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Abstract. In this article we perform a general study on the criterion of weightwise nonlinearity for the functions
which are weightwise perfectly balanced (WPB). First, we investigate the minimal value this criterion can take
over WPB functions, deriving theoretic bounds, and exhibiting the first values. We emphasize the link between this
minimum and weightwise affine functions, and we prove that for n ≥ 8 no n-variable WPB function can have
this property. Then, we focus on the distribution and the maximum of this criterion over the set of WPB functions.
We provide theoretic bounds on the latter and algorithms to either compute or estimate the former, together with
the results of our experimental studies for n up to 8. Finally, we present two new constructions of WPB functions
obtained by modifying the support of linear functions for each set of fixed Hamming weight. This provides a large
corpus of WPB function with proven weightwise nonlinearity, and we compare the weightwise nonlinearity of these
constructions to the average value, and to the parameters of former constructions in 8 and 16 variables.
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1 Introduction.

The stream cipher family FLIP [MJSC16] introduced in the context of hybrid homomorphic encryption
deviates from the usual models of stream ciphers and pseudorandom generators used in cryptographic
frameworks by applying a Boolean function on input ranging not over the full vector space Fn2 but only on a
subset of this vector space. More precisely, the filtering function is always applied on vectors of Hamming
weight n/2, which makes the usual cryptographic criteria on Boolean functions not adapted to determine
the security in this context. It leads to considering the properties which are cryptographically relevant for
a function restricted to a subset of Fn2 , or a partition of this space, and to finding functions that provide
secure primitives while their input is restricted to fixed sets. In [CMR17], the main cryptographic criteria of
Boolean functions (balancedness, nonlinearity and algebraic immunity) are adapted to restricted sets, with
a particular focus on the properties relative to the sets of fixed Hamming weight, also called slices of the
Boolean hypercube. Since 2017 the properties of Boolean functions on restricted sets have been studied in
different works, various of them focusing on finding functions with good cryptographic properties on all the
slices.

The property of balancedness for a Boolean function, i.e. to output 0 on exactly half of the inputs and
1 for the other half, is an important cryptographic criterion for Boolean functions often necessary to avoid
building primitives with statistical biases. Regarding the sets of fixed Hamming weight it leads to the concept
of weightwise perfectly balanced (WPB) functions, which are the Boolean functions which are balanced on
each set {x ∈ Fn2 |wH(x) = k} for 1 ≤ k ≤ n− 1. Having exactly half of the inputs mapping to 0 restricts
to consider only slices with even cardinality, hence WPB functions exist only for n a power of 2, and by
convention the value in 0n and 1n are fixed to 0 and 1 respectively to ensure the global balancedness. Since
the introduction of the concept in [CMR17], various constructions have been proposed, trying to find larger
families or constructions with other relevant properties such as good weightwise nonlinearity or algebraic
immunity. In particular, the weightwise nonlinearity measures how far a function is from the affine functions
restricted to a slice. Similarly to the nonlinearity for the full space context, it is used to bound the complexity



of attacks where an adversary uses the best affine approximation to approximate the output of a filtering
function. The first construction of WPB function is given in [CMR17], it is a recursive construction giving
WPB functions for all powers of 2 and weightwise almost perfectly balanced functions (the generalization
for n not a power of 2). The weightwise nonlinearity of this WPB construction has been studied later
in [Su21]. A secondary construction from 3 n-variable WPB to one 2n-variable WPB is also provided
in [CMR17]. Then, a construction based on the field representation is presented in [LM19], corresponding
to 2-rotation symmetric functions. The construction in [TL19] splits 2n-length words in 2 as (x, y) and
considers sets based on the value of the comparison of wH(x) and wH(y) to build the support, it provides the
first construction of a WPB functions with optimal algebraic immunity. Recently, the modifications of this
construction presented in [MSL21] allow one to obtain WPB functions still with optimal algebraic immunity
but with higher weightwise nonlinearity. A line of work started in 2020 with [MS21] provide recursive
constructions based on the modification of the support of a low degree function over Fn2 ; more precisely on
linear [MS21], quadratic [MS21,LS20] or quartic functions [ZS21]. Finally, in the recent preprint [MPJ+22]
an experimental approach with evolutionary algorithms is considered to find 8-variable WPB with high
weightwise nonlinearity.

These works on WPB functions usually focus on a new construction and determine the weightwise
nonlinearity for small values of n, or lower bounds for larger values of n. In this article we perform a general
study of the weightwise nonlinearity of WPB functions, highlighting its connections with other concepts
such as spherically punctured Reed Muller codes, zeroes of Krawtchouk polynomials, and weightwise affine
functions. Our study focuses on investigating the minimal and maximal value the weightwise nonlinearity
of WPB functions can take, the distribution of these values, and we consider new constructions with a
large corpus. More precisely, for the minimum we derive theoretic bounds and exhibit the values for the
WPB functions up to 210 variables. We highlight the relation between this minimum and functions affine
on each slice, and we show that for n ≥ 8 no WPB function can have this property. Then, we consider the
maximum and the distribution of the weightwise nonlinearity over the WPB functions, we give theoretic
bounds on the former and present algorithms to compute or estimate the latter. We provide the results of
experimental studies for n up to 8. Finally, we introduce two constructions of WPB functions obtained by
modifying a linear function for each slice. It gives a large corpus of WPB function with proven weightwise
nonlinearity, and we compare the weightwise nonlinearity of these constructions to the average value, and
to the parameters of former ones in 8 and 16 variables.

2 Preliminaries

In addition to classic notations we use [n] to denote the subset of all integers between 1 and n: {1, . . . , n}.
For readability we use the notation + instead of ⊕ to denote the addition in F2 and

∑
instead of

⊕
. For a

vector v ∈ Fn2 we denote wH(v) its Hamming weight wH(v) = |{i ∈ [n] | vi = 1}|. For two vectors v and w
of Fn2 we denote dH(v, w) the Hamming distance between v and w, dH(v, w) = wH(v + w).

2.1 Boolean functions and weightwise considerations

In this part we introduce the main concepts on Boolean functions and their weightwise properties (properties
on the slides) we will use in the article. We refer to e.g. [Car21] for Boolean functions and cryptographic
parameters and to [CMR17] for the weightwise properties, also called properties on the slices. For k ∈ [0, n]
we call slice of the Boolean hypercube (of dimension n) the set Ek,n = {x ∈ Fn2 |wH(x) = k}. Accordingly
the Boolean hypercube is partitioned into n+ 1 slices where the elements have the same Hamming weight.
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Definition 1 (Boolean Function). A Boolean function f in n variables (an n-variable Boolean function) is
a function from Fn2 to F2. The set of all Boolean functions in n variables is denoted by Bn.

To denote when a property or a definition is restricted to a slice we will use the subscript k. For example,
for a n-variable Boolean function f we denote its support supp(f) = {x ∈ Fn2 | f(x) = 1} and we refer to
suppk(f) for its support restricted to a slice, i.e. supp(f) ∩ Ek,n.

Definition 2 (Balancedness). A Boolean function f ∈ Bn is said to be balanced if |supp(f)| = 2n−1 =
|supp(f + 1)|.

For k ∈ [0, n] the function is balanced on the slice k if ||suppk(f)| − |suppk(f +1)|| ≤ 1. In particular
when |Ek,n| is even |suppk(f)| = |suppk(f + 1)| = |Ek,n|/2.

Definition 3 (Weightwise Perfectly Balanced Function (WPB)). Letm ∈ N∗ and f be a Boolean function
in n = 2m variables. It will be called weightwise perfectly balanced (WPB) if, for every k ∈ [n − 1], f is
balanced on the slice k, that is ∀k ∈ [n− 1], |suppk(f)| =

(
n
k

)
/2, and:

f(0, · · · , 0) = 0, and f(1, · · · , 1) = 1.

The set of WPB functions in 2m variables is denotedWPBm.

Definition 4 (Nonlinearity). The nonlinearity NL(f) of a Boolean function f ∈ Bn, where n is a positive
integer, is the minimum Hamming distance between f and all the affine functions in Bn:

NL(f) = min
g, deg(g)≤1

{dH(f, g)},

where g(x) = a ·x+ ε, a ∈ Fn2 , ε ∈ F2 (where · is some inner product in Fn2 ; any choice of an inner product
will give the same value of NL(f)).

For k ∈ [0, n] we denote NLk the nonlinearity on the slice k, the minimum Hamming distance between
f restricted to Ek,n and the restrictions to Ek,n of affine functions over Fn2 . Accordingly:

NLk(f) = min
g, deg(g)≤1

|suppk(f + g)|.

We refer to the global weightwise nonlinearity of f as GWNL(f) =
∑n

k=0NLk(f).

