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Abstract—Sharding is a key approach to scaling the performance
of on-chain transactions: the network is randomly partitioned
into smaller groups of validator nodes, known as shards, each
growing a disjoint ledger of transactions via state-machine
replication (SMR) in parallel to other shards. As SMR protocols
typically incur a quadratic message complexity in the network
size, shards can process transactions significantly faster than
the entire network. On the downside, shards cannot be made
arbitrarily small due to the exponentially-increasing probability
that malicious nodes take over a sufficient majority in small
shards, compromising the security of SMR. In practice, this
dictates relatively large shards with hundreds of nodes each,
significantly limiting the scalability benefits of sharding.

In this paper, we propose Instachain, a novel sharding approach
that breaks the scalability limits of sharding by reducing the
shard size to significantly-smaller numbers than was previously
considered possible. We achieve this by relaxing the liveness
property for some of the shards while still preserving the safety
property across all shards. To do this, we carefully adjust the quo-
rum size parameter of the intra-shard SMR protocol to achieve
maximum parallelism across all shards without compromising
security. In addition, Instachain is the first sharding protocol
to adopt the stateless blockchain model in shards, which in
conjunction with a novel cross-shard verification technique allows
the protocol to efficiently prevent double-spending attempts
across significantly-more shards than previous work.

I. INTRODUCTION

One of the major barriers to the mass adoption of cryptocur-
rencies and blockchain protocols is their scalability limitations,
primarily reflected by the rate at which they can process trans-
actions. This is mainly imposed by the need for replicating
data among many geographically-scattered nodes to increase
resiliency to both faults and centralized manipulations.

In the past decade, several scalability approaches have been
proposed which generally fall into two categories: on-chain
and off-chain scalability. The former usually aims at improv-
ing the underlying consensus mechanism, adding extra trust
assumptions, and/or delegating the processing task to only
a small subsets of validator nodes (aka, committees). The
latter approach minimizes the use of the blockchain itself by
allowing parties to transact via direct, point-to-point commu-
nication, and interact with the blockchain only occasionally to
settle disputes or to deposit/withdraw funds.

∗This work was done when the author was an intern at Visa Research.
A preliminary version of this paper was published in [1].

Both scaling approaches have seen significant progress in
the past decade, though on-chain scaling is often lagging
behind in numbers primarily due to the complexities of the
underlying consensus protocol in large networks. Neverthe-
less, off-chain mechanisms usually achieve better scalability
only when certain assumptions are in place such as on-
chain collateral deposits locked by each participant, or cost
amortization over many (often low-value) transactions, e.g.,
in micropayments [2]. For applications that require instant
settlement of high-liability, high-value transactions, such as
real-time payments [3], on-chain scaling remains our main
hope.

Slower progress in on-chain scaling is primarily due to the
quadratic overhead of replication of the transaction ledger
across the nodes. Luckily, there has been significant progress
in sharding techniques [4], [5], [6], where the general approach
is to partition the network into groups of nodes, called shards,
each running a Byzantine fault tolerant (BFT) state-machine
replication (SMR) protocol to build their local blockchain in
parallel. As new nodes join the system, new shards are created,
and hence, the throughput of the system increases with its size,
i.e., the system scales.

Existing sharding protocols sample their shards in such a way
that all shards satisfy the two properties of SMR: safety and
liveness. Informally, the former ensures all honest nodes within
a shard maintain the same state, while the latter guarantees
all (valid) transactions assigned to a shard are eventually
processed. To achieve both properties in a shard, the fraction
of corrupt nodes in the shard must be strictly less than 1/2
if the communication network is synchronous (i.e., messages
are always delivered within a known, fixed time-bound), and
1/3 in a partially-synchronous networks (i.e., messages are
delivered within an unknown, fixed time-bound) [7].

The limit on the fraction of corrupt nodes in each shard can
only be satisfied if a sufficient number of nodes are sampled
randomly from the pool of all nodes when shards are being
created. For example, RapidChain [6] and OmniLedger [5]
require shards of least 250 and 600 nodes to ensure sufficient
security in the synchronous and the partially-synchronous
settings, respectively. Choosing smaller shards simply means
an exponentially-higher probability of failure in the guarantee
to provide both safety and liveness in all shards. Given the
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communication and computation complexities of SMR proto-
cols, we believe these requirements impose a major barrier to
the scalability benefits of sharding.

In this paper, we propose to relax one of the two properties
in some shards in favor of smaller shards. Since safety is
a critical requirement of blockchain protocols in protection
against double spending, we choose to relax the liveness
property in some shards. We propose Instachain, a sharding
protocol that reduces shard sizes to 50-100 nodes (down from
200-250 in RapidChain [6]) in the synchronous setting with
better failure probability and higher parallelism (measured as
the number of shards that can make progress in growing their
chains) than RapidChain. We achieve this by fine-tuning the
quorum size parameter of the intra-shard SMR to relax the
liveness requirement in some shards, and yet, still ensure safety
in all shards. By developing efficient techniques to handle
shards that cannot make progress, we prove the safety and
the liveness of the overall protocol in a synchronous network
with an adaptive adversary.

In sharded blockchains, having smaller shards means more
shards, and that increases the likelihood of cross-shard trans-
actions, i.e., those that depend on inputs from other shards
and their atomic executions entail updating the state of the
other shards. Therefore, executing cross-shard transactions is
often considered an expensive operation [5], [6]. Moreover,
one needs to also consider the overhead of detecting shards
that cannot make progress and reassign their workload to other
shards. In Instachain, we employ certain optimizations to make
cross-shard transactions and state migration less expensive to
be able to justify the benefits of higher parallelism obtained
from smaller shards. We, however, leave it to the future work
to experiment if the benefits of smaller shards outweigh their
costs in practice.

A. Our Contributions

Our paper makes the following contributions:

• Sharding with Adjustable Quorums. We introduce the
idea of adjusting the quorum size in the context of sharded,
fault-tolerant distributed systems. The technique allows us
to relax the liveness property of SMR for some of the
shards while ensuring safety in all shards. This reduces
shard sizes significantly, improving the shard throughput
and the degree of parallelism as a result. We develop
a sharded blockchain protocol, Instachain, that uses ad-
justable quorums and scales beyond existing protocols by
creating smaller shards with similar failure probabilities.

• Stateless Sharded Blockchains. We adopt the so-called
stateless blockchain model in the sharded setting for the
first time. Our primary motivation to do so is to tackle
some unique problems that arise from safe-only shards in
our protocol. Nevertheless, we observe adopting the new
model brings certain other benefits to our protocol. For
example, it makes the reconfiguration phase of the sharded

blockchains more efficient by compressing the blockchain
state significantly.

• Lock-free, Client-Driven Cross-Shard Transactions. We
describe a new cross-shard transaction verification protocol
in the UTXO model that minimizes cross-shard commu-
nication by being client-driven, and removes the storage
overhead of maintaining locks on transactions by avoiding
strict atomicity. Our cross-shard protocol still maintains
consistency with an embedded refund mechanism in sce-
narios where atomicity is violated. Finally, unlike previous
cross-shard protocols such as in [5] and [6], our protocol
is resilient to replay attacks [8] by an adversary who
attempts to double spend money by presenting a cross-
shard transaction to the same shard multiple times.

B. Protocol Overview

Consider N nodes connected via a peer-to-peer network (sim-
ilar to that of Bitcoin [9]), where each node is connected to a
constant number of nodes. The nodes can communicate with
each other by gossiping a message to either the entire network
or within a subset of nodes a shard. Instachain proceeds in
fixed time periods, known as epochs. The first epoch starts
by executing a one-time bootstrapping protocol that allows all
nodes to agree on a sequence of random bits, known as the
epoch randomness. Epoch randomness is then used by each
node to learn (1) a random assignment of all nodes to shards,
and (2) the sequence of leaders who later drive the intra-shard
SMR. Once the shards are formed, the members of each shard
run a synchronous BFT SMR protocol to construct a sequence
of blocks of transactions, i.e., the blockchain. Further, at the
end of each epoch, a fresh randomness is generated. This
allows us to periodically reconfigure shards by shuffling nodes
across them to prevent an adaptive adversary from gaining
control of a shard.

