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Abstract—Public key cryptography is used to asymmetrically
establish keys, authenticate or encrypt data between communicat-
ing parties at a relatively high performance cost. To reduce
computational overhead, modern network protocols combine
asymmetric primitives for key establishment and authentication
with symmetric ones. Similarly, Hybrid Public Key Encryption,
a relatively new scheme, uses public key cryptography for key
derivation and symmetric key cryptography for data encryption.
In this paper, we present the first quantum-resistant implementa-
tion of HPKE to address concerns that quantum computers bring
to asymmetric algorithms. We propose PQ-only and PQ-hybrid
HPKE variants and analyze their performance for two post-
quantum key encapsulation mechanisms and various plaintext
sizes. We compare these variants with RSA and classical HPKE
and show that the additional post-quantum overhead is amortized
over the plaintext size. Our PQ-hybrid variant with a lattice-based
KEM shows an overhead of 52% for 1KB of encrypted data which
is reduced to 17% for 1MB of plaintext. We report 1.83, 1.78, and
2.15 ×106 clock cycles needed for encrypting 1MB of message
based on classical, PQ-only, and PQ-hybrid HPKE respectively,
where we note that the cost of introducing quantum-resistance to
HPKE is relatively low.

Index Terms—Post-Quantum, Hybrid Public Key Encryption,
Post-Quantum Hybrid Public Key Encryption, Hybrid HPKE

I. INTRODUCTION

Public key cryptography is widely deployed in various use
cases for key establishment, authentication and occasionally
key encapsulation and data encryption. For example, (Elliptic
Curve (EC)) Diffie-Hellman (DH) Key Exchange [21] is used
to establish shared secrets among communication parties in
protocols like TLS and SSH [45, 57, 37, 30]. RSA signatures
[48] and (Elliptic Curve) Digital Signatures (DSA) [44, 36],
on the other hand, are used for authentication.

However, there are shortcomings to public key algorithms,
especially when used for data encryption. First, asymmetric
cryptography is based on computationally expensive problems
and introduces performance, power, and energy consumption
challenges. Second, RSA, the most widely used asymmetric
encryption option, introduces plaintext size limitations. It limits
the data size it can encrypt to ranges of a few hundreds
of kilobytes (KB) (e.g. 190B1 when using RSAES-OAEP-
SHA256 with RSA2048). It is for this reason that standalone
asymmetric schemes are mostly used for encrypting small

1k−2hLen−16, where k is the RSA modulus and hLen is the underlying
hash function length[34].

amounts of data such as symmetric encryption keys (key
wrapping). Finally, an additional concern with asymmetric
algorithms is quantum computers. Asymmetric algorithms rely
on integer factorization (RSA) and (EC) Discrete Logarithm
((EC)DH, ECDSA) problems which could be broken by
quantum computers in polynomial time using Shor’s algorithm
[52]. Thus, should a sufficiently powerful quantum computer
become available, all public key cryptography used today
could be broken, including key establishment and digital
signatures. This brought the National Institute of Standards
and Technology (NIST) to initiate the Post-Quantum (PQ)
Cryptography Project [42] in order to standardize quantum-
resistant key encapsulation mechanisms (KEMs) and signatures.
Other standardization organizations have also been working on
introducing post-quantum (PQ) algorithms to existing protocols
and standards [56, 61] and focusing on post-quantum migration
challenges and solutions [41].

Hybrid Public Key Encryption (HPKE) [10] is a recently
ratified Internet Engineering Task Force (IETF) Informational
RFC which leverages a KEM to establish a shared secret used to
produce a symmetric key for symmetric encryption/authentica-
tion of the plaintext. Since HPKE provides a method of deriving
symmetric keys using asymmetric key exchange mechanisms,
data is encrypted using efficient algorithms such as AES-
256-GCM which alleviates the computational complexity of
asymmetric cryptographic primitives. Additionally, asymmetric
encryption’s previously limited plaintext size can be vastly
increased. Therefore, similarly to other hybrid constructions,
HPKE solves the plaintext size limitation and optimizes
the computational cost of securing data with asymmetric
algorithms.

To address the quantum computer risk, we introduce, to
the best of our knowledge, the first implementation of a Post-
Quantum Hybrid Public Key Encryption (PQ HPKE) scheme
which uses quantum-resistant KEMs. Symmetric encryption
is considered quantum-resistant, thus we leave HPKE’s sym-
metric primitives intact. As PQ KEMs are relatively new and
potentially not well-trusted yet, we offer PQ-only and PQ-
hybrid HPKE ciphersuites. The latter combines a classical and
a post-quantum KEM to generate the shared secret. If one of
the KEMs is secure, the ciphertext is secure.

