , . . . , ca ∗m(n)

x )
)

= [s]∗M ,

where πk(s) = a ∗ x and (Encode∗)−1(c∗) is the vector in Fk∗2 corresponding to the codeword
c∗ in C∗.

Hence, when we perform multiplication by a known value we produce a [·]∗M -sharing.
Note that we cannot perform multiplication with [·]∗M , and we need to convert [·]∗M back to
[·]M after each multiplication.

Conversion from [·]∗M to [·]M . We need a double encoded value ([r]M , [r]∗M). Let [x]∗M the
value we need to convert, parties do the following.

1. Open [x]∗M − [r]∗M obtaining c∗x−r ∈ C∗x−r and from the first k coordinates of this value
get x− r

2. P1 computes Encode(x− r) = cx−r and broadcast it

3. Parties check that c∗x−r and cx−r are valid codewords encoding the same value and
compute [x]M = (x− r) + [r]M .

We do not describe here the MAC Check for the MiniMAC representation, since it is
very similar to the one described for SPDZ-style authentication. Loosely speaking, it is
essentially a batch check through a random linear combination of codewords corresponding
to the opened values. Intuitively, in this case an adversary introducing an incorrect value
would pass the check if it correctly guesses at least d coordinates of the global key, where d
is the Hamming distance of the code C. In this way, the probability of successfully cheating
is given by |F|−d, which is negligible when d is big enough.

3.2.1 Related and subsequent works

The original MiniMAC paper [DZ13], defines both the MAC scheme we have just de-
scribed and the corresponding online protocol that uses this representation. In a follow-up
work Damg̊ard, Lauritsen and Toft [DLT14], introduced several optimizations and the first
implementation of MiniMAC, reporting only 4ms to evaluate AES-128 on a Boolean circuit,
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without pre-processing. The first dedicated construction of MiniMAC multiplication triples
and other pre-processed material was given by Frederiksen et al. [FKOS15] using oblivious
transfer.

A similar approach was also followed by the Committed MPC protocol [FPY18] of Fred-
eriksen, Pinkas and Yanai, where the information-theoretic MAC just described is replaced
by UC-secure homomorphic commitments based on error-correcting codes. Another very
promising work by Cascudo and Gundersen [CG20] has recently appeared. Again it follows
the same core idea of MiniMAC, but it uses the algebraic notion of reverse multiplication
friendly embedding (RMFE) [CCXY18] to encode values instead of linear codes. The main
advantage of this approach is that it allows to use smaller fields and hence achieve better
communication complexity, considering also the pre-processing phase.

3.3 SPDZ over Z/2kZ
The MAC scheme described in the previous section only works over fields and not over

rings, where guessing δ ·∆, for some adversarial chosen δ, would be much easier than guessing
∆. In [CDE+18], Cramer et al. present a new authentication scheme, closely related to the
ones described above, that allows secure active computation over the ring Z/2kZ. Secure
computation over this ring is useful in many applications, and could significantly simplify
implementations, such as in the case of evaluations of functions containing comparisons and
bit-wise operations.

Roughly, the protocol described in [CDE+18], called SPDZ2k , achieves security running
over a larger ring modulo 2k+s instead of 2k, where s is approximately the statistical secu-
rity parameter, even if correctness is only guaranteed modulo 2k. SPDZ2k pre-processing
is based on oblivious transfer using a MASCOT-like approach, and it is particularly effi-
cient in a LAN setting [DEF+19]. A different approach is taken in [OSV20], where the
SPDZ2k pre-processing is implemented using a “Z2k-friendly” version of BGV, hence more
similarly to SPDZ and Overdrive, yielding to a protocol more suited for a WAN scenario
and larger number of parties. In [CDFG20], Catalano et al. describe another implemetation
of the pre-processing phase using the Joye-Libert [JL13] additively homomorphic encryption
crytposystem and pairwise BDOZ-style authentication. This protocol is designed for the
two-party case and is more efficient for large choices of k.

4 SPDZ online evaluation

In this section we describe the circuit evaluation phase (or, online phase) of SPDZ,
assuming a trusted setup, FPrep, that generates the correlated randomness used in the actual
circuit computation. Recall that we assume that the circuit being evaluated is an arithmetic
circuit over the finite field F.