Safety and Liveness. As discussed before, an SMR protocol
has to satisfy two properties: safety and liveness. Safety says
that all honest nodes must maintain the same state, and liveness
says that valid transactions are eventually processed. In a non-
sharded setting, it is trivial to satisfy either only the safety
or only the liveness property. Nodes can easily satisfy safety
by doing nothing. Given that all nodes start on the same
state, they cannot possibly end up in different states after
“doing” nothing. To satisfy liveness, nodes can simply process
transactions independently. However, in this case, there is no
consistent replication across the nodes. So, we observe that,
relaxing either the safety, or the liveness does not give us a
useful protocol in a non-sharded setting.

Now, consider a sharded setting where each shard satisfies
safety but some do not satisfy liveness. We argue that we
can guarantee the safety of such a setting as each shard
satisfies safety (formalized in Theorem 4). Moreover, this
setting exhibits liveness as some shards satisfy liveness (for-
malized in Theorem 5). Although relaxing liveness on some
shards introduces new problems to tackle, such as handling the
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Fig. 1: Comparison of RapidChain and Instachain in a network of
size N = 2000 with F = 33% resiliency. In this setting, each shard
of RapidChain ensures both safety and liveness up to 50% shard
corruption, where as each shard in Instachain can be configured
to ensure liveness up to 30% corruption, and safety up to 70%
corruption. Briefly, with a shard size of 200, RapidChain creates 10
shards where the failure probability of a shard is 1.9 · 10−7. On the
other hand, Instachain can create 40 shards of 50 nodes, and ensure
a shard failure probability of 8.6 ·10−8. Further, the probability of
having an active shard is 0.37 for Instachain. This means the expected
number of active shards is about 40 · 0.37 = 14.8 until the protocol
fails.

transactions that are routed to safe-only shards, we show that
we can solve these problems efficiently. As we quantify later
in Section VI, relaxing liveness allows us to scale the proto-
col further by decreasing the shard sizes, and consequently,
increasing the degree of parallelism.

Relaxing Liveness by Adjusting Quorum Size. For an SMR
protocol, the quorum size q is the minimum number of honest
nodes to ensure both safety and liveness. To relax liveness on
some shards, we design a novel SMR protocol by extending
Synch HotStuff [10] (Section IV-C). Briefly, our novel SMR
protocol ensures the following a shard S,

• S satisfies both safety and liveness if the number of
honest nodes in it are greater or equal to q. We say S
is an active shard in this case.

• S satisfies neither safety nor liveness if the number of
corrupt nodes in it are greater or equal to q. We say S is
a corrupt shard in this case.

• S satisfies only safety if it is neither active nor corrupt.
We say S is a safe shard in this case.

Given that, we can adjust the quorum size, instead of in-
creasing the shard size, to obtain a sufficiently low failure
probability. Figure 1 illustrates the benefit of this approach
under an example setting.

Handling Safe Shards. A safe shard only ensures safety, that
is, honest nodes always maintain the same shard state, but
the shard is not guaranteed to make progress, as the corrupt
nodes holding the majority may stay refuse to participate in
the protocol. We address this problem by utilizing the honest
nodes within safe shards, and a distinguished shard called the
reference shard. The reference shard is ensured to consist of an
honest majority with high probability (therefore, larger in size
than other shards), hence it satisfies both safety and liveness.

Briefly, the reference shard is tasked with periodically re-
configuring shards between epochs (in contrast to processing
transactions) as well as maintaining and updating two tables: a
node-to-shard table, that shows what node is assigned to which
shard, and a tx-to-shard table, which specifies how transactions
are assigned to shards. By updating, and broadcasting these
tables, the reference shard can close safe shards, and redirect
transactions that are assigned to closed shards to one of the
running shards within an epoch.

Let us make concrete what problems safe shards can cause,
and give an overview of our solutions. First, let S be a safe
shard where the corrupt nodes in it stay inactive. After a
sufficiently long time, honest nodes in S are going to detect
the lack of liveness. Particularly, they are going to observe
that they cannot process transactions, and they cannot replace
a shard leader who fails to produce valid block proposals. After
detecting the lack of liveness, honest nodes will complain to
the reference shard. Upon receiving a sufficient number of
complaints from S, the reference shard is going to update
its tables: it reassigns every node of S to a special symbol
⊥ in the node-to-shard table, to indicate the shard is closed
for the ongoing epoch, and reassigns transactions of S to one
of the running shards in the tx-to-shard table Consequently,
transactions are not going to be routed to S anymore, and
(honest) nodes of S stop participating in intra-shard SMR.
This effectively closes S for the ongoing epoch1

A more tricky situation arises in the following case: the
corrupt nodes in shard S can participate honestly in intra-
shard SMR for some time before becoming inactive. This
case differs from the previous one because the shard has
processed some transactions and generated some UTXO be-
fore becoming inactive. Suppose S′ takes over transactions
of S after reassignment. To process transactions on behalf
of S, S′ has to know the latest state of S. In other words,
we have to transfer the state across shards whenever a shard
with non-empty UTXO set is closed. To solve this problem
efficiently, we adopt the stateless blockchain model which uses
cryptographic accumulators to maintain the blockchain state
succinctly. Consequently, S would be able to transfer its latest
state efficiently, and provably via the honest nodes in it to S′.
S′ will then be able to process transactions on behalf of S for
the ongoing epoch.

II. BACKGROUND & RELATED WORK

A. Byzantine Fault Tolerant State-Machine Replication (BFT
SMR)

In BFT SMR, a group of nodes want to agree on a sequence
of transactions without the help of a third party, even when
some of the nodes can deviate from the protocol arbitrarily
(i.e., can be byzantine). The correctness of an SMR protocol
is evaluated on two properties: safety and liveness. Safety
guarantees that all honest nodes process the same sequence

1It is worth noting that, our protocol ensures an adversary cannot shut-
down an active shard due to lack of sufficient majority.
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of transactions, and hence maintain the same state. Liveness
ensures that all correct transactions are eventually processed.
The solvability of SMR depends on the maximum number of
faulty nodes which varies on the network synchrony assump-
tions. Under a synchronous network assumption, we require
an honest majority of nodes [7]. On the other hand, under a
partially-synchronous network, the fraction of corrupt nodes
should be strictly bounded from above by 1/3.

B. Blockchain Sharding

Sharded blockchain protocols can increase their transaction
processing power with the number of participants joining the
network. This is done by allowing multiple shards of nodes
process incoming transactions in parallel.

Several existing works explore the construction of sharded
blockchain protocols. Luu et al. [4] propose Elastico, the
first sharded consensus protocol for public blockchains. In
every consensus epoch, each participant solves a PoW puzzle
based on an epoch randomness obtained from the last state of
the blockchain. The PoW’s least-significant bits are used to
determine the committees which coordinate with each other
to process transactions.

Kokoris-Kogias et al. [5] propose OmniLedger, a sharded
distributed ledger protocol that attempts to fix some of the
issues of Elastico. Assuming a slowly-adaptive adversary that
can corrupt up to a 1/4 fraction of the nodes at the beginning of
each epoch, the protocol runs a global reconfiguration protocol
at every epoch (about once a day) to allow new participants to
join the protocol. OmniLedger generates identities and assigns
participants to committees using a slow identity blockchain
protocol that assumes synchronous channels. A fresh ran-
domness is generated in each epoch using a bias-resistant
random generation protocol that relies on a verifiable random
function (VRF) [11] for unpredictable leader election in a way
similar to the lottery algorithm of Algorand [12].