Our Contributions: Our contributions can be summarized
as follows:



1) We propose quantum-safe HPKE as a practical and secure
quantum-resistant asymmetric encryption scheme.

2) We implement quantum-resistant HPKE by integrating
two post-quantum KEMs in both PQ-only and PQ-hybrid
modes.

3) We evaluate post-quantum HPKE’s performance for vari-
ous plaintext sizes and (a)symmetric encryption algorithms
and compare it to classical HPKE and classical RSA
encryption. We show that well-performing post-quantum
KEMs are viable for use in HPKE.

Use Cases: HPKE is already used in some use cases to
asymmetrically encrypt sensitive data. It is used in Message
Layer Security (MLS) [8] to encrypt path secrets. MLS is
a key establishment protocol developed in the IETF which
enables group key establishment with forward secrecy and
post-compromise security.

The ECH IETF draft [47] is also using HPKE to protect TLS
client sensitive information like Subject Name Identifiers (SNI)
which could reveal the destination the client is communicating
with. ECH encrypts TLS ClientHellos with HPKE to a known
TLS proxy’s public key.

Other uses for HPKE include encrypting logging information
[18, 17] and privacy preserving measurements of sensitive
data [28]. It has also been proposed for Oblivious DNS
over HTTPS (ODoH) [55]. Additionally, HPKE could replace
current uses of RSA used for key wrapping or small plaintext
encryption.

Why HPKE: We chose to focus on HPKE as it is the
best asymmetric encryption option which could be integrated
with PQ KEMs. While the NIST PQ Cryptography project is
spearheading the standardization effort of quantum-resistant
asymmetric algorithms, there is little discussion of how
these algorithms will be incorporated into hybrid public key
encryption schemes. Due to the nature of PQ KEMs, they
could not operate asymmetric encryption like RSA or other
classical algorithms, thus HPKE seems as the best candidate
for asymmetric quantum-resistant encryption.

What’s more, RSA has traditionally been used to asym-
metrically encrypt small plaintexts. HPKE removes plaintext
size limitations (dependent on modulus size), can provide
authentication, and significantly improves its performance.

II. RELATED WORK

Symmetric and asymmetric algorithms have been combined
in the literature in hybrid scheme variants [12, 33]. These
usually combine symmetric primitives with an asymmetric
algorithm as a symmetric key encapsulation mechanism. In
[32], the authors study the performance of hybrid schemes.

Other, similar to HPKE, hybrid schemes have been pro-
posed in the literature. [11] presents the Discrete Logarithm
Augmented Encryption Scheme (DHAES) where two types of
encryption based on RSA and Diffie-Hellman are defined. It
is later renamed to Diffie-Hellman Augmented Encryption
Scheme (DHAES) [1]. DHAES is based on a symmetric
encryption algorithm, a message authentication code, and a

cryptographic hash function. It was later referred to as Diffie-
Hellman Integrated Encryption Scheme (DHIES) [2]. DHIES
underwent several changes and was analyzed in the literature
in [39, 26, 24, 25] where its variants received the common
name ECIES [27]. ECIES was implemented in NaCL [60],
Bouncy Castle [58] and Crypto++ [59]. It is standardized in
non-interoperable standards [5, 35, 53], relies on deprecated
or broken cryptographic primitives, and is not proven secure
against chosen-ciphertext attacks (IND-CCA2) [9]; HPKE
can offer authentication, uses modern primitives and benign
malleability resistance instead.

What’s more, the elliptic curve primitives used in HPKE have
seen multiple platform-specific optimizations for AVX2 [29,
22, 16], ARM Neon [51] and ARM Cortex-M4 [23, 50, 49]
which can speed up HPKE as well.

Additionally, [4, 38] offer an analysis of HPKE and discuss
key compromise impersonation concerns in HPKE’s authenti-
cated mode.

The National Institute of Standards and Technology NIST
[42] initiated a standardization process in 2016 to analyze,
evaluate and optimize post-quantum algorithms. There are
multiple research efforts optimizing the NIST PQ candidates
summarized in [3, 40]. Upon standardization, post-quantum
algorithms will be integrated into widely used cryptographic
protocols such as TLS, SSH, and IKEv2. There are multiple
studies evaluating quantum-safe algorithms in Internet proto-
cols [14, 54, 43, 20].