Another expression of the nonlinearity on the slice is useful to study this criterion, using a variant of the
Walsh transform restricted to a subset [CMR17, MMM+18].

Property 1 (Nonlinearity on the slice, adapted from [CMR17], Proposition 6). Let n ∈ N∗, k ∈ [0, n], for
every n-variable Boolean function f over Ek,n:

NLk(f) =
|Ek,n|
2
−

maxa∈Fn2 |Wk,a(f)|
2

, and
∑
a∈Fn2

W2
k,a = 2n|Ek,n|,

whereWk,a(f) =
∑

x∈Ek,n(−1)
f(x)+ax is the Walsh transform of f, in a, restricted to the slice k.

An upper bound on the nonlinearity on the slice can be derived from Property 1:

Property 2 (Upper bound on NLk, adapted from [CMR17] Proposition 7). Let n ∈ N∗, k ∈ [0, n], for every
n-variable Boolean function f over Ek,n:

NLk(f) ≤
1

2

((
n

k

)
−

√(
n

k

))
.
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We introduce the notion of weightwise affine functions, which highlights connections between consid-
erations on the slices and other works on Boolean functions used in cryptography.

Definition 5 (Weightwise affine functions). Let n ∈ N∗ and for k ∈ [0, n] ϕk,n denotes the indicator
function of Ek,n. An n-variable Boolean function f , written as f =

∑n
k=0 fkϕk,n, is called weightwise

affine if and only if for each k ∈ [0, n] fk coincide with an affine function over Ek,n. Equivalently, f is
weightwise affine if and only if for each k ∈ [0, n] NLk(f) = 0.

The set of weightwise affine functions is notedWD1
n, and in general for d ∈ [0, n] the set of weightwise

functions of degree lower than or equal to d is notedWDdn.

Note that various weightwise affine functions have already been studied for their cryptographic
properties without this formalism. The weightwise constant functions (WD0

n) correspond to the symmetric
functions at the center of many works (e.g. [Car04,CV05,BP05,SM07,CL11,CM19,Méa19,Méa21,CM21]).
The hidden weight bit function introduced in [Bry91] is the weightwise affine function corresponding to the
choice f0 = 0 and fk = xk for k ∈ [n], the cryptographic properties of this function have been studied
in [WCST14]. In [CMR17], the bent functions evoked in Propositions 1 and 2 are weightwise affine.

2.2 Spherically Punctured Reed-Muller Codes

Reed Muller codes RM(r, n) are binary codes of length 2n whose codewords are the evaluations of all
Boolean functions of algebraic degree at most r in n variables on their 2n entries. Fixing the Hamming
weight to the entries to k gives the spherically punctured Reed-Muller codes studied by Kapralova and
Dumer [DK13, DK17]. The properties of these codes are connected to Boolean functions with fixed weight
entries. Since we will study the weightwise nonlinearity of some functions we will introduce only the
spherically punctured Reed Muller codes of order-1.

Definition 6 (Spherically punctured Reed Muller codes of order-1). For all n ∈ N∗, k ∈ [0, n], we
denote by Pk,n the punctured order-1 Reed Muller code of length

(
n
k

)
obtained by puncturing all entries of

Hamming weight different from k.

Property 3 (Pk,n properties, (adapted from [DK13] Theorem 4). Let n ∈ N, n ≥ 4 and k ∈ [n − 1], the
code Pk,n has length

(
n
k

)
, dimension n, and minimal distance:

dk,n =

{
2
(
n−2
k

)
if k = n

2 ,(
n−1

max(k,n−k)
)

if k 6= n
2 .

Since Pk,n corresponds to the evaluation of all affine functions in n variables over Ek,n, the nonlinearity
on the slice k of a Boolean function f corresponds to the distance between f ’s truth table restricted to this
slice and Pk,n. It gives an alternative definition of NLk given by the following property.

Property 4 (Weightwise nonlinearity and Pk,n). Let f ∈ Bn, k ∈ [0, n], and vf ∈ F(
n
k)

2 be the vector of
output of f over Ek,n. The following holds:

NLk(f) = min
c∈Pk,n

dH(vf , c).

We recall the concept of covering radius of a code.
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Definition 7 (Covering radius). For a binary linear code C of length n the covering radius r ∈ N is the
smallest r such that for all w ∈ Fn2 there exist at least an element of the code x such that dH(x,w) ≤ r.

Being the covering radius the maximal distance between an element of the space and the code, for Pk,n
it gives the maximum value that NLk can take (and is achieved). We denote ρk,n the covering radius of Pk,n,
upper bounds on ρk,n are given in [CMR17] and [MZD19].

2.3 Krawtchouk polynomials and properties on binomial coefficients

For some proofs we will use Krawtchouk polynomials and some of their properties, we give the necessary
preliminaries here and refer to e.g. [MS78] for more details.

Definition 8 (Krawtchouk Polynomials). The Krawtchouk polynomial of degree k, with 0 ≤ k ≤ n is

given by: Kk(x, n) =
k∑
j=0

(−1)j
(
x

j

)(
n− x
k − j

)
.

Property 5 (Krawtchouk polynomials relations). Let n ∈ N∗ and k ∈ [0, n], the following relations hold:

– Kk(n− x, n) = (−1)kKk(x, n),
– Kn−k(x, n) = (−1)xKk(x, n),
– if n is even, Kn/2(1, n) = 0.

Property 6 (Proposition 5 [DMS06]). For n even,

Kk(n/2, n) =

0 if k odd,

(−1)k/2
(
n/2

k/2

)
if k even.

We will also use the following properties on binomial coefficients.

Property 7 (Lucas’s Theorem, binary case). Let n, k ∈ N and p a prime:
(
n
k

)
=
∏t
i=0

(
ni
ki

)
(mod p) where

n = ntp
t+nt−1p

t−1+ · · ·+n1p+n0 and k = ktp
t+kt−1p

t−1+ · · ·+k1p+k0 are the base p expansions
of n and k respectively.

When p = 2,
(
n
k

)
is even if and only if there exists i ∈ [0, t] such that ni = 0 and ki = 1.

Property 8. Let m, k ∈ N, and m ≥ 2, for k ∈ [2m − 1] \ {2m−1} it holds:
(
2m

k

)
= 0 (mod 4).

3 Generalities on WPB functions

This section is a mathematical introduction to the quantities we study in this article. First, we give the
number of weightwise perfectly balanced functions and the formal definitions of the main quantities we
investigate: minimum and maximum weightwise nonlinearity of WPB functions. Then, we provide some
general remarks on the symmetry between slices and the behavior of the weightwise nonlinearity relatively
to the addition of symmetric or a weightwise affine functions. Finally, we give the article’s roadmap.

Rephrasing Definition 3, the WPB functions are the ones which support is half of each slice for k
between 1 and n − 1, and the all-one vector. From this description we can directly derive the number of
WPB functions in n = 2m variables:

|WPBm| =
n−1∏
k=1

|E(nk)/2,(nk)| =
n−1∏
k=1

( (
n
k

)(
n
k

)
/2

)
. (1)
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For different constructions of WPB functions the NLk has been exhibited for small values ofm (typically
2 ≤ m ≤ 4), or bounded for greater values. These values are often compared to the upper bound on the
maximum NLk given in [CMR17] and the values obtained by other constructions (as summarized in Table 2
of [MSL21] for example). On one side, the maximum value of NLk(f), which corresponds to the covering
radius of Pk,n is not known and it might be greater than the NLk that a WPB function can reach. On the
other side, the NLk of known constructions is sometimes relatively close to 0, which leads to think that such
constructions have a bad behavior relatively to the weightwise nonlinearity. In order to understand better
the NLk of WPB functions we introduce some notations relatively to the minimum and maximum value this
parameter can take.

Definition 9 (Minimum and maximum weightwise nonlinearity of WPB functions.). Let m ∈ N∗ and
n = 2m. For k ∈ [n− 1] we define the minimum and maximum weightwise nonlinearity of a WPB function
as:

µk,n = min
f∈WPBm

NLk(f), and Mk,n = max
f∈WPBm

NLk(f).

and the global minimum and maximum weightwise nonlinearity of a WPB function as:

µn =
n−1∑
k=1

µk,n, and Mn =
n−1∑
k=1

Mk,n.

Remark 1. The codes P1,n and Pn−1,n have their dimension equal to their length (see Property 3), then any
function restricted to E1,n or to En−1,n coincide with an affine function on this sets hence µ1,n = M1,n = 0
and µn−1,n = Mn−1,n = 0. Accordingly, the sum to define µn and Mn can be restricted to k ∈ [2, n− 2].