The main question is “What do we need for FPrep?” The minimal requirements are
the following. 1) Random authenticated values, (r, [r]S), that are used as masks to create
authenticated sharings of the inputs. The value r is secret shared, but known to the input
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party; 2) Random authenticated triples, ([a]S, [b]S, [c]S), c = a·b, used to multiply two shared
values.

During the online protocol the circuit is evaluated gate by gate on shared values and using
the linearity of the [·]S-representation. To share an input xi, party Pi takes a pre-processed
random value [r]S and broadcast the value xi − r. Since r is uniformly random in F and
unknown to all other parties, it acts as a one-time pad to perfectly hide xi. All parties can
then locally compute [r]S + (xi − r) to obtain [xi]S.

Multiplication of two shared values [x]S and [y]S uses Beaver’s trick. Using a multiplica-
tion triple [a]S, [b]S, [c]S, first parties open and recover the values ε = x − a and ρ = y − b.
Again, the triple values perfectly mask the inputs x and y, and the opened values appear
uniformly random to corrupt parties. Given ε and ρ, a sharing of the product x · y can be
locally computed by all parties using the triple as follows:

[x · y]S = [c]S + ε · [b]S + ρ · [a]S + ε · ρ.

When the circuit evaluation is completed, parties check the MACs on all the values re-
vealed during the input and non-linear operations. If the check passes, they open and recover
the output, otherwise the protocol aborts.

Online protocol
Initialize . Parties call FPrep to get the shares ∆(i) of the MAC key, multiplication
triples ([a]S, [b]S, [c]S) and mask values (ri, [ri]S) as needed for the function under eval-
uation. If FPrep aborts then the parties output ⊥ and abort.
Input. To share an input xi, party Pi takes an available mask value (ri, [ri]S) and does
the following:

1. Broadcast ε← xi − ri.
2. The parties compute [xi]S as [ri] + ε.

Add. On input ([x]S, [y]S), locally compute [x+ y]S ← [x]S + [y]S.
Multiply. On input ([x]S, [y]S), the parties do the following:

1. Take one multiplication triple ([a]S, [b]S, [c]S), compute [ε]S ← [x]S − [a]S, [ρ]S ←
[y]S − [b]S. Open those values and run MAC Check.

2. Use Beaver’s trick described above.

Output. To output a share [y]S, do the following:

1. Run MAC Check with input all opened values so far. If it fails, output ⊥ and
abort.

2. Open and MAC Check [y]S. If the check fails, output ⊥ and abort, otherwise
accept y as a valid output.
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5 SPDZ Pre-processing

Here we show different ways of implementing the pre-processing phase. We recall, once
again, that the main (basic) tasks of this step is to produce the following type of random
authenticated values:

Input mask. ([r]S, Pi), with the value r known by Pi

Triples. ([a]S, [b]S, [c]S), where c = a · b

Of course it is possible to pre-process different types of correlated randomness, such as
random bits, squares, etc, that can help to improve the efficiency of certain online operations.
However, explaining this kind of optimization is out of the scope of this work.

5.1 Pre-processing using threshold homomorphic encryption

As mentioned before, SPDZ offline protocol is based on a 1-leveled threshold homo-
morphic encryption scheme (introduced in Section 2.1), supporting O(n) additions and one
homomorphic multiplication, instantiated with BGV. Let us assume that M = FN , where
N is the packing parameter. This allows to produce many correlated random values in par-
allel. The original SPDZ paper, and several subsequent related works, assume a trusted
setup FKeyGen for the KeyGen algorithm. We recall that this algorithm securely provides
to the parties the BGV public key pk and a sharing 〈sk〉 of the secret key sk. [DKL+13]
describes a covertly secure protocol that achieves this task, and only recently Rotaru et al.
[RST+19] have introduced a protocol that implements FKeyGen with active security. This
protocol is based on oblivious transfer and, specifically, on the MASCOT protocol [KOS16].
The interested reader can find the implementation of the so-called “SPDZ setup functional-
ity” in [RST+19], here we make use of ideal functionality FKeyGen in the description of the
pre-processing protocol.