The rest of this paper is organized as follows. Section III
discusses HPKE and its underlying cryptographic primitives.
Section IV presents how HPKE could be extended to become
quantum-resistant and briefly discusses its security. Section V
describes the setup and our experiments. In Section VI
we analyze our results and quantitatively prove the post-
quantum HPKE is viable, especially for well-performing KEMs.
Section VII concludes this work and presents future topics of
research.

III. HPKE

A. Cryptographic Primitives

Key Encapsulation Mechanism (KEM): HPKE models key
encapsulation as three steps:

• KGen() → (pk, sk): A probabilistic key generation
algorithm which generates a public key pk and a secret
key sk.

• Enc(pk) → (ss, ct): A probabilistic encapsulation algo-
rithm which takes as input a public key pk and outputs a
public encapsulation ciphertext ct and shared secret ss.

• Dec(sk, ct) → ss: A deterministic decapsulation algo-
rithm which takes a secret key sk and the ciphertext ct
as input and returns a shared secret ss, or error.

HPKE instantiates the KEM as a ECDH KEM defined below:

• KGen() → (pkE, skE): Generates an ephemeral pub-
lic/private ECDH key pair.
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• Enc(pkS)→ (ss, ct): Given input a static ECDH public
key pkS, generates a ciphertext ct and a shared secret ss:

ss← ECDH(skE, pkS)

ct← SerializePublicKey(pkE)

where SerializePublicKey is a KEM utility function that
takes as input a public key pk and produces a unique
encoding. DeserializePublicKey reverses this process (i.e.,
DeserializePublicKey(SerializePublicKey(pk)) = pk).

• Dec(skS, ct) → ss: Given input a static ECDH private
key skS and SerializePublicKey(pkE), deserializes pkE
and deterministically outputs a shared secret ss:

ss← ECDH(skS, pkE)

In the rest of this work, we assume all transmissions of public
keys include a SerializePublicKeyled public key and we omit
all DeserializePublicKey / SerializePublicKey operations.
Key Schedule: As it is also explained in [38, § 3.1], a
key schedule is a tuple of deterministic algorithms (Hash,
Extract, Expand) used for secret derivation and expansion. It
is parameterized by a concrete hash function such as SHA-2,
an input shared secret i, and an output length Nh.

• KDF(i): A Key Derivation Function (KDF) computes the
Nh-byte hash of i by using the underlying hash algorithm.

• Extract(salt, label, IKM ): Generates a pseudorandom
Nh-byte key PRK by using input keying material IKM
with an optional string salt and a label.

• Expand(PRK, label, info, L): Generates L-byte pseudo-
random string using the extracted key PRK from the
previous step, a label and optionally a string info.

Authenticated Encryption with Associated Data (AEAD):
As it is also explained in [38, § 3.1], an AEAD algorithm is
a tuple of two steps (Seal, Open) defined over key, nonce,
and message space Kaead = {0, 1}8×Nk , N = {0, 1}8×Nn ,
M = {0, 1}∗ respectively.

• Seal(k, n, aad,m): Given key k ∈ Kaead, nonce n ∈ N ,
optional associated data aad, and plaintext message m ∈
M, produces ciphertext (including an authentication tag)
c. This is practically the encryption step.

• Open(k, n, h, c): Given key k ∈ Kaead, nonce n ∈ N ,
optional associated data aad, and ciphertext c, produces
the corresponding plaintext m ∈ M, or error ⊥ if
decryption fails. This is practically the decryption step.

B. HPKE Overview

HPKE is a relatively new IETF Informational RFC that
replaced ECIES. In summary, it leverages (EC)DH to establish
a shared key between two parties. The shared secret is used to
derive a symmetric key using a Key Schedule. That symmetric
key is then used to encrypt data with an efficient symmetric
AEAD algorithm. HPKE specifies

• ECDH, X25519 and X448 as its KEMs
• HKDF-SHA256, HKDF-SHA384 and HKDF-SHA512 as

its KDFs

• AES-GCM and ChaCha20/Poly1305 as its AEAD algo-
rithms

The HPKE construction provides different operation modes
for authenticating the sender of the data. In Base mode
the sender is not authenticated. In PSK mode the sender is
authenticated by a Pre-Shared Key (PSK). In Auth mode it
is implicitly authenticated by its static private key used to
establish the shared secret. In AuthPSK mode the sender is
authenticated by a PSK and its static private key which are
both used to establish the shared secret. In this work, we focus
on Base mode as we are investigating post-quantum HPKE.
PSK mode would not impact our results as it only adds a
pre-shared key to the KDF. HPKE’s two Auth modes cannot be
implemented in PQ HPKE without introducing new messages
from the receiver due to the nature of PQ KEMs being different
than ECDH.