Remark 2. Note also that the codes Pk,n and Pn−k,n have the same parameters (length, dimension and
minimal distance) from Property 3. In fact, since the affine automorphism of Fn2 given by x 7→ x + 1n
maps Ek,n to En−k,n, the two codes are equivalent, therefore they share the same properties. Accordingly,
µk,n = µn−k,n and Mk,n = Mn−k,n, which gives another expression of µn and Mn.

By definition of µn and Mn the global weightwise nonlinearity of any n-variable WPB function is
between these two extremes. In the following we show that there are at least 2n−1 WPB functions reaching
the same value GWNL(f).

Proposition 1. Let m ∈ N∗, n = 2m and f an n-variable WPB function, there are at least 2n−1 elements
gi inWPBm such that GWNL(gi) = GWNL(f).

Proof. Let h be an n-variable symmetric function such that h(0n) = h(1n) = 0, we show that f + g is
WPB and has the same weightwise nonlinearity as f on all the slices. First, for the balancedness, on each
slice Ek,n such that k ∈ [n − 1] the support of f + h is the one of f or f + 1, hence of size

(
n
k

)
/2 or(

n
k

)
−
(
n
k

)
/2 =

(
n
k

)
/2. Additionally (f + h)(0n) = f(0n) = 0 and (f + h)(1n) = f(1n) = 1, therefore

f + h is WPB. Then, for the weightwise nonlinearity, since h is constant on each slice, for k ∈ [n− 1]:

NLk(f+h) = min
g

deg(g)≤1

|suppk(f+h+g)| = min
g

deg(g)≤1

|suppk(f+g+ε)| = min
g′

deg(g′)≤1

|suppk(f+g′)| = NLk(f),

where ε ∈ {0, 1}. Thereafter GWNL(f + h) = GWNL(f), and h is defined by the values εk it takes for
each Ek,n for k ∈ [n− 1], therefore there are 2n−1 possible choices for h. It concludes the proof.
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Remark 3. Proposition 1 uses the fact that adding a symmetric function null in 0n and 1n does not alter the
WPB property, and in general WPB functions could be considered up to the addition of such symmetric
functions. Note that the global weightwise nonlinearity of a function is kept invariant by the addition of
a weightwise affine function, but adding such functions can change the support size on the slices hence
changing the weightwise balancedness.

In the main parts of this article we investigate the quantities µk,n and Mk,n, giving more insights on
the minimal and maximal value the weightwise nonlinearity can take for WPB functions and how this
value is distributed among WPB functions. In Section 4 we study the quantities µk,n and µn. We provide
theoretical and experimental bounds, we also show that for n ≥ 8 no WPB function is weightwise affine.
In Section 5 we study the quantities Mk,n and Mn. We explicit theoretic bounds on Mk,n and perform
an experimental investigation to determine the small values of Mk,n but also the full distribution of the
weightwise nonlinearity of WPB functions in a few variables. In Section 6 we give two constructions of
WPB functions with prescribed weightwise nonlinearity. We determine the exact number of WPB functions
that are built with one of the constructions and compare the weightwise nonlinearties of these functions to
former works. In Section 7 we conclude the paper and discuss open questions.

4 Minimal value

In this part we study the minimum weightwise nonlinearity. First, we investigate the connection between
this quantity and the minimum of Krawtchouk polynomials. Then, we focus on the existence of functions
which are both WPB and weightwise affine, we show that such functions exist in 2 or 4 variables but not for
bigger n. Finally, we derive general bounds on µn and determine it experimentally for small values.

4.1 µk,n and minimum of Krawtchouk polynomials

The functions with the lowest NLk are the one such that their truth table restricted to the slice k are the
closest to an element of Pk,n. To study µk,n using the error-correcting code perspective we first determine
the Hamming weight of this code’s elements.

Proposition 2 (Weight of Pk,n elements). Letm ∈ N∗ and n = 2m and k ∈ [1, n−1] the Hamming weight
of Pk,n’s elements are the elements of the set:{(

n
k

)
2
± Kk(`, n)

2
, ` ∈ [0, n]

}
.

Proof. The code Pk,n is the restriction of the order-1 Reed Muller code RM(1, n) to Ek,n, hence the code’s
elements correspond to the affine functions of Fn2 restricted to Ek,n. Therefore, the Hamming weight of
Pk,n’s elements can be determined by studying the Hamming weight of the affine functions, a · x + ε =∑n

i=1 aixi+ ε where a ∈ Fn2 and ε ∈ F2, over Ek,n. In the following we denote wH(a ·x+ ε) the Hamming
weight of a · x+ ε over Ek,n.

First, note that wH(a · x + 1) =
(
n
k

)
− wH(a · x) since the constant function 1 corresponds to the all-1

vector (of length
(
n
k

)
). Then, denoting ` = wH(a), we get a · x = 1 if and only if an odd number of the `
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elements indexed by a are equal to 1. Therefore on the set Ek,n, for ` ∈ [0, n], it gives:

wH(a · x) =
∑̀
i=1

i odd

(
`

i

)(
n− `
k − i

)
,

=
1

2

∑̀
i=1

i odd

(
`

i

)(
n− `
k − i

)
+
∑̀
i=0

i even

(
`

i

)(
n− `
k − i

)
+
∑̀
i=1

i odd

(
`

i

)(
n− `
k − i

)
−
∑̀
i=1

i even

(
`

i

)(
n− `
k − i

) ,

=
1

2

(
n∑
i=0

(
`

i

)(
n− `
k − i

)
−

n∑
i=0

(−1)i
(
`

i

)(
n− `
k − i

))
,

=
1

2

((
n

k

)
− Kk(`, n)

)
.

The last equality is obtained by using Vandermonde convolution and the expression of Krawtchouk
polynomial (Definition 8). Finally, since the Hamming weight of a belongs to [0, n] it allows to conclude,
the code’s elements have Hamming weight in the set {(

(
n
k

)
± Kk(`, n))/2, ` ∈ [0, n]}.

Using Proposition 2 we show how the quantity µk,n is linked to the minimal absolute value of the
degree-k Krawtchouk polynomial in n variables.

Theorem 1 (µk,n and minimum of Krawtchouk polynomial). Let m ∈ N∗, n = 2m and k ∈ [1, n − 1]
the following holds on µk,n:

µk,n = min
`∈[1,n/2]

1

2
|Kk(`, n)|.

Proof. By definition µk,n = min
f∈WPBm

NLk and therefore considering the code perspective µk,n is the

minimum distance between an element of E(nk)/2,(
n
k)

(support of a WPB on the slice with cardinal
(
n
k

)
)

and the Pk,n. For readability we use ν to denote
(
n
k

)
in the following. Thereafter:

µk,n = min
w∈Eν/2,ν

dH(w,Pk,n) = min
w∈Eν/2,ν

( min
c∈Pk,n

dH(w, c)),

= min
c∈Pk,n

min
w∈Eν/2,ν

(w + c) = min
c∈Pk,n

|wH(c)− ν/2|.

Then, using Proposition 2:

µk,n = min
`∈[0,n]

{
1

2
(ν ± Kk(`, n)− ν)

}
= min

`∈[0,n]

1

2
|Kk(`, n)|,

= min
`∈[1,n/2]

1

2
|Kk(`, n)|.

The last equality is obtained using the properties on Krawtchouk polynomials, Kk(0, n) =
(
n
k

)
and

Kk(`, n) = (−1)kKk(n− `, n).

Theorem 1 relates µk,n and the minimum (absolute value) of Krawtchouk polynomials. In the following
part we consider the particular cases given by the zeros of Krawtchouk polynomials.
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4.2 (In)existence of WPB weightwise affine functions

When the Krawtchouk polynomial of degree k in n variables admits an integer zero, Theorem 1 gives that
µk,n is null, which means that a WPB function is affine on the corresponding slice. Then, it leads to consider
the existence of functions with extreme properties; being at the same time WPB and weightwise affine
functions. Such functions are the one such that µn = 0 and they would lead to very efficient attacks if they
were used in the context of filter permutators.

Determining the integer zeros of Krawtchouk polynomials has been the focus of various works such
as [KL96, SW99, Ale12]. Some of these zeros are called trivial zeros, for example for all n even and k odd
Kk(`, n) admits a zero in n/2, and for n even Kn/2(1, n) = 0. These zeroes are sufficient to prove the
existence of WPB weightwise linear functions in 2 and 4 variables:

Proposition 3 (Existence of weightwise affine WPB functions). Let m ∈ [1, 2] and n = 2m, then
WPBm ∩WD1

n 6= ∅.

Proof. For m = 1, the only weight in [n− 1] is k = 1 and K1(1, 2) = 0, hence using Theorem 1 µ1,2 = 0,
then µ2 = 0 therefore some functions inWPB1 are weightwise affine.