Other than FKeyGen, we also assume another ideal functionality, FDistDec, that extends
the standard BGV decryption algorithm to securely allow distributed decryption inside
SPDZ. Now we give an overview of the pre-processing protocol, and later we provide and
discuss it in greater detail.

High level description. The passive version of the pre-processing protocol works as fol-
lows. Let us assume that the parties have (pk, 〈sk〉) and (〈∆〉, ct∆), where ct∆ is an encryption
of the MAC key ∆ using BGV.

- To create an input mask ([r]S, Pi), each party Pi samples a random value r and creates
a random sharing 〈r〉, that is Pi sends the relative share r(j) to Pj, for each j 6= i.
Parties then locally compute the ciphertexts ctrj using the common public key pk
and broadcast them. Using the homomorphic properties of BGV, parties can locally
compute ctr and ctr · ct∆ = ctmr , i.e. encryptions of the mask r and its MAC. Using
a distributed decryption algorithm with 〈sk〉, each party obtains a share of mr. Note
that this step requires interaction. The output of this simple procedure is used in the
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Input step of the online evaluation to mask the actual input value, as described in
Section 4.

- A similar technique is used to produce triples. Each party samples random shares
a(i), b(i) and broadcast the corresponding ciphertexts ctai , ctbi . Parties can compute
ctc, ctma , ctmb

as before and using the distributed decryption, the MAC sharing 〈ma〉
and 〈mb〉. Since we allow only one homomorphic multiplication, to produce 〈mc〉 parties
first decrypt ctc, and, with 〈c〉, they produce a fresh encryption c̃tc of c that can then
be multiplied by ct∆.

Unfortunately, this simple protocol is not sufficient against active corruptions. Indeed, cor-
rupt parties have the freedom to generate incorrect ciphertexts containing maliciously chosen
noise or unknown plaintexts, that would result either in selective failure attacks or informa-
tion leakage during distributed decryption. To solve this problem SPDZ uses zero-knowledge
proofs of plaintext knowledge for every sent ciphertext, to prove that it is correctly generated.
A second issue arises in the distributed decryption itself. During this interactive procedure
an adversary might add errors both to triples and MAC values. While correctness of triples
is checked through an additional check, called “sacrifice” (that we will describe later), errors
on MACs have no impact on protocol security as potential errors cause the MAC Check to
fail except with negligible probability.

5.1.1 SPDZ zero-knowledge proofs

As mentioned before, to achieve active security SPDZ uses zero-knowledge proof of plain-
text knowledge in order to prove that the ciphertexts used to generate pre-processed ran-
domness are correctly generated. While it would be very convenient, in terms of efficiency,
to avoid these expensive proofs all together, they seem to be quite unavoidable if we do not
want to occur in decryption failures and information leakage both in the pre-processing and,
more importantly, in the online computation. Zero-knowledge proofs constitute the main
bottleneck in SPDZ implementations, both in terms of communication and runtime. For this
reason a consistent amount of work have been devoted to the optimization of those proofs
[BBC+18, BCS19, BDLN16, BDTZ16, dL17, KPR18]. Here we informally describe the main
idea of these proofs and explain why they are so expensive. For the details the reader may
refer to [BCS19, BDLN16].

Roughly, in SPDZ ZK proofs, each party Pi, acting as a prover P, has to prove knowledge
of a short preimage x of a linearly homomorphic function f such that f(x) = y and ‖x‖ ≤ B,
for some bound B. Here f is the BGV encryption function and y is the ciphertext that Pi
has to prove being correctly generated. More formally, we need a zero-knowledge proof of
knowledge for the relation

RZK = {(x, y) | y = f(x) ∧ ‖x‖ ≤ B}.

This kind of proofs usually consist of a standard Σ-protocol:
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1. P samples a random r such that ‖r‖ ≤ τ · B, for τ sufficiently large (see below), and
sends f(r) = a to the verifier V;

2. V samples a random challenge e ∈ {0, 1} and sends it to P;

3. P replies with z = r + e · x.

Finally, the verifier checks whether f(z) = a+ e · y and that ‖z‖ ≤ τ ·B.