Zamani et al. [6] propose RapidChain, a sharded blockchain
protocol in the 1/3 corruption setting that can achieve com-
plete sharding of the communication, computation, and stor-
age overhead of processing transactions without assuming
any trusted setup. RapidChain employs an intra-committee
consensus algorithm that can achieve high throughput via
block pipelining, a gossiping protocol for large blocks, and
a reconfiguration mechanism based on the Cuckoo rule [13].

Finally, the concurrent and independent work of
David et al. [14] also explores liveness-safety dichotomy, and
relaxes liveness on some shards as we do. Our work primarily
differs from theirs by the setting we consider: we focus on
the synchronous setting with adaptive adversaries, while their
protocol is tailored towards the partially-synchronous setting
with static adversaries. Further, their way of handling safe
shards requires all the network to communicate with each
other, which can become a bottleneck as the network grows,
whereas Instachain solves this by having a slightly larger
reference shard than regular shards. As noted before, we

also adapt the stateless model to the sharded setting for the
first time, and present a novel cross-shard UTXO protocol to
tackle replay attacks. Both of these contributions can be of
independent interest.

C. Accumulators and Stateless Blockchains

An accumulator is a binding commitment on a set. Informally,
an accumulator provides a succinct representation of a set
that can be queried for membership and possibly for non-
membership. Accumulators have recently gained popularity
in the context of blockchains due to the so-called “stateless”
blockchain model [15], [16], [17]. In this model, validators
maintain an accumulator over the UTXO or account sets rather
than maintaining the sets explicitly. It is up to the clients to
maintain the explicit set by listening to the network and pro-
viding membership proofs on their transactions to spend their
UTXOs or balances. In Instachain, we assume an accumulator
scheme which provides the following functionalities, such as
RSA accumulators as described in [17].

• Add(A, x). Given an accumulator A and an element x,
add x to A.

• Delete(A, x) Given an accumulator A and an element
x, delete x from A assuming it exists in A.

• GenMemWitness(U, x) Given a set U and an element
x ∈ S, generate a membership witness for x.

• GenNonMemWitness(U, x) Given a set U and an el-
ement x 6∈ U , generate a non-membership witness for
x.

• VerMem(A, x,w) Given an accumulator A which
includes elements of a set U , an element x
and a membership witness w, returns 1 if
w = GenMemWitness(U, x) and 0 otherwise.

• VerNonMem(A, x,w) Given an accumulator A which
includes elements of a set U , an element x and
a non-membership witness w, returns 1 if w =
GenNonMemWitness(U, x) and 0 otherwise.

The term stateless blockchain refers to a blockchain design
where nodes can process transactions without requiring to
store and maintain the explicit blockchain state. This reduces
the storage requirements for nodes as well as to make it easier
for new nodes to join the network.

In stateful blockchains, a node has to store the explicit
blockchain state which can simply be constructed from pro-
cessing blocks in their respective orders. Whenever a new node
joins the network, it has to synchronize his state with the
rest of the network by fetching the latest state from existing
nodes. The state could potentially be very large, making this
synchronization process time consuming. Further, as state gets
larger, some nodes might leave the network as they cannot
keep up with the storage requirements.
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With stateless blockchains, nodes only have to maintain an
accumulator over the blockchain state rather than explicitly
maintaining the state itself. Given the size of an accumulator
is very small (e.g., only a single group element with RSA ac-
cumulators [17]), this effectively alleviates the storage problem
of nodes. Further, it is sufficient for a new node to get only
the latest accumulator before it can participate in the network.

A trade-off we face in this model is increased transactions size.
Briefly, each transaction should carry a membership proof for
each of its inputs which attests that the input is contained
within the accumulator (i.e., it is unspent). To generate such
proofs, clients have to know the explicit blockchain state. To
do so, they can either listen to the network for block broadcasts
and maintain a copy by themselves, or rely on a “semi-trusted”
entity that maintains a full copy of the state on behalf of the
client and is always “available”1.

To make things concrete, consider a UTXO-based blockchain
with a UTXO set U at some point in time. At this time,
nodes only have the accumulator computed over U . Clients,
on the other hand, know U explicitly and submit transactions
with membership proofs generated with respect to U on their
transactions. Suppose that a validator node P is selected by
the network to propose the next block. P selects a block of
transactions from its memory, verifies their membership proofs
with respect to U , and updates the accumulator accordingly.
It then broadcasts the explicit block as well as the latest
accumulator state (e.g., attaching it to block header). Other
validators who receive this block verify the accumulator state
by processing transactions contained in the block, update their
accumulators, and simply discard the block contents.

III. MODEL AND PROBLEM DEFINITION

Network Model. We consider a peer-to-peer network with
N nodes who establish identities (i.e., public/private keys)
through a Sybil-resistant identity generation mechanism such
as that of [18], which requires every node to solve a
computationally-hard puzzle on their locally-generated iden-
tities (i.e., public keys) verified by all other nodes. Without
loss of generality and similar to most hybrid blockchain
protocols [19], [20], [4], [5], we assume all participants in our
consensus protocol have equivalent computational resources.

We assume all messages sent in the network are authenticated
with the sender’s private key. The messages are propagated
through a synchronous gossip protocol [21] which guarantees
that there is known upper bound ∆ on the message delivery,
i.e., when an honest node r1 sends a message m to another
honest node r2 at time t, r2 receives m by t + ∆. However,
the order of messages are not necessarily preserved, i.e., given
r1 first sends m1 and then m2, r2 might receive m2 before
m1. This is the standard synchronous model adopted by most
permissionless protocols [4], [22], [5], [23].

1Note that, we trust this entity only for availability, but not for validity,
i.e., such entity cannot generate membership proofs on spent transactions etc.

Threat Model. We consider a probabilistic polynomial-time
Byzantine adversary who controls F < 1/3 of the nodes at
any time. The corrupt nodes may not only collude with each
other but can also deviate from the protocol in any arbitrary
manner, e.g., by sending invalid or inconsistent messages, by
remaining silent etc. Similar to most sharded protocols [19],
[24], [20], [5], [23], we assume the adversary is epoch adaptive
(aka slowly adaptive). It can select the set of corrupt nodes at
the beginning of the protocol and/or between each epoch but
cannot change this set within an epoch, i.e., it cannot choose
which node to corrupt after nodes are shuffled between shards.
Nodes may disconnect from the network during an epoch or
between two epochs for any reason, such as internal failure
or network jitter. However, at any moment, more than 2/3
of the nodes, and hence computational resources, belong to
honest participants that are online (i.e., respond within the
network time bound). Finally, our protocol does not rely on
any public-key infrastructure or any secure broadcast channel,
but assumes the existence of a random oracle needed for
collision-resistant hash function.

Problem Definition. We assume a set of transactions are sent
to the network by a set of clients who are external to the pro-
tocol. Nodes in the network are grouped into disjoint shards.
Each shard batches transactions into blocks, and processes
them by an intra-shard SMR protocol. We say a shard commits
to a block if every honest node within the shard commits to
the block, and we say a shard commits to a transaction if the
shard commits a block containing the transaction. Formally,
our protocol guarantees the following properties.

Theorem 1 (Intra-shard Safety). Let S be a safe, or a super-
honest shard. Given that, if an honest node in S commits a
block Bk at height k, then every honest node in S eventually
commits Bk at height k.

Theorem 2 (Intra-shard Liveness). If a valid transaction T is
assigned to a super-honest shard S, T is eventually committed
by S.

Theorem 3 (Provable Commits). Every committed block Bk

of a shard S carries a commit-proof COMBk,S which attests
that Bk is committed by S.

Theorem 4 (Inter-shard Safety). Once a shard commits a
transaction T , no shard can commit to a transaction T ′ such
that T and T ′ spend the same output, i.e., double spending
cannot happen.