For m = 2, the weights in [n − 1] are k = 1, 2 and 3. For 1 and 3 n is even and k odd hence the
corresponding Krawtchouk polynomials admit an integer 0 in n/2 by Proposition 6. Since 2 = n/2, by
Property 5 K2(1, 4) = 0. Following the same reasoning as in the former case we can conclude WPB2 ∩
WD1

4 6= ∅.

Remark 4. Using the indicator functions ϕk,n of the slices we can give an expression of some of the
weightwise affine WPB functions. For m = 1 these functions can be written as: 0ϕ0,2 + xiϕ1,2 + 1ϕ2,2

for i ∈ [2]. It gives the functions x1, and x2 which are the two only WPB functions in 2 variables.
For m = 2, the weightwise affine WPB functions considered in the proof can be written as:

(xi + xj)ϕ1,4 + (xk)ϕ2,4 + (x′i + x′j)ϕ3,4 + ϕ4,4, where i, j, k, i′, j′ ∈ [4], i 6= j, i′ 6= j′.

This expression gives 6∗4∗6 = 144 weightwise affine WPB functions. Contrarily to the casem = 1 the set
of WPB functions and weightwise affine functions are different. Since K2(2, 4) = −2 the linear functions
xi + xj (i 6= j) have Hamming weight 4 on E2,4 hence WD1

4 6⊂ WPB2. Then, taking the vector of F6
2

representing such linear function (xi + xj) over E2,4, any vector v obtained by removing one element from
its support has Hamming weight 3 and therefore corresponds to a function balanced on E2,4. Since P2,4 has
parameters [6, 4, 2] by Property 3, v does not belong to the code henceWPB2 6⊂ WD1

4.

In the following we will see that weightwise affine WPB functions exist only for these two values of
m. First, we summarize in the following property results on the limited number of non-trivial zeros of
Krawtchouk polynomials taken from [KL96] and [SW99].

Property 9. Let n ∈ N∗, the following holds for the nontrivial zeros of Krawtchouk polynomials Kk(x, n):

– for k = 2 and n > 4, K2(x, n) admits zeros if and only if n is a square,
– for k = 4 and n > 8, K4(x, n) admits zeros for finitely many n and none of them is a power of 2,
– for k = 6 and n > 12, K6(x, n) admits zeros for finitely many n and none of them is a power of 2,
– for k even greater than 6 and n > 2k, Kk(x, n) admits zeros for finitely many n.

Then we can conclude on the nonexistence of weightwise affine WPB in more than 4 variables:
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Proposition 4 (Non existence of weightwise affine WPB functions for m > 2). Let m > 2 and n = 2m,
thenWPBm ∩WD1

n = ∅.

Proof. Using Property 9, for n = 8 (i.e. m = 3) K2(x, 8) does not admit a zero then µ2,8 > 0 using
Theorem 1 and therefore no 8-variable WPB is weightwise affine. For m > 3, the second or third item of
the property are sufficient to conclude, using the second one for all m > 3 it implies µ4,2m > 0 therefore
WPBm ∩WD1

n = ∅.

Weightwise affine WPB functions exists if and only if µm equals 0, since Proposition 4 proves this
quantity cannot be null for m > 2 we study the general bounds applying to this quantity in the following
part.

4.3 General bounds on µn

Using Theorem 1 the value of µn (for n a power of 2) can be expressed as the sum of absolute minimum
of Krawtchouk polynomials. In this part, first we give this expression using the simplification given by the
trivial zeros of Krawtchouk polynomials. Then, we derive a lower and an upper bound on µ2m . Finally, we
experimentally determine the values of µ2m for the first values of m.

Proposition 5 (µn expression). Let m ∈ N∗ and n = 2m, the global minimum weightwise nonlinearity of
WPBm has the following expression:

µn =


0 if m ∈ [2],
n/4−1∑
t=1

min
`∈[n/2]

|K2t(`, n)| if m > 2.

Proof. First, the cases m = 1 and m = 2 are proven by Proposition 3. Then, for m > 2, since µn =∑n−2
k=2 µk,2 by Remark 1, Theorem 1 gives the following expression:

µn =
1

2

n−2∑
k=2

min
`∈[n/2]

|Kk(`, n)|.

Due to the trivial zeroes of Krawtchouk polynomials, the values with k odd and n/2 are not intervening in
the sum. Finally, using Property 5, the relation on Kn−k(`, n) allows to consider only the terms for k < n/2,
giving:

µn =

n/2−2∑
k=2
k even

min
`∈[n/2]

|Kk(`, n)| =
n/4−1∑
t=1

min
`∈[n/2]

|K2t(`, n)|.

Proposition 4 and Property 9 allow to derive a lower bound on µn:

Proposition 6 (Lower bound on µn). Let m ∈ N∗, m > 2, and n = 2m, the following holds on µn:

µn ≥


2 if m = 3,

4 if m > 3,m even,
6 if m > 3,m odd.
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Proof. Using Proposition 4, for m > 2 we know that µn > 0. Then, counting 1 for each value of k (and
n− k using Property 5) for which Property 9 gives that Kk(x, n) cannot be zero, gives the final result.

Upper bounds can be obtained by considering particular linear functions over the slices. We give the
following one based on linear functions with one monomial.

Proposition 7 (Upper bound on µn). Let m ∈ N∗, m > 2, and n = 2m, the following holds on µn:

µn ≤
(
n− 1

n/2− 2

)
− n+ 1.

Proof. We begin with the expression of µn from Proposition 5:

µn =

n/4−1∑
t=1

min
`∈[n/2]

|K2t(`, n)| ≤
n/4−1∑
t=1

|K2t(1, n)| =
n/4−1∑
t=1

K2t(1, n) ≤
n/2−2∑
k=2

Kk(1, n),

where the equality and last inequality come from the the property that Kk(1, n) =
(
n−1
k

)
−
(
n−1
k−1
)

is positive
for k ∈ [n/2− 1]. Then:

n/2−2∑
k=2

Kk(1, n) =

n/2−2∑
k=2

(
n− 1

k

)
−
(
n− 1

k − 1

)
=

n/2−2∑
k=2

(
n− 1

k

)
−
n/2−3∑
k=1

(
n− 1

k

)
=

(
n− 1

n/2− 2

)
−
(
n− 1

1

)
,

which gives the final result.

To conclude this part, we give the global minimum weightwise nonlinearity of WPB functions for small
values of m, determined experimentally in Table 1.

m µn lower bound upper bound µ2t,n, t ∈ [1, n/4]

3 2 2 14 [1, 0]
4 14 4 4990 [0, 7, 0, 0]
5 4750 6 265182494 [1, 4, 84, 455, 248, 868, 715, 0]

Table 1. Value of µn for n = 2m, m ∈ [3, 5]. µn is the real value, obtained by computation, the lower bound comes from
Proposition 6 and the upper bound from Proposition 7.

m blog2(µn)c lower bound blog2(upper bound)c
6 27 4 59
7 59 6 123
8 122 4 250
9 250 6 506
10 505 4 1017

Table 2. Value of µn for n = 2m, m ∈ [6, 10]. µn is the real value, obtained by computation, the lower bound comes from
Proposition 6 and the upper bound from Proposition 7.
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5 Maximal value and weightwise nonlinearity distribution

In this part we study the (global) maximum weightwise nonlinearity of WPB functions Mk,n (and Mn). First,
in Section 5.1 we provide theoretic lower and upper bounds on Mk,n. Then, in the journey to experimentally
determine Mk,n for small values of n we found out that light modifications of the algorithms we use to
compute the maximum are sufficient to study the whole distribution of NLk of WPB functions. It has the
advantage to give a more informative experimental part, for example as we will see in Section 6 it shows
that most known constructions in 8 variables have NLk lower than average. Accordingly, in Section 5.2 we
introduce the weightwise nonlinearity distribution and the formalism necessary for the correctness of our
(deterministic and undeterministic) algorithms. In Section 5.3 we present the results of the experimental
determination of the distributions and provide the technical algorithmic aspects. In order to give more
insights on the NLk distributions, the study is performed on n ∈ [4, 8] rather than on powers of 2 only.

5.1 Mk,n theoretic bounds

To get a lower bound on Mk,n we can use the standard argument to bound from below the covering radius of
a code, taking in consideration here that the set of points we consider is not the entire space but the elements
of Hamming weight half the length.

Proposition 8 (Lower bound on Mk,n). Let m ∈ N∗, n = 2m, and k ∈ [2, n − 2]. Let r′ be the smallest
integer such that:

2n
r′∑
i=0

((n
k

)
r′

)
≥
( (

n
k

)(
n
k

)
/2

)
,

then r′ ≤ Mk,n.