It is evident that the bound proven above is not tight. Indeed a sufficiently large τ is
necessary to make the distribution of z statistically independent of x and hence provide
(honest-verifier) zero-knowledge. Also, we can extract the witness x (and get special sound-
ness) from two correct transcripts (a, e, z), (a, e + 1, z′) that a cheating prover can provide,
by f(z − z′) = y, so that ‖z − z′‖ ≤ 2 · τ ·B. The term 2 · τ ·B is known as soundness slack
and quantifies the difference between the bound used by an honest prover and what we can
force a cheating prover to do.

In short, this approach has two main drawbacks. Firstly, it needs to be repeated many
times to reach a sufficiently small soundness. Secondly, a large soundness slack implies in
SPDZ larger parameters in the underlying BGV cryptosystem, with consequences in terms
of computation and also communication as these ciphertexts need to be sent to all parties
in the protocol. As described in [BCS19], the slack can be removed by a modulus switch
operation after the ZK proof is executed. Loosely speaking, a modulus switching operation
is a noise management technique, introduced by Brakerski et al. [BGV12], that transforms
a ciphertext over a certain modulo into a ciphertext defined over a smaller modulo.

A common solution to the first issue is to use standard amortized techniques [CD09],
and prove several statements at once. Even if on one hand the amortization reduces the
soundness from 1/2 to 2−t, where t is the number of instances we are proving, on the other
hand it introduces even more slack.

Different alternatives to this general approach have been proposed.
In [DKL+13] a cut-and-choose based check is described to replace the zero-knowledge

proofs. This method needs a large number of additional ciphertexts and it seems to require
too much memory to be practical.

In [KPR18], Keller, Pastro and Rotaru revisited the original SPDZ ZK proofs by noting
that in the pre-processing it is not required that each ciphertext ctxi was correctly generated,
but rather than the sum of those is “correct”. This is because only this sum is going to be
used in the distributed decryption, and not the single shares. In this way it is possible
to replace the per-party proof with a global proof, improving the overall computational
complexity, as each party needs to check only a single proof instead of n − 1, but not the
overall communication.

In a recent work [BCS19], Baum, Cozzo and Smart improve the soundness of the global
proof introduced in [KPR18]. This work implies a reduction in the amount of amortization
required to achieve the desired soundness and also smaller slack. With this technique it is
only possible to prove the validity of ciphertexts 2 · ctx, and not of ctx, but in SPDZ this can
be mitigated by slightly modifying some of the shares in the MPC protocol.
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5.1.2 SPDZ sacrifice

To ensure triples correctness essentially all SPDZ-style protocols use a standard sac-
rifice technique that checks a pair of triples such that one can be then used securely.
While the original SPDZ protocol used two independent random triples ([a]S, [b]S, [c]S) and
([a′]S, [b

′]S, [c
′]S), checking one against the other, in MASCOT it was noticed that the check

also works with “correlated” triples ([a]S, [b]S, [c]S) and ([a′]S, [b]S, [c
′]S), i.e. with the same

b (or equivalently same a). In this way we have a cheaper check requiring less authenticated
randomness and also less opening, and hence less communication. It proceeds as follows.

Sacrifice: Given two correlated triples ([a]S, [b]S, [c]S) and ([a′]S, [b]S, [c
′]S):

1. Parties call the ideal functionality FRand to obtain a random r ∈ F
2. Parties open the value ρ = r · [a]− [a′]

3. Parties compute r · [c]− [c′]− ρ · [b], and check whether it is equal to zero. If not,
the protocol outputs ⊥ and aborts.

If the triples are correct:

r · c− c′ − ρ · b = r · (a · b)− (a′ · b)− b · (r · a− a′) = 0.

If the triples are incorrect, that is (a, b, c+ δ) and (a′, b, c′+ δ′), where δ, δ′ are chosen by the
adversary:

r · (c+ δ)− (c′ + δ′)− ρ · b =

r · (a · b+ δ)− (a′ · b+ δ′)− b · (r · a− a′) = r · δ − δ′,

which is zero with probability 1/|F|.

5.1.3 Putting everything together

We can finally show the SPDZ offline protocol. We make the following assumptions:

- A global zero-knowledge protocol ΠgZKPoK as we have described above (for details we
refer to [BCS19, KPR18, OSV20].