Theorem 5 (Inter-shard Liveness). When a valid transaction
T is assigned to a shard S, either S commits T , or eventually
S is closed and T is committed by another shard S′, i.e., valid
transactions are eventually processed by a shard.

IV. INSTACHAIN PROTOCOL

In this section, we briefly remind the execution flow of our
protocol, and then describe each component thoroughly.
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Overview of the Flow of Execution. Our protocol proceeds in
epochs where nodes have access to a fresh randomness at the
beginning of each epoch. Using the randomness, nodes are first
assigned to the shards. In the very first epoch, this randomness
can be generated by a one-time bootstrapping protocol, such as
the one described in [6]. In the later epochs, the reference shard
(described below) is tasked with generating the randomness for
the next epoch at the end of the ongoing one.

There are two types of shards in our protocol: the reference
shard, and the worker shards.1 The reference shard is a
distinguished shard that is tasked with the organization of the
shards between and during epochs. On the other hand, worker
shards process transactions that are submitted by external
users. A node can participate in both the reference shard and
a worker shard but not more than one worker shard. Further,
the reference shard is guaranteed to satisfy both the safety
and the liveness properties of SMR, whereas some worker
shards might satisfy only the safety property, and hence can
be inactive.

After shards are formed, each shard first runs a distributed
key generation (DKG) protocol. Hash digest of the generated
public key is referred as shard’s identity, and each node
within the shard receives a share of the corresponding secret
key. Once the DKG is completed, members of the shard
sign and submit their shard’s identity to the reference shard
(Section IV-A). Upon receiving a sufficient number of signed
messages from a shard, the reference shard assigns a set of
transactions to that shard by modifying his tx-to-shard table
(Section IV-B). After waiting for a sufficient time, this table is
broadcast by the reference shard to the network. Note that, safe
shards can be excluded from processing transactions for the
ongoing epoch in case they do not complete this step within
the allocated time (e.g., if corrupt nodes in such shards stay
inactive).

Then, the shards start to process transactions and build their
local ledgers by running an intra-shard SMR protocol (Sec-
tion IV-C). We adapt the stateless blockchain model. This
means, the nodes only maintain an accumulator computed
over the ledger state. It is up to the clients to keep track of
the explicit state of the ledgers by listening to the network.
The explicit state is needed to generate membership proofs on
transactions’ inputs. A transaction can spread over multiple
shards. In such a case, clients have to facilitate the verification
between involved shards by running a cross-shard verification
protocol (Section IV-E).

Finally, a safe shard can begin an epoch as active, but might
become inactive at any time due. Inactive shards are eventually
detected, and closed by the reference shard within an epoch
(Section IV-D). When a shard is closed, one of the active
shards take over its transactions, and continue building upon
the closed shard’s state.

1For brevity, we refer the worker shards just as shards most of the time,
and specify the reference shard explicitly when needed.

A. Intra-Shard Key Generation

After nodes are assigned to shards, each shard internally
runs a distributed key generation (DKG) protocol such as
of [25]. The goal is to utilize a threshold signature scheme,
e.g., threshold BLS [26], to minimize the communication
complexity. Shards that successfully complete this step are
authenticated by the reference shard, and only they are allowed
to process transactions in the current epoch.

Concretely, after running a DKG protocol, a shard S generates
a key-pair skS-pkS such that, pkS is a shard-wise shared
public key (where we refer its hash digest H(pkS) as shard’s
identity) and the skS is the corresponding secret key which is
verifiably q-out-of-n shared among the nodes of S. After this
step, each node r of S generates a signature share σr(H(pkS))
on his shard’s identity using his share of the secret key. Then,
every node sends their share of the signature to the reference
shard. After accumulating q of these shares, reference shard
constructs the threshold signature and verifies it with pkS .

Given the verification passes, reference shard adds S to the
tx-to-shard table by assigning S to its share of transactions
(see Section IV-B to see how transactions are assigned). After
waiting for a sufficient time to receive enough shares from
all the shards, reference shard commits the tx-to-shard table
to his state, and broadcasts it to the network. Upon receiving
this table, shards can start to process transactions that they are
assigned to.

Note that, it is possible for corrupt nodes in a safe shard S′

to stall the DKG protocol, e.g., by staying silent. However, in
this case, S′ is excluded from the tx-to-shard table, and every
node of it is assigned to ⊥ in the node-to-shard assignment
table. This indicates that, transactions are not routed to S′,
and (honest) nodes within S′ do not participate in intra-shard
SMR. This effectively closes S′ for the current epoch.

B. Assigning Transactions to Shards

When assigning new transactions to shards, there are two
factors to consider: first, we must ensure that every transaction
is uniquely assigned to a shard to maintain consistency, and
second, we should take load-balancing into account while
doing so. In this section, we describe how we achieve these
in our protocol.

As noted before, the reference shard is tasked with maintaining
and updating a tx-to-shard table. Nodes receive this table from
the reference shard at the beginning of each epoch and do look-
ups on it to determine whether a transaction is assigned to their
shard or not. This table is implemented as a complete binary
search tree. At its leaves, we have the shard identifiers, and the
path from the root to a leaf specifies the prefix of the hashes
of transactions that the shard is assigned. For example, if the
path from the root to a shard S is 00, S processes transactions
whose first 2 bits are 00. As new shards are created or the
existing ones are closed, the reference shard organizes the tree
accordingly and broadcasts the updated table to the network.
Figure 2 illustrates this process.
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Fig. 2: Illustration of how tx-to-shard table is reorganized as nodes
join/leave. In epoch e, we have 4 shards: Se

0 , S
e
1 , S

e
2 and Se

3 (top
figure). Suppose some new nodes join the network between epoch e
and e+ 1, and consequently, we split the network between 5 shards
in epoch e + 1. The tree is going to be reorganized accordingly
(middle figure). Finally, suppose some nodes leave the network and
the network is sharded between 3 shards in epoch e+ 2. The tree is
reorganized again (bottom figure).

C. Intra-Shard SMR

We now explain the intra-shard SMR protocol. We first explain
the structure of the blocks and then the details of the SMR
protocol.

Block Structure. A block Bk at height k is a tuple consisting
of a header Bh

k and a body Bb
k, given by,

Bk := (Bh
k , B

b
k).

The body of a block contains a set of transactions organized
as a Merkle tree. The header is a tuple,

Bh
k := (k, e,MT, AUTXO

S , H(Bh
k−1), H(pkS)),

where k is the height of the block, e is the epoch in which
the block is created, MT is the root of the Merkle tree of
transactions in the block’s body, AUTXO

S is an accumulator
over the latest UTXO state of the shard S, H(Bh

k−1) is the
digest of the previous block’s header, and H(pkS) is the
identity of the shard that creates the block. Due to the stateless
blockchain model, after committing a block, nodes discard its
body and only maintain the latest block header along with its
commit-certificate CC(Bk). As explained later in this section,
a commit certificate on a header attests that the corresponding
block is committed.

SMR. The goal of our intra-shard SMR is to satisfy safety
for safe shards and satisfy both safety and liveness for
super-honest shards. To achieve our goal, we start with the
Sync HotStuff protocol [10], which satisfies both safety and
liveness under an honest-majority assumption, and modify
it accordingly. As is common in SMR protocols (and as
done in Sync HotStuff), our protocol proceeds in two phases:
a steady-state phase and a view-change phase. Steady-state
proceeds in iterations, where in each iteration current leader
of the shard proposes blocks to the rest of the shard. If a
leader misbehaves during steady-state, by either proposing
equivocating blocks or by not proposing any block at all, nodes
execute the view-change protocol to replace the current leader,
and then fall back to the steady-state. The explicit description
of steady-state and view-change can be seen in Figures 3 and 4,
respectively.