Proof. Using Property 3, Pk,n has dimension n, hence the union of balls centered in these 2n elements

with a radius of r (in Hamming distance) recover at most 2n
∑r

i=0

((nk)
r

)
elements. While this quantity is

smaller than |E(nk),(nk)/2| there exists at least one element of E(nk),(
n
k)/2

at distance greater than r from Pk,n.

Accordingly, denoting r′ the smallest integer such that:

2n
r′∑
i=0

((n
k

)
r′

)
≥
( (

n
k

)(
n
k

)
/2

)
,

we get r′ ≤ Mk,n.

In the following we give a simpler expression of the NLk for WPB functions and an upper bound on
Mk,n using the connection between NLk and Walsh transform restricted to a slice.

Proposition 9 (Upper bound on Mk,n). Let m ∈ N∗, n = 2m, and f ∈ WPBm, then for k ∈ [2, n− 2]:

NLk(f) =

(
n
k

)
2
− max
a∈Fn2 \{0n,1n}

|
∑
x∈Ek,n
ax=1

(−1)f(x)|,

and Mk,n ≤ 1
2

((
n
k

)
−
√

2n

2n−2
(
n
k

))
.
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Proof. First we use the expression of the weightwise nonlinearity from Property 1:

NLk(f) =
1

2

((
n

k

)
−max
a∈Fn2

|Wk,a(f)|
)
,whereWk,a(f) =

∑
x∈Ek,n

(−1)f(x)+ax.

Since f is WPB, f is perfectly balanced on each slice k ∈ [n − 1] therefore Wk,0n(f) = 0. Moreover, at
least one other value of the Walsh spectrum restricted on a slice is zero for a WPB function:

Wk,1n(f) =
∑

x∈Ek,n

(−1)f(x)+
∑n
i=1 xi = (−1)k

∑
x∈Ek,n

(−1)f(x) = (−1)kWk,0n(f) = 0.

It allows to derive the upper bound for Mk,n, using the second part of Property 1:

∑
a∈Fn2

Wk,a(f)
2 =

∑
a∈Fn2 \{0n,1n}

Wk,a(f)
2 = 2n

(
n

k

)
,

hence the average of theWk,a(f) for a ∈ Fn2 \ {0n, 1n} is
√

2n

2n−2
(
n
k

)
. The maximum being at least equal

to the average, the expression from Property 1 gives the upper bound on Mk,n.
Then we prove the alternative expression of NLk for WPB functions. We rewriteWk,a(f), for a ∈ Fn2 :

Wk,a(f) =
∑

x∈Ek,n

(−1)f(x)+ax =
∑
x∈Ek,n
ax=0

(−1)f(x) −
∑
x∈Ek,n
ax=1

(−1)f(x),

=
∑

x∈Ek,n

(−1)f(x) − 2
∑
x∈Ek,n
ax=1

(−1)f(x) =Wk,0n(f)− 2
∑
x∈Ek,n
ax=1

(−1)f(x),

= −2
∑
x∈Ek,n
ax=1

(−1)f(x).

ReplacingWk,a(f) by −2
∑
x∈Ek,n
ax=1

(−1)f(x) in the expression from Property 1 gives the final expression.

5.2 Weightwise nonlinearity distribution

In this part we introduce the notion of distribution of the NLk of WPB functions which provides us a more
global overview over the quantities µk,n and Mk,n and the background for the algorithms we use in the
following experimental part.

Definition 10 (Nonlinearity on the slice distribution ). Let m ∈ N∗, n = 2m and k ∈ [1, n − 1]. The
weightwise nonlinearity distribution Wk,n is a discrete probability distribution describing the probability of
getting a certain nonlinearity on the slice Ek,n by taking a random WPB function, namely for any x ∈ N

pWk,n
(x) =

| {f ∈ WPBm : NLk(f) = x} |
|WPBm|

.
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Definition 11 (Global weightwise nonlinearity distribution). Let m ∈ N∗, n = 2m. The global
weightwise nonlinearity distribution Wn is a discrete probability distribution describing the probability
of getting a certain value of GWNL by taking a random WPB function, namely for any x ∈ N

pWn(x) =
| {f ∈ WPBm : GWNL(f) = x} |

|WPBm|
.

Therefore, we naturally obtain alternative definitions of minimum and maximum weightwise nonlinear-
ity of WPB functions:

µk,n = min
a∈N

[pWk,n
(a) 6= 0], and Mk,n = max

a∈N
[pWk,n

(a) 6= 0],

and
µn = min

a∈N
[pWn(a) 6= 0], and Mn = max

a∈N
[pWn(a) 6= 0].

This implies that investigating the distribution provides information also on the minimum and maximum
weightwise nonlinearity.

In this part we discuss the experimental computation of the distribution via exploiting its alternative
definition as minimal distance of the evaluation vector from a spherically punctured Reed Muller code.
Namely, for the purpose of studying Wk,n experimentally Definition 10 is not very convenient, we define
therefore a further family of distributions Dk,n and we prove that we can investigate them instead of Wk,n .

Definition 12 (Distance distribution). Let n ∈ N∗ and k ∈ [n − 1]. Let Pk,n the spherically punctured
Reed Muller code of order 1 of length ν =

(
n
k

)
. The Dk,n is a discrete probability distribution describing

the the distance between Pk,n and Ebν/2c,ν , namely for any x ∈ N

pDk,n(x) =
|
{
v ∈ Ebν/2c,ν : minc∈Pk,n dH(v, c) = x

}
|

|Ebν/2c,ν |
.

Proposition 10. Let m ∈ N∗, n = 2m and k ∈ [n− 1]. Then Dk,n = Wk,n.

Proof. By Property 4 given any WPB function f we can compute NLk(f) by retrieving the minimal
Hamming distance of vf , i.e. the vector of evaluations of f over the slice Ek,n, from the spherically punctured
Reed Muller code Pk,n. In addition, {suppk(f) : f ∈ WPBm} coincides with the family of vectors of length
ν and hamming weight bν/2c.

To retrieve Wk,n we should iterate over functions, instead for computing Dk,n we can directly iterate
over the possible supports, i.e. over Ebν/2c,ν . The latter is more convenient from an algorithmic point of view
and Proposition 10 implies that this is equivalent when n = 2m. This implies that in such case Algorithm 1
returns Wk,n.

Algorithm 1
Input: Let n ∈ N, 0 < k < n .
Output: Dk,n

1: generate Pk,n the spherically punctured Reed Muller code of order 1 of length ν =
(
n
k

)
2: compute the distribution Dk,n of the distance between Pk,n and Ebν/2c,ν
3: return Dk,n

13



5.3 Experimental determination of Dk,n for n up to 8

Although for small values of n an exhaustive search over Ebν/2c,ν is feasible, for larger values a complete
examination of the set would require considerable computational power. Therefore, in the following we
provide first a description of an exhaustive strategy and subsequently a variant for performing a randomized
search. Those algorithms provide us both an intuition and an approximation of the distribution Dk,n, hence
of Wk,n when n = 2m.

We recall that {suppk(f) : f ∈ WPBm} coincides with the family of vectors of length ν and Hamming
weight bν/2c. Notice that a precise convention has to be establish a priori if any function has to be retrieved.

For practical reason we will often identify Dk,n with the vector u whose x-th component is uk,n(x) =
|
{
v ∈ Ebν/2c,ν : minc∈Pk,n dH(v, c) = x

}
|. Moreover, using the upper bound on the maximal weightwise

nonlinearity (Proposition 9) we can get a finite length representation of such vector. The technical aspects
regarding the actual implementation of Algorithm 1 (deterministic and undeterministic) will be discuss in
a devoted paragraph at the end of the section. Instead, we discuss here some results on the distributions.
When

(
ν
bν/2c

)
is too large, the distribution of the distance can be estimated performing the second step as

a random sampling, since for a sufficiently large sample a good approximation can be expected. However,
this does not guarantee to retrieve the exact distribution neither the actual value of Mk,n, but a lower bound
on this quantity. Indeed, running the algorithm for various n we observed that the distribution has a specific
trend, according to whom the probability of randomly hitting a function with weightwise nonlinearity Mk,n

is actually very low.
The distributions computed are displayed by Figures 1, 2, 3 for n ∈ [4, 7], and 4,5, 6 for n = 8. The

figures in orange correspond to an exhaustive determination (Algorithm 2) and the blue ones to a random
determination (Algorithm 3). Only the distributions for n = 4 and n = 8 correspond to WPB functions, the
others allow to illustrate the trend of these distributions when n increases.