Base mode HPKE is shown in Figure 1. S and R mark
the Sender and Recipient respectively. E represents generated
Ephemeral keys. We show an ECDH-based KEM. The recipient
generates a static ECDH keypair (skR, pkR) where the public
key is generated as the point multiplication of the secret key and
a base point B such that pkR = skR ·B. The public key pkR
is shared with the sender out-of-band. The sender generates an
ephemeral ECDH keypair (skE, pkE) where pkE = skE ·B
for the same base point B. The sender then generates a shared
secret ss = skE · pkR. The ephemeral public key pkE is then
encoded and sent to the recipient. The recipient produces its
view of the shared secret as ss = skR · pkE. Both parties
reach the same shared secret as ss = skE · pkR = skR · pkE.
Following, a key derivation function KDF is applied to the
shared secret. The output is a common key ck which is input
to the Key Schedule Extract and Expand steps to obtain the
final symmetric key k using a context variable.

The Key Schedule returns the symmetric key k, a nonce n,
and an exporter secret sexp. All these keys are only known to
the sender who encapsulates the secret data and the recipient
who decapsulates using the static private key. k is used as
the symmetric key. The nonce used in the Seal and Open
operations is n XORed with the current block counter. sexp
can be used for exporting secrets of the desired length from the
encryption context by using the corresponding KDF expand
function, similar to the TLS 1.3 exporter interface [46].

The sender then proceeds to encrypt the plaintext to a
ciphertext c by using the Seal function with key k and nonce
from n from its Key Schedule. The recipient decrypts the
ciphertext c by using Open with the key and nonce n from its
Key Schedule.

HPKE is formally analyzed in [38, 4] which show that in
Base mode it is IND-CCA2 secure. In its authenticated modes,
HPKE is Outsider-CCA and Insider-CCA secure.

IV. POST-QUANTUM HPKE

After summarizing HPKE, we present its post-quantum
version which uses quantum-safe KEMs to ensure that the
ciphertext is protected against quantum computers. Note that
HPKE is constructed with agility in mind. [10, § 9.1.3]
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Alice (Sender) Bob (Receiver)

Out of band knowledge of:
pkR (skR, pkR)← KGen()

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Encap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(skE, pkE)← KGen()

ss← ECDH(skE, pkR)

ck ← KDF (ss, context)
pkE

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Decap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ss← ECDH(pkE, skR)

ck ← KDF (ss, context)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s← Extract(ck,NULL)

k ← Expand(s, “hkpe key”||ctx,Nk)

n← Expand(s, “hkpe nonce”||ctx,Nn)

sexp ← Expand(s, “hkpe exp”||ctx,Nh)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seal/Open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c← Seal(k, n⊕ 0, aad, pt)
c

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ pt← Open(k, n⊕ 0, aad, c)

Fig. 1: HPKE Overview

discusses the changes required to achieve post-quantum security.
In this work, we propose and implement two versions of the
HPKE construction. First we define a post-quantum-only HPKE
where we replace the ECDH KEM with a PQ KEM. Second,
we develop a PQ-hybrid HPKE which combines the classical
ECDH KEM with a PQ KEM to generate the shared secret.
The PQ-hybrid HPKE variant ensures that the ciphertext is
secure in scenarios where the post-quantum algorithm is broken
or a large-scale quantum computer has become available and
threatens ECDH. Figure 2 shows PQ-only HPKE and PQ-
hybrid HPKE in gray highlight.

A. PQ-only HPKE

The PQ-only version of HPKE replaces the classical KEM
with a PQ KEM. The rest of the scheme remains the same. Due
to the nature of PQ KEMs, it does not involve an ephemeral
key at the sender. The sender encapsulates a random PQ shared
secret ssSPQ to the recipient’s public key pkRPQ and sends
the PQ ciphertext ctPQ. The receiver decapsulates it using its
private key skRPQ and produces ssRPQ. At this point, both
sides have the same shared secret ssPQ = ssSPQ = ssRPQ

which is used to generate a common key ck using a KDF as in
classical HPKE. After the key is established, keys are derived
from it by using the same Key Schedule as in classical HPKE
(Figure 1). The plaintext is encrypted and decrypted using the
derived key and nonce from the Key Schedule. Figure 2 shows
the PQ-only HPKE variant in more detail excluding the gray
highlighted text.