Quorum Certificates. Whenever a node r sends a message
m, he signs its hash digest with his share of the secret key. We
say q signature shares on m constitute a quorum-certificate for
m. Technically, a quorum-certificate is the threshold signature
generated out of the individual shares. Depending on the
contents of m, we name these certificates differently: we call q
vote messages on a block Bk as block certificate, denoted by
BC(Bk), and we call q pre-commit messages on a block Bk

as commit certificate, denoted by CC(Bk). Finally, we call q
blame messages on a view v as view-change certificate and
denote it by V C(v).

Formally, we state the properties guaranteed by our intra-shard
SMR as follows and defer their proofs to Section V.

Theorem 1 (Intra-shard Safety). Let S be a safe, or a super-
honest shard. Given that, if an honest node in S commits a
block Bk at height k, then every honest node in S eventually
commits Bk at height k.

Theorem 2 (Intra-shard Liveness). If a valid transaction T is
assigned to a super-honest shard S, T is eventually committed
by S.

Theorem 3 (Provable Commits). Every committed block Bk

of a shard S carries a commit-proof COMBk,S which attests
that Bk is committed by S.

D. Safe Shard Detector

As discussed before, safe shards lack liveliness. This means
transactions that are assigned to safe shards are not guaranteed
to be processed, e.g., in case corrupt nodes within them stay
silent. To ensure such transactions are eventually processed,
we use the honest nodes in a safe shard to detect the lack
of liveness. We achieve this by augmenting each node with
a safe shard detector, and by having them communicate with
the reference shard.

During an epoch, each node monitors the state of his shard by
running a safe shard detector whose specifications are given in
Figure 5. Briefly, the safe shard detector keeps track of events
that could only happen in a safe shard. Once a node detects
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Let v be the current view number and let node L be the leader of the current view.
1) Propose. The leader L broadcasts 〈propose, 〈Bk〉L, BC(Bk−1), v〉L.
2) Vote. Upon receiving the first valid height-k block 〈Bk〉L from L or through a vote by some other node, set

precommit-timerk to 2∆ and broadcast a vote in form 〈vote, 〈Bk〉L, v〉.
3) Precommit. When commit-timerk reaches 0, if no equivocation for height-k is detected and if Bk has a block certificate

BC(Bk), broadcast 〈precommit, 〈Bk〉L, BC(Bk), v〉.
4) Commit. Upon receiving q 〈precommit, 〈Bk〉L, BC(Bk), v〉 messages such that they all contain a valid block certificate

BC(Bk) for Bk, if Bk is not already committed, commit Bk and all of its ancestors. Further, broadcast q received
precommit messages which constitute a commit-certificate CC(Bk) for Bk.

Fig. 3: The steady state phase of intra-shard SMR. The notation 〈m〉r indicates message m is signed by the secret key share of user r.

Let L and L′ be the leader of view v and v + 1, respectively.
1) Blame. If less than p blocks are received from L in (2p + 1)∆ time in view v, broadcast 〈blame, v〉. If more than one

block is proposed by L at any height, broadcast 〈blame, v〉 and the two equivocated blocks.
2) Quit old view. Upon gathering q 〈blame, v〉 messages, broadcast them and quit view v by aborting running precommit-

timers and stop voting in view v.
3) Status. Wait for 2∆ time and enter view v + 1. Upon entering view v + 1, send a highest block with a valid block

certificate to L′ and transition back to steady state.

Fig. 4: The view-change phase of intra-shard SMR.

such an event, he sends a close request on his shard to the
reference shard.

Once the reference shard receives n − q + 1 close requests
from a shard Si, it updates the node-to-shard and tx-to-shard
tables: every node of Si is assigned to ⊥ in node-to-shard
table, and transaction that were previously assigned to Si is
now assigned to one of the running shards Sj . The updated
tables are broadcast to the network, and upon receiving them,
honest nodes of Si stop participating in intra-shard SMR for
the current epoch. Further, nodes of Sj request and receive the
latest state of Si from the honest nodes in it. After receiving
the latest state of Si, Sj start to process transactions on behalf
of Si for the current epoch. Details of this process is further
elaborated in Figure 6.

Formally, the safe-shard detector ensures the following prop-
erties. We defer their proofs to Section V-B.

Lemma 1. Safe shard detector keeps track of events that could
only happen in a safe shard. Consequently, an honest node in
a super-honest shard never sends a close request, and thus, a
super-honest shard is never closed.

Lemma 2. A safe shard either eventually processes transac-
tions, or is eventually closed.

E. Transaction Verification

We now describe how transactions are verified. We start by
describing the transaction format, and then explain how single-
shard and cross-shard transactions are verified.

Transaction Format. We adopt the well-known UTXO model
where a transaction contains a set of inputs and a set of

outputs. For simplicity, consider a simple transaction T with
a single input I and a single output O, denoted as,

T := 〈I,O〉.

The output is an address-value pair, O := (pk, v), indicating
that v amount of currency should be sent to address pk. The
input is a tuple denoted by,

I := (O′, sig,MEM(O′,S)),

where O′ := (ctr,pk′, v′) refers to an UTXO, contained in
the accumulator of shard S with ctr as its addition-order in
the accumulator, and sig is a signature valid under pk′. Finally,
MEM(O′,S) is a membership-proof on O′ with respect to AUTXO

S .

Single-Shard Verification. If T is assigned to the shard S
where O′ resides, then verification of T can be done locally,
and consist of: (1) verifying T is assigned to S by doing
a look-up on tx-to-shard table, (2) checking v′ ≤ v, and
(3) verifying validness of sig under pk′, and (4) verifying
MEM〈O′,S〉 with respect to AUTXO

S . Assuming T passes the
verification, S processes T by including it in a block, and
consequently removing O′ from AUTXO

S and adding O to AUTXO
S .

Cross-shard Verification. Now let T := (〈I1, I2〉, O3) and
assume that UTXOs O1 and O2, referenced by I1 and I2, are
contained in shards S1 and S2, respectively. Further, assume
T is assigned to shard S3. Verification of T requires the client
to execute a cross-shard verification protocol.

To create a valid cross-shard transaction, client first requests a
proof-of-inclusion (PoI) from the inputs shards. A PoI attests
that the output referenced by an input is removed from the
UTXO of the shard maintaining it. Concretely, client sends T
to S1 and S2, and they: (1) first verify I1 and I2, (2) then
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Let r be an arbitrary honest node in a shard S whose current leader is L in view v.
• Vote inactivity. After voting for a block Bk, set inactivity-timervt to 2∆. Send a 〈close, S〉r message to the reference

shard if none of the following happened when inactivity-timervt is 0.
– An equivocation proof for L is received.
– A view-change certificate V C(v) is received.
– A block-certificate BC(Bk) is received.

• Precommit inactivity. After broadcasting a precommit message for a block Bk, set inactivity-timerpc to 2∆. Send a
〈close, S〉r message to the reference shard if none of the following happened when inactivity-timerpc is 0.
– An equivocation proof for L is received.
– A commit-certificate CC(Bk) is received.

• Blame inactivity. After broadcasting an equivocation proof, set inactivity-timerbl to 2∆. If a view-change certificate
V C(v) is not received when inactivity-timerbl is 0, then send a 〈close, S〉r message to the reference shard.

• View-change inactivity. After quitting the view v, set inactivity-timervc to 6∆. Send a 〈close, S〉r message to the
reference shard if none of the following happened when inactivity-timervc is 0.
– A valid block proposal is received.
– A view-change certificate V C(v + 1) is received.

• View-change bound. After doing n− q + 1 view-changes, send a 〈close, S〉r message to the reference shard.

Fig. 5: Specifications of the safe shard detector.

Let LR be the current leader of the reference shard SR. Upon receiving n− q + 1 close messages from the nodes of a shard
Si, LR initiates the following protocol to close Si for the ongoing epoch and to enforce Si transfers its state to one of the
active shards Sj .

1. Updating the tables. LR updates node-to-shard table by assigning every member of Si to ⊥, and updates transaction-to-
shard table by reorganizing the underlying tree structure after removing Si. Suppose Sj is assigned to transactions which
were previously assigned to Si due to this reorganization.