Fig. 1. From left to right: D2,4 and D2,5
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Fig. 2. From top to bottom: D2,6 and D3,6
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Fig. 3. From top to bottom: D2,7 and approximation of D3,7 via random sampling, sample size 1048576 = 220, |Ebν/2c,ν | ≈ 232.
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x 1 2 3 4 5 6 7 8 9

u2,8(x) 3 40 477 2627 11257 35304 53323 19220 149

pD′2,8(x) 0.002% 0.033% 0.390% 2.146% 9.197% 28.843% 43.565% 15.703% 0.122%

Fig. 4. Approximation of D2,8 via random sampling. We denote u2,8(x) = |
{
v : minc∈P2,8 dH(v, c) = x

}
|, and the sample size is

∑
x∈N u(x) = 122400 ≈ 217,

|Eν/2,ν | ≈ 225.
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x 8 9 10 11 12 13 14 15 16 17 18 19 20 21

u3,8(x) 6 12 62 194 913 2684 9051 22907 58206 103799 135783 68319 7240 24

pD′
3,8

(x) 0.001% 0.003% 0.015% 0.047% 0.223% 0.656% 2.212% 5.598% 14.224% 25.366% 33.183% 16.696% 1.769% 0.006%

Fig. 5. Approximation of D3,8 via random sampling. We denote u3,8(x) = |
{
v : minc∈P3,8 dH(v, c) = x

}
|, and the sample size is

∑
x∈N u(x) = 409200 ≈ 219,

|Ebν/2c,ν | ≈ 253.
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x 8 9 10 11 12 13 14 15 16 17

u4,8(x) 1 0 0 2 10 35 180 554 2202 5714

pD′4,8(x) 0.000% 0.000% 0.000% 0.000% 0.000% 0.001% 0.005% 0.016% 0.063% 0.164%

x 18 19 20 21 22 23 24 25 26 27

u4,8(x) 19455 47168 130439 270098 582065 868341 988400 488180 71482 778

pD′4,8(x) 0.560% 1.357% 3.754% 7.772% 16.750% 24.987% 28.442% 14.048% 2.057% 0.022%

Fig. 6. Approximation of D4,8 via random sampling. We denote u4,8(x) = |
{
v : minc∈P4,8 dH(v, c) = x

}
|, and the sample size is

∑
x∈N u(x) = 3475104 ≈ 222,

|Ebν/2c,ν | ≈ 267.
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We list the values and bounds on Mk,n we obtained with the experiments in Table 3. More precisely,
when n is not a power of 2 we denote Mk,n = maxa∈N[pDk,n(a) 6= 0], and we denote M∗k,n the maximal
value obtained with a non-deterministic algorithm (since M∗k,n ≤ Mk,n and the WPB functions reaching
the highest NLk could be too scarce to appear in the search). The lower bounds on Mk,n come from
Proposition 8. When n is not a power of two some slices have odd cardinality, then a function is considered
balanced on a slice of odd cardinality if and only if its weight is (ν ± 1)/2. The arguments leading to
the upper bound given in Proposition 8 also apply in this case, the only difference is that ν/2 on the right
size becomes bν/2c. The upper bound Mk,n comes from Proposition 9 when n is a power of 2 and from
Property 2 otherwise. These experiments tend to show that the value of Mk,n is closer to the upper bound
than the lower bound, but not reaching it. The pictures displayed in this section illustrate how scarce the
WPB functions with low or high NLk are. For example, for n = 8 and k = 3 no functions will null NL3
are found experimentally (their existence is proven in Section 4), neither a function with NL3 = 22 as built
in [LM19].

n k Mk,n lower bound upper bound Step 2

4 2 1 1 1 exhaustive
5 2, 3 3 1 3 exhaustive
6 2, 4 4 2 5 exhaustive
6 3 6 4 7 exhaustive
7 2, 5 6 4 8 exhaustive

n k M∗k,n lower bound upper bound Step 2

7 3, 4 13* 9 14 random
8 2, 6 9* 6 11 random
8 3, 5 21* 16 24 random
8 4 27* 21 30 random

Table 3. Values and bounds on Mk,n for n ∈ [4, 8] given by the experiment. Mk,n refers to the exact quantity whereas M∗k,n refers
to the maximum value obtained by a non-deterministic process.

Technical algorithmic aspects The source code of our experiments is available at https://github.
com/agnesegini/NL-WPB. This has been produced by using sagemath [The17] in association with some
python’s modules, later specified.

While generating Pk,n is quite efficient for the considered value of n, we observed that the bottleneck of
Algorithm 1 resides in the second step. Indeed, a naive implementation faces time and memory barriers even
for small n. Nevertheless, the integrated usage of tools such as data parallelism, iterators and randomization,
allowed us to analyses larger sets. Specifically, python’s iterators are objects implementing a prescribed
iterator protocol and they are highly convenient in this context because the do not allocate in memory the
full list of objects. For instance, since Ebν/2c,ν quickly becomes very large increasing n and k, we encoded
this set as iterator. For this we used the itertool package. Moreover, an iterator can be used also for getting
a compact representation of Pk,n: given any generator matrix M the full code can be produce as the set of
v ·M, iterating over v. Iterators are also parallelism-friendly. Namely, the execution of a function over
multiple input values can be distributed across processes, by using tools such as the map method of a Pool
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object from the multiprocessing module multiprocessing; and this input data can be given via an iterator.
This implies we can compute the distance between several vectors concurrently, scaling the running time of
Step 2. Therefore, by using these two ingredients we were able to compute exhaustively Dk,n for n ≤ 7.
We summarized our exhaustive method in Algorithm 2, denoting in pseudo-code by it-get the operation
of getting an iterator of the input set and by par-for the fact that the loop is performed in parallel.

Algorithm 2 Exhaustive search distribution
Input: Pk,n.
Output: Dk,n.

1: Dk,n = 0 ∈ Nu, where u is an upper bound for Mk,n.
2: itν = it-get(Ebν/2c,ν)
3: par-for r ← itν do
4: h← minc∈Pk,n dH(r, c) . We can use an iterator here.
5: Dk,n[h] = Dk,n[h] + 1
6: end for
7: return Dk,n

The forementioned optimizations are not sufficient however to determine the distribution for n = 8.
Thus, in order to estimate Dk,n we modified the algorithm by substituting Ebν/2c,ν with a uniform
randomized sample. This is displayed by Algorithm 3, where genπ(a, b) is a function that returns a random
element of Ea,b. Notice that, when using random generation in parallel within a Pool, it is important to
control the source of randomness used for being sure that all processes are independent. The output of this
algorithm is a distribution D′k,n that is an approximation of Dk,n.

Algorithm 3 Randomized search distribution
Input: Pk,n, s sample size.
Output: D′k,n.

1: D′k,n = 0 ∈ Nu, where u is an upper bound for Mk,n.
2: par-for i ∈ {1, . . . , s} do
3: r ← genπi(bν/2c, ν)
4: h← minc∈Pk,n dH(r, c) . We can use an iterator here.
5: D′k,n[h] = D′k,n[h] + 1
6: end for
7: return D′k,n

6 Constructions with prescribed weightwise nonlinearities

In this section we study a general construction of WPB functions for all n ≥ 8 with non null weightwise
nonlinearity. The main idea is to build functions by modifying the support of linear functions on each slice.
First, modifying enough the weightwise support guarantees the balancedness on each slice. Second, the
modification is light enough to ensure that the initial linear function is still the closest one, which directly
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gives the weightwise nonlinearity of the built functions. This strategy allows to build a relatively large corpus
of WPB function with the same NLk and GWNL.

First we give a general construction of WPB functions with bounded NLk (Construction 1). Then,
we highlight a sub-part of the functions given by this construction, determining the exact weightwise
nonlinearities of these functions and the size of their corpus, it corresponds to Construction 2. Finally, we
summarize the NLk values of these functions and compare it to the other known constructions in tables for
n = 8 and 16.

Construction 1
Input: Let m ∈ N, m ≥ 3 and n = 2m.
Output: f an n-variable Boolean function.

1: Initiate the support of f to {1n}.
2: for k ← 1 to n− 1 do
3: choose ` in [n− 1] such that |Kk(`, n)| ≤ dk,n where dk,n is the minimal distance of Pk,n
4: choose an homogeneous linear function g with ` monomials in its ANF
5: t = bdk,n−|Kk(`,n)|4 c
6: if Kk(`, n) ≥ 0 then
7: add suppk(g) minus t elements to supp(f) and Kk(`, n)/2 + t elements from suppk(g + 1),
8: else
9: add suppk(g+1) minus t elements to supp(f) and −(Kk(`, n))/2+ t elements from suppk(g).

10: end if
11: end for
12: return f

Theorem 2 (Weightwise perfectly balancedness and NLk of Construction 1). Let m ∈ N, m ≥ 3 and
n = 2m. Any function given by Construction 1 is weightwise perfectly balanced, and with weightwise
nonlinearity NLk ≥

dk,n−3
2 for k ∈ [n− 1].