- A key generation functionality FKeyGen that distributes (pk, 〈sk〉) among the parties
(in SPDZ instantiation these keys are BGV encryption and decryption keys).

- A distributed decryption functionality FDistDec that, given a correctly generated ci-
phertext, output a sharing of the decryption output.

When we implement FDistDec in SPDZ using BGV, we provide this ideal functionality of two
commands DDM and DDT, that we describe below.

Distributed decryption MACs (DDM): It takes as input a valid ciphertext ctm and
the BGV keys (pk, sk).
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1. Decrypt ctm and send the output of the decryption m to the adversary.

2. Wait for an input from the adversary. If receive Abort, send Abort to the parties
and halt, otherwise on receiving m′ = m+ δ, send 〈m′〉 to the parties.

Distributed decryption triples (DDT): It takes as input a valid ciphertext ctm and
the BGV keys (pk, sk).

1. Do as DDM in steps 1. and 2.

2. Compute a fresh encryption ctm′ of m′ and send it to the parties.

DDT is essentially the Reshare protocol given in [DKL+13, DPSZ12, ?]. When we implement
this functionality with BGV, the protocol requires a masking ciphertext, and hence a ZK
proof, that is used in the distributed decryption. Other than the decryption sharing 〈m′〉, it
also produces a fresh encryption ctm′ of the output of the decryption. On the other hand, in
the protocol implementing DDM [KPR18], a large “plaintext” mask is introduced directly
in the decryption procedure, and there is no need of ZK proof for this mask. Therefore, this
latter protocol is cheaper than DDT, but it can only be used if the result of the decryption
does not need to be re-encrypted. In particular, it can only be used for MACs generations
and not for generating c and mc, and for this reason it only outputs decryption shares and
not a fresh encryption of it as DDT does. Finally, note that both of the commands allow
the corrupt parties to add some error to the outputs. This does not break the security of
the protocol as these errors will be detected by MAC Check failures.

Pre-processing protocol. Parties receive pk from FKeyGen.
Initialize. Parties create a ciphertext ct∆ encrypting the MAC key ∆:

1. Each party Pi samples a random ∆(i). Set ∆ =
∑

i ∆
(i)

2. Each Pi, i ∈ [n], computes and broadcasts ct∆i

3. Parties run ΠgZKPoK to check that ct∆ is valid

Input. On input (Input, Pi) from all parties:

1. Pi samples r ← F, creates 〈r〉 and sends r(j) to Pj, j 6= i

2. Each party Pi creates ctri and broadcasts this value

3. Parties run ΠgZKPoK and compute ctr·∆

4. Parties call FDistDec on command DDM receiving 〈mr〉
5. Parties run MAC Check, if it fails, the protocol Abort

Triples. On input (Triple) from all parties:

1. Each Pi samples random shares a(i), b(i) ← F, computes ctai , ctbi and broadcasts
these values

2. Parties run ΠgZKPoK to check the validity of cta and ctb
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3. Parties compute cta · ctb = ctc

4. Parties call FDistDec on command DDT obtaining 〈c〉 and a fresh encryption of
c, c̃tc

5. Parties obtain 〈ma〉, 〈mb〉, 〈mc〉 calling FDistDec on command DDM on inputs
cta, ctb, c̃tc.

6. Parties repeat steps 2-5 with value a′, obtaining 〈c′〉, such that c′ = a′ · b and
〈ma′〉, 〈mc′〉.

7. Parties run the Sacrifice check on input
(
(a, b, c), (a′, b, c′)

)
. If the check fails,

the protocol Abort

8. Parties run MAC Check, if it fails, the protocol Abort

5.2 Pre-processing using oblivious transfer

Here we describe how to generate random authenticated values and triples using oblivious
transfer instead of homomorphic encryption. In order to do this we need some more notation.

We define the ‘gadget’ vector g consisting of the powers of two (in Fp) or powers of X
(in extension fields Fpk), so that

g = (1, g, g2, . . . , gk−1) ∈ Fk,

where, as said before, g = 2 in Fp and g = X in Fpk . Let g−1 : F → {0, 1}k be the ‘bit
decomposition’ function that maps x ∈ F to a bit vector xB = g−1(x) ∈ {0, 1}k, such that
xB can be mapped back to F by taking the inner product 〈g,g−1(x)〉 = x. This tool permits
to switch between field elements and vectors of bits whilst remaining independent of the
underlying finite field.