2. Committing to the new tables. LR proposes updated tables along with close request to the reference shard. Nodes of the
reference shard runs an SMR protocol to commit the proposal. Note that, since reference shard is an honest-majority shard,
they do not run the protocol described in Section IV-C, but rather an SMR protocol that works under honest-majority
such as the plain Sync HotStuff,

3. Broadcasting the new tables. Once proposal is committed, LR broadcasts it to the rest of the network which carries the
new tables.

4. Closing the shard and state-transfer. Upon receiving the proposal and verifying its correctness, nodes of Si stop to
participate in the intra-shard SMR, and nodes of Sj request the latest state from nodes of Si. Nodes of Si reply to this
request by sending their latest block headers. After receiving the state of Si, Sj starts to process transactions which were
previously assigned to Si by running an independent SMR instance along with his running SMR instance(s).

Fig. 6: Steps of closing a shard during an epoch. This process involves the reference shard updating its node-to-shard and tx-to-shard tables,
and a state transfer from the closed shard to one of the active shards.

include (T, 1) and (T, 2) in a block, (3) and consequently
remove O1 and O2 from AUTXO

S1
, and AUTXO

S2
, respectively. Given

that, if Si is the shard which removes the output referenced
by Ii, we denote the respective PoI as,

POI〈Ii,Si〉 := (MT〈(T,i),B〉, B
h,COM〈B,Si〉),

where MT(T,i),B is the Merkle-proof on (T, i) with respect to
block B that contains (T, i), where i refers to which input of
T is processed. Together with the header of block Bh, and the
commitment proof on block COM(B,Si), one can verify (T, i)
is committed by Si, and consequently, Oi is removed from
the shard’s state.

Depending on whether I1 and I2 are valid (e.g., they refer

to valid UTXOs in their respective shards), there are three
possible cases of how T can be processed. We describe each
below.

• Both I1 and I2 are valid. S1 and S2 process T , so
client obtains both POI〈I1,S1〉 and POI〈I2,S2〉. Client then
creates the commit transaction,

Tcom := (T,POI〈I1,S1〉,POI〈I2,S2〉),

and sends it to S3. Upon receiving Tcom, S3 first verifies
O1.v1 + O2.v2 = O3.v3, and then verifies the POIs.
Verification of a POI〈Ii,Si〉 consists of the following
steps: (1) deducing Si from Bh, (2) verifying COM〈B,Si〉
with identity of Si, (3) verifying the Merkle-proof on
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(T, i) with respect to Bh. Given both I1 and I2 are valid,
both POIs are valid too. Thus, S3 includes Tcom in the
next block, and adds O3 in AUTXO

S3
.

• Only one of I1 and I2 is valid. Without loss of generality,
assume I1 is valid and I2 is not valid. In this case, client
only receives POI〈I1,S1〉. This violates atomicity as only
O1 is removed. However, we allow the client to refund
the amount of O1, to ensure consistency, by sending a
partial commit transaction,

Tcom := (T,POI〈I1,S1〉),

to S3. Upon receiving Tcom, S3 verifies the only PoI,
includes Tcom in the next block, and adds O′3 in AUTXO

S3

such that O′3.v
′
3 = O1.v1.

• Both I1 and I2 are invalid. In this case, client does not
receive any PoI, and hence, he cannot create any valid
cross-shard transaction.

Finally, we discuss replay attacks. As discussed in the work
of Sonnino et al. [8], cross-chain transaction protocols of
OmniLedger and RapidChain are susceptible to such attacks.
The cross-shard verification protocol we described so far is
susceptible to replay attacks too. We explain those attacks and
how we augment our protocol against them.

Replay Attacks. Again consider the transaction T :=
〈〈I1, I2〉, O〉 and suppose both I1 and I2 are valid so that the
client eventually creates the valid commit transaction Tcom.
Upon receiving Tcom, S3 includes it in a block and creates
O3. One can observe that, an adversary could simply send
Tcom to S3 multiple times. Given the verification passes each
time, S3 creates the output O3 multiple times.

To prevent this, shards can simply keep track of PoIs they
processed. Doing this naively forces nodes to maintain an
ever-growing list. To alleviate this, we utilize an another
accumulator. That is, a shard S maintains an accumulator APOI

S

on the set of processed PoIs, and whenever a client executes
a cross-shard transaction with outputs to be created in S, he
must provide valid non-membership proofs on PoIs to this
accumulator.

For example, assuming both I1, I2 are valid, the final commit
transaction Tcom with replay resistance is given by,

Tcom := (T,POI〈I1,S1〉,POI〈I2,S2〉,NMEMPOI〈I1,S1〉 ,NMEMPOI〈I2,S2〉),

where NMEMPOI〈Ii,Si〉
is a non-membership proof on

POI〈Ii,Si〉 with respect to accumulator APOI
Si

. Further, by
extending the block headers to maintain PoI accumulators, we
do not need modify our state transfer protocol to transfer the
state processed PoIs. That is, the final block header structure
under replay resistance becomes,

Bh
k := (k, e,MT, AUTXO

S , APOI
S H(Bh

k−1), H(pkS)).

V. SECURITY ANALYSIS

A. Intra-Shard Safety and Liveness

We provide the proofs of safety and liveness for our intra-shard
SMR here. Our proofs are very similar to the proofs of Sync
HotStuff [10] with a few minor modifications, and we adopt
their terminology of direct/indirect commits. That is, we say a
block Bk is committed directly if an honest node commits Bk

by obtaining a commit-certificate on it. Otherwise, we say a
block Bk is committed indirectly if Bk is committed a result
of directly committing another block extending on Bk. We
start by proving Theorem 1 using Lemma 3 and 4.

Lemma 3. Within a safe or a super-honest shard, if an honest
node broadcasts a precommit message on a block Bk in a
view, (i) every honest node votes for Bk in that view, and (ii)
every honest node receives BC(Bk) before entering the next
view.

Proof. Suppose an honest node r broadcasts a precommit
message for Bk at time t + 2∆ in view v. This implies r
has received and voted for Bk at time t. Further, every honest
node must have received r’s vote by t+ ∆. So, no later than
t+ ∆, every honest node should have received and voted for
Bk, unless (i) they have voted for an equivocating block B′k,
or (ii) they have quitted view v, consequently they received
and broadcast q blame messages on v before t+∆. However,
if either of these had happened, r would not have broadcast
precommit at t + 2∆ as he would have received either the
equivocating blocks or q blame messages before t+2∆. Thus,
it must be the case all honest nodes voted for Bk at t+∆. This
further implies all honest nodes are still in view v until t+3∆,
and by then, they would receive r’s precommit message which
contains BC(Bk). �

Lemma 4. Within a safe or a super-honest shard, if an honest
node broadcasts a precommit message on a block Bk, then
there does not exist BC(B′k) where B′k 6= Bk, i.e.,, Bk is the
only height-k block with a block-certificate.

Proof. Suppose an honest node r broadcasts a precommit
message on Bk in view v. We show a block-certificate on an
equivocating block does not exist prior to, in, or after view v.
First, if an equivocating block-certificate exists prior to view
v, then at least one honest node must have voted for B′k.
This is because, in both safe and super-honest shards, number
of corrupt nodes is strictly bounded from above by q. This
vote would have reached r before view v, and would have
prevented r from broadcasting precommit. Second, given by
Lemma 3, all honest nodes vote for Bk in view v. Thus, an
equivocating block-certificate for height-k cannot be formed in
view v. Finally, again by Lemma 3, every honest node receives
BC(Bk) before entering view v+1. From v+1 and onwards,
the highest certified block of every honest node is at least
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Bk so, no honest node will vote for an equivocating height-
k block. Thus, no BC(B′k) where B′k 6= Bk can come into
existence in views greater than v. �

Theorem 1 (Intra-shard Safety). Let S be a safe, or a super-
honest shard. Given that, if an honest node in S commits a
block Bk at height k, then every honest node in S eventually
commits Bk at height k.