B. PQ-hybrid HPKE

PQ-hybrid is a well-investigated concept that combines
classical with PQ shared secrets to provide security against a
quantum computer and a potentially broken PQ algorithm. [56]
specifies PQ-hybrid key establishment for TLS 1.3. NIST, in [7],
describes how a hybrid shared secret which is a concatenation
of a classical shared secret generated by an approved method
followed by an auxiliary shared secret are approved by NIST.

For our PQ-hybrid HPKE, we use the classical KEM along
with a PQ KEM to generate two shared secrets. Figure 2
shows the PQ-hybrid HPKE variant in gray highlight. Similar
to classical HPKE, the sender first generates an ephemeral
keypair and a classical shared secret using the receiver’s static
public key ssSECDH = skEECDH · pkRECDH . For the PQ
part of the scheme, the sender encapsulates a random PQ shared
secret ssSPQ to the recipient’s public key pkRPQ and produces
a ciphertext ctPQ. It then sends its ephemeral ECDH public
key and ctPQ to the receiver who produces the classical shared
secret ssECDH = ssRECDH = ssSECDH = skRECDH ·
pkEECDH and decapsulates ctPQ by using its private key
skRPQ to produce ssRPQ. At this point, both sides have two
shared secrets, ssECDH and ssPQ = ssSPQ = ssRPQ which
are concatenated and used as the shared secret. The resulting
value is then fed to the KDF to obtain a common key ck.
After the key is established, keys are derived from it by using
the same Key Schedule as in classical HPKE (Figure 1). The
plaintext is encrypted and decrypted using the derived key and
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Alice (Sender) Bob (Receiver)

Out of band knowledge of: (skRPQ, pkRPQ)← KGenPQ()

pkR
ECDH

, pkRPQ ( skR
ECDH

, pkR
ECDH

)← KGen
ECDH

()

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Encap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

( skE
ECDH

, pkE
ECDH

)← KGen
ECDH

()

ss
ECDH

← ECDH( skE
ECDH

, pkR
ECDH

)

(ssPQ, ctPQ)← EncPQ(pkRPQ)

ck ← KDF ( ss
ECDH

||ssPQ, context)
pkE

ECDH
, ctPQ

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Decap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ss
ECDH

← ECDH ( pkE
ECDH

, skR
ECDH

)

ssPQ = DecPQ(skRPQ, ctPQ)

ck ← KDF ( ss
ECDH

||ssPQ, context)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s← Extract(ck,NULL)

k ← Expand(s, “hkpe key”||ctx,Nk)

n← Expand(s, “hkpe nonce”||ctx,Nn)

sexp ← Expand(s, “hkpe exp”||ctx,Nh)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seal/Open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c← Seal(k, n⊕ 0, aad, pt)
ct

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ pt← Open(k, n⊕ 0, aad, c)

Fig. 2: PQ-only and PQ-hybrid HPKE Overview

nonce from the Key Schedule.

C. PQ HPKE Security

A hybrid scheme (excluding authentication modes) can
be defined as a KEM-DEM construction, where the Key
Encapsulation Mechanism encapsulates the symmetric key and
the Data Encryption Mechanism (DEM) encrypts the plaintext.
As it is also explained in [10], Cramer and Shoup [19] and
Herranz et al. [31] proved that the KEM-DEM hybrid schemes
are IND-CCA2 secure if and only if the underlying KEM and
DEM schemes are IND-CCA2 secure.

As discussed in [10, § 9.1.2], the difference for HPKE is that
its Base mode introduces additional KDF invocations which
would have to be proven to be IND-CCA2 secure. That is
done in [38, 4] which formally analyze classical HPKE. They
show that in Base mode HPKE is IND-CCA2 secure. In its
authenticated modes HPKE is Outsider-CCA and Insider-CCA
secure by assuming Gap Diffie-Hellman property for the ECDH
KEM and modeling the KDF Extract function as a random
oracle and the Expand function as a PRF. Practically, the
exported keys and the encrypted data are protected only if the
receiver static KEM public key and the optional pre-shared
key are safe. In other words, HPKE’s authenticated modes are
vulnerable to key-compromise impersonation if the optional

pre-shared key and the recipient’s KEM public key are revealed.
Protections against such attacks are discussed in [10, § 9.1.1].

PQ-only and PQ-hybrid HPKE would require more analysis
to be proven IND-CCA2 secure. Based on [19], Base mode
PQ-only HPKE will still be IND-CCA2 secure as long as the
PQ KEM is IND-CCA2 secure. PQ-only HPKE would still
suffer from key impersonation attacks as the classical HPKE.