Passively-secure multiplication using OT. We are now ready to show how to use
OT to produce a secret sharing of an arithmetic product. In a standard one-out-of-two
OT, the sender inputs two messages x0, x1 ∈ F, and the receiver inputs a bit b, receiving
xb = x0 + b · (x1 − x0). Setting a = x1 − x0, we obtain

xb − x0 = b · a,

where xb, x0, a ∈ F and b ∈ {0, 1}. The value a is called correlation, and the corresponding
OT functionality, correlated OT (Figure 3).

We can then combine k correlated OTs into one arithmetic OT, as follows. Parties
PS and PR input (xi, xi + a), for some fixed correlation a ∈ F, and (b1, . . . , bk), such that
(b1, . . . , bk) = g−1(b), b ∈ F, respectively. The receiver then obtains yi = xi + bi · a, i ∈ [k].
By setting q = 〈g,y〉, with y = (y1, . . . , yk) and t = 〈g,x〉, with x = (x1, . . . , xk), we obtain
q = t + b · a, where the sender holds q, a ∈ F and the receiver holds t, b ∈ F. We have thus
transformed oblivious transfer into a secret sharing of the product of both parties’ inputs
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Functionality FCOT

Running between a sender PS and a receiver PR, it operates as follows.

- PS inputs (x0, x0 + a) ∈ F× F and PR inputs b.

- The functionality outputs xb = x0 + b · a to PR.

Figure 3: Functionality for one-out-of-two oblivious transfers on k-bit strings.

in F. 3 Using this building block, constructing a passively secure protocol for secret-shared
multiplication triples is straightforward by simply running the protocol between every pair
of parties and summing the shares.

Efficient authentication using correlated OT. As for the case of homomorphic encryp-
tion, also in oblivious transfer based pre-processing protocols we can use the same approach
to create triples and MACs, because the relation between authenticated values and MAC
keys is the same as the multiplication triple relation. The main difference is that in an au-
thentication procedure, the global MAC key is fixed, so while in triples generation we need
to use a fresh correlation for each triple, the correlation remains the same for all the values
we need to authenticate. More precisely, the MAC generation for an additively secret shared
value x ∈ F proceeds as follows.

1. Each party Pi samples a random share ∆(i) of the global MAC key

2. Each pair of parties, (Pi, Pj), run k FCOT on input x(i), ∆(j), respectively, obtaining

q(j,i) = t(i,j) + x(i) ·∆(j).

3. After all the n(n−1) executions, each party Pi locally combines their results to generate
the MAC share

m(i) = x(i) ·∆(i) +
∑
j 6=i

(
q(i,j) − t(i,j)

)
.

Essentially, using FCOT, i.e. a 2-party functionality, we naturally obtain a BDOZ-style
authentication that can be locally converted to SPDZ-style MACs as we described in Section
3.

OT-based pre-processing with active security. It is clear, from previous description
of the authentication and triple generation protocols, that an adversary could easily cheat,
for example by inputting inconsistent values in one of the FCOT instances, or using different
MAC key shares with different parties.

3This generalisation of oblivious transfer is also referred to as oblivious linear function evaluation
(OLE) [NP99].

28



Here we discuss separately how to achieve active security of the MACs generation and triples
generation protocols.

For the MAC generation, it turns out that the passively secure protocol is almost enough.
This is because during the authentication, the correlation ∆ is fixed at the beginning, so
the adversary does not have much possibility to deviate from protocol instructions later on.
However, even after the correlation has been fixed, the adversary is still able to create wrong
MACs which contain errors depending on the global key. It was proved in [KOS16], that to
obtain active security it is enough to run a MAC Check opening a random linear combination
of authentication values just after their generation. This somehow fixes the global key and
ensures correctness of subsequent checks. Note that during the MAC checks an adversary is
still able to pass the check even in the presence of some errors by guessing some bits of ∆,
however if the guess is incorrect the protocol aborts. So the only thing we have to make sure
is that the global MAC key still has sufficient entropy to prevent cheating in MAC checks,
even if a few bits have been guessed.