Proof. Suppose an honest node r commits to Bk at height-k
in view v. Then, it must be the case that at least one honest
node broadcast precommit on Bk. Due to Lemma 4, Bk is the
unique block with a block-certificate at height-k. Hence, no
other height-k block could have q precommit messages on it
as a precommit must carry a block-certificate. Finally, when r
commits to Bk, he broadcasts the commit-certificate CC(Bk)
which is eventually received by every honest node. Thus, by
latest, they commit to Bk after receiving the commit-certificate
from r. �

Theorem 2 (Intra-shard Liveness). If a valid transaction T is
assigned to a super-honest shard S, T is eventually committed
by S.

Proof. In a super-honest shard, honest nodes can form a
quorum among themselves. Thus, liveness of super-honest
shards directly follows from the liveness of Sync HotStuff
(Theorem 4 of [10]). �

Theorem 3 (Provable Commits). Every committed block Bk

of a shard S carries a commit-proof COMBk,S which attests
that Bk is committed by S.

Proof. From Theorem 1, we see that a block Bk is directly
committed iff there exists a commit-certificate on Bk. Further,
if a sequence of preceding blocks Bk−i ← Bk−i+1, . . . ,←
Bk−1 are committed indirectly as a result of committing
Bk, then for each of these blocks, there exists a hash-chain
starting from Bk and going back to the individual block. That
is, a committed block either carries a commit-certificate, or
there exists a hash-chain starting from a block with commit-
certificate and referencing all the way back to the block itself.
These constitute a commit proof for directly and indirectly
committed blocks, respectively. Finally, since header of a
block carries the identity of the shard that committed block,
commit proof further identifies the shard which committed the
block. �

B. Safe Shard Detector

Lemma 1. Safe shard detector keeps track of events that could
only happen in a safe shard. Consequently, an honest node in
a super-honest shard never sends a close request, and thus, a
super-honest shard is never closed.

Proof. We prove this lemma by analyzing each case specified
by points in Figure 5, and showing that they cannot happen
in a super-honest shard.

Let r be an honest node in some super-honest shard. Consider
the vote inactivity case and suppose r votes for a block Bk at
time t. Then, every other honest node receives and votes for
Bk by t + ∆ unless, (i) they have received and broadcast an
equivocating block, or (ii) they have received and broadcast
q blame messages on v which constitute V C(v). Thus, if
neither (i) nor (ii) happened and r is in a super-honest shard,
it receives BC(Bk) by t + 2∆. On the other hand, if either
(i) or (ii) happens, r either receives equivocating blocks or
V C(v), respectively.

Now consider the precommit inactivity case. Suppose r
broadcasts a precommit message for a block Bk at time t.
Then, either all honest nodes broadcast a precommit for Bk

by t+ ∆, or it could be that the current leader is corrupt and
sends an equivocating block to some of the nodes to prevent
them from broadcasting precommit. Note that equivocating
blocks must be received by a node before t + ∆ to prevent
the node from broadcasting precommit for Bk. Given that, r
receives either an equivocating block, or at least q precommit
messages which constitute CC(Bk) before t + 2∆ if it is in
a super-honest shard.

For blame inactivity case, suppose r receives and broadcasts a
pair of conflicting blocks at time t. Every honest node receives
this equivocation proof by t+ ∆, and they broadcast a blame
message once they do. This implies, in a super-honest shard,
at least q blame messages must have been received by r until
t+ 2∆.

Now for view-change inactivity case, suppose r quits view v
at time t. Since r broadcasts V C(v) at t, every honest node
receive V C(v) and quit view v by t+∆. After quitting view v,
every honest node waits for 2∆ and report their highest block
with a valid block certificate to the leader of v+1. Given that,
leader of v+1 is able to propose a valid block at time t+4∆.
If leader did not propose any block at all, all honest nodes
broadcast blame on v+1 at t+5∆. Given there are q or more
honest nodes, i.e., the shard is super-honest, r obtains V C(v+
1) by t+ 6∆. On the other hand, the leader could propose to
a subset of honest nodes to prevent from being overthrown.
Those nodes must receive the proposed block before t+ 5∆.
Since an honest node broadcasts his votes, r should receive
the proposed block by t+ 6∆ the latest.

Final point, view-change bound, merely observes that the
number of corrupt nodes in a super-honest shard is at most
n−q. In other words, there can be at most n−q view-changes
during an epoch in a super-honest shard before the shard finds
an honest leader. Therefore, a node who does more than n−q
view changes must be in a safe-shard.

All in all, we showed that all the mentioned events could not
happen in a super-honest shard, and an honest node from a
super-honest shard never sends a close request. Thus, even if
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all corrupt nodes in a super-honest shard sends a malicious
close request, such shard cannot be closed as the reference
shard requires at least n − q + 1 close requests from a shard
to close it, and a super-honest shard has at most n− q corrupt
nodes by definition. �

Lemma 2. A safe shard either eventually processes transac-
tions, or is eventually closed.

Proof. Due to Lemma 1, we see that a safe shard has to
emulate a super-honest shard from preventing honest nodes
within it to send close requests, and eventually closing down
the shard. This means, a safe shard either has to process
transactions by producing valid blocks, or keep doing view-
changes. Since the number of view-changes that can be done is
bounded, a safe shard either eventually processes transactions
or is eventually closed. �

C. Inter-Shard Safety And Liveness

We first prove inter-shard safety, as defined in Theorem 4,
by making use of Lemma 5 and Lemma 6, and then prove
inter-shard liveness as defined in Theorem 5.

Lemma 5. Any two different proof-of-inclusions generated
during the execution of the protocol are not for the two inputs
referring to the same UTXO.

Proof. According to the tx-to-shard table, the shard that can
generate the proof-of-inclusion of an input I referring to some
UTXO O is uniquely determined by the hash of the transaction
which outputs O. Then with the intra-shard safety property in
Theorem 1, the shard will not generate two different proof-of-
inclusions for the same UTXO. �

Lemma 6. Let T 1
com and T 2

com be two different commit trans-
actions that are confirmed during the execution of the protocol.
Then, they cannot contain the same proof-of-inclusion.

Proof. For the sake of contradiction, we assume that there is a
proof-of-inclusion POI〈I,S〉 that appears in two different com-
mit transactions. As for a commit transaction to be confirmed,
its base transaction must match the transaction indicated by
all proof-of-inclusions, these two commit transaction must
contain the same base transaction. Denote this base transaction
with T . Assume that the first commit transaction is confirmed
by shard S1 in epoch e1 and second one is confirmed by shard
S2 in epoch e2. Then there are two cases:

• e1 = e2. Then S1 = S2 as the prefix of H(T ) uniquely
determines which shard processes the transaction in one
epoch, where H(T ) denotes the hash value of the base
transaction of these two commit transactions. Without
loss of generality, assume that the first commit transaction
is processed by S1 before the second commit transaction.
Then after the first commit transaction is confirmed by
S1, POI〈I,S〉 is added to APOI

S1
, thus the verification of

non-membership proof NMEMPOI〈I,S〉 will not pass when
the shard S1 processes the second commit transaction.

• e1 < e2. Denote the hash of the base transaction with h =
H(T ) and the prefix of length l of h with h[l]. Let S1 be
assigned to h[l1] in epoch e1 and S2 be assigned to h[l2]
in epoch e2. Then there are two cases: l1 ≤ l2 or l1 > l2.
As described before, in either case the shard S2 will check
the accumulator for proof-of-inclusion once handled by
S1 in e1, and the non-membership proof NMEMPOI〈I,S〉

cannot pass the verification.

�

Theorem 4 (Inter-shard Safety). Once a shard commits a
transaction T , no shard can commit to a transaction T ′ such
that T and T ′ spend the same output, i.e., double spending
cannot happen.