PQ-hybrid HPKE’s security proof, on the other hand, would
require more work. If we focus on Base mode HPKE, based
on [19], we could prove it is IND-CCA2 secure if we proved
that combining classical and PQ secrets is IND-CCA2 secure
given that the AEAD and KDF properties in classical HPKE
hold. [15] discusses the practical and theoretical security of
combining classical and PQ secrets. It showed that the basic
concatenation combiner (also used in our PQ-hybrid HPKE
implementation) is secure in the random oracle model when
the KDF is modeled as a random oracle and at least one of
the KEMs is IND-CPA secure. The concatenation combiner
could be proven to be IND-CCA2 secure if the ciphertext is
given to the KDF as context. We did not do that into our
implementation, but it would be trivial to add. More work
would be required to prove the shared secret combiner used
in HPKE is IND-CCA2 secure. Other combiners than simple
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concatenation could also be considered [13].
For its authenticated modes (PSK, Auth, AuthPSK), PQ-

only and PQ-hybrid would require more work to prove that
they are Outsider-CCA and Insider-CCA-secure like classical
HPKE, That could include developing a new post-quantum
hybrid authenticated KEM to use in the existing proof [4] or
combining PQ KEM and signatures.

V. EXPERIMENTS

In this work, we evaluate PQ HPKE’s performance and
compare it with its classical counterparts. We ran all our exper-
iments on an AWS EC2 instance based on Intel(R) Core(TM)
i7-10610U CPU with 8GB of RAM running @1.80GHz with
maximum turbo frequency of up to 4.90 GHz. The target
processor featured 4 cores and 8MB of cache memory. For
our implementations we used the AWS-LC cryptographic
library [6].

Due to its wide adoption for encrypting small plaintexts
or as a key wrapping mechanism we first evaluated RSA.
The RSA instantiations we measured are PKCS#1.5, RSAES-
OAEP and plain RSA without padding for 2048, 3072 and
4096-bit modulus. The RSA plaintexts were limited by the
RSA modulus size. We then evaluated classical and PQ HPKE.
The symmetric key algorithms we used are AES-GCM and
ChaCha20/Poly1305. The plaintext sizes we considered were
from 1KB to 1MB.

For PQ HPKE, we tested Kyber, one of NIST’s Round
3 finalist KEMs which offers high performance, and SIKE,
one of NIST’s Round 3 alternate candidate KEMs which
offers small keys and ciphertexts. We used the lowest security
level parameter for each scheme, specifically, Kyber-512 and
SIKEp434. We chose Kyber because, as a lattice scheme, it
offers a balance between performance and public key and
ciphertext sizes. Any of the other NIST Round 3 PQ KEM
finalists would perform similarly to Kyber. For SIKE, its
public key and ciphertext sizes are the smallest of all PQ
KEM candidates. Thus, it could be used in use cases where
memory or bandwidth resources are scarce. However, SIKE’s
elliptic curve isogeny maps result in slow performance. Our
implementations included AVX2 assembly optimizations for
Kyber and x64 optimizations for SIKE.

We measured Key Generation (KG), Encryption (E) / Seal (s)
and Decryption (D) / Open (o) and HPKE Setup Sender (S) and
Setup Recipient (R). Setup Sender and Setup Recipient include
KEM encapsulation and decapsulation respectively. Seal and
Open are used for symmetric encryption and decryption
whereas Encryption and Decryption are used for RSA only.
Our measurements did not include the HPKE receiver static
ECDH and PQ key generation as that takes place offline.

We ran our experiments for each algorithm 1,000 times. To
increase our accuracy, we eliminated the first and fourth quartile
of our measurements. Additionally, all our results include the
mean of the measured algorithm in CPU clock cycles.

We note that in PQ-hybrid HPKE, the physical location of
the classical and PQ secrets in memory is important since
it may impact the cache miss rate and the scheme latency

on low-end target platforms which feature extra clock cycles
for memory accessing instructions. For this reason, in our
implementation, we stored both parameters (ssECDH and
ssPQ) as a concatenation in a single variable and accessed
them by changing the memory address offset. That reduces the
cost of memory access because the secrets are in consecutive
memory addresses.

Our results are presented in section VI.

VI. PERFORMANCE EVALUATION

Below we present and analyze the experimental results of our
performance measurements of RSA, classical and PQ HPKE
as described in section V. They show that PQ HPKE performs
satisfactorily especially for well performing PQ KEMs.