For triple generation achieving active security is more involved, since we do not have
a fixed correlation, and hence a linear combination on which running a check. Note that
we need to ensure both correctness and privacy of the triples. Correctness is easily verified
with a pairwise, standard sacrifice technique. This check, however, raises the possibility of
selective failure attacks, so that if for example the adversary cheats in just a single bit, and
the check passes, then this bit of the triple is leaked to the adversary. To prevent this, a
simple variant of privacy amplification is used. First we generate several leaky triples, from
which a single, random triple is extracted by taking random combinations [KOS16].

5.2.1 SHE vs OT - Comparison

Here we compare the efficiency of OT-based and HE-based pre-processing, reporting
the figures provided by [KPR18]. The values in Table 1 confirm the complementarity of
these two approaches, even if some recent improvements in OT-extension protocols could
greatly improve the efficiency of protocols relying on oblivious transfer. We can see that
MASCOT is more efficient over binary extension fields and LowGear over prime fields of
odd characteristics. In the multiparty case, essentially when the number of parties is larger
than ∼ 7, HighGear will become more efficient than LowGear [KPR18].

5.2.2 Pre-processing with OLE

We can naturally instantiate the pre-processing with OLE (Oblivious Linear-function
Evaluation) instead of OT. As we said previously, OLE is an arithmetic generalization of
OT to larger fields. More formally, it is a two-party functionality where the sender PS inputs
two values a, b ∈ F and the receiver PR inputs a value x ∈ F obtaining y = x+a ·b. OLE can
be constructed from several assumptions and public-key based constructions, like OT (as
seen before), homomorphic encryption, noisy encodings [IPS09, GNN17], etc. An efficient
arithmetic implementation of OLE can potentially lead to a very efficient pre-processing
phase, as it will avoid running FCOT for each bit of the binary representation of the values
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Protocol Triples/sec Network Field

MASCOT 5100 1Gbit/s Prime field log2 |F| = 128
214 50Mbit/s Prime field log2 |F| = 128

5100 1Gbit/s Binary field F2128

LowGear 30000 1Gbit/s Prime field log2 |F| = 128
3200 50Mbit/s Prime field log2 |F| = 128
117 1Gbit/s Binary field F2128

HighGear 5600 1Gbit/s Prime field log2 |F| = 128
1300 50Mbit/s Prime field log2 |F| = 128
67 1Gbit/s Binary field F2128

Table 1: Triple generation for prime and binary fields with two-party and 64 bits of statistical
security [KPR18].

involved in the computation. A two-party protocol based on OLE is described by Döttling et
al. [DGN+17], that can be considered as a natural generalization of TinyOT to the arithmetic
setting, however this work does not give an implementation of the protocols described, so
the actual efficiency of this approach is not completely clear.

5.3 Silent pre-processing via PCG

In a recent line of work Boyle et al. [BCG+19b, BCG+20] show how to generate correlated
randomness that can be used as pre-processd material in MPC protocols using pseudorandom
correlation generators (PCGs). A PCG is a deterministic function that allows to extend short
seeds to long instances of a desired correlation, i.e. OT, OLE, triples etc. Using a PCG we
can have a so-called “silent pre-processing”. After a setup that consists of generation and
distribution of the seeds, the expansion is local, i.e. does not require communication, and
hence the term “silent”.

This is a very promising approach as it allows to reduce significatively the communication
and memory usage, even if it still require, in some useful case like generation of authenticated
triples, a quite expensive setup.
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[DGN+17] Nico Döttling, Satrajit Ghosh, Jesper Buus Nielsen, Tobias Nilges, and Roberto
Trifiletti. TinyOLE: Efficient actively secure two-party computation from obliv-
ious linear function evaluation. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2263–2276. ACM
Press, October / November 2017.

[DKL+13] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,
and Nigel P. Smart. Practical covertly secure MPC for dishonest majority -
or: Breaking the SPDZ limits. In Jason Crampton, Sushil Jajodia, and Keith
Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages 1–18. Springer,
Heidelberg, September 2013.

[DKS+17] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schnei-
der, Shaza Zeitouni, and Michael Zohner. Pushing the communication barrier
in secure computation using lookup tables. In NDSS 2017. The Internet Society,
February / March 2017.
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