Proof. Lemma 6 shows that any proof-of-inclusion can only
be used once. Together with Lemma 5, it trivially guarantees
that any output can be spent only once. �

Theorem 5 (Inter-shard Liveness). When a valid transaction
T is assigned to a shard S, either S commits T , or eventually
S is closed and T is committed by another shard S′, i.e., valid
transactions are eventually processed by a shard.

Proof. This simply follows from (i) the liveness of super-
honest shards (Theorem 2), and (ii) second property of the
safe-shard detector (Lemma 2). Briefly, if Si is a super-honest
shard, it eventually commits T due to Theorem 2. If Si is
a safe shard on the other hand, Lemma 2 says that, either
Si eventually commits to T , or Si is eventually closed and
transactions that are assigned to it are reassigned to a running
shard Sj . This process could cascade for a few shards (e.g.,, in
case Sj is a safe shard too), however, since there is at least one
super-honest shard with high probability, T eventually reaches
to a super-honest shard, and committed by it. �

VI. PERFORMANCE ANALYSIS

We now do a performance analysis of our protocol and
compare it with RapidChain [27], the current state-of-the-art
sharding protocol in synchronous setting to the best of our
knowledge. Concretely, we compare two quantities for these
protocols: the failure probability of an epoch, and the expected
number of active shards per epoch.

Notation. We denote the network size by N , and the network
resiliency by F . Then, T = bN · F c gives us the maximum
number of corrupt nodes that we can tolerate. We denote the
shard size by n which we assume it divides N exactly for
simplicity. Let S be an arbitrary shard. Then, we denote the
number of honest nodes in S via the random variable HS , and
the number of corrupt nodes in it via the random variable CS

where n = HS +CS . Finally, we denote the number of active
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shards (that satisfy both liveness and safety) in the protocol
by m.

RapidChain. In RapidChain, each shard has to consist of
an honest-majority, and be active, or else the protocol fails.
Therefore, the number of active shards (until failure) is simply
given by,

mRapid = N/n.

Further, the failure probability of an arbitrary shard S can be
computed as the probability of not having an honest majority
in S. We can upper-bound this probability via hypergeometric
distribution as follows,

Pr
[
CS ≥ bn/2c] =

n∑
i=bn/2c

(
T
i

)(
N−T
n−i

)(
N
n

) .

And by union-bound, we can upper-bound the failure proba-
bility for the protocol itself,

PrRapid
fail = Pr

[
CS ≥ bn/2c] ·N/n.

Instachain. In Instachain, we have another parameter that can
be tuned in addition to n, the quorum size parameter q < n.
Remember that, for a given value of q, a (worker) shard S can
be in one of the three different states,

• S is active if HS ≥ q.

• S is corrupt if CS ≥ q.

• S is safe if it is neither active nor corrupt, i.e., HS < q
and CS < q.

Given that, the probability of a shard being active can be
computed as,

Pr
[
HS ≥ q

]
=

n∑
i=q

(
T

n−i
)(

N−T
i

)(
N
n

) .

By linearity of expectation, the expected number of active
shard is then given by,

mInsta = Pr
[
S is active

]
·N/n.

Similarly, we can compute the probability of having a corrupt
shard as,

Pr
[
CS ≥ q

]
=

n∑
i=q

(
T
i

)(
N−T
n−i

)(
N
n

) .

To compute the failure probability of the protocol, we have
consider the reference shard as well. Remember, the reference
shard Sref is a distinct shard that must be active, and thus,
must consist of an honest majority with high probability, like
RapidChain’s shards. So, if we denote the size of Sref by

nref > n, we can compute its failure probability as exactly
done in RapidChain,

Pr
[
Sref is corrupt] =

nref∑
i=bnref/2c

(
T
i

)(
N−T
nref−i

)(
N

nref

) .

Finally, the protocol fails when either the reference shard fails,
or any of the worker shards fail. Therefore, we can upper-
bound the failure probability of Instachain as,

PrInsta
fail = Pr

[
Sref is corrupt] + Pr

[
CS ≥ q

]
·N/n.

Comparison. We first compare two protocols at the shard level
in Figure 7. As can be seen in the plot, we can obtain similar
shard failure probabilities in Instachain under smaller shard
sizes. This is achieved by increasing the quorum size instead
of increasing the shard size.
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(a) RapidChain

(b) Instachain

Fig. 7: Comparison of RapidChain and Instachain at the shard level
with parameters N = 2000, F = 1/3. For RapidChain, we plot
the failure probability of a shard as its size increases. For Instachain
however, we do not necessarily has to increase the shard size to obtain
smaller failure probabilities. To demonstrate this, we arbitrarily fix
the shard size to n = 50, and increase the quorum size instead. For
example, the failure probability of a shard is around 1.9e− 7 when
n = 200 for RapidChain. By setting q = 35, we obtain a lower
failure probability of 8.6e−8 for Instachain. Further, the probability
of the shard being active is around 0.37 at the same setting. This
means, the expected number of active shards is around 14.8 until
failure, where as this figure is only 10 for RapidChain.

Finally, we compare both works at a protocol level in Table I.
For these figures, we assumed the reference shard size is of
4 times of a worker shard in Instachain. Briefly, these figures
concretely demonstrate that Instachain scales beyond Rapid-
Chain, by having more active shards, under a similar/smaller
failure probability.

VII. CONCLUSION

In this paper, we introduced a sharded blockchain protocol,
named Instachain. Through our analysis in Section VI, we
showed that it can scale beyond the current state-of-the-art by

creating smaller, and more active shards. The main novelty that
allowed this improvement was relaxing the liveness property
for some shards in the network. This was done by adjusting the
quorum size parameter of the intra-shard SMR appropriately.
We have further devised efficient ways to deal with safe shards,
and proved the security of our protocol in this setting.

Yet, we are aware the current state of this works lack concrete
figures for throughput, storage, latency, etc. This prevents us
from comparing our protocol with existing ones at a finer
granularity. We hope to adress this issue in a further iteration
of our work by computing these quantities under a prototype
implementation.
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Protocol Network
Size (N)

Network
Resiliency
(F)

Shard
Size (n)

Shard
Resiliency

Expected
TTF

Expected # of
Active Shards

RapidChain [6] N = 1, 000 F = 33% n = 200 f = 50% 17, 128 years 5

RapidChain [6] N = 2, 000 F = 33% n = 200 f = 50% 1, 412 years 10

RapidChain [6] N = 4, 000 F = 33% n = 200 f = 50% 312 years 20

RapidChain [6] N = 8, 000 F = 33% n = 200 f = 50% 114 years 40

Instachain N = 1, 000 F = 33% n = 100 f = 60% 39, 638 years 9.4

Instachain N = 2, 000 F = 33% n = 100 f = 60% 7, 666 years 18.8

Instachain N = 4, 000 F = 33% n = 100 f = 60% 2, 407 years 37.5

Instachain N = 8, 000 F = 33% n = 100 f = 60% 972 years 74.8

TABLE I: Comparison of Instachain with RapidChain at the protocol level. Time-to-failure (TTF) is computed by assuming
an epoch duration of 24 hours. For RapidChain, we arbitrarily set the shard size to n = 200, and computed the TTF under
different values of N . As for Instachain, we arbitrarily set the shard size to half of RapidChain’s. We then searched over
different quorum sizes, and tried to find a value that gives us a greater TTF, and number of active shards than RapidChain.
This quorum size value turned out to be 60 (hence, its shard resiliency is 60%). All in all, we demonstrate that Instachain
can scale much beyond RapidChain by constructing smaller shards, while maintaining a smaller failure probability. Finally, it
might have been possible to scale Instachain beyond the values we present above, by experimenting with different combinations
shard and quorum sizes, but we find the figures above good enough to demonstrate the better scalability of our approach.
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