Table I shows our RSA performance results. We observe
that key generation is RSA’s costliest operation. Of course, as
RSA keys are static, they can be considered generated offline.
In terms of encryption and decryption of small plaintext and
ciphertext sizes, encryption is very efficient whereas decryption
requires significantly more cycles. As we see below, RSA
decryption is much slower than PQ HPKE when Kyber is the
PQ KEM.

Key Size Padding Size Cycles (×103)
[b] Mode [B] KG E D

2048
PKCS #1.5 245 107,521 48 1,711

RSAES-OAEP 214 88,963 51 1,715
NO PAD 256 255,425 47 1,711

3072
PKCS #1.5 373 1,105,263 101 5,226

RSAES-OAEP 342 412,527 108 5,232
NO PAD 384 737,968 101 5,223

4096
PKCS #1.5 501 3,688,616 171 11,753

RSAES-OAEP 470 2,433,587 180 11,763
NO PAD 512 1,195,902 170 11,749

TABLE I: RSA performance for different plaintext sizes.

Figure 3 compares classical HPKE to PQ HPKE performance.
More specifically, Figure 3a shows how the total performance
(encapsulation, decapsulation, encryption, decryption) of clas-
sical HPKE with X25519 as the KEM compared to PQ-hybrid
with X25519 and Kyber or X25519 and SIKE as the KEMs.
We see that X25519_SIKE is ∼49 times more costly than
classical HPKE and around 32× slower than X25519_Kyber
for 1KB plaintexts. SIKE’s performance is significantly worse
than X25519 and Kyber, so we expect its impact to be higher
on small plaintexts. Even for bigger 1MB plantexts we see
that SIKE’s slow performance is not drastically amortized over
the size of the plaintext. Specifically, it remains 11 and 9
times heavier than classical and PQ-hybrid X25519_Kyber
respectively. The reason is that SIKE’s performance is much
slower than all other KEMs and symmetric operations of the
scheme.
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To study closer the X25519 and Kyber variants which
perform better, Figure 3b compares classical X25519 HPKE
with PQ-only HPKE with Kyber and PQ-hybrid with X25519
and Kyber KEMs. We see that X25519_Kyber HPKE is
only ∼1.5 times heavier than classical X25519 HPKE for
small 1KB plaintexts. For 1MB plaintexts it is only ∼1.2 times
heavier as the PQ performance overhead is amortized over the
plaintext size. Kyber-based PQ-only HPKE, on the other hand,
is ∼1.9 times faster for 1KB plaintexts than classical X25519
HPKE mainly because optimized Kyber performs much faster
than X25519 in software. That drops to ∼1.03 times as the
symmetric operations cost increases for 1MB plaintexts.

We then focused on the breakdown of the operations for the
best performing variants. Figure 4 shows the asymmetric and
symmetric primitives cost broken down for classical HPKE with
X25519 KEM and PQ-hybrid HPKE with X25519_Kyber for
various plaintext sizes. We can see that the KEM cost is constant
which is expected since encapsulation and decapsulation are
used only once to establish the shared secret. Onward we
see that as the size of the plaintext increases the symmetric
encryption and decryption cost increases because the more
data we encrypt, the more symmetric encryption takes. That
also explains how the ∼1.5 times more expensive PQ-hybrid
option for 1K plaintexts drops to almost the same cost when
the plaintext increases to 1MB. Considering the magnitude
of the KEM cost overall, we note that Kyber’s performance
still keeps the KEM to a satisfactory range. SIKE on the other
hand would increase the KEM cost much more significantly.
For comparison, Figure 4 includes a red line which depicts the
encryption cost of RSAES-OAEP (2048-bits) for small 214B
plaintexts which shows how much more expensive quantum-
vulnerable RSA is compared to classical and PQ-hybrid HPKE
with Kyber.

Now we compare RSA with classical and PQ-hybrid HPKE.
Figure 4 indicated that RSA is much more expensive that
HPKE. Table II shows the cost of key generation, encryption
and decryption for the maximum plaintext size encrypted
with RSAES-OAEP for RSA2048, RSA3072 and RSA4096.
RSA key generation can be considered an offline step. It
also shows the key generation, KEM encapsulation and
decapsulation and symmetric encryption/decryption for X25519,
X25519_Kyber, X25519_SIKE HPKE for the same size
small plaintexts. We can observe that the symmetric primitive
cost is negligible for small plaintexts. Thus, without loss of
accuracy we can just compare RSA encryption/decryption
with HPKE key generation and encapsulation/decapsulation.
RSAES-OAEP with RSA2048 is ∼4.8 and ∼3.1 times more
expensive than classical and Kyber-based PQ-hybrid HPKE
respectively. RSA3072 and RSA4096 show as ∼14.4 and ∼21.2
times slower compared to PQ-hybrid X25519_Kyber HPKE.
Unfortunately that is not the case for X25519_SIKE which
performs similar to RSAES-OAEP with RSA4096.