Proof. First, we prove that such functions are WPB. We show that for all k ∈ [n − 1] f is balanced on
the corresponding slice. Using Proposition 2, the Hamming weight of the selected function g is (

(
n
k

)
−

Kk(`, n))/2 on Ek,n, hence |Kk(`, n)/2| elements from this slice need to be added to reach the balancedness
if Kk(`, n) ≥ 0 (and withdrawn if Kk(`, n) is negative). We focus on the case Kk(`, n) ≥ 0 (the other
one follows with similar arguments), suppk(f) is formed with |suppk(g)| − t elements from suppk(g) and
Kk(`, n)/2 + t from suppk(g+ 1). We verify that both |suppk(g)| − t and |suppk(g+ 1)| −Kk(`, n)/2− t
are positive integers:

|suppk(g)| − t =
(
n
k

)
− Kk(`, n)

2
− b

dk,n − |Kk(`, n)|
4

c ≥
2
(
n
k

)
− Kk(`, n)− dk,n

4
, and

|suppk(g+1)|−Kk(`, n)

2
−t =

(
n
k

)
+ Kk(`, n)

2
−Kk(`, n)

2
−b

dk,n − |Kk(`, n)|
4

c ≥
2
(
n
k

)
− dk,n − Kk(`, n)

4
,

and since by definition both Kk(`, n) and dk,n are not greater than
(
n
k

)
both quantities are positive.

Since both quantities are positive it allows to build suppk(f), with Hamming weight:(
n
k

)
− Kk(`, n)

2
− t+ Kk(`, n)

2
+ t =

(
n
k

)
2

=
|Ek,n|
2

.
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It concludes on the balancedness on all slices with k ∈ [n− 1], and since 1n ∈ supp(f) and 0n 6∈ supp(f),
f is a WPB function.

We finish the proof with the statement on the weightwise nonlinearity. By construction, on the slice k f is
at distance 2t+ |Kk(`, n)|/2 from g (if Kk(`, n) is positive) or from g+1. Since t = b(dk,n−|Kk(`, n)|)/4c:

2t+
|Kk(`, n)|

2
≤ 2

(
dk,n − |Kk(`, n)|

4

)
+
|Kk(`, n)|

2
≤

dk,n
2
,

f cannot be closer to another affine function restricted to Ek,n hence NLk(f) is given by this distance.
Finally, since

2t+
|Kk(`, n)|

2
≥ 2

(
dk,n − |Kk(`, n)|

4
− 3

4

)
+
|Kk(`, n)|

2
≥

dk,n − 3

2
,

we can conclude NLk(f) ≥ (dk,n − 3)/2.

To highlight the existence of such WPB functions with prescribed weightwise nonlinearity, we give the
following construction, which is a particular sub-case.

Construction 2
Input: Let m ∈ N, m ≥ 3 and n = 2m.
Output: f an n-variable Boolean function.

1: Initiate the support of f to {1n}.
2: for k ← 1 to n− 1 do
3: if k 6= n/2 then
4: ` = n/2
5: else
6: ` = 1
7: end if
8: choose an homogeneous linear function g with ` monomials in its ANF
9: t = bdk,n−|Kk(`,n)|4 c where dk,n is the minimal distance of Pk,n,

10: if Kk(`, n) ≥ 0 then
11: add suppk(g) minus t elements to supp(f) and Kk(`, n)/2 + t elements from suppk(g + 1),
12: else
13: add suppk(g+1) minus t elements to supp(f) and −(Kk(`, n))/2+ t elements from suppk(g).
14: end if
15: end for
16: return f

Corollary 1 (Weightwise perfectly balancedness and NLk of Construction 2). Let m ∈ N, m ≥ 3 and
n = 2m. Any function given by Construction 2 is weightwise perfectly balanced, and with weightwise
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nonlinearity for k ∈ [n/2]:

NLk = NLn−k =


(n−1
k−1)−1

2 if k is odd,
(n−1
k−1)−3

2 if k is even, k 6= n/2,(
n−2
n/2

)
− 1 if k = n/2.

Proof. First, we recall that |Kk(`, n)| = |Kn−k(`, n)| (Property 5) and Pk,n and Pn−k,n have the same
parameters (Property 3), hence we can restrict our study to the case k ∈ [n/2]. Then, we show that this
construction gives WPB functions since it is a sub-case of Construction 1 which gives only WPB functions
from Theorem 2. The only difference with Construction 1 is the particular choices of `, accordingly it is
sufficient to prove that for each k the chosen ` (denoted `k) verifies |Kk(`k, n)| ≤ dk,n. Using Property 5
and 6 on one side and Property 3 on the other side, for k ∈ [n/2] we obtain:

|Kk(`k, n)| =


Kk(n/2, n) = 0 if k is odd,
|Kk(n/2, n)| =

(n/2
k/2

)
if k is even, k < n

2 ,

Kn/2(1, n) = 0 if k = n/2,

and dk,n =


(
n−1
k−1
)

if k is odd,(
n−1
k−1
)

if k is even, k < n
2 ,

2
(
n−2
n/2

)
if k = n/2.

Since for k even k < n/2, we have n/2 < n − 1, k/2 < k − 1 and k − 1 − k/2 < n − 1 − n/2 Pascal’s
formula guaranties

(n/2
k/2

)
≤
(
n−1
k−1
)
. Therefore, for all cases |Kk(`k, n)| ≤ dk,n, hence Theorem 2 applies

and the constructed functions are WPB.
By construction, the NLk of the functions is given by 2t + |Kk(`k, n)|/2 on each slice, where t =

b(dk,n − |Kk(`k, n)|)/4c. In order to give the exact value we study the congruence modulus 4 or 2 of the
binomial coefficients appearing in the expression of the different t. Concretely we use that for n = 2m and
k ∈ [n/2]:(

n− 1

k − 1

)
= 1 (mod 4) for k odd, and

(
n− 1

k − 1

)
= 3 (mod 4) for k even, (2)(

n/2

k/2

)
= 0 (mod 4) for k even k < n/2, (3)(

n− 2

n/2

)
= 1 (mod 2). (4)

Equation 3 comes from Property 8 since n is a power of 2 greater than 4. Then, since
(
2m

k

)
= 0 (mod 4)

for k ∈ [2m−1] by Property 8 and
(
2m−1

0

)
= 1 = 1 (mod 4) using Pascal’s formula repetitively gives(

2m−1
2k′

)
= 1 (mod 4) and

(
2m−1
2k′+1

)
= 3 (mod 4) for k′ ∈ [0, n/4 − 1], it proves Equation 2. Equation 4 is

a consequence of Lucas’s theorem (Property 7), writing n− 2 and n/2 in binary only the coefficient for the
power m− 1 is equal to 1 in the expansion of n/2 = 2m−1 and the same coefficient for n− 2 is also equal
to 1 (since n − 2 = 2m − 2 =

∑
i∈[m−1] 2

i). Therefore Property 7 allows to conclude that the binomial
coefficient is odd.

It allows to conclude on the exact value of NLk for the three different cases:

– For k odd,

2t+
|Kk(n/2, n)|

2
= 2t = 2b

(
n−1
k−1
)

4
c =

(
n−1
k−1
)
− 1

2
.
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– for k even k < n/2,

2t+
|Kk(n/2, n)|

2
= 2t+

(n/2
k/2

)
2

= 2b

(
n−1
k−1
)
−
(n/2
k/2

)
4

c+

(n/2
k/2

)
2

=

(
n−1
k−1
)
−
(n/2
k/2

)
− 3

2
+

(n/2
k/2

)
2

=

(
n−1
k−1
)
− 3

2
.

– for k = n/2,

2t+
|Kk(1, n)|

2
= 2t = 2b

2
(
n−2
n/2

)
4
c = 2

(
n−2
n/2

)
− 1

2
=

(
n− 2

n/2

)
− 1.

In the following we show how many different functions can be built from Construction 2. It shows that
this construction provides a large corpus of WPB functions.

Proposition 11 (Number of different functions given by Construction 2). Let m ∈ N, m ≥ 3 and
n = 2m. Construction 2 produces Cn different WPB functions, where

Cn = n

( (
n
n/2

)
/2

(
(
n−2
n/2

)
− 1)/2

)2 ∏
k∈[n/2−1]

k odd

(
n

n/2

)2

Ak,n
∏

k∈[n/2−1]
k even

(
n
n/2

)2
4

Bk,n,

where

Ak,n =

( (
n
k

)
/2

(
(
n−1
k−1
)
− 1)/4

)4

, and Bk,n =

( (
(
n
k

)
−
(n/2
k/2

)
)/2

(
(
n−1
k−1
)
−
(n/2
k/2

)
− 3)/4

)2( (
(
n
k

)
+
(n/2
k/2

)
)/2

(
(
n−1
k−1
)
+
(n/2
k/2

)
− 3)/4

)2

.