Finally, we evaluated HPKE using a different AEAD
scheme, ChaCha20-Poly1305. Table III shows the performance
breakdown for all classical, PQ-only and PQ-hybrid HPKE
variants for both symmetric AEAD schemes (AES-GCM and

Func
Pt RSAES-OAEP HPKE
[B] 2048 3072 4096 X25519 X Kyber X SIKE

KG
-

88,963 412,527 2,433,58 50.79 99.17 5,278.63
S - - - 211.16 318.24 8,709.3
R - - - 159.61 244.71 9,296.5

s
214

51 - - 0.69 0.83 0.88
o 1,715 - - 0.65 0.79 0.8
s

342
- 108 - 0.85 0.96 1.04

o - 5,232 - 0.76 0.93 0.89
s

470
- - 180 0.94 1.10 1.18

o - - 11,763 0.90 1.08 1.04

TABLE II: RSA vs PQ-hybrid HPKE performance (Cycles
×103) for small plaintexts.

Func
Pt HPKE
[B] X25519 Kyber X25519 Kyber SIKE X25519 SIKE

KG
-

50.79 40.05 99.17 5,225.65 5,278.63
S 211.16 103.52 318.24 8,522.93 8,709.3
R 159.61 89.18 244.71 9,161.50 9,296.5

A
E

S-
25

6-
G

C
M

s
1K

1.34 1.53 1.52 1.54 1.54
o 1.29 1.52 1.52 1.42 1.42
s

10K
7.84 9.13 9.19 8.07 8.09

o 7.77 9.08 9.08 7.87 7.88
s

100K
73.80 85.68 85.72 73.98 74.08

o 73.76 85.67 85.69 73.79 73.83
s

1M
731.21 851.29 850.98 732.81 733.10

o 730.47 733.18 732.98 733.02 732.93

C
H

A
C

H
A

20
-P

O
LY

13
05 s

1K
2.26 2.53 2.53 7.79 7.77

o 2.01 2.34 2.34 7.32 7.31
s

10K
37.64 17.53 17.53 48.03 47.37

o 36.65 17.07 17.06 14.78 14.78
s

100K
143.20 168.14 167.27 173.12 171.01

o 140.15 162.97 162.68 140.41 140.21
s

1M
1434.64 1589.02 1592.08 1431.65 1434.94

o 1395.54 1402.47 1592.08 1396.75 1395.62

TABLE III: Classical, PQ-only, PQ-hybrid HPKE performance
(Cycles×103) for two AEADs and various plaintext sizes.

ChaCha20-Poly1305) and various plaintext sizes. We see that
the cost of the asymmetric primitives remains unchanged.
AES256-GCM provides better performance than ChaCha20-
Poly1305 independently of the length of the encrypted plaintext.
The reason is AES-GCM was hardware optimized for our
testbed where ChaCha20-Poly1305 was running in software.
Regardless of the symmetric encryption performance, both
perform efficiently and offer good post-quantum asymmetric
encryption options for relatively well-performing PQ KEMs.

VII. CONCLUSION AND FUTURE WORK

In this work we presented, to the best of our knowledge,
the first implementation and performance evaluation of post-
quantum HPKE. We extended the scheme to support PQ-only
and PQ-hybrid options and integrated it with two PQ KEM
algorithms from Round 3 of NIST’s PQ Project. We compared
these options with RSA and classical HPKE and showed that
if the PQ KEM performance is good, the overall scheme is
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Fig. 3: Classical vs PQ HPKE Performance.
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Fig. 4: Performance Breakdown for Classical and PQ-hybrid
HPKE.

not affected. Additionally the PQ KEM performance overhead
is amortized as the size of the plaintext increases.

Future areas of research which could build on this work are
PQ HPKE security proofs as described in IV-C and integration
with PQ Signatures for authentication.
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performance implementation of elliptic curve cryptog-
raphy using vector instructions. ACM Transactions on
Mathematical Software (TOMS), 45(3):1–35, 2019.

[23] H. Fujii and D. F. Aranha. Curve25519 for the cortex-m4

and beyond. In International Conference on Cryptology
and Information Security in Latin America, pages 109–
127. Springer, 2017.

[24] V. Gayoso Martı́nez, F. Hernández Álvarez,
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