Proof. The number of different WPB functions given by Construction 2 is the product
∏n−1
k=1 Nk of the

number of different balanced sub-parts Nk obtainable for each slice Ek,n. As recalled in Corollary 1’s
proof the codes Pk,n and Pn−k,n have the same properties and |Kk(x, n)| = |Kn−k(x, n)|, therefore by
construction Nn−k = Nk, and in the following we focus only on the cases k ∈ [n/2].

For the slice k, when a linear function g of `k terms is chosen, by construction (
(
n
k

)
−|Kk(`k, n)|)/2− t

elements over (
(
n
k

)
− |Kk(`k, n)|)/2 are chosen from the support and (|Kk(`k, n)|)/2 + t elements over

(
(
n
k

)
+ |Kk(`k, n)|)/2 from the co-support of the affine function g or g + 1 to build this sub-part. Using

Corollary 1 and Property 3 each choice gives a function (on Ek,n) at distance strictly lower than dk,n/2
therefore they cannot be built from another linear function distinct over Ek,n.

The remaining point is to determine the number of linear functions of `k monomials distinct over Ek,n.
Note that there are 2n+1 affine functions in n variables but Pk,n has dimension n only, then different affine
functions over Fn2 have the same restriction over Ek,n. On Ek,n the sum

∑n
i=1 xi equals 1 for k odd and 0 for

k even, hence the affine functions
∑

i∈I xi and
∑

i∈[n]\I xi + k mod 2 have the same truth table on Ek,n.
We do a disjunction of cases for the number of distinct linear functions depending on the slices.

– For k odd, `k = n/2, in this case for each set I ′ of n/2 variables,
∑

i∈I′ xi coincide with 1+
∑

i∈[n]\I′ xi

hence the
(
n
n/2

)
choices for the linear function g are different.

– For k even, k 6= n/2, `k = n/2 and in this case for I ′ a set of n/2 variables
∑

i∈I′ xi coincide with∑
i∈[n]\I′ xi and since |[n]\I ′| = n/2, only

(
n
n/2

)
/2 choices of linear functions are distinct on this slice.

– For k = n/2, `k = 1, in this case xj coincides with
∑

i∈[n]\j xi hence the n choices lead to distinct
functions on the slice.
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Doing the product for k ∈ [n − 1] combining the number of linear functions distinct on each slice and
the number of functions reachable from each one gives the final result.

Construction 2 allows to build a large family of WPB functions with non-trivial nonlinearity on the
slices. We illustrate it by displaying the NLk and GWNL of these functions and the ones of constructions from
other works in Table 4 for 8 variables and Table 5 for 16 variables. The values for the minima come from
Table 1 in Section 4, the (observed) averages and modes for n = 8 come from the distributions observed in
the experiment of Section 5.3, and the upper bounds come from Proposition 9 in Section 5.1. The weightwise
nonlinearities for Construction 2 are given by Corollary 1, and the values for the other constructions come
from the article introducing them, and [Su21] for the WPB function presented in [CMR17]. The corpus
size is rarely determined for the different constructions, we list the few ones for which it is determined.
For Construction 2 the corpus size is given by Proposition 11, it corresponds to (2m)! for fm in [MS21]
and 2ψn−2 for the first construction in [LM19] where ψn is the number of different orbits in Fn2 . Most of
the known constructions correspond to small corpus sizes or sporadic cases, even considering that each
built function can correspond to up to 2n−1 different WPB functions by adding symmetric functions (see
Proposition 1).

The two tables illustrate that the known constructions are far from optimal in term of weightwise
nonlinearity, and in the case n = 8 even far from the parameters of a WPB function randomly chosen.
Construction 2 allows to generate functions with guaranteed nontrivial nonlinearity on each slide and it
gives a corpus of WPB function way larger than former approaches.

Construction NL2 NL3 NL4 GWNL Corpus

Minimum 1 0 0 2

fm [MS21] 2 0 3 7 40320

fm [MSL21] 2 8 8 28

Construction 2 2 10 14 38 ≈ 2163

[CMR17, Su21] 2 12 19 47

[LS20] 2 12 19 47

gm [MS21] 2 14 19 51

gm [MSL21] 6 8 26 54

[LM19] {6, 9} {0, 8, 14, 16, 18, 20, 21, 22} {19, [22, 27]} [31, 89] 232

Average* 6.61 17.36 23.09 71.02

Mode* 7 18 24 72

Upper Bound 11 24 30 100
Table 4. Weightwise nonlinearities of 8-variable WPB constructions.
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Construction NL2 NL3 NL4 NL5 NL6 NL7 NL8 GWNL Corpus

Minimum 0 0 7 0 0 0 0 14

Cons-1 [LM19] ≥ 5 ≥ 144 ≥ 472 ≥ 1056 ≥ 2184 ≥ 1296 ≥ 2184 ≥ 12498

Construction 2 6 52 226 682 1500 2502 3002 12938 ≈ 232319

[CMR17, Su21] 4 56 350 1288 3108 4774 5539 25763

Upper Bound 54 268 888 2150 3959 5666 6378 32348
Table 5. Weightwise nonlinearities of 16-variable WPB constructions.

7 Conclusion and open problems

In this article we presented a general study on the weightwise nonlinearity of WPB functions. First, we
studied the µk,n and µn; we provided a lower and an upper theoretic bounds and we determined the values
for small values of m, up to 10. We also considered the relation between weightwise affine functions
and WPB functions, showing that all for n = 2 all WPB functions are weightwise affine, for n = 4
some WPB functions are weightwise affine but no set is included in the other one, and for n ≥ 8 no
WPB function is weightwise affine. Then, we considered the Mk,n, Mn and the distribution of the NLk.
We presented theoretic bounds on Mk,n and provided algorithms to compute or estimate the distribution
of the weightwise nonlinearity of WPB functions. Using these algorithms, we provided the weightwise
nonlinearity distribution of functions balanced on the slices for n ∈ [4, 8]. Finally, we gave two constructions
of WPB functions obtained by modifying linear functions on each slice. We proved their WPB property and
for one of the family we determined exactly the NLk for each slice, and the corpus of this large family. We
also compared the NLk and GWNL of these functions to the ones of former constructions and to the average
behavior, in 8 and 16 variables.

From this general study we can conclude that most of the known WPB constructions are far from the
upper bounds on the Mk,n and Mn, and for small n where we can observe the distribution the NLk of these
construction it is actually low compared to the average. Accordingly, the next step in order to build WPB
functions with good cryptographic parameters would be to determine larger corpora of WPB functions, with
GWNL higher than the average value. We highlight further open problems that arise from the results of this
study.

– Upper bound on µn. In Section 4 we derive an upper bound on µn in Proposition 7 that has the same
order as µ2n for the first values of m based on Table 2. Since this bound is obtained by considering
particular linear functions over the slices (the ones with only one monomial in their ANF), it would be
interesting to consider different linear functions to obtain a better bound with a simple expression.

– Bounds on Mk,n and ρk,n. In Section 5.1 we derive bounds on Mk,n by adapting the standard techniques
to bound the covering radius of a code. We recall that Mk,n ≤ ρk,n, but the exact relation between these
two quantities is not known. Proving the equality or difference between these quantities could be a step
towards better bounds, since the covering radius of punctured Reed-Muller codes is unknown in general.

– Determining the WPB functions with low GWNL. In Section 6 the exhibited constructions are built
by perturbing linear functions over each slice such that the perturbation is a the limit of the error
correction capacity of each code Pk,n. Generalizing this approach by considering all affine functions
(Construction 1 and using Proposition 1) and all integers p such that 0 ≤ p ≤ t for each slice gives all
WPB functions with low GWNL. More precisely, it would provide all WPB functions with GWNL
between µn and

∑n−1
k=1bdk,n/2c. Finding other characterizations of this family and determining its

27



cardinal could be used to built new constructions with better weightwise nonlinearities or to determine
which known constructions are already part of this family. For example, the quantities displayed in
Table 4 show that in 8 variables the constructions fm from [MS21] and from [MSL21] belong to this
family.

– Relations betweenWPBm andWDdn. Last but not least, we find the concept of weightwise degree-d
functions appealing, and an interesting corpus to look for Boolean functions with good cryptographic
properties. Since the degree of a WPB is not a relevant quantity (adding symmetric functions null in 0
and 1 changes the degree but not the WPB property neither the weightwise nonlinearity) the notion of
weightwise degree would be more relevant to study the properties of WPB functions. In Section 4.2,
we show that there are no WPB functions in WD1

n for n ≥ 8, it leads to the problem of determining
for all m the smallest d such thatWDd2m ∩ WPBm 6= ∅, or in other words, to determine the smallest
weightwise degree allowing to have WPB functions.
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